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Abstract

In network science, one of the significant and challenging subjects is finding out the
community structure. Modularity optimization has emerged as one of the effective
methods for solving this problem in a graph. In this thesis, we show that modularity
optimization in unsigned graphs is equivalent to a minimization problem with a total
variation and a signless total variation. The Merriman–Bence–Osher (MBO) scheme
is a classic technique for solving this minimization problem. Therefore, we derive an
adapted MBO algorithm for speeding up the iteration steps. We tested our method
on both synthetic and real datasets and got positive results compared to other well­
known approaches.

Key words. modularity, MBO scheme, data clustering, Ginzburg–Landau functional



Table of Contents

1. Introduction 2
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Outline of contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Method 6
2.1. Graphical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Laplacians for unsigned graphs . . . . . . . . . . . . . . . . . . 7
2.2. Review of the modularity function . . . . . . . . . . . . . . . . . . . . . 9
2.3. Reformulation of modularity optimization for binary segmentation . . . 11
2.4. Generalization to multiple clusters . . . . . . . . . . . . . . . . . . . . 12

3. Diffuse interface methods 15
3.1. The classical continuum Ginzburg–Landau functional . . . . . . . . . 15
3.2. Binary classification with the graph Ginzburg–Landau functional . . . 16

3.2.1. MBO scheme for binary classification . . . . . . . . . . . . . . 17
3.3. Multiple clusters extension . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1. Ginzburg–Landau relaxation . . . . . . . . . . . . . . . . . . . 19
3.3.2. Multiclass MBO scheme . . . . . . . . . . . . . . . . . . . . . . 20

4. The modularity MBO algorithms 22
4.1. The MMBO algorithm using projection on the eigenvectors. . . . . . . 22
4.2. Alternative variant of the MMBO scheme . . . . . . . . . . . . . . . . . 24
4.3. Nyström extension with QR decomposition. . . . . . . . . . . . . . . . 26

5. Numerical experiments 31
5.1. Related algorithms and evaluation metrics introduction . . . . . . . . . 31

5.1.1. Algorithms comparison . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2. Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2. Zachary’s karate club . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4. Stochastic block model . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6. Conclusion and Discussion 67

A. Appendix 68
A.1. The zero eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2. Γ–convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3. The choice of timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.4. Weyl’s inequality and rank–one matrix updates . . . . . . . . . . . . . 70

B. References 73



0

List of Tables

1.1. Summary of frequently used symbols throughout the thesis. . . . . . . 5

5.1. Contingency table [12], where ai is the sum of the i–row, that is ai =∑s
j=1 nij, and bj is the sum of the j–column, that is bj = ∑r

i=1 nij. . . . 34
5.2. Contingency Table for Comparing Partitions X and Y. . . . . . . . . . 34
5.3. Nodes clustering result according to [73]. . . . . . . . . . . . . . . . . 36
5.4. Parameter setting of the MMBO schemes in ZKC for modularity opti­

mization and clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5. Performance of different algorithms in ZKC in terms of modularity and

runtime. Dashes indicate no calculation. The time is the total amount
of time required to execute each approach 20 times. . . . . . . . . . . 37

5.6. The average modularity and average running time of different algo­
rithms in ZKC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7. Compare different algorithms in modularity and running time in ZKC.
Dashes indicate no calculation. . . . . . . . . . . . . . . . . . . . . . . 38

5.8. The average modularity score and average running time of algorithms
for K = 4 in ZKC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9. Parameter settings for Nyström extension on MNIST. . . . . . . . . . . 41
5.10.Parameter setting of the MMBO scheme on MNIST. . . . . . . . . . . 41
5.11.Performance of different algorithms in MNIST in terms of modularity

and runtime. The time is the total amount of time required to execute
each approach 20 times. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.12.The average performance of algorithms on MNIST when K = 125 and
strict stopping criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.13.Average computation time on MNIST for the MMBO scheme and the
Hu’s method when using m = K = 125 and the standard stopping
criterion (4.3). The number of iterations is rounded to the nearest integer. 45

5.14.The best modularity of algorithms on MNIST when using m = K = 125
and the standard stopping criterion (4.3). The time is the total amount
of time required to execute each approach 20 times. . . . . . . . . . . 46

5.15.The average performance of the comparison algorithm onMNISTwhen
m = K = 125 and the standard stopping criterion. . . . . . . . . . . . . 47

5.16.Average computation time on MNIST for the MMBO scheme and the
Hu’s method when using m = K = 125 and the modularity­related
stopping condition. The number of iterations is rounded to the nearest
integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.17.The best modularity of algorithms on MNIST when m = K = 125 and
the modularity­related stopping condition. The time is the total amount
of time required to execute each approach 20 times. . . . . . . . . . . 48

5.18.The average performance of the comparison algorithm onMNISTwhen
using m = K = 125 and the modularity­related stopping condition. . . 49

5.19.Parameter setting of SBM. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021



5.20.Parameter setting of the MMBO schemes in SBM. . . . . . . . . . . . 51
5.21.The best modularity of algorithms on SBM, where the best modularity

is obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.22.SBM with a strong community structure at K = 5. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.23.SBM with a weak community structure at K = 5. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.24.SBMwith a strong community structure at K = 10. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.25.SBM with a weak community structure at K = 10. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.26.SBMwith a strong community structure at K = 15. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.27.SBM with a weak community structure at K = 15. The best modularity

are obtained for 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.28.Average performance of approaches in SBM with strong community

structure for K = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.29.Average performance of approaches in SBM with weak community

structure for K = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.30.Average performance of approaches in SBM with strong community

structure for K = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.31.Average performance of approaches in SBM with weak community

structure for K = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.32.Average performance of approaches in SBM with strong community

structure for K = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.33.Average performance of approaches in SBM with weak community

structure for K = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures

4.1. The flowchart of Nyström extension with QR decomposition. . . . . . . 30

5.1. Best modularity score versus number of clusters on ZKC. The purple
and red lines cover the green dotted line and the yellow curve, respec­
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2. Community detection on Zachary’s karate club network with different
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3. Comparison of the spectra of different models on the MNIST. In (a), the
green dotted line is covered by the yellow one. In (b), the purple curve
is almost hidden by the red one. . . . . . . . . . . . . . . . . . . . . . 44

5.4. Modularity score versus the number of iterations on the MNIST. . . . . 45
5.5. Adjacency matrices of the strong and weak community structure at

K = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6. The spectra of Lmixs and Lsym in SBMwith strong community structure,

where (a) and (b) are for the case K = 10 and (c) and (d) are for K = 15. 52
5.7. The spectra of Lmix and Lsym in SBM with weak community structure,

where the left column is the case of K = 10 and the right column is the
case of K = 15. In (e) and (f), the purple and pink curves are covered
by red and brown ones, respectively. . . . . . . . . . . . . . . . . . . . 53

5.8. Modularity in the number of eigenvectors used in the strong community
structure of the SBM when K = 10. All MMBO schemes are overlapping. 55

5.9. Modularity in the number of eigenvectors used in the strong community
structure of the SBM when K = 15. The green and brown lines cover
the purple dotted line and the red curve, respectively. . . . . . . . . . 56



1 Introduction

1. Introduction

1.1. Motivation

A complex network is a graph structure that depicts intricate systems as nodes and
edges, where nodes represent objects and edges express their relationships. There
is no relationship between objects if there is no an edge between nodes. The relation­
ships between members of complex real­world systems can be intuitively described
through visualization, such as urban transportation networks, airline networks, com­
puter communication networks, and social networks.

A typical aspect of networks is community structure, which is a segmentation of the
set of network nodes in which nodes in the same community are strongly connected,
while connections between nodes in other communities are sparse. Many complex
networks exhibit community structures, so studying the community structure of com­
plex networks is motivating. In addition, the community structure can be used to study
the common characteristics and properties of node groups. Moreover, the functions
of similar nodes and potential connections between nodes can be predicted based
on prior information [19], such as the number of communities is known.

A crucial aspect of community detection is that it can be used to retrieve important
information from the network, which is represented as community structures. In ad­
dition, community detection is of great theoretical and practical value for understand­
ing the topology and predicting the behavior of real­world networks and has been
widely used in many fields, such as protein function prediction [59] and criminology
[35]. Many real­world networks have weighted edges. When weighted networks are
used to describe complex systems, the connectivity between nodes can be better
expressed. One of challenges for community detection in networks is that the com­
munity structure is not universally defined [21]. As a result, it is difficult to establish pre­
cise standards for evaluating and comparing the performance of various algorithms,
as these decisions frequently rely on the individual research issue and the system un­
der investigation. Current community detection algorithms can be mainly classified
as follows:

1) Graph partitioning algorithms [26]. These algorithms recursively remove the edges
from the network to obtain the communities such that there are only a number of
intergroup connections.

2) Clustering algorithms [55, 54]. The idea of this type of algorithms is to iteratively
merge small groups into large one. In general, communities are local, but the com­
putation of this class of algorithms is frequently global, resulting in higher complexity.

3) Optimization algorithms [28, 71]. This group of algorithms maximizes modular­
ity using spectral clustering, simulated annealing, or other optimization techniques.
Modularity is a metric for evaluating the quality of communities that have been found.

2 Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021



1 Introduction

Numerous approaches have been proposed to find the optimal community in a rela­
tively short time, and most of these techniques are based on objective function opti­
mization. Modularity optimization is one of the most popular methods. Newman and
Girvan established the concept of modularity, Q, to assess the partition of a commu­
nity [56], transforming community detection in complicated networks into a modularity
function optimization problem. A high similarity of nodes within the same community
and a low similarity of points in separate communities is an optimal depiction of the
partitioning outcome. Specifically, the higher the Q value, the more significant is the
community structure of the network. However, the modularity optimization is a NP–
hard problem [6], thus numerous heuristic algorithms have been developed for mod­
ularity optimization have been proposed, including extremal optimization [17], greedy
or Louvain algorithms [10, 3], simulated annealing [30] and spectral methods [26, 55].

Hu et al. [32] presented a total variation (TV)­based approach for optimizing network
modularity using the Merriman­Bence­Osher (MBO) scheme. The current work fol­
lows up on [32] both theoretically and computationally. In particular, we make the
following contributions.

1.2. Outline of contribution

Our main contribution is the development of an improved approach to modularity op­
timization, namely the modularity MBO scheme using projection. We reformulated
modularity optimization as the minimization of total variation and signless total vari­
ation in a graph. Moreover, we have demonstrated the competitiveness of our ap­
proach compared to Louvainmethod, spectral clustering, and theClauset−Newman−Moore
method through extensive numerical tests on both synthetic and real data.

1.3. Structure of the thesis

This thesis is organized as follows.

Section 1 provides a review of the relevant literature on community detection.

Section 2 reviews the background information required for modularity optimization.
Then we develop an equivalent formula for modularity optimization as a minimization
problem with a total variation term and a signless total variation term.

Section 3 introduces the Ginzburg–Landau framework, the MBO scheme, and con­
vex splitting.

Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021 3



1 Introduction

Section 4 implements our algorithm, i.e., the MMBO scheme. In addition, we present
the Nyström extension, which uses the QR decomposition to compute the eigenval­
ues and eigenvectors.

Section 5 is conducted to evaluate our method on synthetic and real–world networks.
We also compared our method with Hu’s method [32] and other state­of­the­art tech­
niques, such as the Louvain method and spectral clustering.

Section 6 provides a summary of our results and possible future research directions.

There are additional appendices that provide further background and proofs.

Notation. Table 1.1 contains a summary of our notation.

4 Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021



1 Introduction

Notation List
Symbol Description Symbol Description
A a partition of V m the number of the eigenvalues

used for the diffusion step
B modularity matrix Nt number of repetitions of the diffu­

sion step
ci the community where node i is

located
P null model

di the strength (i.e., weighted de­
gree) of node i

Φ double well potential

dt timestep Q modularity
DW degree matrix of W QW signless Laplacian of W

e row vector containing −1 and 1 QWsym signless symmetric normalized
Laplacian of W

E edge set QWrw signless random walk Laplacian
of W

|E| the number of edges R+ positive real numbers excluding
0

ε parameter of the GL functional U node­cluster association matrix
ε stopping criterion V node set
Fε Ginzburg–Landau (GL) func­

tional
|V | the number of nodes

fε graph Ginzburg–Landau (GL)
functional

vol(V ) the volume of G

G graph W adjacency matrix
I identity matrix X eigenvectors matrix
K number of clusters γ resolution parameter
Λ eigenvalue matrix || · ||L1 Taxicab norm operator
LW graph Laplacian of W || · ||L2 Euclidean norm operator
LWsym symmetric normalized Laplacian

of W
〈·, ·〉 standard inner product

LWrw random walk Laplacian of W 〈·, ·〉rw inner product for LWrw and QWrw

Table 1.1.: Summary of frequently used symbols throughout the thesis.

Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021 5



2 Method

2. Method

This section introduces basic terminology and derives new formulations of modular­
ity, showing that maximizing modularity is comparable to minimizing a graph total
variation (TV) and a signless total variation.

2.1. Graphical framework

In this thesis, we consider connected, weighted, undirected graphs G = (V, E,ω) with
a node set V , an edge set E = {eij}|V |

i,j=1 and edge weight ωij between node i and
node j. The adjacency matrix W = (ωij)|V |

i,j=1 is a nonnegative and symmetric matrix
whose entries ωij are zero if i = j or (i, j) /∈ E. Degree di = ∑|V |

j=1 ωij denotes the
weighted degree of node i. A volume (i.e., total edge weight) of the graph G is defined
as vol(V ) = ∑|V |

i=1 di = ∑
i,j∈V ωij.

Let A = {Al}K
l=1 be a family of disjoint sets for partitioning the node set V , where Al

satisfies V = ⋃K
l=1 Al and Al1 ∩ Al2 = ∅ if l1 '= l2. Note that Ai could be empty, so the

number of partition A is at most K. The partition A is equivalent to a node assignment
{cj}|V |

j=1, where cj ∈ {1, ..., K} denotes the community that node j belongs to. We
define Al = {j ∈ V : cj = l} for l ∈ {1, ..., K}. Indicator function δ(ci, cj) = 1 if nodes
i and j are in the same community and δ(ci, cj) = 0 otherwise.

Norms || · ||L1 and || · ||L2 represent the Taxicab norm operator and the Euclidean norm
operator, respectively. For a vector u = (u1, u2, ..., un), the corresponding ||u||L1 and
||u||L2 are defined as

||u||L1 : =
n∑

i=1
|ui|, (2.1)

||u||L2 : =
√

(u1)2 + (u2)2 + ... + (un)2.

Given a graph G = (V, E,ω) based on adjacency matrix W , and a function u =
(u1, u2, ..., u|V |) : V → R, we can define the graph total variation (TV ) and signless
total variation (TV +) as

TVW (u) := 1
2
∑

i,j∈V

ωij|ui − uj|, (2.2)

TV +
W (u) := 1

2
∑

i,j∈V

ωij|ui + uj|. (2.3)

6 Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021



2 Method

2.1.1. Laplacians for unsigned graphs

Graphs with nonnegative edge weights are known as unsigned graphs. We assume
that all entries of adjacency matrix W are nonnegative and symmetric.

We defined the graph Laplacian matrix L [9] as

Lij :=




di if i = j,

−ωij otherwise.

A diagonal degree matrix D of W is given by

(DW )ii = di.

SinceG is connected, i.e., there is no isolated node, it is straightforward to have di > 0.
Thus, matrix DW is invertible. Then the graph Laplacian matrix L and its normalized
variants, namely, the random walk Lrw and the symmetric normalized Lsym of W can
be written as

LW = DW −W, (2.4)
LWrw = D−1

W LW = I −D−1
W W, (2.5)

LWsym = D
− 1

2
W LW D

− 1
2

W = I −D
− 1

2
W WD

− 1
2

W . (2.6)

For all u ∈ R|V |, the graph Laplacian LW satisfies the following equations

(LW u)i =
|V |∑

j=1
ωij (ui − uj) .

In general, the standard inner product 〈·, ·〉 on R|V | is defined as 〈u, Lu〉 := uT Lu. It
follows

〈u, LW u〉 = uT LW u

= uT DW u− uT Wu

=
|V |∑

i=1
diu

2
i −

|V |∑

i,j=1
ωijuiuj

= 1
2




|V |∑

i=1
diu

2
i − 2

|V |∑

i,j=1
ωijuiuj +

|V |∑

j=1
dju

2
j





= 1
2




|V |∑

i,j=1
ωiju

2
i − 2

|V |∑

i,j=1
ωijuiuj +

|V |∑

i,j=1
ωiju

2
j



 (Since di = ∑|V |
j=1 ωij)

= 1
2




|V |∑

i,j=1
ωij(u2

i − 2uiuj + u2
j)




= 1
2

|V |∑

i,j=1
ωij(ui − uj)2 ≥ 0. (2.7)

Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021 7



2 Method

Note that the symmetric graph Laplacian LWsym satisfies

〈
u, LWsymu

〉
= uT LWsymu = 1

2

|V |∑

i,j=1
ωij



 ui√
di
− uj√

dj




2

≥ 0. (2.8)

Similarly, for all u ∈ R|V |, the signless graph Laplacian Q, and its normalized variants
Qrw and Qsym of W are defined as

QW = DW + W, (2.9)
QWrw = D−1

W QW = I + D−1
W W, (2.10)

QWsym = D
− 1

2
W QW D

− 1
2

W = I + D
− 1

2
W WD

− 1
2

W . (2.11)

We obtain 〈u, QW u〉 and
〈
u, QWsymu

〉
by

〈u, QW u〉 = uT QW u

= uT DW u + uT Wu

=
|V |∑

i=1
diu

2
i +

|V |∑

i,j=1
ωijuiuj

= 1
2

|V |∑

i,j=1
ωij(ui + uj)2 ≥ 0. (2.12)

〈
u, QWsymu

〉
= uT QWsymu = 1

2

|V |∑

i,j=1
ωij



 ui√
di

+ uj√
dj




2

≥ 0. (2.13)

Note that LWrw and QWrw are not symmetric in general. To ensure that the operators
are self­adjoint, we define another inner product 〈·, ·〉rw for LWrw and QWrw , that is, for
all i ∈ V ,

〈u, v〉rw :=
∑

i∈V

uividi.

For all u ∈ R|V |, LWrw and QWrw satisfy the following relationship:

(LWrwu)i = 1
di

∑

j∈V

ωij(ui − uj),

(QWrwu)i = 1
di

∑

j∈V

ωij(ui + uj).

Therefore, we obtain

〈u, LWrwu〉rw = 1
2

|V |∑

i,j=1
ωij (ui − uj)2 ≥ 0, (2.14)

〈u, QWrwu〉rw = 1
2

|V |∑

i,j=1
ωij (ui + uj)2 ≥ 0. (2.15)

8 Zijun Li, A method for modularity optimization based on total variation and sign­
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2 Method

It can be seen that LW , LWsym , LWrw , QW , QWsym and QWrw are all positive semi­
definite. According to spectral graph theory [9], the following theorem indicates that
the multiplicity of the 0 eigenvalue reveals the number of connected components of
the graph.

Theorem 1. The number of zero eigenvalues of the Laplacian L (i.e., the multiplicity
of the 0 eigenvalue) equals the number of connected components of the graph G.1

2.2. Review of the modularity function

Modularity is a structural graph metric that measures the quality of partitioning the
node set into clusters. Let graph G be partitioned into K clusters. We represent
this partition by a K × K unweighted symmetric matrix R where each element rij

represents the fraction of edges connecting community i to community j among all
edges ofG. The trace Tr(R) = ∑

i∈K rii indicates the percentage of edges connecting
the nodes inside the same community. For a good community partitioning, it should
have a trace with a high value. However, Newman [56] found that trace Tr(R) cannot
measure the quality of the partition thoroughly in some cases. For example, if all
nodes are put into the same community, then the value Tr(R) = 1 is maximal, but it
is evident that this partition is not meaningful for most cases.

Newman [56] illustrated this issue by considering a random graph G′ that has the
same community partition and the same number of edges as G but with arbitrary
random connections between nodes. If G has a community structure, the fraction of
within­community edges to the total number of edges should be greater than the ex­
pectation of that fraction in the random case. A greater difference between the actual
within­community edges and the expectation indicates that the network is significantly
distinct from the random network, i.e., the network has a community structure. Let
Ri = ∑

j∈K rij be the sum of the i–th row of R. Then the modularity is defined as

Q :=
∑

i∈K

(rii −R2
i ) = Tr(R)− ||R2

i ||L1 , (2.16)

where ||R2
i ||L1 is the sum of the all components of R2

i .

Although the preceding definition is basic and obvious, there is one flaw: it does not
consider the degree of nodes in the original network G = (V, E,ω) when constructing
a random graph G′ = (V, E ′, p), where pij stands for the expected weights based
on an appropriate null model. A null model is a random structure that estimates the
quantity of edges that can be expected to randomly connect nodes within the same
community. Therefore, Newman [55] redefined the modularity based on a |V | × |V |
weighted symmetric matrix W as

Q(A) = 1
vol(V )

∑

i,j∈V

(ωij − pij) δ(ci, cj). (2.17)

1The proof is shown in appendix A.1

Zijun Li, A method for modularity optimization based on total variation and sign­
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In [53, 57], Newman generated a collection of random graphs. One of the common
null models is the Newman–Girvan model, where the probability of connection be­
tween node i and node j is pij = didj

vol(V ) . Thus, the modularity can be written as

Q(A) = 1
vol(V )

∑

i,j∈V

(

ωij −
didj

vol(V )

)

δ(ci, cj). (2.18)

For Q > 0, it shows that community structure might exist. When Q = 0, it indicates
that all nodes are assigned to the same community, or the connections within the
communities have no difference between the raw data and the null model. If Q < 0,
there is no community structure in the network.

Newman pointed out that in reality, the value of Q for a strong community structure
should be between 0.3 and 0.7, with greater values being rare [71]. According to For­
tunato and Barthelemy [20], there is a drawback in optimizing equation (2.18) to find
community partitions, i.e., it is impossible to find a community partition in networks
that contains many small communities. In particular, when the number of communi­
tiesK in the network is greater than

√
vol(V ), the best modularity of the corresponding

network would be lower than that of K ≤
√

vol(V ). The reason is that the modularity
optimization based on equation (2.18) seeks community partitions that tend to inte­
grate tiny communities into bigger ones, making this approach ineffective of detecting
small communities in the network.

To solve the above problem, Arenas [1] proposed a generalized modularity based on
the Reichardt and Bornholdt method [61]:

Q(A) = 1
vol(V )

∑

i,j∈V

(

ωij − γ
didj

vol(V )

)

δ(ci, cj), (2.19)

where γ > 0 is a resolution parameter [61]. The distinction between (2.19) and (2.18)
is the parameter γ, which allows (2.19) to be more flexible and find more network
community partitions. Nevertheless, there are still some issues with the modularity
optimization even in this case.

Lancichinetti and Fortunato [41] have showed that there is a problem with equation
(2.19): When γ takes smaller values, namely γ < 1, it tends to merge small com­
munities into large ones; when γ is larger, i.e., γ > 1, it splits large communities.
Moreover, it was not possible to eliminate both biases simultaneously. The best par­
titioning should correspond to a reasonable γ resolution according to Jeub, Sporns,
and Fortunato [34] et al. However, predetermination is challenging when one does
not know about the network a priori.

In practice, the choice of γ depends on a concrete experiment. The problem of how
to determine γ is a matter outside the scope of this thesis. In addition, to compare the
performance of our method with other algorithms, the value we choose for γ depends
on which value it is used in other papers.

10 Zijun Li, A method for modularity optimization based on total variation and sign­
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2.3. Reformulation of modularity optimization for
binary segmentation

In this subsection, we consider only the case of two clusters and derive a new expres­
sion for the modularity Q, transforming the maximization problem into a minimization
problem.

Let u be a real­valued function on the node set V , with value ui on node i. We define
a {−1, +1}­valued function as

Vb := {∀i ∈ V, ui ∈ {−1, +1}}. (2.20)

Specially, if u ∈ Vb, one defines the sets

V1 = {i ∈ V : ui = 1} and V−1 = {i ∈ V : ui = −1}.

It is clear that if ui ∈ Vb, i.e., ui ∈ {−1, +1}, then

u2
i + u2

j = 2,

which implies that

(uiuj + 1) = −1
2(ui − uj)2 + 2,

−(uiuj + 1) = −1
2(ui + uj)2.

If ui = uj ∈ V1 or ui = uj ∈ V−1, namely if node i and j are in the same cluster, then
δ(ci, cj) = 1 = 1

2(uiuj + 1). Similarly, if ui '= uj, then δ(ci, cj) = 0 = 1
2(uiuj + 1). Hence

the modularity Q for K = 2 clusters can be rewritten as

Q = 1
2vol(V )

∑

i,j∈V

(ωij − pij) (uiuj + 1)

= 1
2vol(V )

∑

i,j∈V

ωij(uiuj + 1)− 1
2vol(V )

∑

i,j∈V

pij(uiuj + 1)

= − 1
4vol(V )

∑

i,j∈V

ωij(ui − uj)2 + 1
vol(V )

∑

i,j∈V

ωij −
1

4vol(V )
∑

i,j∈V

pij(ui + uj)2

= − 1
2vol(V )



1
2
∑

i,j∈V

ωij(ui − uj)2 + 1
2
∑

i,j∈V

pij(ui + uj)2



+ 1
vol(V )

∑

i,j∈V

ωij. (2.21)

For all u ∈ Vb, one obtains

(ui − uj)2 = 0 or (ui − uj)2 = 4,

2|ui − uj| = 0 or 2|ui − uj| = 4.

Zijun Li, A method for modularity optimization based on total variation and sign­
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Therefore, if u ∈ Vb, then it follows

(ui − uj)2 = 2|ui − uj|. (2.22)

Similarly, (ui + uj)2 = 2|ui + uj| if u ∈ Vb.

For the third term in (2.21), we know that vol(V ) = ∑
i,j∈V ωij, so 1

vol(V )
∑

i,j∈V ωij = 1
and independent of ui. Let

Qbin : = 1
2
∑

i,j∈V

ωij(ui − uj)2 + 1
2
∑

i,j∈V

pij(ui + uj)2

=
∑

i,j∈V

ωij|ui − uj| +
∑

i,j∈V

pij|ui + uj|

= 2TVW (u) + 2TV +
P (u), (2.23)

then the maximization of modularity Q (2.17) is equivalent to the minimization of
Qbin(u) over all functions u ∈ Vb, which corresponds to minimizing the TV based
on G with W plus the signless TV based on G′ with P .

2.4. Generalization to multiple clusters

In reality, many networks consist of more than two communities. Therefore, it is im­
portant to extend the approach of Section 2.3 to identify appropriate partitions of the
node set into multiple clusters.

Given a vector­valued function u = (u(1), ..., u(K)) : V → RK , where u(l) is the l–th
component of u, and a non­negatively symmetric matrix W , the generalizations of
graph TV and signless TV are given as

TVW (u) :=
K∑

l=1
TVW (u(l)) =

K∑

l=1

1
2
∑

i,j∈V

ωij|u(l)
i − u(l)

j |, (2.24)

TV +
W (u) :=

K∑

l=1
TV +

W (u(l)) =
K∑

l=1

1
2
∑

i,j∈V

ωij|u(l)
i + u(l)

j |. (2.25)

In multiple clusters case, we can identify u(l)
i with an |V |×K matrix U where uil = u(l)

i .

Definition 1. Let Pt(V ) be the set of all partitions of the node set V . For an arbitrary
partition {A1, ..., AK} defined in Section 2.1, we define an |V | × K indicator matrix
as

til =




1, if i ∈ Al,

−1, if i ∈ AC
l ,

(2.26)

where til is an element of T for i ∈ {1, ..., |V |} and AC
l is the complement of Al. In

other words, we say matrix T ∈ Pt(V ) if T is the indicator matrix of some partition.

12 Zijun Li, A method for modularity optimization based on total variation and sign­
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For matrix U ∈ Pt(V ), we obtain that

|uil − ujl| = 0 if i, j ∈ Al or i, j ∈ AC
l , (2.27)

|uil − ujl| = 2 if i ∈ Al, j ∈ AC
l or i ∈ AC

l , j ∈ Al, (2.28)
|uil + ujl| = 0 if i ∈ Al, j ∈ AC

l or i ∈ AC
l , j ∈ Al, (2.29)

|uil + ujl| = 2 if i, j ∈ Al or i, j ∈ AC
l . (2.30)

Then the generalizations of graph TV and signless TV with respect to U ∈ Pt(V ) can
be represented as

TVW (U) = 1
2

K∑

l=1




∑

i,j∈Al

+
∑

i∈Al,j∈AC
l

+
∑

i∈AC
l ,j∈Al

+
∑

i,j∈AC
l



ωij|uil − ujl|

=
K∑

l=1

∑

i∈Al,j∈AC
l

ωij|uil − ujl|

= 2
K∑

l=1

∑

i∈Al,j∈AC
l

ωij, (2.31)

TV +
W (U) = 1

2
K∑

l=1




∑

i,j∈Al

+
∑

i∈Al,j∈AC
l

+
∑

i∈AC
l ,j∈Al

+
∑

i,j∈AC
l



ωij|uil + ujl|

= 1
2

K∑

l=1




∑

i,j∈Al

+
∑

i,j∈{A1,...,AK}\Al



ωij|uil + ujl|

=
K∑

l=1

∑

i,j∈Al

ωij +



K∑

l=1

∑

i,j∈Al

ωij + (K − 2)vol(V )




= 2
K∑

l=1

∑

i,j∈Al

ωij + (K − 2)vol(V ). (2.32)

Consider a graph G and fix K. Let G′ = (V, E ′, p) be another graph, where E ′ and p
are an edge set and edge weights of G′, respectively. Since δ(ci, cj) = 1 for any pair
of nodes that is in the same community, i.e., i, j ∈ Al for l ∈ {1, 2, ..., K}, equation

Zijun Li, A method for modularity optimization based on total variation and sign­
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(2.17) can be written as follows

Q(A) = 1
vol(V )

K∑

l=1

∑

i,j∈Al

ωij −
1

vol(V )
K∑

l=1

∑

i,j∈Al

pij

= 1
vol(V )

K∑

l=1




∑

i∈Al,j∈V

ωij −
∑

i∈Al,j∈AC
l

ωij



−
1

vol(V )
K∑

l=1

∑

i,j∈Al

pij

= 1
vol(V )

|V |∑

i,j=1
ωij −

1
vol(V )

K∑

l=1

∑

i∈Al,j∈AC
l

ωij −
1

vol(V )
K∑

l=1

∑

i,j∈Al

pij

= − 1
vol(V )




K∑

l=1

∑

i∈Al,j∈AC
l

ωij +
K∑

l=1

∑

i,j∈Al

pij



+ 1
vol(V )

|V |∑

i,j=1
ωij. (2.33)

Similar to the binary case above, the third term in (2.33) is 1. Let

Qmul(A) : =
K∑

l=1

∑

i∈Al,j∈AC
l

ωij +
K∑

l=1

∑

i,j∈Al

pij

= 1
2TVW (U) + 1

2TV +
P (U)− 1

2(K − 2)vol(V ). (2.34)

The last term in (2.34) is a constant when K is fixed. Therefore, the maximization
of the modularity Q of the multiple clusters over all matrices U ∈ Pt(V ) is equivalent
to the minimization of Qmul over that same set. Note that Qmul is associated with
the graph TV in a given graph G = (V, E,ω) and the signless TV in another graph
G′ = (V, E ′, p).
In addition to W and P , another way to construct adjacency matrices is also consid­
ered in the thesis. Following the above definitions and notations of W and P , the
modularity matrix B [55] is defined as

B = W − P. (2.35)
Note that ωij and pij may be overlapping, i.e., ωij ≤ pij. It results in B having both
positive and negative elements. We define the positive part of B as B+ and the
negative part of B as B−, whose entries are

b+
ij := max{bij, 0} and b−

ij := −min{bij, 0}, (2.36)
so B = B+ −B−. Then (2.33) can be rewritten as

Q(A) = 1
vol(V )

∑

i,j∈V

(
b+

ij − b−
ij

)
δ(ci, cj)

= − 1
vol(V )




K∑

l=1

∑

i∈Al,j∈AC
l

b+
ij +

K∑

l=1

∑

i,j∈Al

b−
ij



+ 1
vol(V )

|V |∑

i,j=1
b+

ij. (2.37)

In this case, (2.34) is presented as

Qmul(A) := 1
2TVB+(U) + 1

2TV +
B−(U)− 1

2(K − 2)vol(V ). (2.38)
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3 Diffuse interface methods

3. Diffuse interface methods

Graph–based classification algorithms on unsigned graphs have been proven to be
useful in a number of real world applications [55, 2]. In particular, diffuse interface
methods [2], an approach that uses efficient PDE techniques to handle binary seg­
mentation problems, have been introducedwith highly promising results. TheGinzburg–
Landau (GL) functional associated with a graph Laplacian, whose minimization is as­
sociated with the minimization of the total variation, is widely used in diffuse interface
approaches.

3.1. The classical continuum Ginzburg–Landau
functional

The classical continuum Ginzburg–Landau (GL) functional is given by

Fε(u) := ε

2

∫

Ω
|∇u(x)|2dx + 1

ε

∫

Ω
Φ (u) dx, (3.1)

where u ∈ W 1,2(Ω) is a phase field describing the different phases in the system, ∇
denotes the spatial gradient operator and ε > 0 is a real constant parameter. The
function Φ(u) is a double well potential with two minima. For example, a classical
choice is polynomial Φ(u) = 1

4(u2 − 1)2 that has minima u = −1 and u = 1. In this
case, we say node i is in one phase if u = 1 and it is in another phase if u = −1. For
small ε > 0, minimizing Fε will cause the function u to approach the minima of Φ. For
instance, Φ(u) = 1

4(u2−1)2 has minima at −1 and 1, then the minimizer of (3.1) tends
to have {u ≈ −1} and {u ≈ 1}.

It has been established that the functional (3.1) consists of two terms: a smoothing
term and a potential term. More specifically, the first term measures the differences
between the components of the field and the second term quantifies how distant each
component is from a target value (±1 in the example above). Consequently, minimiz­
ing the first term results in smoother fields, while minimizing the second term penal­
izes variations from the double well potential minima.

Consider u : Ω → R is binary, where Ω ⊂ R, and Φ(u) has minima at +1 and −1.
It can be known from [37] that the GL functional Γ–converges 1 to the total variation
(TV) semi–norm:

Fε(u)→Γ F0(u) := ψ
∫

Ω
|∇u| (3.2)

as ε → 0, where ψ is a constant. The proof of (3.2) goes beyond the scope of this
thesis, but it was discussed at some length in [37]. In addition, the graph version of
(3.2) is provided in [66].
1The appendix A.2 provides a summary of Γ–convergence.
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In reality, multiclass classification is designed to handle situations where there are
more than two clusters. For K > 2 clusters, given a vector–valued function u =(
u(1), ..., u(K)

)
, the classical GL functional of two components in (3.1) is generalized

as

Fε(u) = ε

2

∫

Ω

K∑

l=1
|∇u(l)|2dx + 1

ε

∫

Ω
Φmul (u) dx, (3.3)

where multi­well potential function Φmul(u) has K different minimizers instead of two.

One can utilize the L2 gradient flow to minimize (3.1), resulting in the Allen–Cahn
(AC) equation as follow

∂u

∂t
= ε∆u− 1

ε
Φ′(u), (3.4)

where ∆ is the Laplacian operator. The AC equation can be evolved by using the
following time­splitting approach for small ε.

(1) Step 1 is propagation using ∂u
∂t = ε∆u.

(2) Step 2 is propagation using ∂u
∂t = −1

εΦ′(u).

For ε → 0, the time­splitting scheme corresponds to iteration between step (i) and
step (ii), which is the Merriman–Bence–Osher (MBO) scheme. The standard two
steps of the MBO scheme are as follows.

(i) Diffusion. Let un+ 1
2 = S(δt)un, where S(δt) is a propagator by time δt and plays a

similar role to step (1), associating with heat equation

∂u

∂t
= ∆u. (3.5)

(ii) Thresholding. Let

un+1
i :=





1 if u

n+ 1
2

i ≥ 0
−1 if u

n+ 1
2

i < 0.
(3.6)

The iteration repeats until a convergence condition is achived.

3.2. Binary classification with the graph
Ginzburg–Landau functional

In the following section the corresponding problem based on graph information is
presented.

16 Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021
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Let L be the graph Laplacian, and u : V → R be a real–valued function on V , where
ui is the value of node i. The (unsigned) graph GL functional is defined as

fε(u) : = ε

2〈u, Lu〉+ 1
ε

∑

i∈V

Φ (ui)

= ε

4
∑

i,j∈V

ωij (ui − uj)2 + 1
ε

∑

i∈V

Φ (ui) . (By (2.7)) (3.7)

The first term in fε(u) takes the place of the gradient term in (3.1) and the second
one is the double­well potential. In minimizing fε(u), the first one tends to promotes
u to assign similar values to nodes that are linked together by highly weighted edges;
while the second term forces u to be close to the minima of Φ(u). Minimizers of fε are
therefore approximate indicator vectors of clusters with few highly weighted edges
connecting them [13].

Similar to the (unsigned) graph GL functional and following the idea of [36], the sign­
less graph GL functional is given as

f+
ε (u) : = ε

4
∑

i,j∈V

ωij (ui + uj)2 + 1
ε

∑

i∈V

Φ (ui) . (By (2.12)) (3.8)

As previously, the Allen–Cahn equation for graphs is obtained byminimizing the graph
GL functional from (3.7) using the gradient descent approach, given by

∂u

∂t
= −ε [Lu]i −

1
ε

Φ′ (u) , (3.9)

where [Lu]i denotes the i–th component of the vector Lu.

3.2.1. MBO scheme for binary classification

In [2], the authors presented a segmentation technique in a network framework in
order to minimize the GL functional using the methods of gradient flow and convex
splitting. Another method for approximately minimizing the GL functional is to use a
graph version of the Merriman–Bence–Osher (MBO) scheme (also called threshold
dynamics) [51]. The goal of the MBO approach in [51] is to produce an efficient and
straightforward way to approximate flow by mean curvature.

Following the idea in [49], we started by ignoring the term Φ′ (u) in (3.9) and then
discretizing (3.9) as follows

un+ 1
2 − un

dt
= −εLun+ 1

2 , (3.10)

where dt is a timestep and (n + 1
2) denotes an intermediate step between the n–th

step and (n + 1)–th step. Then the diffusion step of the MBO scheme is formed as

un+ 1
2 =

(
I|V |×|V | + εdtL

)−1
un, (3.11)
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where I|V |×|V | is an identity matrix. Let X be a matrix whose columns are the eigen­
vectors of L, and Λ be a diagonal matrix with corresponding eigenvalues. When we
write L as its eigendecomposition version L = XΛXT , then equation (3.11) becomes

un+ 1
2 =

[
X(I|V |×|V | + εdtΛ)XT

]−1
un. (3.12)

The role of the double well potential can be approximated using a thresholding step
since it forces the components ui to take only two values 1 or −1, i.e.,

un+1
i :=





1, if u

n+ 1
2

i ≥ 0,

−1, if u
n+ 1

2
i < 0.

(3.13)

One continues the iteration between the diffusion step (3.11) and the thresholding step
(3.13) until a convergence criterion is achieved. Since ui can only take two values of
1 or −1 after the thresholding step, this approach is suitable for binary segmentation.

The minimization of fε is affected by the parameter ε since it sets a scale for the
diffuse interface. Besides, small ε also increases the relative weight of the potential
term in relation to the smoothing term. The problem of discrete length scales, on the
other hand, provides a restriction on the lower bound of ε. To avoid this issue, the
MBO scheme uses a thresholding step instead of Φ′(u), which allows us to set ε = 1.

3.3. Multiple clusters extension

Recently, there have been a number of significant applications using the graph­based
Ginzburg–Landau method for data clustering, community detection, and image seg­
mentation [24, 43, 48, 49]. Themajority of current studies and techniques address the
binary classification problem. The multiple clusters case, where the nodes is divided
into more than two clusters, is more difficult. Therefore, in this section, we show how
to extend the graph GL method from binary segmentation to multi­class clustering
and classification issues.

We define a set of row vectors

ej := (e1, e2, ..., eK) ∈ {−1, 1}K , (3.14)

where components satisfy the j–th component equals 1 and all other components are
−1, i.e., ei=j = 1 and ei%=j = −1.
Given |V | nodes, K > 2 clusters and a matrix U ∈ Pt(V ). Let Φ(u) = 1

4(u2 − 1)2. In
the multi­class case, the graph GL functional in (3.7) generalizes to

fε(U) := ε

2 〈U, LU〉+ 1
ε

∑

i∈V




K∏

j=1

1
4 ||Ui − ej||2L1



 , (3.15)

where 〈U, LU〉 = Tr
(
UT LU

)
and Ui is the i–th row of U .
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3.3.1. Ginzburg–Landau relaxation

Given matrix U ∈ Pt(V ). The minimization of (2.34) defined over U ∈ Pt(V ) is
equivalent to the minimization of

S(U) :=




Qmul(A), if U ∈ Pt(V ),

+∞, otherwise.
(3.16)

Given two |V |× |V | non­negatively symmetric matrices F and H, the number of clus­
ters K, and partition {A1, ..., AK} defined in Section 2.1, we define the the Ginzburg–
Landau relaxation of (3.16) as

Sε(U) : = 1
2 〈U, LF U〉+ 1

2 〈U, QHU〉 − 1
2(K − 2)vol(V ) + 1

ε2

|V |∑

i=1
Φmulti(Ui) (3.17)

(By (2.8) and (2.12))

= 1
4

K∑

l=1

∑

i,j∈V

fij (uil − ujl)2 + 1
4

K∑

l=1

∑

i,j∈V

hij (uil + ujl)2

− 1
2(K − 2)vol(V ) + 1

ε2

|V |∑

i=1
Φmulti(Ui), (3.18)

where ε > 0, Ui is the i–th row of U , and Φmulti is a multiwell potential [23] with minima
on ej (3.14). The goal of Φmulti is to promote Ui toward one of the minima. Moreover,
for the sake of this thesis, it is not important what the exact expression of Φmulti is,
since we would discard it while using the MBO scheme.

The following theorem shows a Γ–convergence2 result.

Theorem 2. The functional Sε (3.18) defined over R|V |, Γ­converges to S (3.16) as
ε→ 0.

Proof. Our proof largely follow [4]. By observing (3.18), it can be seen that the third
term is a constant when K is fixed, and the first and second terms are continuous and
independent of ε. Thus, they would not interfere with the results of Γ–convergence [5].
Consequently, we only need to prove that ϕε(U) := 1

ε2
∑|V |

i=1 Φmulti(Ui) Γ–converges to
ϕ0(U) as ε→ 0+, where

ϕ0(U) :=




0 if U ∈ Pt(V ),

+∞ otherwise.
(3.19)

Let {εn}∞
n=1 be a positive sequence such that εn ↓ 0 as n→∞. For the lower bound

condition, note that ϕε(U) ≥ 0 for any U . Suppose that a sequence of matrices
{(U)1, (U)2, ...} satisfies (U)n → U as n→∞. If U ∈ Pt(V ), then

ϕ0(U) = 0 ≤ liminf
n→∞

ϕεn ((U)n) . (3.20)

2The appendix A.2 presents an overview of Γ–convergence
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If U /∈ Pt(V ), then ϕ0(U) = +∞. Moreover, there exists a node i such that Ui /∈
{ej}K

j=1, i.e., node i is isolated or assigned to two or more clusters. Thus,

ϕ0(U) = +∞ ≤ liminf
n→+∞

ϕεn ((U)n) = +∞. (3.21)

For the upper bound condition, if U ∈ Pt(V ), then assume (U)n = U for all n gives
the required sequence and we obtain ϕεn ((U)n) = 0. Hence,

ϕ0(U) = 0 ≥ limsup
n→∞

ϕεn ((U)n) = 0. (3.22)

If U /∈ Pt(V ), then (U)n = U for all n still satisfies the upper bound condition. Thus,
ϕε Γ–converges to ϕ0.

3.3.2. Multiclass MBO scheme

As discussed in Section 3.2.1, we choose ε = 1 in this thesis. Another parameter that
we need to determine is timestep dt. A method for choosing dt in the MBO scheme
is presented in [4]. Their method is an effective strategy and requires less manual
adjustment of dt than other approaches3.

Fix the number of clusters K, and consider a |V |×K indicator matrix U ∈ Pt(V ) with
elements uil. Then Sε (3.17) can be minimized using the gradient­descent equation,
that is,

d

dt
U = −1

2LF U − 1
2QHU − 1

ε2 Φ′
multi(U). (3.23)

An approximate solution Un+1 is obtained by alternating between the following two
steps.

Step 1: Diffusion. Given Un, we get Un+ 1
2 as the solution of

d

dt
U = −1

2 (LF + QH) U. (3.24)

So, an explicit solution of Un+ 1
2 with timestep dt would be

Un+ 1
2 = exp(−1

2dtLmix)Un := JUn, (3.25)

where J = exp(−1
2dtLmix) and Lmix = LF + QH .

Step 2: Thresholding. We can view the threshold processing as determining the
position of the largest element of Ui, where Ui is the i–th row of U . If uil is the largest
3See the appendix A.3 for more details.
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3 Diffuse interface methods

component of Ui, then we assign uil = 1 and the rest of elements in Ui are −1. In
other words, one obtains Un+1 by solving

(Ui)n+1 = ej with j = argmax
l=1,...,K

{
(uil)n+ 1

2
}

(3.26)

The iteration continues until a stopping condition is achieved. In the end, one gets
Un+1 = (Un+1

1 , ..., Un+1
|V | )T .
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4. The modularity MBO algorithms

This section focuses on the description of themodularity MBO (MMBO) scheme. First,
we will demonstrate the algorithm of MMBO using projection on the eigenvectors.
Then, an alternative variant of the MMBO scheme, i.e., MMBO using finite differ­
ences, will be presented. Finally, we will explain how to compute the eigenvalues
and eigenvectors of Lmix = LF + QH using the Nyström extension with QR decompo­
sition.

4.1. The MMBO algorithm using projection on the
eigenvectors.

The most expensive part of this process is the assessment of the matrix exponential
in (3.25). In practice, computing the full spectrum of Lmix may be impossible when
Lmix is large. As a result, it makes logical to use a pseudo­spectral technique, which
involves solving the matrix exponential using the eigenvalues and eigenvectors of
Lmix. Specifically, employ the eigendecomposition of Lmix = XmixΛmixXT

mix, where
Λmix is a diagonal matrix of eigenvalues and Xmix is a matrix whose columns are the
eigenvectors of Lmix, then J in (3.25) can be rewritten as

J = exp(−1
2dtLmix) = Xmixexp(−1

2dtΛmix)XT
mix. (4.1)

Therefore, (3.25) is expressed as

Un+ 1
2 =

(
Xmixexp(−1

2dtΛmix)XT
mix

)
Un. (4.2)

One method of approximating Λmix is to use a truncated matrix, which retains only the
m smallest eigenvalues rather than the full matrix. Likewise, we approximate Xmix in
a similar way.

The MBO scheme is repeated until there is trivial difference between the current iter­
ation and the previous one. As in [24], the stopping criterion is denoted by

max
i

||Un+1
i − Un

i ||2L2

max
i

||Un+1
i ||2L2

< ε ∈ R+. (4.3)

The MMBO scheme using projection on the eigenvectors is summarized in Algorithm
1. Unless otherwise stated, the parameters of our approach are defined as follows.

! K ∈ N which is the number of clusters.

! m ∈ N which is the number of eigenvalues and eigenvectors to use for (4.2).
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Algorithm 1 The MMBO scheme using projection on the eigenvectors
Require: K, m, ε, γ, F, H are |V |× |V | adjacency matrices
Initialize:
D, LF ← F ) Computation LF of matrix F
QH ← H ) Computation QH of matrix H
Lmix ← LF + QH

Λm, Xm ← Lmix ) Eigendecomposition (Lmix)
Λmin

m ← Λm ) Pick the smallest eigenvalue
U0 = (−1)|V |×K

for i = 1→ |V | do
l = random.sample(K, 1)
u0

il = 1
end for
dmax ← D ) Pick the largest degree of D
dtlow ← 0.15

(γ+1)dmax

dtupp ← 1
Λmin

m
log (||U0||L2)

dt←
√

dtlowdtupp

Mexp ← exp(−1
2dtΛm)

n← 0
while Stop criterion not satisfied and n ≤ 10000 do

Diffusion:
Un+ 1

2 ← XmMexpXT
mUn

Thresholding:

(Ui)n+1 = ej with j = argmax
l=1,...,K

{
(uil)n+ 1

2
}

n = n + 1
end while

! F|V |×|V |, H|V |×|V | which are adjacency matrices whose elements are non­negative.

! ε ∈ R+ which is the stopping criterion in (4.3).

The command random.sample(K, N) returns a list of length N , with uniformly random
sampling from 1 to K of N distinct elements (N ≤ K).

To obtain better performance, we employed the symmetric normalized Lmixs and the
random walk Lmixr in numerical experiments. Consequently, we need to compute
LFsym and QHsym or LFrw and QHrw at initialization.
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4.2. Alternative variant of the MMBO scheme

The MMBO scheme using finite difference employs an alternative approach in the dif­
fusion step of the MBO iteration. When the diffusion step (3.11) is repeated Nt ∈ N+
times before the threshold processing (3.13), dt should be divided by Nt. Conse­
quently, using (3.12) and the diffusion step of MBO scheme for the matrix U is equiv­
alent to

Un+ 1
2 − Un

dt
= −1

2 (LF + QH) Un+ 1
2 ,

⇐⇒ Un+ 1
2 =

[
I + 1

2dt (LF + QH)
]−1

Un. (4.4)

To obtain Un+ 1
2 , we repeat this diffusion step Nt times for timestep dt

Nt
, and it leads to

Un+ 1
2 =

[

I + dt

2Nt
(LF + QH)

]−Nt

Un. (4.5)

Let L−1
mix be the pseudoinverse matrix of Lmix. Since Lmix is symmetric, its eigen­

vectors matrix Xmix is orthogonal, i.e., XT
mix = X−1

mix. Then we define a matrix Jfd

as

Jfd : =
[

I + dt

2Nt
Lmix

]−Nt

=
[

Xmix

(

I + dt

2Nt
Λmix

)

XT
mix

]−Nt

=
(
XT

mix

)−Nt

(

I + dt

2Nt
Λmix

)−Nt

(Xmix)−Nt

=
((

XT
mix

)−1)Nt
(

I + dt

2Nt
Λmix

)−Nt (
X−1

mix

)Nt

= (Xmix)Nt

(

I + dt

2Nt
Λmix

)−Nt (
XT

mix

)Nt

=


Xmix

(

I + dt

2Nt
Λmix

)−1

XT
mix




Nt

. (4.6)

We use the same thresholding step, and stopping conditions as for theMMBOscheme
using projection. The MMBO scheme using finite difference is summarized in Algo­
rithm 2. The main difference between Algorithm 1 and Algorithm 2 is the diffusion
step, as seen in (4.1) and (4.6).
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Algorithm 2 The MMBO scheme using finite difference
Require: K, m, ε, Nt, γ, F, H are |V |× |V | adjacency matrices
Initialize:
D, LF ← F ) Computation LF of matrix F
QH ← H ) Computation QH of matrix H
Lmix ← LF + QH

Λm, Xm ← Lmix ) Eigendecomposition (Lmix)
Λmin

m ← Λm ) Pick the smallest eigenvalue
U0 = (−1)|V |×K

for i = 1→ |V | do
l = random.sample(K, 1)
u0

il = 1
end for
dmax ← D ) Pick the largest degree of D
dtlow ← 0.15

(γ+1)dmax

dtupp ← 1
Λmin

m
log (||U0||L2)

dt←
√

dtlowdtupp

Jfd ←
[
Xmix

(
I + dt

2Nt
Λmix

)−1
XT

mix

]Nt

n← 0
while Stop criterion not satisfied and n ≤ 10000 do

Diffusion:
for s = 1→ Nt do

Un+ 1
2 ← JfdUn

s = s + 1
end for
Thresholding:

(Ui)n+1 = ej with j = argmax
l=1,...,K

{
(uil)n+ 1

2
}

n = n + 1
end while
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4.3. Nyström extension with QR decomposition.

One recurrent difficulty in many fields of large­scale machine learning is how to mean­
ingfully and efficiently approximate a large matrix. The number of matrix entries for
these large­scale problems can range from tens of thousands to millions, making it
difficult to perform operations on the matrix or even to store it. The Nyström approxi­
mation, which generates a low­rank approximation of the original matrix from a subset
of its columns, is an effective way to solve this issue. The choice of sampling method
is critical for the Nyström approximation performance, since various samples provide
different approximations of the original adjacency matrix F . Figure 4.1 illustrates a
general workflow of the Nyström extension with QR decomposition.

Consider a node set V with N points and a collection of functions ω(xi, xj). An N–
dimensional symmetric positive semi–definite matrix W ∈ RN×N is defined as

W =





ω(x1, x1) ... ω(x1, xN)
... . . . ...

ω(xN , x1) ... ω(xN , xN)



 . (4.7)

Suppose we sample k distinct points uniformly at random from N points, then the
matrix W ∈ RN×N is partitioned as

W =


 W11 W T
21

W21 W22



 , (4.8)

where W11 ∈ Rk×k indicates weights between sampling points and W12 ∈ Rk×(N−k)

denotes weights from sampling points to remaining points. The SVD of W11 is W11 =
UΛkUT , where U is the eigenvectors matrix whose columns are the eigenvectors of
W11 and Λk = diag(λ1, ...,λk) is a diagonal matrix with the corresponding eigenvalues.

Let a pseudoinverse of W11 be W −1
11 = UΛ−1

k UT . We define UW to the eigenvectors
matrix whose columns are the eigenvectors of the approximation of W . According to
[2], UW has the form

UW =


 U

W21UΛ−1
k



 .
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Then approximation of W , namely W̄ , can be written as

W̄ = UW ΛkUT
W =



 U

W21UΛ−1
k



Λk



 U

W21UΛ−1
k




T

=


 UΛkUT UΛkΛ−1
k UT W T

21
W21UΛ−1

k ΛKUT W21UΛ−1
k ΛkΛ−1

k UT W T
21





=


 UΛkUT W T
21

W21 W21UΛ−1
k UT W T

21





=


 W11 W T
21

W21 W21W
−1
11 W T

21



 . (4.9)

Comparing (4.8) and (4.9), we obtain that W22 can be approximated by

W22 ≈ W21W
−1
11 W T

21.

Let 1k ∈ Rk×1 be a k dimensional unit column vector, then we defined the degree of
W̄ as



 d̄1

d̄2



 =


 W11 W T
21

W21 W21W
−1
11 W T

21







 1k

1N−k





=


 W111k + W T
211N−k

W211k +
(
W21W

−1
11 W T

21
)

1N−k



 . (4.10)

As can be seen, the degree of W̄ can be computed from its first k columns (i.e., W11
and W21) without acquiring the full matrix W̄ .

The following relation holds [7]:

W ≈


 W11

W21



W −1
11
[
W T

11 W T
21
]

. (4.11)

When the number of points N is large, matrix W requires a considerable amount of
memory to store. The Nyström extension implicitly approximates W with W11 and the
first k columns of W . This avoids the need to use the W directly, thus greatly reducing
the computational and storage burden.

Let D and D̂ be the diagonal degree matrices of W and



 W11

W21



W −1
11
[
W T

11 W T
21
]
, re­

spectively. Then it satisfies D ≈ D̂. The normalized W can be represented as

Ŵ := D− 1
2 WD− 1

2 ≈ D̂− 1
2



 W11

W21



W −1
11
[
W T

11 W T
21
]

D̂− 1
2

:=


 Ŵ11

Ŵ21



W −1
11
[
Ŵ T

11 Ŵ T
21
]

, (4.12)
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where



 Ŵ11

Ŵ21



 = D̂− 1
2



 W11

W21



. We perform the QR decomposition of



 Ŵ11

Ŵ21



, i.e.,


 Ŵ11

Ŵ21



 = QR, where Q ∈ R|V |×k is orthonormal and R ∈ Rk×k is an upper triangular

matrix. Then the matrix SW is defined as

SW := RW −1
11 RT . (4.13)

The eigendecomposition of SW is SW = ΦSΛkΦT
S , where the columns of US are orthog­

onal. Thus, LWsym and LWrw have the following approximate eigendecomposition

LWsym = I −D− 1
2 WD− 1

2

≈ I −


 Ŵ11

Ŵ21



W −1
11
[
Ŵ T

11 Ŵ T
21
]

= I −QRW −1
11 RT QT

= I −QSW QT

= I −QΦSΛkΦT
S QT

= QΦS (I − Λk) ΦT
S QT

:= UsymΣsymUT
sym, (4.14)

LWrw = D− 1
2 LWsymD

1
2 ≈ Uleft (I − Λk) UT

right, (4.15)

where the eigenvectors in Usym = QΦS are orthonormal, eigenvectors of LWrw are
Uleft := D̂− 1

2 Usym and Uright := D̂
1
2 Usym, and the eigenvalues of both LWsym and LWrw

are I − Λk.

Generally, there are two choices of Lmix = LF + QH in this thesis, based on the
following matrices F and H:

! (i) Let F = W and H = P = didj

vol(V ) .

! (ii) Let B = W − P , then F = B+ and H = B−.

Similar to (4.8), the null model P ∈ RN×N can be expressed as

P =


 P11 P T
21

P21 P22



 , (4.16)

where P11 ∈ Rk×k and P21 ∈ Rk×(N−k) are computed using (4.10).
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In either instance, we can compute the symmetric normalization of Lmix by

Lmixs = LFsym + QHsym

= I −D
− 1

2
F FD

− 1
2

F + I + D
− 1

2
H HD

− 1
2

H

=: I − F̂ + I + Ĥ

= 2I −


 F̂11 F̂ T
21

F̂21 F̂22



+


 Ĥ11 ĤT
21

Ĥ21 Ĥ22





= 2I −


 F̂11 − Ĥ11 F̂ T
21 − ĤT

21
F̂21 − Ĥ21 F̂22 − Ĥ22





=: 2I −


 MF H11 MT
F H21

MF H21 MF H22



 (Defines a new matrix MF H)

≈ 2I −


 MF H11

MF H21



M−1
F H11

[
MT

F H11 MT
F H21

]
(By (4.11))

= 2I −QsRsM
−1
F H11RT

s QT
s (Computes QR decomposition of



 MF H11

MF H21



)

= 2I −QsSMF H QT
s (Let SMF H := RsM

−1
F H11RT

s )
= 2I −QsΦsymΛsymΦT

symQT
s (Eigendecomposition SMF H = ΦsymΛsymΦT

sym)
= QsΦsym (2I − Λsym) ΦT

symQT
s . (4.17)

We define the Σmixs := 2I − Λsym as the eigenvalues of Lmixa. Umixs := QsΦsym is a
matrix whose columns are the eigenvectors of Lmixs . Furthermore, the random walk
of Lmix has the expression

Lmixr = LFrw + QHrw = I −D−1
F F + I + D−1

H H

=: I − F̃ + I + H̃

= QrΦrw (2I − Λrw) ΦT
rwQT

r (Similar to (4.17))
=: UmixrΣmixrUT

mixr
, (4.18)

According to the idea of (4.17), its eigenvalues and eigenvectors are 2I − Λrw and
QrΦrw.
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Figure 4.1.: The flowchart of Nyström extension with QR decomposition.
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5. Numerical experiments

This section displays the results of numerical experiments for a variety of circum­
stances. All algorithms are implemented in Python 3.8. Since our approach uses
a random starting seed in the initialization part, we run the script 20 times and pro­
vide two types of tables: (1) the best modularity and the total time for 20 runs; (2)
the average modularity and the average time for each run. Furthermore, to improve
performance on networks with arbitrary weights, we use Lmixs in (4.17) and Lmixr in
(4.18).

Our method is compared to Hu’s modularity MBO algorithm [32] and several well­
known algorithms, including the Louvain method [3] the Clauset–Newman–Moore
(CNM) approach [54], a classic Girvan–Newman (GN) method [56], and spectral clus­
tering [63]. The functions for Louvain, CNM, GN and spectral clustering can be called
directly in Python libraries as NetworkX [65], community [18], and scikit− learn [58].
Furthermore, our experiments were tested on a MacBook Air (13­inch, 2017), where
the processor is 1.8 GHz Dual­Core Intel Core i5 and the memory is 8 GB 1600 MHz
DDR3. It is notable that different hardware configurations may have an impact on the
running time of algorithms.

5.1. Related algorithms and evaluation metrics
introduction

5.1.1. Algorithms comparison

In [32], Hu et al. interpreted modularity optimization as a minimization problem for a
graph­based total variation functional. This allows the use of techniques from image
processing and PDEs to be used in community detection. However, their model is
non­convex, while the traditional total variation optimization is convex. This distinc­
tion restricts the available optimization tools and forces one to rely on some special
initialization procedures and multiple runs of the solver to obtain reliable results. This
method requires the number of clusters K as input.

The Girvan−Newman (GN) approach for detecting and analyzing community struc­
tures is based on iteratively removing edges that have the highest number of shortest
paths between nodes. The network is divided into smaller parts, called communities
or clusters, by removing one edge at a time from the graph. The number of shortest
paths across an edge is indicated by the edge betweenness score [56]. It is pos­
sible to detect which edges in a network occur more frequently by calculating the
edge betweenness. Then, the edges that connect different communities are more
likely to have a high edge betweenness since all shortest paths from one community
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to another have to transit them. Once the edges of the network with the highest be­
tweenness are removed, the network is split into small pieces, so­called communities.
At that time, community clustering will be easier. When the modularity score reaches
its maximum value, this approach stops clustering, turning it into an optimization prob­
lem. This approach does not require the number of clusters K as an input, in contrast
to Hu’s method.

The Clauset−Newman−Moore (CNM) method employs modularity as its metric and
goal, which means it is constructed to maximize the modularity score Q. It accom­
plishes its goal by tracking possible combinations of two communities and their impact
on Q. In each iteration, the algorithm merges the two communities that would result
in the greatest improvement in Q, and then updates the knowledge about possible
combinations and impacts on Q. The algorithm terminates when no two communities
can be combined to produce a higher Q. Similar to GN, there is no need for this
method to take the number of clusters K as input.

The Louvain method is an unsupervised algorithm that attempts to maximize the mod­
ularity score and performs admirably in practice. This technique has the advantage
that the number of clusters and their size do not have to be entered before execu­
tion. However, Louvain has a has a big drawback in that it requires a large amount
of memory to store the network. It consists mainly of two phases that are repeated
iteratively.

Phase 1: Partition network greedily using modularity.

Phase 2: Agglomerate found clusters into new nodes.

In Phase 1, it has following steps:

(i) Start with every node in its own community.

(ii) Nodes are ordered randomly and we do the following for each node i. Move node
i to the community of neighbor j that leads to maximum ∆Q. If all ∆Q < 0, then node
i remains in its current community.

(iii) Repeat the cycle through all nodes until ∆Q = 0.

Phase 2 aims to create a weighted network of communities from Phase 1. It performs
the following steps:

(1) Let each community ci form a new node i.

(2) Then the edges between new nodes i and j are the sum of edges between nodes
in ci and cj. The new node has self­loops to represent any connections between
nodes of the same community. Once the new network has been established, Phase
2 is complete and Phase 1 can be reapplied to it.

The Louvain method repeats Phase 1 and Phase 2 to the resulting network, and so
on until ∆Q = 0.

The Louvain method and the CNM algorithm are similar. In particular, they both ex­
ecute Phase 1 (i). However, the first difference between them is that CNM joins the
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two communities that have the greatest improvement in modularity rather than doing
Phase 1 (ii). The second point is that Phase 2 is not applied by CNM.

The spectral clustering is a clustering approach based on graph theory [67, 63]. The
basic idea is to cluster the data based on the eigenvectors resulting from the eigen­
decomposition of the Laplacian matrix. Data points are considered as nodes in a
connected graph, and clusters are found by partitioning this graph into subgraphs
based on its spectral decomposition. We use spectral clustering and then process
the data points using the k–means algorithm so that they can be grouped into k clus­
ters, where k needs to be specified in advance.

Louvain, CNM and GN are greedy optimization algorithms that aim to maximize mod­
ularity. This means that they will repeat their iterations until the modularity score is
maximized. This is different from the characteristic defined by the stopping condition
(4.3). The stopping condition (4.3) is determined by the actual clusters and is more
dependent on whether nodes are still being reassigned. Therefore, it is meaningless
to apply (4.3) to the Louvain, CNM and GN method. In the following examples, Lou­
vain, CNM, and GN are presented in a different table because they do not share a
stopping condition with the MMBO schemes and Hu’s method.

5.1.2. Evaluation metrics

We employ adjusted rand index (ARI) [25], purity [44], inverse purity, and normalized
mutual information (NMI) [40, 42] to evaluate these methods.

Purity is a statistic that quantifies the proportion of nodes in a cluster that aremembers
of the same class. Let C := {C1, ..., CK} be the set of K clusters to be evaluated and
C ′ := {C ′

1, ..., C ′
K′} be the set of K ′ clusters of the ground truth. Purity can be defined

as

Purity(C, C ′) =
K∑

i=1

1
N

max
1≤j≤K′

|Ci

⋂
C ′

j|, (5.1)

where N is the total number of clustered nodes. Purity reaches its maximum value of
1 when each node is in a cluster containing only that single node. A high purity can
be achieved by having many clusters since this metric does not penalize cluster size.

Inverse purity is simply the purity of the second partition with respect to the first one,
that is, Purity(C ′, C). Inverse purity is defined as

InP (C, C ′) = Purity(C ′, C) =
K′∑

i=1

1
N

max
1≤j≤K

|C ′
i

⋂
Cj|. (5.2)

Since inverse purity has a bias opposite to the bias of purity, we can achieve a maxi­
mum inverse purity by grouping all nodes into a single cluster.

Given N nodes, and X = {X1, ..., Xr} and Y = {Y1, ..., Ys} two arbitrary partitions of
these nodes, let nij be the number of nodes that are in both cluster Xi and Yj, i.e.,
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Partition Y
Y1 Y2 ... Ys

∑s
j=1 nij

X1 n11 n12 ... n1s a1

Partition X2 n21 n22 ... n2s a2

X ... ... ... . . . ... ...
Xr nr1 nr2 ... nrs ar
∑r

i=1 nij b1 b2 ... bs

Table 5.1.: Contingency table [12], where ai is the sum of the i–row, that is ai =∑s
j=1 nij, and bj is the sum of the j–column, that is bj = ∑r

i=1 nij.

nij = |Xi
⋂

Yj|, ai be the sum of the i–row, that is, ai = ∑s
j=1 nij, and bj be the sum

of the j–column, that is bj = ∑r
i=1 nij, and let



 N

2



 represent the total number of

possible pairs from a given set. Table 5.1 can also be shown in another way, that is,
Table 5.2. In Table 5.2, TP means that a pair of nodes is placed in the same cluster

Partition Y
Pair in the same cluster Pair in different clusters

Partition Pair in the same cluster True positive (TP) False negative (FN)
X Pair in different clusters False positive (FP) True negative (TN)

Table 5.2.: Contingency Table for Comparing Partitions X and Y.

in X and in the same cluster in Y; FN denotes a pair of nodes that are placed in the
same cluster in X but in different clusters in Y; FP signifies that a pair of nodes is
placed in different clusters in X but in the same clusters in Y; TN means that a pair
of nodes is placed in different clusters in X and in different clusters in Y. Moreover,
they can be calculated using the values in Table 5.1, that is,

TP =
r∑

i=1

s∑

j=1



 nij

2



, (5.3)

FN =
r∑

i=1



 ai

2



− TP, (5.4)

FP =
s∑

j=1



 bj

2



− TP, (5.5)

TN =


 N

2



− TP − FN − FP. (5.6)

The Rand index (RI) [60], a measure of the similarity between two data clusterings,
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can be calculated by

RI = TP + TN

TP + FP + FN + TN
= TP + TN



 N

2




. (5.7)

Intuitively, (TP + TN) represents the number of agreements between X and Y while
(FP + FN) represents the number of disagreements between X and Y. One of
the drawbacks of RI is that it it does not consider the possibility of a coincidental
agreement between the two partitions. The number and sizes of the clusters in each
partition, as well as the total number of nodes, have a significant impact on the number
of agreements of two partitions. To solve this problem, adjusted Rand (ARI) was
proposed in [33], which can be calculated by

ARI =



 N

2



 (TP + TN)− [(TP + FN)(TP + FN) + (FP + TN)(FN + TN)]


 N

2




2

− [(TP + FN)(TP + FN) + (FP + TN)(FN + TN)]

(5.8)

or

ARI =



 N

2



∑
ij



 nij

2



−


∑
i



 ai

2



∑
j



 bj

2









1
2



 N

2







∑
i



 ai

2



+∑
j



 bj

2







−


∑
i



 ai

2



∑
j



 bj

2








. (5.9)

The ARI takes value in the range [−1, 1], where 1 represents the perfect match, and
0 indicates random labeling. Negative ARI suggests that the two partitions have less
in common than what is expected from a random result.

Other indicators commonly used to evaluate the clustering quality are normalized
mutual information (NMI), which is based on the concept of entropy and mutual infor­
mation. The entropy of a random variable is the average level of uncertainty inherent
to the variable’s possible outcomes, which is defined as follows based on the set of
clusters C

H(C) = −
K∑

i=1

|Ci|
N

log

(
|Ci|
N

)

. (5.10)

The joined entropy of C and C ′ is

joinH(C, C ′) := −
K∑

i=1

K′∑

j=1

|Ci
⋂

C ′
j|

N
log

(
|Ci

⋂
C ′

j|
N

)

. (5.11)
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The mutual information (MI) evaluates the reduction in uncertainty in predicting sec­
tions of a system’s outcome after observing the outcome of other parts of the system.
Suppose we know the value of one of the random variables in a system. In this case,
there is a corresponding reduction in uncertainty for predicting the others, and mutual
information measures this reduction in uncertainty. We define the MI of C and C ′ as

MI(C, C ′) = H(C) + H(C ′)− joinH(C, C ′) (5.12)

=
K∑

i=1

K′∑

j=1

|Ci
⋂

C ′
j|

N
log

(
N |Ci

⋂
C ′

j|
|Ci||C ′

j|

)

. (5.13)

There are many variants of the concept of mutual information. We concentrate on a
well­known format, namely, normalized mutual information (NMI). It is defined as

NMI(C, C ′) = 2MI(C, C ′)
H(C) + H(C ′) . (5.14)

5.2. Zachary’s karate club

Zachary’s karate club (ZKC) is a well known dataset proposed by Wayne W. Zachary
in his work [73] describing the interactions in a college karate club. After Girvan and
Newman [56] used the network, it became a typical example of community structure
in networks.

This dataset is well known for displaying community structure when nodes in a net­
work can be partitioned into densely linked clusters. The network illustrates the rela­
tionships among 34 members of a karate club: each node represents a person, and
the links/edges reflect people communicating outside of the karate club (e.g., spend­
ing social time together, like meeting up for a coffee, separate from the karate club).

According to the clustering result in [73], the network in Zachary’s karate club can be
divided into two groups, centered on the ’Officer’ John A (node 33), and the instructor
Mr. Hi (node 0), respectively. After an argument between Mr. Hi and John A., the
network accurately predicts how the karate club would split into two new clubs. It
is reasonable to assume that members’ interactions with other club members will
influence each member’s decision to join one of the two sides. The network is able
to predict which faction each person would join based on the relationships between
the individuals (i.e., the network).

Group leader Nodes
Mr. Hi (node 0) 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21
John A (node 33) 9, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33

Table 5.3.: Nodes clustering result according to [73].
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Parameter Value
K 2, 3, 4, 5, 6, 7, 8
m Equal to K

ε 0
Nt 3
γ 1

Table 5.4.: Parameter setting of the MMBO schemes in ZKC for modularity optimiza­
tion and clustering.

Methods Best modularity K for obtaining the best modularity Total time (sec.)
GN 0.360 2 1.04
CNM 0.381 3 0.12

Louvain 0.420 4 0.14

Table 5.5.: Performance of different algorithms in ZKC in terms of modularity and run­
time. Dashes indicate no calculation. The time is the total amount of time
required to execute each approach 20 times.

Methods Average modularity Average time (sec.)
GN 0.360 (±0.0) 0.052 (±0.006)
CNM 0.381 (±0.0) 0.006 (±0.002)

Louvain 0.416 (±0.004) 0.007 (±0.003)

Table 5.6.: The average modularity and average running time of different algorithms
in ZKC.
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Methods Best modularity K for obtaining the
best modularity

Total time (sec.)

LWsym , QPsym 0.420 4 0.16
MMBO using LWrw , QPrw 0.396 4 0.18
the projection LB+

sym
, QB−

sym
0.401 4 0.18

LB+
rw
, QB−

rw
0.388 4 0.19

LWsym , QPsym 0.420 4 0.20
MMBO using LWrw , QPrw 0.396 4 0.20
finite difference LB+

sym
, QB−

sym
0.401 4 0.21

LB+
rw
, QB−

rw
0.388 4 0.22

Hu’s LWsym 0.406 4 0.20
method LWrw 0.382 4 0.21
Spectral clustering 0.410 4 0.76

Ground truth 0.358 2 –

Table 5.7.: Compare different algorithms in modularity and running time in ZKC.
Dashes indicate no calculation.

Methods Average modularity Average time (sec.)
LWsym , QPsym 0.372 (±0.048) 0.008 (±0.004)

MMBO using LWrw , QPrw 0.341 (±0.055) 0.009 (±0.003)
the projection LB+

sym
, QB−

sym
0.367 (±0.034) 0.009 (±0.004)

LB+
rw
, QB−

rw
0.356 (±0.032) 0.010 (±0.005)

LWsym , QPsym 0.372 (±0.048) 0.010 (±0.005)
MMBO using LWrw , QPrw 0.341 (±0.055) 0.010 (±0.006)
finite difference LB+

sym
, QB−

sym
0.363 (±0.038) 0.011 (±0.005)

LB+
rw
, QB−

rw
0.356 (±0.032) 0.011 (±0.006)

Hu’s LWsym 0.360 (±0.046) 0.010 (±0.003)
method LWrw 0.310 (±0.072) 0.011 (±0.004)
Spectral clustering 0.410 (±0.0) 0.038 (±0.006)

Table 5.8.: The average modularity score and average running time of algorithms for
K = 4 in ZKC.
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Figure 5.1.: Best modularity score versus number of clusters on ZKC. The purple and
red lines cover the green dotted line and the yellow curve, respectively.

From a clustering perspective, Figure 5.2 depicts the ground truth and the perfor­
mance of the various approaches in Zachary’s karate club. It is important to note
that K = 2 was chosen for the MMBO scheme, Hu’s method, and spectral clustering,
meaning that they find no more than two clusters. While the Louvain method, CNM al­
gorithm, and GNmethod automatically select K to produce the best modularity score.
In this case, K is not necessarily 2. The case presented here shows that the MMBO
schemes perform better than Hu’s method and spectral clustering. In particular, when
compared to the ground truth, it is evident that the MMBO schemes misclassify only
one node, namely node 8. On the other hand, we can see that two nodes, namely
node 2 and node 8, are both misclassified by both Hu’s method and spectral cluster­
ing. It is noteworthy that the Louvain method clusters all nodes into 4 clusters and
provides as high modularity as the MMBO scheme using projection. Similarly, the
CNM algorithm finds 3 clusters. However, this contradicts the fundamental truth that
there are only 2 clusters.

According to [24], Nt = 3 is the optimal value for the number of diffusion step itera­
tions. We ran each method 20 times and then reported the approach with the highest
modularity, as shown in Table 5.7. We present the results of the methods in terms
of modularity score and running time. As can be seen, both Louvain and the MMBO
scheme using projection with LWsym , QPsym achieve the highest modularity score. In
addition, the running time of the MMBO scheme is lower than that of GN, CNM and
spectral clustering. Moreover, we found that m = 2K = 4 is the best value for clus­
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Figure 5.2.: Community detection on Zachary’s karate club network with different
methods.
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tering, which is the same as that suggested by Louvain’s algorithm. This means that
this could be the natural clustering of the network.

Although Zachary’s karate club graph is a simple case of the real network datasets, it
provides reasonable evidence that the MMBO scheme using projection might perform
better than other methods in analyzing certain real social networks.

5.3. MNIST

The MNIST handwritten digits database is a widely used dataset in computer vision
and deep learning [72]. It comprises of 70, 000 28 × 28 pixel images of handwritten
digits ranging from 0 to 9. The dataset consists of pairs of handwritten digit images
and ground truth. We aim to group different digits into distinct communities. An image
is represented by a node of the graph, and to create feature vectors, we project the
images onto 50 principal components as determined by PCA.

Parameter Value
N 70, 000
k 500
τ 0.02

Table 5.9.: Parameter settings for Nyström extension on MNIST.

An adjacency matrix W is created as follows. Firstly, for each image, the graph is built
by projecting it onto 50 principal components. Secondly, we choose an appropriate
weighted function. Let xi and xj be the coordinates of the input data node i and
node j, then ||xi− xj||L2 represents the L2 distance between node i and node j. The
Gaussian function ω(xi, xj),

ω(xi, xj) = exp
(
−τ ||xi − xj||2L2

)
, (5.15)

is a common weight function, where τ = σ−2 is known as the Gaussian kernel of
variance σ2. The weights ω(xi, xj) '= 0 if and only if either node i or j is one of the
other’s 10 nearest neighbors. In this section, the weighted matrix W is constructed
by using Gaussian function ω(xi, xj) (5.15) with τ = 0.02. Additionally, we choose the

Parameter Value
Nt 5
ε 10−5

γ 0.5

Table 5.10.: Parameter setting of the MMBO scheme on MNIST.
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same Nt as Hu et al. in [32] to compare the results of MMBO with those of Hu et al.,
that is, Nt = 5.

The best partition obtained by the Louvain method is around K = 125. It is possible
that the input K does not result in a partition containing K clusters since the results
could contain empty clusters. As a result, the search should be extended to K >
10, since a greater K allows the MMBO scheme to explore partitions that maximize
modularity [32]. To conduct a fair comparison of modularity, we employ the same
number of clusters for the MMBO and Louvain. In other words, the Louvain approach
is first used to determine the optimal partition K. Then, we utilize the MMBO schemes
with K to compute the modularity score.

Methods Modularity ARI Purity Inverse purity NMI Time (sec)
Louvain 0.939 0.147 0.959 0.124 0.596 2188.5
CNM 0.717 0 0.115 0.052 0.01 9828.7

Spectral clustering 0.914 0.563 0.758 0.816 0.745 42368.1

Table 5.11.: Performance of different algorithms in MNIST in terms of modularity and
runtime. The time is the total amount of time required to execute each
approach 20 times.

Figure 5.3 displays the spectra of the first 150 eigenvalues, excluding the first (zero)
eigenvalues, generated by the different choices of Lmix and LWsym . Specifically, in
panel (a), the yellow dotted line and the green one overlap since the eigenvalues of
LWsym and LWrw are identical. Additionally, the red dashed line is nearly hidden by
the purple one in panel (b). Different selections of Lmix might result in differences in
the first 50 eigenvalues, but the eigenvalues of all Lmix are almost identical when the
index is greater than 130.

There are two main parts to the execution time of the MMBO schemes and the Hu’s
method: the computation of the eigenvalues and eigenvectors of Lmix or LWsym and
the MBO iteration steps. In practice, the choice of programming language can af­
fect the speed, but the MBO iteration is often the most time­consuming part of the
computation, as shown in Table 5.13.

We obtain the eigenvalues and eigenvectors using the Nyström extension with QR
decomposition. Let m = K, where K is determined by the Louvain method. When
m = 125, the size of the eigenvector matrix Xmix is relatively large. Table 5.13 demon­
strates the amount of time necessary to calculate these two aspects using various
methods. The MMBO scheme using projection requires the least amount of time to
execute MBO iterations.

Tables 5.14 and 5.15 summarize the results of the MMBO scheme and other algo­
rithms on the MNIST using m = K = 125 and the standard stopping criterion (4.3).
We run these methods 20 times and then report the best modularity scores. Based
on the highest modularity, Table 5.14 shows the results for that one run. Besides,
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Figure 5.3.: Comparison of the spectra of different models on the MNIST. In (a), the
green dotted line is covered by the yellow one. In (b), the purple curve is
almost hidden by the red one.
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Figure 5.4.: Modularity score versus the number of iterations on the MNIST.

Methods Average time for com­
puting eigenvalues and
eigenvectors (sec.)

Average timing
of MBO iteration
steps (sec.)

Number of
iterations

LWsym , QPsym 10.8 (±1.5) 31.9 (±4.2) 131 (±18)
MMBO LWrw , QPrw 8.3 (±1.1) 33.2 (±8.8) 126 (±36)
using the LB+

sym
, QB−

sym
10.7 (±2.0) 34.8 (±6.5) 137 (±27)

projection LB+
rw

, QB−
rw

10.3 (±2.3) 27.8 (±5.9) 115 (±25)
LWsym , QPsym 10.8 (±1.5) 125.6 (±13.8) 142 (±16)

MMBO LWrw , QPrw 8.3 (±1.1) 121.2 (±12.3) 139 (±14)
using finite LB+

sym
, QB−

sym
10.7 (±2.0) 125.0 (±10.2) 145 (±12)

difference LB+
rw

, QB−
rw

10.3 (±2.3) 122.3 (±11.8) 143 (±13)
Hu’s LWsym 8.1 (±1.2) 247.8 (±11.9) 139 (±7)
method LWrw 8.5 (±1.3) 238.4 (±12.5) 134 (±7)

Table 5.13.: Average computation time onMNIST for theMMBO scheme and the Hu’s
method when using m = K = 125 and the standard stopping criterion
(4.3). The number of iterations is rounded to the nearest integer.
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Methods Best modu­
larity

ARI Purity Inverse
purity

NMI Total time
(sec)

LWsym , QPsym 0.938 0.463 0.782 0.512 0.626 860.5
MMBO LWrw , QPrw 0.935 0.459 0.762 0.523 0.631 836.1
using the LB+

sym
, QB−

sym
0.936 0.457 0.740 0.533 0.629 914.2

projection LB+
rw

, QB−
rw

0.929 0.448 0.640 0.686 0.618 768.7
LWsym , QPsym 0.938 0.454 0.789 0.495 0.629 2732.9

MMBO LWrw , QPrw 0.935 0.446 0.816 0.482 0.642 2594.4
using finite LB+

sym
, QB−

sym
0.939 0.462 0.751 0.511 0.632 2718.1

difference LB+
rw

, QB−
rw

0.934 0.453 0.777 0.532 0.639 2656.5
Hu’s LWsym 0.926 0.433 0.689 0.530 0.601 5122.6
method LWrw 0.898 0.414 0.596 0.758 0.638 5004.9

Table 5.14.: The best modularity of algorithms on MNIST when using m = K = 125
and the standard stopping criterion (4.3). The time is the total amount of
time required to execute each approach 20 times.

the times in Table 5.14 represent a total of 20 runs for each method, while Table 5.15
displays the average running time for each approach.

Observing the Figure 5.4, the modularity score for the MMBO schemes and Hu’s
approach increases dramatically in the first 25 iterations. After that, the modularity
then remains stable at a high level. This trend is similar to the results shown in [32].
It is noteworthy that the MMBO scheme generally provides better modularity than
Hu’s approach.

However, as can be seen in Figure 5.4, the modularity improves slowly after the first
25 iterations, but continues to iterate as the stopping condition (4.3) is somewhat too
strict. It is possible to choose a modularity − related stopping condition: if the abso­
lute change in modularity is less than 10−5, then the stopping condition has been satis­
fied. The best modularity and average performance of the MMBO schemes and Hu’s
method are shown in Tables 5.17 and 5.18 using m = K = 125 and the modularity­
related stopping condition. Figure 5.3(d) displays the modularity score of the MMBO
scheme using projection with LWsym , QPsym versus the number of eigenvalues used
under m = K = 125 and the modularity­related stopping condition.

As can be seen in Tables 5.13 and 5.16, the application of the modularity­related
stopping condition results in fewer MBO iterations than the standard stop condition
(4.3), drastically reducing the total running time. However, the modularity­related
stopping condition does not necessarily lead to higher average modularity. As shown
in Tables 5.15 and 5.18, the performance of the MMBO scheme using projection
appears to improve when the modularity­related stopping condition is used. However,
for the MMBO scheme using finite difference, it might be better to use the standard
stopping condition.
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5 Numerical experiments

Methods Average time for com­
puting eigenvalues and
eigenvectors (sec.)

Average timing
of MBO iteration
steps (sec.)

Number of
iterations

LWsym , QPsym 10.8 (±1.5) 9.6 (±3.1) 30 (±10)
MMBO LWrw , QPrw 8.3 (±1.1) 9.8 (±3.7) 30 (±12)
using the LB+

sym
, QB−

sym
10.7 (±2.0) 8.7 (±5.5) 33 (±21)

projection LB+
rw

, QB−
rw

10.3 (±2.3) 10.7 (±4.9) 36 (±16)
LWsym , QPsym 10.8 (±1.5) 35.1 (±9.3) 35 (±9)

MMBO LWrw , QPrw 8.3 (±1.1) 30.3 (±8.2) 31 (±8)
using finite LB+

sym
, QB−

sym
10.7 (±2.0) 26.3 (±10.2) 28 (±12)

difference LB+
rw

, QB−
rw

10.3 (±2.3) 29.3 (±11.8) 42 (±13)
Hu’s LWsym 8.1 (±1.2) 66.1 (±12.8) 30 (±6)
method LWrw 8.5 (±1.3) 79.8 (±12.5) 35 (±5)

Table 5.16.: Average computation time onMNIST for theMMBO scheme and the Hu’s
method when using m = K = 125 and the modularity­related stopping
condition. The number of iterations is rounded to the nearest integer.

Methods Best modularity ARI Purity Inverse
purity

NMI Time
(sec)

LWsym , QPsym 0.939 0.459 0.836 0.475 0.649 556.1
MMBO LWrw , QPrw 0.937 0.437 0.831 0.405 0.634 469.8
using the LB+

sym
, QB−

sym
0.937 0.519 0.798 0.604 0.632 475.2

projection LB+
rw

, QB−
rw

0.936 0.433 0.783 0.643 0.612 422.5
LWsym , QPsym 0.939 0.459 0.837 0.486 0.650 923.0

MMBO LWrw , QPrw 0.935 0.446 0.816 0.482 0.635 776.2
using finite LB+

sym
, QB−

sym
0.939 0.462 0.751 0.511 0.633 743.7

difference LB+
rw

, QB−
rw

0.934 0.453 0.777 0.532 0.624 795.3
Hu’s LWsym 0.935 0.449 0.763 0.544 0.629 1488.7
method LWrw 0.934 0.454 0.787 0.615 0.641 1769.5

Table 5.17.: The best modularity of algorithms on MNIST when m = K = 125 and
the modularity­related stopping condition. The time is the total amount
of time required to execute each approach 20 times.
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5 Numerical experiments

We found that the MMBO scheme using projection on the eigenvectors always per­
forms better than Hu’s method, CNM and spectral clustering. Moreover, the MMBO
scheme using projection has as high modularity score as Louvain, but the running
time is much shorter and the ARI is much larger.

5.4. Stochastic block model

The stochastic block model (SBM) [31] evolved from the study of social networks.
The goal of SBM is to split nodes into separate groups, also known as blocks, so
all nodes in the same block have the same connection pattern as nodes in other
blocks. The stochastic block model is constructed by generating an undirected edge
between each pair of nodes independently. The probability of an edge linking two
nodes is solely determined by the block in which they are located. In network science,
statistics, machine learning, and other fields, the stochastic block model serves as a
useful benchmark for the problem of reconstructing community structure in graph data
[15, 45].

Parameter Value
Nodes N = 3000
Block 5, 10, 15
Block Size N / Number of blocks

Probability Strong community structure:
psame = 0.95, pdiff = 0.01
Weak community structure:
psame = 0.3, pdiff = 0.1

Table 5.19.: Parameter setting of SBM.

Assume that N nodes are separated into several equally­sized blocks. The connec­
tions between nodes within the same community are stronger than those between
nodes belonging to different communities. The probability of connection of nodes lo­
cated in the same community is psame, whereas the probability of an edge between
two nodes in different communities is pdiff .

We construct two types of SBM: strong and weak community structures. In a strong
community structure, we set psame = 0.95, and pdiff = 0.01. In contrast, in the weak
community structure, the probabilities are psame = 0.3 and pdiff = 0.1. In summary,
the SBM are generated using the set of parameters in Table 5.19. An example of
adjacency matrices of the strong and weak community structure at K = 5 is shown
in Figure 5.5, where the dark indicates 1 and the white represents 0.
Figures 5.6 and 5.7 depict the first 25 eigenvalues of Lmixs , Lmixr and Lsym, including
the first (zero) eigenvalues, in SBM when K = 10, 15. It is worth to note that almost
all the eigenvalues are distinct, except for QPsym , despite the fact that they sometimes
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5 Numerical experiments

Parameter Value
Clusters K = 5, 10, 15
Size Equal to block size
m Equal to K

Nt 3
ε 10−4

γ 1

Table 5.20.: Parameter setting of the MMBO schemes in SBM.

Figure 5.5.: Adjacency matrices of the strong and weak community structure at K =
5.

appear identical on graphs. In SBMwith the strong community structure, the eigenval­
ues in Figures 5.6 and 5.7 seem to remain constant because the difference between
them is too small. However, the change in the eigenvalues is more apparent in the
weak community structure, as shown in Figure 5.7(e) and (f).

Let λi(W ) be the i–th eigenvalue of W . Suppose a matrix W ∈ RN×N have real
eigenvalues ordered as follows:

λ1(W ) ≤ λ2(W ) ≤ ... ≤ λN(W ).

We say there exists a jump in the eigenvalues if two consecutive eigenvalues change
by more than 0.01, i.e.,

λi+1(W )− λi(W )
λi(W ) > 0.01.

In the case of K = 10, Lmixs reveals a sudden jump between 9 and 10, while LWsym

Zijun Li, A method for modularity optimization based on total variation and sign­
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5 Numerical experiments

Figure 5.6.: The spectra of Lmixs and Lsym in SBM with strong community structure,
where (a) and (b) are for the case K = 10 and (c) and (d) are for K = 15.
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5 Numerical experiments

Figure 5.7.: The spectra of Lmix and Lsym in SBM with weak community structure,
where the left column is the case of K = 10 and the right column is the
case of K = 15. In (e) and (f), the purple and pink curves are covered by
red and brown ones, respectively.

Zijun Li, A method for modularity optimization based on total variation and sign­
less total variation, 2021 53



5 Numerical experiments

demonstrates a similar jump between 10 and 11. By observing the jump of LWsym , it
shifts not only to the left but also upwards.

The theory of rank–one matrix updates1 [8, 29] illustrates the behavior that the jumps
in the eigenvalues ofLmixs orLmixr shifted one to the right. TakeLmixs = LWsym+QPsym

as an example, Weyl’s inequality2 [22, 70] explains well the relationship of the upper
and lower bounds of the eigenvalues of Lmixs and the eigenvalues of LWsym and QPsym ,
i.e.,

λ1(LWsym) + λ1(QPsym) ≤ λ1(Lmixs) ≤ λN(Lmixs) ≤ λN(LWsym) + λN(QPsym),
λi(LWsym) + λ1(QPsym) ≤ λi(Lmixs) ≤ λi(LWsym) + λN(QPsym).

The inequalities above demonstrate that the upper and lower bounds of the eigenval­
ues of Lmixs are restricted by the eigenvalues of LWsym and QPsym . In addition, only
one eigenvalue of QPsym is equal to 2, and the rest of the eigenvalues equals 1, i.e.,
λi(QPsym) = 1 for i ∈ {1, ..., N − 1} and λN(QPsym) = 2. Hence, it is straightforward to
get

λi(LWsym) + 1 ≤ λi(Lmixs) ≤ λi(LWsym) + 2.

This explains why the eigenvalues of LWsym are shifted upward to Lmixs .

In order to investigate the effect of the number of eigenvectors used on the final result,
in Figures 5.8 and 5.9, we plot the modularity score produced by varying m. Different
Lmix options are utilized by the MMBO scheme. When m = 9, all Lmixs and Lmixr

reach the highest modularity, and Hu’s method reaches a peak at m = 10. Combining
Figures 5.6, 5.8 and 5.9, we determine that the number of eigenvectors chosen is at
least the same as the number of clusters, i.e., m ≥ K.

Tables 5.22 to 5.27 show the best modularity scores and total running times obtained
for 20 runs of various approaches. Tables 5.28 to 5.33 show the average modularity
of the methods and the average time for each run.

The Louvain method and the MMBO scheme using projection provide comparable
modularity scores. When K is large, however, the running time of the MMBO scheme
using projection is significantly lower than that of Louvain and CNM. Moreover, the
MMBO schemes perform better than CNM and Hu’s method in the weak community
structure since it provides high modularity and is closer to ground truth.

It is worth noting that Lmixr generally has a slightly shorter running time than Lmixs .
Moreover, Lmixs and Lmixr using B+ and B− both have greater modularity score than
that of W and P .

As can be seen from these tables, spectral clustering has the highest modularity score
for both strong and weak community structures, and it always assigns the proper
community. With respect to the strong community structure, both Louvain and CNM
provide a better modularity than MMBO, but the running time of the MMBO scheme
1See the appendix A.4 for more details.
2Also see the appendix A.4 for more details.
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Figure 5.8.: Modularity in the number of eigenvectors used in the strong community
structure of the SBM when K = 10. All MMBO schemes are overlapping.

is significantly faster than either. However, for the weak community structure, both
MMBO schemes always provide a higher modularity than the Louvain method, es­
pecially when K = 10, 15. In addition, CNM has the worst performance in the weak
community structure.
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5 Numerical experiments

Figure 5.9.: Modularity in the number of eigenvectors used in the strong community
structure of the SBM when K = 15. The green and brown lines cover the
purple dotted line and the red curve, respectively.
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Community
structure

Methods Blocks Best modularity ARI Purity Inverse
purity

NMI Time
(sec)

CNM
5 0.759 1.0 1.0 1.0 1.0 1268.5

CNM 10 0.813 1.0 1.0 1.0 1.0 821.4
15 0.804 1.0 1.0 1.0 1.0 713.7
5 0.759 1.0 1.0 1.0 1.0 187.3

Strong Louvain 10 0.813 1.0 1.0 1.0 1.0 104.0
15 0.804 1.0 1.0 1.0 1.0 71.0

Spectral 5 0.759 1.0 1.0 1.0 1.0 39.6
clustering 10 0.813 1.0 1.0 1.0 1.0 28.8

15 0.804 1.0 1.0 1.0 1.0 30.6
5 0.227 0.995 0.998 0.998 0.991 1268.2

CNM 10 0.107 0.363 0.385 0.920 0.627 1237.0
15 0.068 0.227 0.2 0.981 0.657 1260.7
5 0.228 1.0 1.0 1.0 1.0 142.9

Weak Louvain 10 0.143 0.810 0.8 1.0 0.934 156.3
15 0.104 0.726 0.733 1.0 0.919 232.7

Spectral 5 0.228 1.0 1.0 1.0 1.0 36.0
clustering 10 0.149 1.0 1.0 1.0 1.0 32.9

15 0.109 1.0 1.0 1.0 1.0 38.4

Table 5.21.: The best modularity of algorithms on SBM, where the best modularity is
obtained for 20 runs.
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Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.759 1.0 1.0 1.0 1.0 34.2 5
MMBO LWrw , QPrw 0.759 1.0 1.0 1.0 1.0 30.7 6
using the LB+

sym
, QB−

sym
0.759 1.0 1.0 1.0 1.0 32.2 4

projection LB+
rw

, QB−
rw

0.759 1.0 1.0 1.0 1.0 32.2 4
LWsym , QPsym 0.759 1.0 1.0 1.0 1.0 35.7 5

MMBO LWrw , QPrw 0.759 1.0 1.0 1.0 1.0 31.9 6
using finite LB+

sym
, QB−

sym
0.759 1.0 1.0 1.0 1.0 34.5 4

difference LB+
rw

, QB−
rw

0.759 1.0 1.0 1.0 1.0 34.2 4
Hu’s LWsym 0.759 1.0 1.0 1.0 1.0 12.2 2
method LWrw 0.759 1.0 1.0 1.0 1.0 10.6 3

Ground truth 0.759 1.0 1.0 1.0 1.0 – –

Table 5.22.: SBM with a strong community structure at K = 5. The best modularity
are obtained for 20 runs.

Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.228 1.0 1.0 1.0 1.0 22.7 6
MMBO LWrw , QPrw 0.228 1.0 1.0 1.0 1.0 22.0 6
using the LB+

sym
, QB−

sym
0.228 1.0 1.0 1.0 1.0 20.4 5

projection LB+
rw

, QB−
rw

0.228 1.0 1.0 1.0 1.0 20.7 5
LWsym , QPsym 0.228 1.0 1.0 1.0 1.0 27.7 6

MMBO LWrw , QPrw 0.228 1.0 1.0 1.0 1.0 26.3 6
using finite LB+

sym
, QB−

sym
0.228 1.0 1.0 1.0 1.0 26.5 5

difference LB+
rw

, QB−
rw

0.228 1.0 1.0 1.0 1.0 22.9 5
Hu’s LWsym 0.205 0.782 0.8 1.0 0.906 12.7 3
method LWrw 0.205 0.782 0.8 1.0 0.906 14.0 3

Ground truth 0.228 1.0 1.0 1.0 1.0 – –

Table 5.23.: SBM with a weak community structure at K = 5. The best modularity
are obtained for 20 runs.
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Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.777 0.811 0.8 1.0 0.936 28.2 5
MMBO LWrw , QPrw 0.777 0.811 0.8 1.0 0.936 25.6 5
using the LB+

sym
, QB−

sym
0.795 0.898 0.9 1.0 0.969 27.9 4

projection LB+
rw

, QB−
rw

0.795 0.898 0.9 1.0 0.969 26.1 5
LWsym , QPsym 0.795 0.898 0.9 1.0 0.969 32.0 5

MMBO LWrw , QPrw 0.777 0.811 0.8 1.0 0.936 30.4 5
using finite LB+

sym
, QB−

sym
0.795 0.898 0.9 1.0 0.969 30.9 4

difference LB+
rw

, QB−
rw

0.777 0.811 0.8 1.0 0.936 30.2 5
Hu’s LWsym 0.759 0.736 0.7 1.0 0.901 16.4 3
method LWrw 0.759 0.736 0.7 1.0 0.901 15.9 3

Ground truth 0.813 1.0 1.0 1.0 1.0 – –

Table 5.24.: SBM with a strong community structure at K = 10. The best modularity
are obtained for 20 runs.

Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.146 0.898 0.9 1.0 0.969 33.8 6
MMBO LWrw , QPrw 0.143 0.810 0.8 1.0 0.936 32.3 4
using the LB+

sym
, QB−

sym
0.146 0.898 0.9 1.0 0.969 31.9 5

projection LB+
rw

, QB−
rw

0.146 0.898 0.9 1.0 0.969 30.0 6
LWsym , QPsym 0.146 0.898 0.9 1.0 0.969 37.8 6

MMBO LWrw , QPrw 0.143 0.810 0.8 1.0 0.936 34.1 4
using finite LB+

sym
, QB−

sym
0.146 0.898 0.9 1.0 0.969 36.5 5

difference LB+
rw

, QB−
rw

0.146 0.897 0.9 1.0 0.969 35.8 6
Hu’s LWsym 0.143 0.810 0.8 1.0 0.936 22.9 5
method LWrw 0.143 0.810 0.8 1.0 0.936 22.5 3

Ground truth 0.149 1.0 1.0 1.0 1.0 – –

Table 5.25.: SBM with a weak community structure at K = 10. The best modularity
are obtained for 20 runs.
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5 Numerical experiments

Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.781 0.819 0.8 1.0 0.946 20.3 4
MMBO LWrw , QPrw 0.774 0.770 0.8 1.0 0.939 19.7 4
using the LB+

sym
, QB−

sym
0.789 0.872 0.87 1.0 0.965 21.8 4

projection LB+
rw

, QB−
rw

0.781 0.819 0.8 1.0 0.946 20.5 4
LWsym , QPsym 0.781 0.819 0.8 1.0 0.946 24.7 4

MMBO LWrw , QPrw 0.774 0.770 0.8 1.0 0.939 24.2 4
using finite LB+

sym
, QB−

sym
0.789 0.872 0.87 1.0 0.965 26.0 4

difference LB+
rw

, QB−
rw

0.781 0.819 0.8 1.0 0.946 25.4 5
Hu’s LWsym 0.777 0.811 0.8 1.0 0.936 16.7 3
method LWrw 0.766 0.726 0.73 1.0 0.919 15.9 3

Ground truth 0.804 1.0 1.0 1.0 1.0 – –

Table 5.26.: SBM with a strong community structure at K = 15. The best modularity
are obtained for 20 runs.

Methods Modularity ARI Purity Inverse
purity

NMI Time
(sec)

Number
of itera­
tions

LWsym , QPsym 0.106 0.818 0.8 1.0 0.946 28.0 6
MMBO LWrw , QPrw 0.105 0.770 0.73 1.0 0.927 26.6 6
using the LB+

sym
, QB−

sym
0.106 0.819 0.8 1.0 0.946 27.5 5

projection LB+
rw

, QB−
rw

0.106 0.818 0.8 1.0 0.946 26.1 5
LWsym , QPsym 0.106 0.818 0.8 1.0 0.946 31.6 6

MMBO LWrw , QPrw 0.105 0.770 0.73 1.0 0.927 30.9 6
using finite LB+

sym
, QB−

sym
0.106 0.819 0.8 1.0 0.946 30.4 5

difference LB+
rw

, QB−
rw

0.106 0.818 0.8 1.0 0.946 28.5 5
Hu’s LWsym 0.104 0.770 0.8 1.0 0.937 22.7 5
method LWrw 0.104 0.770 0.73 1.0 0.927 23.6 6

Ground truth 0.109 1.0 1.0 1.0 1.0 – –

Table 5.27.: SBM with a weak community structure at K = 15. The best modularity
are obtained for 20 runs.
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5 Numerical experiments
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5 Numerical experiments
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6 Conclusion and Discussion

6. Conclusion and Discussion

In this thesis, we have developed an improved approach for modularity optimization,
namely the MMBO scheme using projection. We reformulate the modularity opti­
mization as minimizing the total variation and the signless total variation on a graph.
When working with large networks, one of the most important aspects of our tech­
niques is computing the leading eigenvalues and eigenvectors, which allows us to
use the Nyström extension described in [7] with QR decomposition. In addition, we
have proposed MBO techniques that can handle large datasets (such as the MNIST
dataset) while requiring low computational costs. Numerical experiments show that
our method is not only competitive in terms of modularity scores but also significantly
faster than both the method of Hu et al. and of Louvain.

Our research highlights several potential direction for future investigation. A signed
graph is a graph where every edge has a positive or negative sign. Signed graphs
can be employed to describe positive and negative interactions between groups of
objects. For instance, positive edges represent connections such as friendship, while
negative edges express enmity. Considering that currently many node classification
methods focus on unsigned graphs, the first interesting potential direction is to investi­
gate how to adapt methods from unsigned graphs to signed graphs. Second, it would
be beneficial to investigate how well the MBO method performs in directed weighted
graphs. A community in directed graphs, is defined as a collection of nodes having
more edges within a cluster than between different clusters. Many algorithms were
developed for undirected weighted graphs for applications such as clustering and
community detection. Some complications arise when dealing with directed weighted
graphs. For example, adjacency matrices of directed weighted graphs are generally
asymmetric, making the spectral analysis of directed weighted graphs more complex
than that of undirected weighted graphs. Therefore, extending the proposed MBO
scheme to directed weighted graphs is a promising research topic for the future.
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A Appendix

A. Appendix

In this section, we give the definition of Γ–convergence and proofs of theorems stated
earlier in the thesis.

A.1. The zero eigenvalue

Theorem 1 The number of zero eigenvalues of the Laplacian L (i.e., the multiplicity
of the 0 eigenvalue) equals the number of connected components of the graph G.

Proof. Given a graph G = (V, E) with a node set V and an edges set E. Let k be the
number of connected components in G, which corresponds to the division of V into
disjoint sets A1, A2, ..., Ak.

First, we show that the number of zero eigenvalues is at least the number of con­
nected components k. We defined k vectors

(
u(1), ..., u(k)

)
by

u(l)
i =





1 if i ∈ Al,

0 otherwise.
(A.1)

where u(l)
i is the i–th component of u(l).

Since Ai and Aj are disjoint,
〈
u(i), u(j)

〉
= 0 for i '= j. Besides, Lu(i) = 0 for all

i ∈ {1, 2, ..., k}. Thus, there is a set of k orthonormal vectors that are all eigenvectors
of L corresponding to the eigenvalue 0, i.e., the number of zero eigenvalues of L is
at least k.

Next, we prove that the number of zero eigenvalues is at most k. Let u =
(
u(1), ..., u(k)

)

be a vector–valued function. By (2.7), we know that uT Lu = 0 if and only if ui = uj for
(i, j) ∈ E, which means u is constant on every connected component. So if Lu = 0,
it is straightforward to have uT Lu = 0, which means there exist scalars -1, ..., -k such
that

u =
k∑

i=1
-iu

(i), (A.2)

where (A.2) indicates that each eigenvector of L that corresponds to the eigenvalue
0 is contained in the subspace spanned by {u(1), ..., u(k)}. Thus, there are at most k
linearly independent eigenvectors corresponding to the eigenvalue 0.
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A.2. Γ–convergence

Definition. (Γ–convergence) Let X be a metric space and let Fn : X → R⋃{±∞}
be a sequence of functionals on X. Then, Fn are said to Γ­converge to the functional
F : X → R⋃{±∞} if the following two conditions hold:

! Lower bound condition: For every convergent sequence un → u, it satisfies that

F (u) ≤ liminf
n→∞

Fn(un). (A.3)

! Upper bound condition: There exists a sequence {un}∞
n=1 such that

F (u) ≥ limsup
n→∞

Fn(un). (A.4)

A.3. The choice of timestep

In [4], Boyd et al. provided a method to automatically determine timestep dt in the
MBO scheme. In particular, recursive implementations will greatly benefit from this
approach. When the size of a graph gets smaller, the suitable timestep empirically de­
creases, and it would be impractical for a person to manually check at each recursion
step.

Proposition. (Lower bounds on dt) Let U0 be the partition matrix of some partition. If
U satisfies d

dtU = −1
2(LF + QH)U with initial U0, then the following inequalities holds:

||U(dt)− U0||∞ ≤ exp (2(γ + 1)dmaxdt) ,

where γ is the resolution parameter in modularity Q and dmax is the largest degree
of D. In particular, for the number of clusters K = 2, this bound implies that if the
timestep dt in the MBO scheme satisfies

dt <
log2

2(γ + 1)dmax
≈ 0.15

(γ + 1)dmax
, (A.5)

then the MBO iteration is stationary.

Although (A.5) is restricted to K = 2, the authors consider K = 2 to be the worst case.
Therefore, we utilized the time step restriction regardless of K.
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Proposition. (Upper bounds on dt) Given U0 be the partition matrix of some partition.
LetU satisfies d

dtU = −1
2(LF +QH)U with initial U0, then we have the following bounds:

||U ||L2 ≤ exp(−dtλ1)||U0||L2 ,

where λ1 is the smallest eigenvalue of 1
2(LF + QH). Furthermore, let 1

2(LF + QH) be
nonsingular. Then for any ε > 0, we have ||U(dt)||∞ < ε if

dt >
1
λ1

log

(
||U0||L2

ε

)

. (A.6)

In practice, dt is determined by the geometric mean of (A.5) and (A.6). We always
chose the parameter ε = 1 in the numerical test.

A.4. Weyl’s inequality and rank–one matrix updates

Since an integer or real matrix is Hermitian if and only if it is symmetric, we obtain that
Lmix is Hermitian. Thus, Lmix has real eigenvalues. We write an eigenvalue λk(A) to
represent the the k–th largest eigenvalue of A.

Weyl’s inequality states a bound on the eigenvalues of the sum of matrices. The the­
ory of rank–one matrix updates illustrates why the eigenvalues of the original matrix
and the rank–one update matrix are interleaved.

Theorem. (Weyl’s inequality [70]) Let A and B be n × n Hermitian matrices, and
matrix C := A + B. Suppose A, B and C have real eigenvalues ordered as follows:

A : λ1(A) ≤ λ2(A) ≤ ... ≤ λn(A),
B : λ1(B) ≤ λ2(B) ≤ ... ≤ λn(B),
C : λ1(C) ≤ λ2(C) ≤ ... ≤ λn(C).

Then the following inequalities hold:

λi(A) + λ1(B) ≤ λi(C) ≤ λi(A) + λn(B), i = 1, ..., n. (A.7)

and in particular

λ1(A) + λ1(B) ≤ λ1(C) ≤ λn(C) ≤ λn(A) + λn(B). (A.8)

Particularly, if B is positive definite, i.e., all eigenvalues of B are positive, then above
inequalities result in

λi(A) ≤ λi(C). i = 1, ..., n. (A.9)

Given a real symmetric n × n matrix M with M = QDQT , where Q ∈ Rn×n is an
orthonormal matrix (i.e., QQT = QT Q = In×n) whose columns are the eigenvectors of
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M , and D ∈ Rn×n is diagonal matrix containing corresponding eigenvalues, ordered
as λ1(D) ≤ ... ≤ λn(D). Let u ∈ Rn×1 be a vector and z := Q−1u, then the rank–one
update matrix M̃

M̃ = M + uuT = Q(D + zzT )QT := QDupdateQ
T .

We are interested in the eigenvalues of M̃ . So, the issue is the eigenvalue decompo­
sition of matrix Dupdate.

Theorem. (Rank–one matrix updates in [8]) With of the above notation and con­
sider Dupdate. Let λ1(D) ≤ ... ≤ λn(D) be the eigenvalues of D, λ1(Dupdate) ≤ ... ≤
λn(Dupdate) be the eigenvalues of Dupdate. Then

λi(Dupdate) = λi(D) + µi, i = 1, ..., n (A.10)

where µi ∈ [0, 1] and ∑n
i µi = 1. Furthermore, it holds that

λ1(D) ≤ λ1(Dupdate) ≤ λ2(D) ≤ ... ≤ λn(D) ≤ λn(Dupdate). (A.11)

The Weyl inequalities provide a wealth of information regarding the low rank pertur­
bations, and (A.11) restrict each eigenvalue of M̃ to the interval bounded by two
consecutive eigenvalues of M . Take Lmixs = LWsym + QPsym as an example, we know

Lmixs = LWsym + QPsym

= I −D
− 1

2
W WD

− 1
2

W + I + D
− 1

2
P PD

− 1
2

P

= 2I −D
− 1

2
W WD

− 1
2

W + D
− 1

2
P PD

− 1
2

P ,

and H := 2 −D
− 1

2
W WD

− 1
2

W is symmetric and so Hermitian. The eigenvalues of H are
λ1(H) ≤ ... ≤ λn(H). For simplicity, we write K := D

− 1
2

P PD
− 1

2
P . Since we use the

Newman–Girvan null model (i.e., Pij = didj

vol(V ) ), it is straightforward to get Kij = d
1
2
i d

1
2
j

vol(V ) .
With the theory of the rank–one update matrix, we can rewrite K as

K = D
− 1

2
P PD

− 1
2

P = zzT ,

where zi =
(

di
vol(V )

) 1
2 , i = 1, ..., n. Then Lmix is represented as

Lmix = H + K = H + zzT .

By (A.11), it is straightforward to have

λi(H) ≤ λi(Lmix) ≤ λi+1(H). i ∈ {1, ..., n− 1} (A.12)

We say there exists a jump in the eigenvalues if two consecutive eigenvalues change
by more than 0.01, i.e.,

λi+1(W )− λi(W )
λi(W ) > 0.01. (A.13)
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Consider Lmixs in the experiments of SBM. (A.12) explains the jumps in the eigen­
values of Lmixs shifting from one to the right, i.e., if the sudden jump in Lmixs occurs
between the 9–th and 10–th eigenvalues, it follows that

λ9(H) ≤ λ9(Lmixs) ≤ λ10(H) ≤ λ10(Lmixs) ≤ λ11(H). (A.14)

It indicates that there may be a jump between the 9–th and 10–th or between the 10–
th and 11–th eigenvalues of H, or even possibly no jump at all. More specifically, if
there exists a jump in Lmixs , then according to (A.14) and (A.13) we have

λ10(Lmixs)− λ9(Lmixs) ≤ λ11(H)− λ9(H)

0.01 <
λ10(Lmixs)− λ9(Lmixs)

λ9(Lmixs)
≤ λ11(H)− λ10(H) + λ10(H)− λ9(H)

λ9(Lmixs)

= λ11(H)− λ10(H)
λ9(Lmixs)

+ λ10(H)− λ9(H)
λ9(Lmixs)

≤ λ11(H)− λ10(H)
λ9(Lmixs)

+ λ10(H)− λ9(H)
λ9(H) ,

which is not guaranteed that λ10(H)−λ9(H)
λ9(H) > 0.01 or λ11(H)−λ10(H)

λ9(Lmixs ) ≥ λ11(H)−λ10(H)
λ10(H) > 0.01.

Therefore, it is likely that there is no jump in λ(H), even if λ(Lmixs) satisfies (A.13).
In addition, (A.8) explains well the relationship between the upper and lower bounds
of the eigenvalues of Lmix and the eigenvalues of LWsym and QPsym . Specifically, we
have

λ1(LWsym) + λ1(QPsym) ≤ λ1(Lmixs) ≤ λn(Lmixs) ≤ λn(LWsym) + λn(QPsym). (A.15)

The above inequality shows that the upper and lower bounds of the eigenvalues of
Lmixs are related to the sum of the eigenvalues of LWsym and QPsym . In addition, only
one eigenvalue of QPsym is equal to 2, and the rest of the eigenvalues equals 1, i.e.,
λi(QPsym) = 1 for i ∈ {1, ..., n − 1} and λn(QPsym) = 2. Consequently, (A.15) can be
rewritten as

λi(LWsym) + 1 ≤ λi(Lmixs) ≤ λi(LWsym) + 2.

This explains the eigenvalues of LWsym are shifted upward to Lmixs .
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