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1 Introduction

A popular tool to describe phenomena and problems in physics and engineering is the usage
of partial differential equations. They pose an abstract model to the actual situation and
allow theoretical as well as application based investigations. Since an analytical solution is
often unknown, this approach leads to numerical simulations, making use of computers in
order to find a discrete approximation. In the following, the finite element method will be
considered, which is a popular numerical technique to find these discrete approximations.

The general form of the finite element method involves choosing a grid for the domain of
the considered partial differential equation. However, if the grid is too coarse, one might not
resolve the solution sufficiently well. On the other hand, it is usually a priori not known
where the grid needs to be finer. A globally finer grid is not always within the realm of
possibility because it implies a massive increase in the limited resources of required memory
and computational power in order to obtain an approximation.

One way of circumventing this problem is the following: Instead of calculating just one ap-
proximated solution on a fixed grid, one tries to derive a posteriori error estimators, i.e., error
estimators which give information about the magnitude of the error of a given approximated
solution to the actual solution on certain portions of the grid. The hope is that refining the
areas of the grid in which the error is particularly large will increase the overall accuracy
significantly. Iterating this process results in a so-called adaptive algorithm.

A general adaptive algorithm for stationary problems can look like the following.

1.1 Algorithm [A general adaptive algorithm]. This algorithm is a modified version of
[Ver13, Algorithm 1.1]. Let the data of a partial differential equation and a tolerance ε be
given, then one looks for a numerical solution of the problem with an error less than ε.

(i) Construct an initial coarse mesh T0 representing sufficiently well the geometry and data
of the problem; set k = 0.

(ii) Solve: Solve the discrete problem associated with Tk.

(iii) Estimate: For every element K in Tk compute a local a posteriori error indicator.

(iv) If the global error estimate is less than ε, stop, otherwise:

(a) Mark : Decide by the local error indicators which elements have to be refined.

(b) Refine: Construct the next mesh Tk+1. Increase k by 1 and return to step (ii).

In this thesis, three different partial differential equations are being considered: The incom-
pressible and stationary Stokes equations which model free viscous flow, the Darcy equations
which model flow through porous media and convection–diffusion equations which describe
the transportation and diffusion of scalar quantities like temperature or concentration, as
well as a coupled Stokes–Darcy system which can describe for example the free flow of a river
and the resulting flow in its riverbed in the field of geosciences.

The goal is to investigate the adaptive algorithm for these problem types theoretically
as well as practically for different kinds of error indicators and different parameters in the
marking strategy of step (iv).(a). In particular, the theoretical part of the thesis includes the
Stokes, Darcy, and Stokes–Darcy equations, numerical simulations were performed for the
convection–diffusion, Stokes, and Stokes–Darcy equations. The convection–diffusion equa-
tions were chosen for the numerical simulations because under certain assumptions they can
be seen as a generalization of the Darcy equations and it is more likely that the solution of
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a convection–diffusion problem possesses features that require the application of an adaptive
algorithm, making it easier to find suitable examples.

In the following sections, steps (ii)-(iv) of the algorithm are described successively.
Section 2 deals with the Darcy, Stokes, and Stokes–Darcy equations. Existence and unique-

ness of a weak solution, as well as the corresponding finite element discretization are discussed
for the Darcy and Stokes equations, for the Stokes–Darcy equations, the coupling conditions
as well as possible finite element discretizations are introduced. Therefore, this section can
be identified with step (ii) of the adaptive algorithm.

In virtue of step (iii), in Section 3 error estimators are being derived first in an abstract
setting and then applied to the Stokes, and Darcy equations. The considered error estimators
are a residual based a posteriori error estimator in the energy norm and a dual weighted
residual error estimator, which indicates the error of the approximated solution with respect
to a functional of interest.

The next step of the algorithm is step (iv), being subject of Section 4 and Section 5, which
are the counterparts of steps (iv).(a) and (iv).(b), respectively.

Section 6 deals with numerical studies for the convection–diffusion, Stokes and Stokes–
Darcy equations. The differences between the residual based a posteriori error estimators
and the dual weighted residual error estimators as well as the performance of the adaptive
algorithm under certain configurations of step (iv).(a) are discussed.

Section 7 gives conclusions and an outlook.

2 Models for flow problems

This section deals with models for flow problems and their respective discretizations, i.e., it
considers point (ii) of Algorithm 1.1. First a model for flow through porous media is intro-
duced, followed by the Stokes equations. Finally, the coupled problem of the two previously
introduced models is considered.

2.1 The Darcy equations

The Darcy equations describe the behavior of fluids in porous media like sand. First they
were obtained as results from experiments by Henry Darcy in 1856 [Dar56], later it was
found that they can be deduced from the Navier–Stokes equations and therefore also pose a
theoretical result. The dimensionless problem associated to the equations usually reads as
follows:

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and f ∈ L2(Ω) a source term.
Then one wants to find the fluid velocity u : Ω → Rd and the piezometric head ϕ : Ω → R

such that
{

u +K∇ϕ = 0 in Ω,
∇ · u = f in Ω,

(1)

where K is the hydraulic conductivity tensor, describing the characteristics of the porous
medium. The piezometric head gives information on the liquid pressure at a specific place.
This formulation of the problem is known as the “mixed form”.

2.1 Remark [On the velocity term]. The velocity u of the Darcy equations is not a pointwise
velocity like expected in a free flow, it is rather a specific discharge that happens to have the
unit of a velocity: Let Q[m3/s] be the total discharge (volume per time) and A[m2] be the
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cross sectional area to flow, then the not yet nondimensionalized averaged velocity is given
by

v :=
Q

A

[
m3

s ·m2
=
m

s

]
.

By taking the divergence of the first equation of (1) and substituting the second equation,
one obtains the simpler “primal form” of the Darcy equations:

−∇ ·K∇ϕ = f in Ω. (2)

Note that the two forms are equivalent if the functions are smooth enough. However in the
setting of a finite element discretization as introduced later the two forms are likely to yield
different solutions.

To obtain a well-posed problem, one needs boundary conditions. Therefore, decompose
the boundary ∂Ω into two relatively open, disjoint parts Γnat,Γess ⊂ ∂Ω, such that

Γnat ∪ Γess = ∂Ω and Γnat ∩ Γess = ∅.
Here, Γnat denotes the part of Γ for the natural boundary conditions, i.e., the boundary
conditions that are being incorporated into the weak formulation by substitution and Γess

denotes the part of Γ for the essential boundary conditions, i.e., the boundary conditions that
are being incorporated into the ansatz and test spaces. The solution of the Darcy equations
should then fulfill

{
(−K∇ϕ) · n = unat on Γnat,

ϕ = ϕess on Γess,
(3)

where n denotes the outer unit normal vector.

2.1.1 Weak formulation

For simplicity, in the following only the primal form (2) with K = K · I is being considered
where K denotes a positive scalar value and I the identity, whereas in general it can only be
assumed that K is symmetric and positive definite. Further it is assumed that the essential
boundary has positive measure, i.e., meas(Γess) > 0.

To derive a weak formulation, consider a test function ψ which vanishes close to the essential
boundary, namely

ψ ∈ C∞Γess
(Ω) :=

{
v ∈ C∞(Ω) ∩H1(Ω) : ∃U⊂R

d open neighborhood of Γess

s.t. v(x)=0 ∀x∈U∩Ω

}
.

Multiplication of (2) with ψ, integration and integration by parts yields

(K∇ϕ,∇ψ)0 = (f, ψ)0 − 〈unat, ψ〉Γnat .

In order to apply Hilbert space theory, a test space is needed that is complete in the norm
of H1(Ω), which is not the case for C∞Γess

(Ω). The norm of H1(Ω) is given by

‖u‖H1(Ω) = ‖u‖1 := (‖∇u‖20 + ‖u‖20)
1
2 .

Consequently, one considers the completion with respect to that norm, i.e.,

V := H1
Γess

(Ω) = C∞Γess
(Ω)

H1(Ω)
, (4)

as a new test space, which now contains functions that vanish on the essential boundary in
the sense of traces. With respect to inclusion, the space V is therefore in between H1

0 (Ω) and
H1(Ω).
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2.2 Remark [Homogeneous essential boundary conditions for the primal form]. For the
analysis, homogeneous essential boundary conditions can be assumed: Due to the surjectivity
of the trace operator, the boundary condition ϕess ∈ H1/2(Γess) can be extended into the
interior of Ω. Thus with ϕ̃ := ϕ − ϕess being the sought solution of (2) with homogeneous
essential boundary conditions, one automatically obtains the solution ϕ = ϕ̃ + ϕess of the
original problem.

Even though V is the completion with respect to the H1(Ω)-norm, one can apply a different
norm simplifying the analysis with the following result.

2.3 Theorem [The Poincaré-Friedrichs inequality]. Let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary and meas(Γess) > 0. Then, for all u ∈ H1

Γess
(Ω) one has

‖u‖0 ≤ C‖∇u‖0. (5)

Proof. The proof relies on the “Norm Equivalence Theorem of Sobolev” which can be found
in [Ste08, Theorem 2.6]. It states: Let f : H1(Ω)→ R be a given linear bounded functional
satisfying

0 ≤ |f(v)| ≤ cf‖v‖1 ∀v ∈ H1(Ω)

and f(c) = 0 ⇒ c ≡ 0 for c ∈ P0(Ω), where P0(Ω) denotes the ring of polynomials mapping
from Ω to R of degree 0, i.e., constant polynomials. Then

‖v‖1,f :=
(
|f(v)|2 + ‖∇v‖20

)1/2

defines an equivalent norm in H1(Ω).
Now let

f(v) :=



∫

Γess

v2




1/2

.

It is

0 ≤ |f(v)| =



∫

Γess

v2




1/2

≤



∫

∂Ω

v2




1/2

= ‖v‖L2(∂Ω) ≤ cf‖v‖H1(Ω)

where the last inequality is due to the boundedness of the trace operator. Further one has
for c ∈ P0(Ω) that

0 = f(c) =



∫

Γess

c2




1/2

= |c| (meas(Γess))
1/2

⇒ c = 0.

Therefore all the requirements for the equivalence theorem are satisfied and ‖ · ‖1,f defines
an equivalent norm on H1(Ω).

Let u ∈ H1
Γess

(Ω) be arbitrary. Since u vanishes on Γess in the sense of traces, one has
f(u) = 0. Due to the norm equivalence it is

‖u‖21 = ‖u‖20 + ‖∇u‖20 ≤ C1

(
f(u) + ‖∇u‖20

)

⇒ ‖u‖20 ≤ C2

(
f(u) + ‖∇u‖20

)
= C2‖∇u‖20

for some constants C1, C2, C3.
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Now V can be equipped with the H1(Ω)-semi-norm |u|1 := ‖∇u‖0 which in this case is
even a norm since H1(Ω) ⊂ L2(Ω) and therefore

0 = |u|1 = ‖∇u‖0
(5)

≥ 1

C
‖u‖0 ⇒ u = 0.

The weak formulation then reads as follows: Find ϕ̃ := ϕ−ϕess ∈ V with ϕ ∈ H1(Ω) such
that

a(ϕ̃, ψ) = 〈f, ψ〉 − 〈unat, ψ〉Γnat − (K∇ϕess,∇ψ)0 =: 〈f̃ , ψ〉 ∀ψ ∈ V, (6)

with

a : V × V → R, (ϕ̃, ψ) 7→ (K∇ϕ̃,∇ψ)0. (7)

Here ϕess denotes an extension of the essential boundary data ϕess ∈ H1/2(Γess) into the
interior of Ω.

2.4 Theorem [Existence and uniqueness of a weak solution]. Problem (6) with f ∈ L2(Ω),
unat ∈ H−1/2(Γnat) and homogeneous essential boundary data has a unique solution.

Proof. This theorem’s proof is based on an application of the theorem of Lax-Milgram, which
states that there exists exactly one solution to

a(ϕ,ψ) = 〈f̃ , ψ〉
if a : V × V → R is bounded and coercive and f̃ is linear and bounded.

• Boundedness of a(·, ·): By applyingK = K I for some scalar K and the Cauchy–Schwarz
inequality one obtains

|a(ϕ,ψ)| = K|(∇ϕ,∇ψ)0| ≤ K|ϕ|1|ψ|1.

• Coercivity of a(·, ·) follows directly from the definition of the V -norm: a(ϕ,ϕ) = K|ϕ|21.

• Boundedness of the right-hand side is obtained by the triangle inequality, the Cauchy–
Schwarz inequality and the boundedness of the trace operator:

|〈f̃ , ψ〉| = |(f, ψ)0 − 〈unat, ψ〉Γnat − (K∇ϕess,∇ψ)0|
≤ ‖f‖0‖ψ‖0 + C‖unat‖− 1

2
|ψ|1 +K|ϕess|1|ψ|1 <∞.

2.5 Remark [Existence and uniqueness for inhomogeneous essential boundary data]. When
considering the problem with inhomogeneous essential boundary data ϕess 6≡ 0, it can be
reduced to a problem with homogeneous essential boundary data by subtracting an extension
of it from the sought solution, see Remark 2.2. Since then the sought solution is in V , existence
and uniqueness can be provided with the above theorem and therefore holds for the original
problem by readding the extension as well.

2.6 Remark [Recovering the Darcy velocity in the primal form]. One can recover the Darcy
velocity in the primal form by

u = −K∇ϕ.
However in a discrete setting by taking the gradient of the pressure, one loses accuracy and

∇ · u = f

might no longer be satisfied.
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2.1.2 Finite element discretization

In order to solve the Darcy equations numerically, one can use a finite element approach.
This section corresponds to points (i) and (ii) of Algorithm 1.1. Concerning the first point,
let T be a partition of the domain Ω which satisfies the following conditions:

(i) It is

Ω =
⋃

T∈T
T,

i.e., there is no additional approximation of the boundary necessary.

(ii) The essential boundary Γess is the union of (d− 1)-dimensional faces of elements in T .

(iii) Affine equivalence: T consists of simplices and parallelepipeds. Therefore every element
in T is the image under an affine map of either the reference simplex

K̂d =

{
x ∈ Rd : x ≥ 0,

d∑

i=1

xi ≤ 1

}

or the reference cube
K̂d = [0, 1]d.

(iv) Admissibility: Any two elements in T are either disjoint or share a complete lower
dimensional face of their boundaries. This property prevents hanging nodes, see Defi-
nition 5.1.

(v) Shape regularity: For any element K ∈ T , the ratio of its diameter hK to the diameter
ρK of the largest ball completely contained in K is bounded from above independently
of K, as sketched in Figure 1.

Regarding the last point, to every partition T the shape parameter

CT := max
K∈T

hK
ρK

(8)

is associated. When considering families of partitions which are for instance obtained by
global or local refinement, it must be uniformly bounded with respect to all partitions. In
two dimensions, this property ensures that the element angles are all bounded away from
zero and therefore do not become too small.

Denote for every partition T the sets N containing all 0-dimensional faces, i.e., all vertices,
and E containing all (d − 1)-dimensional faces, i.e., all facets, of all elements of T . The
skeleton Σ of T is given by the union of all facets in E . Whenever there is a subscript
character denoting a set like K, Ω, Γess on N or E , the restriction to the faces of N or E
respectively contained in the subscript set is being considered. For every d-face and (d− 1)-
face F ∈ T ∪E , denote its diameter by hF := diam(F ). Further, let ωK , ω̃K , ωE , ω̃E , ωz be
subsets of T for K ∈ T , E ∈ E , and z ∈ N as shown in Figure 2 defined by

ωK =
⋃

K′∈T
EK ∩EK′ 6=∅

K ′, ω̃K =
⋃

K′∈T
NK ∩NK′ 6=∅

K ′, ωE =
⋃

K′∈T
E∈EK′

K ′, ω̃E =
⋃

K′∈T
NE ∩NK′ 6=∅

K ′, ωz =
⋃

K′∈T
z∈NK′

K ′.

The second point of Algorithm 1.1 is based on the Galerkin method, i.e., the infinite-
dimensional function space V is being approximated by a finite-dimensional subspace V h ⊂ V
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hK

ρK

K

Figure 1: Sketch of the shape parameter of a single simplex in two dimensions.

with a basis {ψi}Ni=1 where h represents the refinement level and N is the dimension and
therefore the number of degrees of freedom of V h.

It however remains to specify how to choose the space V h. In finite element methods, one
can either define the space directly on the elements K ∈ T or on reference elements which
then get mapped onto the respective elements in T . Here, the latter approach is outlined.
To this end, let P (K) ⊂ Cs(K), s ∈ N, be a finite-dimensional space on a mesh cell K ∈ T .
Usually, P (K) consists of polynomials. Due to the affine equivalence property of T these
local spaces can also be defined on the reference element by

P (K) := {ϕ ◦ F−1
K : ϕ ∈ P (K̂d)}, (9)

where FK is an affine transform mapping K̂d onto K ∈ T . Let ΦK,1, . . . ,ΦK,NK : Cs(K) →
R be linear functionals on the mesh cells and assume that the local spaces’ bases can be
transformed into {φK,i}NKi=1 such that

ΦK,i(φK,j) = δij

for all i, j = 1, 2, . . . , NK . Further let Φ1, . . . ,ΦN be linear functionals whose restriction on
K ∈ T yields the previously defined ΦK,i.

The subdomain ωi denotes the union of all mesh cells K such that there is a ψ ∈ P (K)
with Φi(ψ) 6= 0. A function ϕ defined on Ω with ϕ

∣∣
K
∈ P (K) for each K ∈ T is called

continuous with respect to the functional Φi if

Φi(ϕ
∣∣
K1

) = Φi(ϕ
∣∣
K2

) ∀K1,K2 ∈ ωi.

The global finite element space is then defined by

V h = {ψ : Ω→ R : ψ
∣∣
K
∈ P (K), ψ is continuous with respect to Φ1, . . . ,ΦN} ∩ V. (10)

The weak problem (6) discretized by the finite element method is then to find ϕh−ϕhΓess
∈ V h

such that

ah(ϕh − ϕhΓess
, ψh) := (K∇(ϕh − ϕhΓess

),∇ψh)0 = 〈f̃ , ψh〉 (11)

for all ψh ∈ V h, where ϕhΓess
denotes an extension of the essential boundary data into the

domain.
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E

ω̃E

E

ωE

K

ωK

K

ω̃K

ωz

z

Figure 2: Subsets ωE (top left), ω̃E (top right), ωK (lower left), ω̃K (lower right) and ωz
(middle) for z ∈ N , E ∈ E and K ∈ T , i.e., all elements, which have in case of ωE
or ωK at least one edge and in case of ω̃E and ω̃K at least one vertex in common;
in case of ωz all elements which share z.

2.7 Remark [On the test functions]. The formulation of the weak problem (6), (7) suggests
that one tests with all elements of V h. However it suffices to test with the basis functions,
i.e.,

ah(ϕh − ϕhΓess
, ψh) = 〈f̃ , ψh〉 ∀ψh ∈ V h ⇔ a(ϕh − ϕhΓess

, ψhi ) = 〈f̃ , ψhi 〉 ∀i ∈ {1, 2, . . . , N}.

Indeed, one can represent every ψh ∈ V h as linear combination of the basis functions

ψh =
N∑

i=1

αiψ
h
i

for some αi ∈ R and insert this into the problem’s equation. Applying that ah(·, ·) and the
dual pairing are bilinear yields

ah(ϕh − ϕhΓess
, ψh) =

N∑

i=1

αia
h(ϕh − ϕhΓess

, ψhi ) =
N∑

i=1

αi〈f̃ , ψhi 〉 = 〈f̃ , ψh〉.

This equation holds for all basis functions. On the other hand it also holds for all functions
from V h, so for the basis functions in particular. Altogether it is equivalent if one tests with
all functions from V h or just with its basis functions.

Since one now is in the setting of a finite-dimensional space V h and a bilinear operator
ah(·, ·), one can express the discretized problem (11) in terms of a system of linear equations.
To this end, let

ϕh =
N∑

i=1

αiψi

11



be the sought solution. Inserting it into (11) yields

ah(ϕh, ψj) =
N∑

i=1

αia
h(ψi, ψj) = 〈f̃ , ψj〉+ ah(ϕhΓess

, ψj)

for all basis functions ψj of V h, j = 1, 2, . . . , N , which is equivalent to the matrix-vector form
equation

Aφ = f ,

where A is a N ×N matrix with

(A)ij = ah(ψj , ψi),

f = (〈f̃ , ψ1〉+ah(ϕhΓess
, ψ1), . . . , 〈f̃ , ψN 〉+ah(ϕhΓess

, ψN ))T is a vector containing the right-hand
side entries and φ is the solution vector containing the weights αi for each row i.

2.2 The Stokes equations

The Stokes equations model flows of fluids with high viscosity and can be derived from the
Navier–Stokes equations. In direct comparison, they are identical except for the additional
convective term in the Navier–Stokes equations. Here they are not discussed in their full
generality but in the incompressible and stationary case. They read in the dimensionless
Cauchy stress form as follows:

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with Lipschitz continuous boundary ∂Ω, its
outer unit normal n and a source term f . Then find (u, p) : Ω→ Rd×R, such that

{
−∇ ·T(u, p) = f in Ω,

∇ · u = 0 in Ω,
(12)

where u and p denote the fluid’s velocity and pressure, respectively. The map

T(u, p) := 2νD(u)− p I

is known as the Cauchy stress tensor giving information about the stress inside the fluid,
ν := Re−1 the kinematic viscosity and

D(u) :=
1

2
(∇u +∇uT )

the so-called deformation tensor, which is the symmetric part of the gradient ∇u. Similarly
to the Darcy equations, in the smooth case an equivalent formulation can be found, which
however yields a different discretization and therefore other results in simulations. This
alternative form is known as the Laplace form and is given by (12) with

T(u, p) := ν∇u− p I . (13)

2.8 Remark [On the equivalence of the Cauchy stress and the Laplacian form]. The equiv-
alence holds if ∇ ·u = 0 is given. In a discrete setting however, this condition usually is only
fulfilled approximatively by uh.
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The problem can be completed by setting boundary conditions. Here, the focus is on
Dirichlet and Neumann-type boundary conditions. Similar as for the Darcy equations, split
∂Ω into two relatively open disjoint sets Γess denoting the essential and Γnat denoting the nat-
ural boundary conditions which correspond to Dirichlet and Neumann boundary conditions
respectively, such that

Γess ∪ Γnat = ∂Ω and Γess ∩ Γnat = ∅.
Further, the essential boundary conditions are assumed to be homogeneous. The conditions
are then given by

{
u = 0 on Γess,

T(u, p) · n = TN on Γnat,
(14)

where TN ∈ H−1/2(Γnat) and T is defined as in (12) or (13).

2.9 Remark [Homogeneous essential boundary conditions]. If the essential boundary condi-
tions are not homogeneous, the problem can still be transformed into an equivalent problem
with homogeneous essential boundary conditions by searching for ũ := u−uess instead of u.
Here, uess denotes an extension of the essential boundary conditions into the interior of Ω.
The existence of such an extension is provided by the surjectivity of the trace operator.

2.2.1 Weak formulation

Let u ∈ (C2(Ω) ∩ C1(Ω))d and p ∈ C1(Ω) ∩ C(Ω) be classical solutions of (12) or (13). Let
v and q be corresponding test functions for velocity and pressure, where

(C∞Γess
(Ω))d with C∞Γess

(Ω) :=
{
v ∈ C∞(Ω) ∩H1(Ω) : ∃U⊂R

d open neighborhood of Γess

s.t. v(x)=0 ∀x∈U∩Ω

}

and C∞(Ω) are first candidates for the respective spaces. In the test space for v is not enough
structure to make Hilbert or Banach space theory applicable, thus its completion with respect
to the H1(Ω)-norm is being considered. This also explains the intersection with H1(Ω) in
the definition, as C∞(Ω) 6⊂ H1(Ω), but C∞(Ω)∩H1(Ω) is dense in H1(Ω), see, e.g., [MS64].
For the same reason, C∞(Ω) is being completed with respect to the L2(Ω)-norm, yielding as
test spaces

v ∈ V :=

(
C∞Γess

(Ω)
H1(Ω)

)d
and q ∈ Q := C∞(Ω)

L2(Ω)
. (15)

2.10 Theorem [On the pressure test space]. In fact, one obtains a pressure space

Q = L2(Ω).

Proof. The space L2(Ω) is usually defined as the set of measurable functions f on Ω satisfying

∫

Ω

|f |2 <∞,

under the equivalence relation ∼ defined by f ∼ g :⇔ f = g almost everywhere together
with the L2(Ω) scalar product. In Lemma 4.2.1 and Corollary 4.2.2 of [Bog07] it is shown
that C∞0 (Ω) is dense in L2(Ω), in particular this holds for C∞(Ω). Thus by definition, the
completion of C∞(Ω) with respect to the L2(Ω)-norm yields the L2(Ω) Hilbert space.
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Multiplication of (12) with the test functions, integration, and integration by parts results
in equations of the form





(2νD(u),D(v))0 − (∇ · v, p)0 = 〈f̃ ,v〉 , for (12),

(ν∇u,∇v)0 − (∇ · v, p)0 = 〈f̃ ,v〉 , for (13),
−(∇ · u, q)0 = 0,

(16)

where 〈f̃ ,v〉 := (f ,v)0 + 〈TN ,v〉Γnat is the source term including the natural boundary con-
ditions. These equations can be expressed in terms of bilinear forms a : V × V → R and
b : V ×Q→ R with

a(u,v) := (2νD(u),D(v))0 , for (12),
a(u,v) := (ν∇u,∇v)0 , for (13),
b(v, p) := −(∇ · v, p)0,

satisfying

{
a(u,v) + b(v, p) = 〈f̃ ,v〉,

b(u, q) = 0.
(17)

The analysis can be simplified by applying the H1(Ω)-semi-norm instead of the H1(Ω)-norm
for the velocity space. The semi-norm is in fact a norm on V due to the Poincaré-Friedrichs
inequality (5) and V ⊂ (H1(Ω))d ⊂ (L2(Ω))d:

0 = |u|1 = ‖u‖0 ≥
1

C
‖u‖0 ⇒ u = 0.

2.11 Remark [On the pressure space]. If Γnat = ∅, there are no boundary conditions for p.
This has the consequence that p is only fixed up to a constant: Let c ∈ R \{0} be a scalar
value and (u, p) be a solution of the Stokes problem without natural boundary conditions,
then (u, p+ c) is also a solution, as

b(v, c) = c

∫

Ω

v = c

∫

Γess

v · n = 0⇒ b(v, p+ c) = b(v, p) + b(v, c) = b(v, p).

A possible remedy for this issue is changing the pressure space into

Q = L2
0(Ω) :=



f ∈ L

2(Ω) :

∫

Ω

f = 0



 .

In practice one can use the original pressure space and simply fix p on a single node and then
modify the approximated solution by p− pΩ, where pΩ denotes the space average of p.

2.12 Lemma [Estimate divergence by gradient]. For all v ∈ V it is ‖∇ · v‖0 ≤
√
d‖∇v‖0.

Proof. Let v = (v1, . . . , vd) ∈ V and denote

d :=

(
∂v1

∂x1
, . . . ,

∂vd
∂xd

)T
.

14



Then one can estimate

‖∇ · v‖20 =

∫

Ω

(
d∑

i=1

∂vi
∂xi

)2

=

∫

Ω

|(1,d)`2 |2 ≤
∫

Ω

‖1‖2`2‖d‖2`2 , using Cauchy–Schwarz,

= d

∫

Ω

d∑

i=1

(
∂vi
∂xi

)2

≤ d
∫

Ω

d∑

i,j=1

(
∂vi
∂xj

)2

= d‖∇v‖20.

2.13 Theorem [Existence and uniqueness of a weak solution]. There exists exactly one
solution of the Stokes problem in its weak formulation (17).

Proof. This problem can be applied to the framework of saddle-point problems introduced
in Chapter I of [GR81]. According to Theorem 4.1 of § 4 of Chapter I thereof, this type
of problem has a unique solution if a(·, ·) is continuous and coercive on the space of weakly
divergence free functions

Vdiv := {v ∈ V : (∇ · v, q)0 = 0 ∀q ∈ Q}

and that b(·, ·) is continuous and satisfies the so-called inf-sup condition. The inf-sup condition
is fulfilled if there is a constant βis > 0 such that

inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V‖q‖Q
≥ βis. (18)

The continuity and coercivity of a(·, ·) has to be shown separately for the Cauchy stress form
and the Laplacian form.

(i) Continuity of a(·, ·):
• For (12) it is

|a(v,w)| = |(2νD(v),D(w))| ≤ 2ν‖D(v)‖0‖D(w)‖0 , using Cauchy–Schwarz,

≤ 2ν

(‖∇v‖0 + ‖∇vT ‖0
2

· ‖∇w‖0 + ‖∇wT ‖0
2

)
, using triangle inequality,

= 2ν‖v‖V‖w‖V , using ‖∇v‖0 = ‖∇vT ‖0.

• For (13) it is

|a(v,w)| = |(ν∇v,∇w)0| ≤ ν‖v‖V‖w‖V, using Cauchy–Schwarz.

(ii) Coercivity of a(·, ·):
• For (12) coercivity can be shown by using Korn’s first inequality. It states that

if Ω ⊂ Rd is a bounded domain with Lipschitz boundary, Γ ⊂ ∂Ω open with
meas(Γ) > 0, then there is a constant κ > 0 such that

‖D(v)‖20 ≥ κ‖∇v‖20
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for all v ∈ H1
Γ(Ω), see, e.g., [Nef02].

With this inequality one obtains

(2νD(u),D(u))0 = 2ν‖D(u)‖2 ≥ 2νκ‖u‖2V
and therefore coercivity of a(·, ·).
• For (13) it is a(v,v) = (ν∇v,∇v)0 = ν‖v‖2V, thus coercive.

(iii) Continuity of b(·, ·): One has for all v ∈ V, q ∈ Q that

|b(v, q)| = |(∇ · v, q)0| ≤ ‖∇ · v‖0‖q‖Q , using Cauchy–Schwarz,

≤
√
d‖∇v‖0‖q‖Q , using Lemma 2.12,

=
√
d‖v‖V‖q‖Q.

(iv) Inf-sup condition: Let q ∈ Q be arbitrary. Due to [GR81, Lemma 3.2], there is a unique
v ∈ V⊥div such that

q = ∇ · v and ‖v‖V ≤ C‖q‖Q,
where the space V⊥div is the orthogonal complement of Vdiv with respect to the scalar
product of V

(v,w)V =

∫

Ω

(∇v,∇w).

It follows with the above result, that

b(v, q)

‖v‖V
=

(∇ · v, q)0

‖v‖V
=

(q, q)0

‖v‖V
=
‖q‖2Q
‖v‖V

≥ 1

C
‖q‖Q.

Since the right-hand side does not depend on v anymore and b(ṽ, q) = 0 for all ṽ ∈
V \V⊥div = Vdiv, it is

sup
v∈V
v 6=0

b(v, q)

‖v‖V
≥ 1

C
‖q‖Q.

Because q was arbitrary, one obtains

inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V‖q‖Q
≥ 1

C
=: βis > 0.

2.2.2 Finite element discretization

Similarly to the discretization of the Darcy equations, one considers finite-dimensional sub-
spaces Vh ⊂ V and Qh ⊂ Q denoted by Vh/Qh. With regard to the existence and uniqueness
of a solution in the discrete setting, these spaces should be connected by a discrete variant
of the inf-sup condition (18), i.e., there is a constant βhis > 0 such that

inf
qh∈Qh
qh 6=0

sup
vh∈Vh

vh 6=0

bh(vh, qh)

‖vh‖Vh‖qh‖Qh
≥ βhis, (19)
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where bh : Vh × Qh → R is the discrete variant of b(·, ·). Since it is assumed here that Vh

and Qh are actual subspaces of V and Q, i.e., conforming finite element discretizations are
considered, it is

a(uh,vh) = ah(uh,vh) and b(uh, qh) = bh(uh, qh) ∀uh,vh ∈ Vh, qh ∈ Qh,

where ah : Vh × Vh → R denotes the discrete variant of a(·, ·). The discretization of the
weak problem (17) then reads: Find (uh, ph) ∈ Vh ×Qh such that

{
ah(uh,vh) + bh(vh, ph) = 〈f̃ ,vh〉,

bh(uh, qh) = 0,
(20)

for all vh ∈ Vh and qh ∈ Qh.
In order to obtain a matrix-vector form of the problem, let

(uh, ph) =



dNu∑

i=1

uhi wi,

Np∑

i=1

phi qi




be the sought solution with {wi}dNui=1 and {qi}Npi=1 being the respective bases for Vh and Qh

as well as u = (uhi )dNui=1 and p = (phi )
Np
i=1 being the unknown coefficients that need to be

determined. Inserting this expression into (20) yields

{∑dNu
i=1 u

h
i a

h(wi,wj) +
∑Np

i=1 p
h
i b
h(wj , qi) = 〈f̃ ,wj〉,∑dNu

i=1 u
h
i b
h(wi, qk) = 0,

for all j ∈ {1, 2, . . . , dNu} and k ∈ {1, 2, . . . , Np}, which is equivalent to the block-matrix-
vector form

(
A BT

B 0

)(
u
p

)
=

(
f
0

)

with

(A)ij = ah(wj ,wi) ,∀i, j ∈ {1, 2, . . . , dNu},
(B)ij = bh(wj , qi) ,∀i ∈ {1, 2, . . . , Np}∀j ∈ {1, 2, . . . , dNu},

(f)i = 〈f̃ ,wi〉 , ∀i ∈ {1, 2, . . . , dNu}.

2.14 Remark [On the structure of the block A]. When it comes to the implementation
and therefore memory requirements, one can investigate if there is some inherent structure
that allows to reduce these requirements. A possible approach to construct finite element
functions for the vector-valued space Vh is to choose its basis like

Vh = span {wi : i = 1, . . . , dNu} = span {wiej : j = 1, . . . , d, i = 1, . . . , Nu} ,

see, e.g., Chapter 1, § 4 of [Tem01]. Here, Nu denotes the number of unknowns for one
component of the velocity space. By this specific way of constructing the basis functions,
each of them does not vanish in one component only. In the following, assume that d = 3,

17



the case d = 2 is analogous. Let wi = wiek and wj = wjel be basis functions. In the Cauchy
stress case (12), it is

Aij = ah(wj ,wi) = (2νD(wj),D(wi))0 = 2

(
∇wj +∇wT

j

2
,
∇wi +∇wT

i

2

)

0

=
1

2

(
(∇wj ,∇wi)0 + (∇wj ,∇wT

i )0 + (∇wT
j ,∇wi)0 + (∇wT

j ,∇wT
i )0

)

= (∇wj ,∇wi)0 + (∇wT
j ,∇wi)0.

The first term is the term of the Laplace case (13) and vanishes if k 6= l, for example

(∇(wie1),∇(wje2))0 =

∫

Ω



∂xwi ∂ywi ∂zwi

0 0 0
0 0 0


 :




0 0 0
∂xwj ∂ywj ∂zwj

0 0 0


 dx = 0.

Further, if k = l, the result of the first term’s scalar product is independent of the chosen
component, yielding

A =



A11

A11

A11


+ Ã,

where Ã = 0 in the Laplace case. In the Cauchy stress case the terms of Ã do not vanish
anymore if k 6= l but it holds that Ãkl = ÃTlk, since

(∇(wjek)
T ,∇(wiel))0 = (∂xkwj , ∂xlwi)0 = (∇(wiel)

T , wjek)0.

This gives

A =



A11 + Ã11 Ã12 Ã13

ÃT12 A22 + Ã22 Ã23

ÃT13 ÃT23 A33 + Ã33




and therefore one needs to store six matrix blocks instead of just one in comparison to the
Laplace case.

2.3 The Stokes–Darcy equations

This section deals with the coupled Stokes–Darcy system, i.e., free flow of high viscosity
coupled with flow through porous media. The coupling is realized by splitting the domain Ω
into two parts Ωf and Ωp for the Stokes and Darcy system respectively, such that

Ω = Ωf ∪ Ωp, Ωf ∩ Ωp = ∅, Ωf ∩ Ωp = Γ,

where Γ is the so-called interface between Ωf and Ωp, being responsible for the information
exchange between the two systems. Such a domain could look like the illustration in Figure
3. One obtains




−∇ ·T(uf , pf ) = ff , in Ωf ,

∇ · uf = 0 , in Ωf ,

−∇ ·K∇ϕp = f̃p , in Ωp,

(21)

where uf : Ωf → Rd denotes the Stokes velocity, pf : Ωf → R the Stokes pressure and
ϕp : Ωp → R the piezometric head or Darcy pressure. To complete the problem one has
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Ωf

Ωp

Γ

nf

np

Figure 3: A sketch of the domain used in the Stokes–Darcy problem.

to assign boundary conditions. To this end, split ∂Ω into relatively open, disjoint parts
Γf,n,Γf,e ⊂ ∂Ωf \ Γ and Γp,n,Γp,e ⊂ ∂Ωp \ Γ denoting natural and essential parts of the
boundary of the Stokes and Darcy domains respectively, such that

Γf,n ∪ Γf,e = ∂Ω \ Γ, Γf,n ∩ Γf,e = ∅,
Γp,n ∪ Γp,e = ∂Ω \ Γ, Γp,n ∩ Γp,e = ∅.

On these parts one can now impose the conditions




uf = uf,ess , on Γf,e,
T(uf , pf ) · n = Tf,nat , on Γf,n,

ϕp = ϕp,ess , on Γp,e,
(−K∇ϕ) · n = up,nat , on Γp,n.

(22)

To obtain a well-posed problem and actual information exchange between the two systems,
further conditions on the interface are imposed. To this end, let nf be the outer unit normal
vector of Ωf and np be the outer unit normal vector of Ωp with nf = −np on Γ. Then,

• to obtain a continuous normal velocity, impose

uf · nf = up · nf = −(K∇ϕp) · nf , (23)

• to preserve normal stress, impose

−nf ·T(uf , pf ) · nf = gϕp, (24)

where g denotes the gravitational acceleration,

• and to exchange information about the tangential velocity, impose the so-called Beavers–
Joseph–Saffman condition. For this last condition, let τi, i ∈ {1, . . . , d−1}, be pairwise
orthogonal tangential vectors on Γ and let

αi = αBJ

√
τTi K τi,

be a constant where αBJ is dimensionless and depends only on the structure of the
porous medium. It then reads

uf · τi + αiτi ·T(uf , pf ) · nf = 0, (25)

see, e.g., [GKR13, Section 2.1].
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2.15 Remark [On the interface conditions]. The Beavers–Joseph–Saffman condition is strictly
speaking no coupling condition, as it does not relate quantities from Ωf and Ωp, but rather a
boundary condition on Γ for the Stokes problem. It was developed out of the Beavers–Joseph
condition which included the Darcy velocity up but it was found out that it can be neglected
compared to the other quantities in the condition, see, e.g., [DQ09, Section 3].

Further, in the first condition the Stokes and Darcy velocities are coupled directly in normal
direction, even though the Darcy velocity is an averaged quantity whereas the Stokes velocity
is of a pointwise nature.

2.3.1 Weak formulation

To derive a weak formulation, consider test functions from spaces similar to the ones used in
the Stokes and Darcy problems, namely

Vf =
{

v ∈
(
H1(Ωf )

)d
: v
∣∣
Γf,e

= 0
}
, Qf = L2(Ωf ), Vp =

{
v ∈ H1(Ωp) : v

∣∣
Γp,e

= 0
}
,

corresponding to Stokes velocity, Stokes pressure and Darcy pressure, respectively.
Multiplication of the equations of (21) with respective test functions v ∈ Vf , q ∈ Qf , ψ ∈

Vp, integration and integration by parts yields the weak formulation of the Darcy equations
(6) and of the Stokes equations (17) with different right-hand sides. Decomposition of the
Stokes velocity test function v into its normal and tangential components

v = (v · nf ) · nf +

d−1∑

i=1

(v · τi) · τi

allows substitution of the Beavers–Joseph–Saffman condition (25), yielding, after rearranging
terms, a system of the form





af (uf ,v) + bf (v, pf )− 〈nf · T (uf , pf ) · nf ,v · nf 〉Γ = 〈f1
f ,v〉,

bf (uf , q) = 〈f2
f , q〉,

ap(ϕp, ψ) + 〈K∇ϕp · nf , ψ〉Γ = 〈fp, ψ〉,
(26)

with bilinear forms

af : Vf ×Vf → R, (uf ,v) 7→
d−1∑

i=1

1

αi
〈uf · τi,v · τi〉Γ +

{
(2νD(uf ),D(v))0,Ωf for (12)

(ν∇uf ,∇v)0,Ωf for (13)
,

bf : Vf ×Qf → R, (v, pf ) 7→ −(∇ · v, pf )0,Ωf ,

ap : Qp ×Qp → R, (ϕp, ψ) 7→ (K∇ϕ,∇ψ)0,Ωp ,

and right-hand sides

f1
f ∈ Vf

′, 〈f1
f ,v〉 = (ff ,v)0,Ωf + 〈Tf,nat,v〉Γf,n ,

f2
f ∈ Q′f , 〈f2

f , q〉 = (∇ · uf,ess, q)0,Ωf ,

fp ∈ V ′p , 〈fp, ψ〉 = (K∇ϕp,ess,∇ψ)0,Ωp − 〈up,nat, ψ〉Γ.

There is more than one way to include the remaining two interface conditions (23) and (24),
in particular they can either be included such that they pose Neumann conditions or as a
weighted linear combination, i.e., as Robin conditions.
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(i) The Neumann–Neumann coupling. In the Neumann–Neumann coupling, the interface
conditions are included as Neumann conditions into the systems, yielding the problem
to find (uf , pf , ϕp) ∈ Vf ×Qf ×Qp such that





af (uf ,v) + bf (v, pf ) + 〈gϕp,v · nf 〉Γ = 〈f1
f ,v〉,

bf (uf , q) = 〈f2
f , q〉,

ap(ϕp, ψ)− 〈uf · nf , ψ〉Γ = 〈fp, ψ〉,
(27)

is satisfied for all (v, q, ψ) ∈ Vf ×Qf ×Qp.
If meas(Γf,n) = ∅, the Stokes pressure is, as in Remark 2.11, only fixed up to a constant
and one can change the pressure space to Qf = L2

0(Ωf ).

(ii) The Robin–Robin coupling. In the Robin–Robin coupling, a weighted linear combination
out of the conditions is inserted into the systems. To this end, let γf ≥ 0 and γp > 0
be weights, such that

γfuf · nf + nf ·T(uf , pf ) · nf = −γf (K∇ϕp) · nf − gϕp , on Γ,

−γpuf · nf + nf ·T(uf , pf ) · nf = γp(K∇ϕp) · nf − gϕp , on Γ.

These equations can now be inserted as Robin boundary conditions into the weak
Stokes equations and weak Darcy equations, respectively. The problem then is to find
(uf , pf , ϕp) ∈ Vf ×Qf ×Qp such that





af (uf ,v) + 〈γfuf · nf ,v · nf 〉Γ + b(v, pf ) + 〈ηf ,v · nf 〉Γ = 〈f1
f ,v〉,

bf (uf , q) = 〈f2
f , q〉,

ap(ϕp, ψ) + 〈γ−1
p ϕp, ψ〉Γ + 〈ηp, ψ〉Γ = 〈fp, ψ〉,

(28)

for all (v, q, ψ) ∈ Vf ×Qf ×Qp, where

ηf := −γf (K∇ϕp) · nf − gϕp, ηp := −uf · nf + γ−1
p nf ·T(uf , pf ) · nf

are interface variables which correspond to the information exchange between the Stokes
and the Darcy system. The restrictions on γf and γp are such that

af (uf ,v) + 〈γfuf · nf ,v · nf 〉Γ and ap(ϕp, ψ) + 〈γ−1
p ϕp, ψ〉Γ

are coercive.

2.16 Remark. Considering the Robin–Robin coupling, one still can approximate the Neumann–
Neumann coupling by γf = 0 and γp →∞.

2.3.2 Finite element discretization

Combining the results of the finite element discretization of the Darcy problem in Section
2.1.2 and of the Stokes problem in Section 2.2.2, one obtains finite-dimensional subspaces
Vh
f ⊂ Vf , Qhf ⊂ Qf and Qhp ⊂ Qp. Since a conforming finite element discretization is

considered, the discrete bilinear forms are restrictions of the continuous ones, i.e.,

ahf (uhf ,v
h) = af (uhf ,v

h), bhf (vh, ph) = bf (vh, ph), ahp(ϕh, ψh) = ap(ϕ
h, ψh),
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for all uhf ,v
h ∈ Vh

f , ph ∈ Qhf , ϕhp , ψ
h ∈ Qhp . The discretization of the Robin–Robin coupling

(28) then reads: Find (uhf , p
h
f , ϕ

h
p) ∈ Vh

f ×Qhf ×Qhp such that





af (uhf ,v
h) + 〈γfuhf · nf ,vh · nf 〉Γ + b(vh, phf ) + 〈ηhf ,vh · nf 〉Γ = 〈f1

f ,v
h〉,

bf (uhf , q
h) = 〈f2

f , q
h〉,

ap(ϕ
h
p , ψ

h) + 〈γ−1
p ϕhp , ψ

h〉Γ + 〈ηhp , ψh〉Γ = 〈fp, ψh〉,
(29)

for all (vh, qh, ψh) ∈ Vh
f ×Qhf ×Qhp , where

ηhf := −γf (K∇ϕhp) · nf − gϕhp , ηhp := −uhf · nf + γ−1
p nf ·T(uhf , p

h
f ) · nf

are the discrete versions of ηf and ηp, respectively. As before, with γf = 0 and γp →∞, the
discretization of the Neumann–Neumann coupling can be derived.

For obtaining a matrix-vector form of the problem, let

(
uhf , p

h
f , ϕ

h
p

)
=




Nu∑

i=1

uhi wi,

Np∑

i=1

phi qi,

Nϕ∑

i=1

ϕhi ψi




be the sought solution with

Vh
f = span{wi}Nui=1, Q

h
f = span{qi}Npi=1, Q

h
p = span{ψi}Nϕi=1,

as well as
uf = (uhi )Nui=1, p

f
= (phi )

Np
i=1, ϕp = (ϕhi )

Nϕ
i=1

being the coefficients that need to be determined. Further, define

f1 = (〈f1
f ,wi〉)Nui=1, f2 = (〈f2

f , qi〉)
Np
i=1, f3 = (〈fp, ψi〉)Nϕi=1.

(i) In case of the Neumann–Neumann coupling, this yields the problem to find uf ,pf ,ϕp,
such that




∑Nu
i=1 u

h
i a

h
f (wi,wj) +

∑Np
i=1 p

h
i b
h(wj , qi) +

∑Nϕ
i=1 ϕ

h
i 〈gψi,wj · nf 〉Γ = 〈f1

f ,wj〉,∑Nu
i=1 u

h
i b
h(wi, qk) = 〈f2

f , qk〉,∑Nϕ
i=1 ϕ

h
i a

h
p(ψi, ψl)−

∑Nu
i=1 u

h
i 〈wi · nf , ψl〉Γ = 〈fp, ψl〉,

for all j ∈ {1, 2, . . . , Nu}, k ∈ {1, 2, . . . , Np}, l ∈ {1, 2, . . . , Nϕ}. This is equivalent to
the block-matrix-vector form



A B CSΓ
BT 0 0
CDΓ 0 D







uf
p
f

ϕ
p


 =




f1

f2

f3




with

(A)ij = af (wj ,wi) ∈ RNu×Nu , (B)ij = bf (wi, qj) ∈ RNu×Np ,
(CSΓ )ij = 〈gψj ,wi · nf 〉Γ ∈ RNu×Nϕ , (CDΓ )ij = 〈wj · nf , ψi〉Γ ∈ RNϕ×Nu ,
(D)ij = ap(ψj , ψi) ∈ RNϕ×Nϕ .
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(ii) In case of the Robin–Robin coupling, one has two possibilities. Either one re-substitutes
ηf and ηp into the equations or one treats them as separate variables, reducing the
direct coupling between the two systems to the interface. The former approach yields
the block-matrix-vector equation



Arob B CSϕ
BT 0 0
CDu CDp Drob







uf
p
f

ϕ
p


 =




f1

f2

f3




with

(Arob)ij = af (wj ,wi) + 〈γfwj · nf ,wi · nf 〉Γ ∈ RNu×Nu ,
(B)ij = bf (wi, qj) ∈ RNu×Np ,

(Drob)ij = ap(ψj , ψi) + 〈γ−1
p ψj , ψi〉Γ ∈ RNϕ×Nϕ ,

(CSϕ )ij = 〈gψj ,wi · nf 〉Γ + 〈γf (K∇ψj) · nf ,wi · nf 〉Γ ∈ RNu×Nϕ ,
(CDu )ij = 〈2νγ−1

p nf ·D(wj) · nf , ψi〉Γ − 〈wj · nf , ψi〉Γ ∈ RNϕ×Nu ,
(CDp )ij = 〈−γ−1

p qj , ψi〉Γ ∈ RNϕ×Np .

The latter approach yields a more complicated but less coupled block-matrix-vector

equation. For its derivation, let ηf =
∑Nη,f

i=1 ηifΛi and ηp =
∑Nη,p

i=1 ηipΛi be sought as

well, where Λi are basis functions restricted to the interface Γ. Defining η
f

:= (ηif )
Nη,f
i=1

and η
p

:= (ηip)
Nη,p
i=1 , one obtains a system of the form




Dγp 0 0 0 Ep
Rp − I 0 0 0
0 Ef Aγf B 0

0 0 BT 0 0
0 0 R1

f R2
f − I







ϕ
p

η
f

uf
p
f

η
p




=




f3

0
f1

f2

0




with

(Aγf )ij = af (wj ,wi) + 〈γfwj · nf ,wi · nf 〉Γ ∈ RNu×Nu ,

(R1
f )ii = 2νγ−1

p nf ·D(wi) · nf −wi · nf ∈ RNu×Nu ,

(B)ij = bf (wi, qj) ∈ RNu×Np , (Dγp)ij = ap(ψj , ψi) + 〈γ−1
p ψj , ψi〉Γ ∈ RNϕ×Nϕ ,

(Ef )ij = 〈Λj ,wi · nf 〉Γ ∈ RNu×Nη,f , (Ep)ij = 〈Λj , ψi〉Γ ∈ RNϕ×Nη,p

(R2
f )ii = γ−1

p qi ∈ RNp×Np , (Rp)ii = −γf (K∇ψi) · nf − gψi ∈ RNϕ×Nϕ

and I being the identity.

Instead of solving the whole system at once, one can consider to solve the system iteratively
by, e.g., a block Gauss–Seidel method, as it otherwise might be too large. For the formally
decoupled Robin–Robin Stokes–Darcy problem, one obtains a method as presented in the
following algorithm.

2.17 Algorithm [Block–Gauss–Seidel for the Robin–Robin coupling]. This algorithm solves
the Robin–Robin coupling of the Stokes–Darcy equations in a Block–Gauss–Seidel manner.
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(i) Initialization. Let

(
ϕ(0)
p

η
(0)
f u

(0)
f p

(0)
f η(0)

p

)T
∈ RNϕ+Nη,f+Nu+Np+Nη,p

be a randomly chosen start vector.

(ii) Forward substitution in step k → k+1. For iteration step k, update the solution vector
by 



ϕ(k+1)
p

η
(k+1)
f(

u
(k+1)
f

p
(k+1)
f

)

η(k+1)
p




=




D−1
γp

(
f3 − Epη(k)

p

)

Rpϕ
(k+1)
p(

Aγf B

BT 0

)−1
((

f1

f2

)
−
(
Efη

(k+1)
f

0

))

R1
fu

(k+1)
f +R2

fp
(k+1)
f



.

(iii) If not converged, go back to step (ii), otherwise stop.

3 A posteriori error estimates

Motivation. Sometimes one faces problems that have singularities in their solution or quan-
tities of interest which simply cannot be resolved by global grid refinement. This issue can
be addressed by locally refining the grid appropriately.

One kind of error estimates are so called “a priori” error estimates. A priori means from
the earlier which already indicates, that these estimates can be performed before the actual
simulation. However, they usually depend on the continuous solution, only yield information
on the asymptotic error behavior and therefore are not of great use concerning adaptive grid
refinement.

Thus, one needs estimates that somehow integrate an already approximated solution and
do not depend on the continuous solution. These estimates are called “a posteriori”, i.e.,
from the later. Generally, they are needed for two tasks:

(i) Control adaptive grid refinement by local error estimates.

(ii) Estimate the global error to be used as stopping criterion.

To meet the above mentioned requirements one considers two types of inequalities:
Given the data of a partial differential equation on a domain Ω with solution u and ap-

proximated solution uh the estimate dealing with the overall accuracy is of the form

‖u− uh‖Ω ≤ Cη, (30)

where C is a positive constant which is independent of Ω, the refinement level h and u.
Concerning the size of C at least the order of magnitude should be known and η is an error
indicator computable using uh and not u.

For identifying the regions at which refinement is needed a local estimate of the form

ηK ≤ C‖u− uh‖ω(K) (31)
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is considered, where ω(K) denotes a small neighborhood of a mesh cell K and ηK is com-
putable using uh and not u. Such a small neighborhood can, e.g., look like one of the
neighborhoods that are shown in Figure 2. Typically, η and ηK are related by

η =

(∑

K

η2
K

) 1
2

.

The idea is that large values of ηK indicate large local errors, so one needs to prove that the
constant C in equation (31) can be bounded from above and below independently of K. On
the other hand one hopes that refining regions with large local errors will have a great impact
on the overall error. In Figure 4 an example of a local grid refinement is displayed. One can
see that, in contrast to global and uniform refinement, the refined cells concentrate around
the midpoint, i.e., where the values of ηK are largest.

In this section and the contained subsections, a few a posteriori error estimates will be
derived, therefore they correspond to step (iii) of Algorithm 1.1.

3.1 Definition [Reliable error indicators]. If η ≤ “tolerance” holds and this implies that
the true error is also smaller than the tolerance up to a multiplicative constant, the error
indicator is called reliable. In particular an error indicator satisfying the upper bound (30)
is reliable because

η ≤ TOL⇒ ‖u− uh‖Ω
(30)

≤ Cη ≤ C TOL.

3.2 Definition [Locally efficient error indicators]. If ηK ≥ “tolerance” implies that the true
error is also greater than the tolerance up to a multiplicative constant, the error indicator is
called locally efficient. In particular an error indicator satisfying the local lower bound (31)
is locally efficient because

ηK ≥ TOL⇒ C‖u− uh‖ω(K)

(31)

≥ ηK ≥ TOL.

Sometimes this property is also referred to just as “efficient”.

In order to classify a posteriori error indicators by quality, one can consider the so-called
efficiency index.

3.3 Definition [Efficiency index]. The efficiency index of an a posteriori error indicator is
given by the ratio of the estimated error to the actual error, i.e.,

Ieff :=
η

‖u− uh‖ . (32)

If Ieff and I−1
eff are bounded for all meshes, the overall process, i.e., Algorithm 1.1, is called

efficient. It is called asymptotically exact if its efficiency index tends to one when the mesh-
size tends to zero.

If the reliability of the error indicator is not given, it might happen that even if it is smaller
or equal than the tolerance, the true error might still be large. On the other hand, if it is
reliable but not efficient, a large local estimate does not necessarily indicate large local errors
and one therefore might refine more than actually necessary or in the wrong subregions.

Thus, reliability is a crucial property of an a posteriori error indicator, if one wants to
resolve the features of the solution that can be controlled with the considered norm up to a
certain tolerance; efficiency is a good property with respect to run time and usage of resources,
but it is not necessary.
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Figure 4: Local grid refinement. The upper six images display from left to right the adaptively
refined grids T 0, . . . , T 5 for values of ηK as in the lower picture, i.e., a peak of
the estimated error in the middle. The background color of each cell is tinted
correspondingly to which T k of the grid hierarchy it belongs.
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3.1 Residual based a posteriori error estimates

One possibility to obtain a posteriori error estimates is estimating the error by the strong
form residual of the problem in a suitable norm.

Here, following [Ver13, Section 4.1], first a common framework for abstract linear elliptic
problems is set up. To this end, let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces. Further, let

L(X,Y ) := {F : X → Y : F continuous and linear}

be the space of continous linear mappings from X to Y equipped with the operator norm

‖F‖L(X,Y ) := sup
ϕ∈X,ϕ 6=0

‖Fϕ‖Y
‖ϕ‖X

, (33)

let Y ∗ := L(Y,R) and 〈`, ϕ〉Y be the dual pairing of Y ∗ and Y . Moreover, let L2(X,Y,R) be
the space of continuous bilinear mappings from X × Y to R equipped with the norm

‖B‖L2(X,Y,R) := sup
ϕ∈X\{0}

sup
ψ∈Y \{0}

|B(ϕ,ψ)|
‖ϕ‖X‖ψ‖Y

.

3.4 Remark. The spaces L2(X,Y,R) and L(X,Y ∗) are isomorphic underB(ϕ,ψ) = 〈Fϕ,ψ〉Y
for all ϕ ∈ X, ψ ∈ Y for B ∈ L2(X,Y,R) and F ∈ L(X,Y ∗).

Given a bilinear map B ∈ L2(X,Y,R) and a linear functional ` ∈ Y ∗, consider the problem
to find ϕ ∈ X such that

B(ϕ,ψ) = 〈`, ψ〉Y ∀ψ ∈ Y, (34)

or equivalently for L ∈ L(X,Y ∗),

Lϕ = `. (35)

3.5 Theorem [Hahn–Banach, [EMT04, Theorem 3.1.2]]. Let E be a subspace of a Banach
space X, let E∗ be its dual space and let f0 ∈ E∗. Then, there exists an extension f ∈ X∗
such that f

∣∣
E

= f0 (i.e., f(x) = f0(x) for x ∈ E) and ‖f‖X∗ = ‖f0‖E∗ . That is,

sup
x∈X
x 6=0

|f(x)|
‖x‖X

= sup
x∈E
x 6=0

|f0(x)|
‖x‖ .

Proof. See [EMT04, Chapter 9].

The Hahn–Banach Theorem has one corollary which can be used to show existence and
uniqueness of a solution.

3.6 Corollary [Corollary of the Hahn–Banach Theorem, [EMT04, Corollary 3.1.7]]. Let
L ⊂ X be a subspace of a normed space X and let x ∈ X such that dist(x, L) = d > 0. Then,
there exists f ∈ X∗ such that ‖f‖X∗ = 1, f(L) = 0 and f(x) = d.

Proof. First consider L1 = span{x, L}; that is,

L1 = {λx+ y : λ ∈ R, y ∈ L}.
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(i) Let z = λx+ y and define the function f0 : L1 → R, z = λx+ y 7→ λ · d. This function
is well defined because λ ∈ R and y ∈ L are uniquely defined by z. Indeed, assume z
had two representations

z = λ1x+ y1 = λ2x+ y2 ⇒ y1 − y2 = λ2x− λ1x = (λ2 − λ1)x.

If λ2 − λ1 = 0, one obtains y1 − y2 = 0⇒ y1 = y2 and therefore uniqueness. Otherwise
one obtains that the left-hand side is in L since L is a space. Assume the right-hand
side would be in L as well, then

1

λ2 − λ1
((λ2 − λ1)x) = x ∈ L,

which is a contradiction to the initial assumption that dist(x, L) = d > 0 and therefore
(λ2 − λ1)x 6∈ L, which means that z uniquely defines λ ∈ R and y ∈ L.

(ii) The function f0 is linear, it is f0(L) = 0 and f0(x) = d. Indeed, let z1 = λ1x+ y1, z2 =
λ2x+ y2 ∈ L1, α ∈ R, then

f0(z1 + αz2) = d · (λ1 + αλ2) = f0(z1) + αf0(z2).

Since the pair (λ, y) is uniquely defined by z, it is z ∈ L ⇒ λ1 = λ2 = 0 and thus
f0(L) = 0. Analogously for f0(x) = d.

(iii) It is ‖f0‖L∗1 = 1. Indeed, let z ∈ L1 and assume that the corresponding λ 6= 0. Then
one obtains

‖z‖L1 = ‖λx+ y‖L1 = |λ| ·
∥∥∥x+

y

λ

∥∥∥
L1

= |λ| ·
∥∥∥x−

(
−y
λ

)∥∥∥
L1

≥ |λ|d = |f0(z)|,

since − y
λ ∈ L and dist(x, L) = d > 0. If λ = 0, one has the same estimate

‖z‖L1 ≥ 0 = |f0(z)|.

This means that

‖f0‖L∗1 = sup
z∈L1
z 6=0

|f0(z)|
‖z‖L1

≤ sup
z∈L1
z 6=0

‖z‖L1

‖z‖L1

= 1.

On the other hand there is due to dist(x, L) = d and L being a subspace a sequence
(yn)n∈N in L such that ‖x+ yn‖L1 = ‖x− (−yn)‖L1 → d for n→∞. This yields with
the definition of the operator norm

d = lim
n→∞

|f0(x+ yn)| ≤ lim
n→∞

‖f0‖L∗1‖x+ yn‖L1 = ‖f0‖L∗1d

and therefore the other direction ‖f0‖L∗1 ≥ 1.

(iv) Now the Hahn–Banach Theorem can be applied providing the existence of an extension
f ∈ X∗ of f0 such that ‖f‖X∗ = ‖f0‖L∗1 = 1 and f

∣∣
L1

= f0. This means that f(L) = 0

and f(x) = d.
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3.7 Theorem [Existence and uniqueness of a solution, see [Ver13, Proposition 4.1]]. Assume
the space Y is reflexive, that

sup
ϕ∈X

B(ϕ,ψ) > 0 (36)

for all ψ ∈ Y \ {0}, and that B fulfills the inf-sup condition, i.e., that there is a constant
β > 0, such that

inf
ϕ∈X\{0}

sup
ψ∈Y \{0}

B(ϕ,ψ)

‖ϕ‖X‖ψ‖Y
= β. (37)

Then there is a unique solution of (34) or equivalently (35) for every right-hand side ` ∈ Y ∗
and the solution depends continuously on the right-hand side.

Proof. Denote by L ∈ L(X,Y ∗) the linear mapping which corresponds to B via the isomor-
phism given in Remark 3.4. Condition (37) then implies that L is injective. Indeed, assuming
it is not injective, there are ϕ1, ϕ2 ∈ X with ϕ1 6= ϕ2 and Lϕ1 = Lϕ2. Equivalently, this
means

〈L(ϕ1 − ϕ2), ψ〉Y = B(ϕ1 − ϕ2, ψ) = 0 ∀ψ ∈ Y
and ‖ϕ1−ϕ2‖X > 0. Thus there is ϕ := ϕ1−ϕ2 ∈ X \{0} for which (37) cannot hold, which
is a contradiction.

Since L is per definition continuous and surjective on the range of L, it is a bijection on
range(L) and the range of its inverse operator is again X and thus closed. Therefore, the
Closed Range Theorem of Banach (see [Yos80, p. 205]) can be applied. It yields that the
range of L is a closed subspace of Y ∗.

Furthermore, L is surjective. Indeed, assume it would not be surjective, then there exists
ψ∗0 ∈ Y ∗ with ψ∗0 6∈ range(L). Since the range of L is closed and therefore a subspace
of Y ∗, one can apply the above Corollary 3.6 of the Hahn–Banach Theorem, yielding that
there exists a map F ∈ Y ∗∗ such that F (ψ∗) = 0 for all ψ∗ ∈ range(L), F (ψ∗0) = 1 and
‖F‖Y ∗∗ = dist(ψ∗0, range(L)) > 0. By the reflexivity of the Banach space and therefore the
isometry of the canonical inclusion or evaluation map i : Y ∗∗ → Y , the element F can be
identified with ψ0 ∈ Y , such that

〈Lϕ,ψ0〉Y = 0

for all ϕ ∈ X and ‖ψ0‖Y = ‖F‖Y ∗∗ > 0. Therefore, it is ψ0 ∈ Y \ {0} which contradicts
assumption (36). Hence, L is surjective and thus bijective.

By the bijectivity one obtains
range(L) = Y ∗.

This is the case if and only if L has a continuous inverse, see [Yos80, Corollary VII.1].
Thus L is an isomorphism and since problems (34) and (35) are equivalent, this proves the
assertion.

For discretization purposes, let Xh ⊂ X and Y h ⊂ Y be finite-dimensional subspaces on
which Bh ∈ L2(Xh, Y h,R) and `h ∈ L(Y h,R) are defined. Then ϕh ∈ Xh is sought such
that

Bh(ϕh, ψh) = 〈`h, ψh〉Y h ∀ψ ∈ Y. (38)

Using the isomorphism given in Remark 3.4, one can equivalently express the above problem
as

Lhϕh = `h

for the map Lh ∈ L(Xh,L(Y h,R)) associated to Bh.
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3.8 Theorem [Existence and uniqueness of a discrete solution]. Assume that

sup
ϕh∈Xh

Bh(ϕh, ψh) > 0 (39)

for all ψh ∈ Y h \ {0}, and that Bh fulfills a discrete variant of the inf-sup condition, i.e., that
there is a constant βh > 0, such that

inf
ϕh∈Xh\{0}

sup
ψh∈Y h\{0}

Bh(ϕh, ψh)

‖ϕh‖Xh‖ψh‖Y h
= βh. (40)

Then there is a unique solution of (38) for every right-hand side `h ∈ L(Y h,R) and the
solution depends continuously on the right-hand side.

Proof. The finite-dimensionality of Xh and Y h gives continuity of Bh and `h, as well as
reflexivity of Xh and Y h. Therefore the statement follows immediately from Theorem 3.7.

After having set up the abstract framework and given conditions for existence and unique-
ness of the continuous problem and the finite-dimensional one, one can start deriving a
posteriori error indicators. To this end, assume that the conditions of Theorems 3.7 and 3.8
are fulfilled and let ϕ ∈ X be the unique solution of (34) and ϕ ∈ Xh be the unique solution
of (38).

It holds due to the linearity of L that

R := L(ϕ− ϕh) = `− Lϕh. (41)

Using the inequality (33), one obtains

‖L(ϕ− ϕh)‖Y ∗ ≤ ‖L‖L(X,Y ∗)‖ϕ− ϕh‖X ⇒ ‖ϕ− ϕh‖X ≥ ‖L‖−1
L(X,Y ∗)‖`− Lϕ

h‖Y ∗

and on the other hand

‖L−1L(ϕ− ϕh)‖X = ‖ϕ− ϕh‖X = ‖L−1(`− Lϕh)‖X ≤ ‖L−1‖L(Y ∗,X)‖`− Lϕh‖Y ∗

yielding altogether

‖L‖−1
L(X,Y ∗)‖`− Lϕ

h‖Y ∗ ≤ ‖ϕ− ϕh‖X ≤ ‖L−1‖L(Y ∗,X)‖`− Lϕh‖Y ∗ . (42)

The above inequalities establish an equivalence between the norm of the residual ‖`−Lϕh‖Y ∗
and the error ‖ϕ−ϕ‖X . However calculating ‖`−Lϕh‖Y ∗ is not really practical for a posteriori
indicators since it involves solving an infinite-dimensional problem.

Further, one should be able to localize the estimates to a single element K ∈ T . Therefore,
it is advantageous if one can write the residual R = ` − Lϕh in form of an integral over the
domain. Finally, to get the a posteriori aspect into the estimates, Galerkin orthogonality is
desired, since then it holds by linearity of the integral representation, that

〈R, vh〉 = 0⇒ 〈R, v〉 = 〈R, v − vh〉

for some v ∈ X and vh ∈ Xh.
In particular, in the following subsections of this section, a posteriori error estimates will

be derived making use of the below assumptions.
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(i) Y is a subspace of Hp(Ω) for some p. This condition obviously holds for the considered
problems.

(ii) Lp representation: The residual R = ` − Lϕh can be represented in terms of two
functions r ∈ Lp(Ω)∗ and j ∈ Lp(Σ)∗ such that

〈R, v〉Y =

∫

Ω

rv +

∫

Σ

jv (43)

for all v ∈ Hp
Γ(Ω), where Σ denotes the skeleton of the grid which was used for dis-

cretization.

(iii) Galerkin orthogonality : The residual satisfies 〈R,ψh〉Y = 0 for all ψh ∈ Y h.

3.9 Remark [On the Galerkin orthogonality]. The Galerkin orthogonality is no actual re-
quirement but merely a technical assumption. In the case that Bh and `h are restrictions of
B and ` respectively, i.e.,

Bh(ϕh, ψh) = B(ϕh, ψh), 〈`h, ψh〉Y h = 〈`, ψh〉Y
for all ϕh ∈ Xh, ψh ∈ Y h, it is

〈R,ψh〉Y = 〈`− Lϕh, ψh〉Y = 〈`, ψh〉Y −B(ϕh, ψh) = 〈`h, ψh〉Y h −B(ϕh, ψh)

= Bh(ϕh, ψh)−B(ϕh, ψh) = 0

and thus Galerkin orthogonality is given. If Bh is not a restriction of B, it is suggested in
[Ver13, Section 4.1.4] to introduce a restriction or projection operator Qh : Y → Y h and split
the residual into the form

`− Lϕh = (IY −Qh)∗(`− Lϕh) +Qh,∗(`− Lϕh)

where IY denotes the identity on Y . One then obtains with the triangle inequality

‖`− Lϕh‖Y ∗ ≤ ‖(IY −Qh)∗(`− Lϕh)‖Y ∗ + ‖Qh,∗(`− Lϕh)‖Y ∗

and therefore one obtains with (42)

‖ϕ− ϕh‖X ≤ ‖L−1‖L(Y ∗,X)

(
‖(IY −Qh)∗(`− Lϕh)‖Y ∗ + ‖Qh,∗(`− Lϕh)‖Y ∗

)
. (44)

Note that if Galerkin orthogonality is given, the terms involving Qh vanish and the above
inequality reduces to the second part of (42).

Upper bounds for the error indicator now can in principal be derived by combining the
conditions with inequalities of the Poincaré and Friedrichs type.

3.10 Remark [On deriving a lower bound]. For lower bounds one can choose a finite-
dimensional subspace Ỹ h of Y such that

Y h ⊂ Ỹ h ⊂ Y

and replace ‖`−Lϕh‖Y ∗ by ‖`−Lϕh‖
Ỹ h,∗ . By the inclusion it is ‖`−Lϕh‖

Ỹ h,∗ ≤ ‖`−Lϕh‖Y ∗
and therefore with (42):

‖`− Lϕh‖
Ỹ h,∗ ≤ ‖L‖L(X,Y ∗)‖ϕ− ϕh‖X . (45)
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Here the enriched space Ỹ h is being considered instead of Y h since the lower bound is of a
local nature and one therefore can use cut-off functions to restrict the considered domain,
which could, e.g., yield spaces of the form

Ỹ h = span{ψKv
∣∣
K
, ψEv

∣∣
E

: K ∈ T , E ∈ E , v ∈ Y h} ⊃ Y h,

where ψK and ψE are so-called cut-off functions, which basically restrict the multiplied func-
tion’s value to a small neighborhood of K and E, respectively.

In order to derive an error indicator a desirable property is

‖(IY −Qh)∗(`− Lϕh)‖Y ∗ + ‖Qh,∗(`− Lϕh)‖Y ∗ ≤ C‖`− Lϕh‖Ỹ h,∗ (46)

for a known constant C. It basically says that the error in the space Y ∗, belonging to the
continuous problem, can be bounded by some constant times the error in the enriched space
Ỹ h,∗, which belongs to the discretized problem and thus is easier to compute. This property
might not be easy to obtain, since the left-hand side involves a supremum over an infinite-
dimensional space, whereas the right-hand side involves a supremum over a finite-dimensional
space. However, if it can be established, finding an error indicator ηT depending on ϕh and
the data of the problem is only a matter of showing that there exists a lower bound for
‖`−Lϕh‖

Ỹ h,∗ and an upper bound for both ‖(IY −Qh)∗(`−Lϕh)‖Y ∗ and ‖Qh,∗(`−Lϕh)‖Y ∗ .
If the data of the problem needs to be approximated in the solution process, it introduces

an additional data error θT . Altogether, one obtains the following theorem:

3.11 Theorem [A posteriori error estimation for an abstract linear elliptic equation [Ver13,
Theorem 4.7]]. Assume that the conditions of Theorem 3.7 and Theorem 3.8 are satisfied and
denote by ϕ and ϕh the unique solutions of problems (34) and (38), respectively. Assume
that there are a restriction operator Qh ∈ L(Y, Y h), a finite-dimensional subspace Ỹ h of Y
with Y h ⊂ Ỹ h ⊂ Y , an error indicator ηT , which only depends on the discrete solution ϕh

and the given data of the variational problem (34), and a data error θT , which only depends
on the data of the variational problem, such that the estimates

‖(Iy −Qh)∗(`− Lϕh)‖Y ∗ ≤ cA(ηT + θT ), ‖Qh,∗(`− Lϕh)‖Y ∗ ≤ cC(ηT + θT ) (47)

and

ηT ≤ cI
(
‖`− Lϕh‖

Ỹ h,∗ + θT

)
(48)

are fulfilled. Then the error ϕ− ϕh can be estimated from above by

‖ϕ− ϕh‖X ≤ ‖L−1‖L(Y ∗,X)(cA + cC)(ηT + θT )

and from below by

ηT ≤ cI
(
‖L‖L(X,Y ∗)‖ϕ− ϕh‖X + θT

)
.

Proof. For the upper bound it is

‖ϕ− ϕh‖X ≤ ‖L−1‖L(Y ∗,X)

(
‖(IY −Qh)∗(`− Lϕh)‖Y ∗ + ‖Qh,∗(`− Lϕh)‖Y ∗

)
, with (44),

≤ ‖L−1‖L(Y ∗,X)(cA + cC)(ηT + θT ) , with (47).
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For the lower bound it is

ηT ≤ cI
(
‖`− Lϕh‖

Ỹ h,∗ + θT

)
, with (48),

≤ cI
(
‖L‖L(X,Y ∗)‖ϕ− ϕh‖X + θT

)
, with (45).

3.12 Remark [On the Galerkin orthogonality, continuing Remark 3.9]. If the Galerkin
orthogonality is given in terms of a bilinear map Bh that is simply the restriction of B, the
constant cC in the upper bound vanishes and so does the second inequality of (47), the first
inequality simplifies to

‖`− Lϕh‖Y ∗ ≤ cA(ηT + θT ).

3.13 Remark [Quality of the error indicator]. The quantity

‖L‖L(X,Y ∗)‖L−1‖L(Y ∗,X)(cA + cC)cI

measures the quality of the error indicator ηT . It corresponds to the condition number of the
linear operator, except that it also takes the constants cA, cC and cI into account. If they
become large, so does the condition number. It should be uniformly bounded with respect to
parameters of the differential equation and its discretization. This uniformity is often referred
to as robustness, cf. [Ver13, Remark 4.8].

The quantity ‖L−1‖L(Y ∗,X) is actually the inverse inf-sup constant β−1. Indeed,

‖L−1‖L(Y ∗,X) = sup
ψ∗∈Y ∗\{0}

‖L−1ψ∗‖X
‖ψ∗‖Y ∗

, per definition of the operator norm,

= sup
Lϕ∈Y ∗\{0}

‖ϕ‖X
‖Lϕ‖Y ∗

, for Lϕ = ψ∗ since L is an isomorphism,

=

(
inf

ϕ∈X\{0}

‖Lϕ‖Y ∗
‖ϕ‖X

)−1

=

(
inf

ϕ∈X\{0}
sup

ψ∈Y \{0}

〈Lϕ,ψ〉
‖ϕ‖X‖ψ‖Y

)−1

, per definition of the operator norm,

= β−1.

3.1.1 Application to the Darcy equations

This section applies the results of Section 2.1 to the abstract framework presented in the
previous section. The corresponding parameters are

X = Y = H1
Γess

(Ω),

B(ϕ,ψ) = a(ϕ,ψ) = (K∇ϕ,∇ψ)0 , see (7),

〈`, ψ〉Y = 〈f̃ , ψ〉 , see (6),

Xh = Y h = V h , see (10),

Bh(ϕh, ψh) = B(ϕh, ψh) = ah(ϕh, ψh) , see (11),

〈`h, ψh〉Y h = 〈`, ψh〉Y = 〈f, ψh〉 − 〈unat, ψ
h〉Γnat , see (11).
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Since the discrete forms Bh and `h are restrictions of B and ` respectively, one has Galerkin
orthogonality and therefore needs no restriction operator Qh, see Remark 3.9.

As in (41), the residual R of ϕh is the case of ϕess = 0 is given by

〈R,ψ〉 := (f, ψ)0 + 〈unat, ψ〉Γnat − a(ϕh, ψ) (49)

for all ψ ∈ V . To derive the Lp representation (43), the residual can be transformed as
follows. One obtains for all ψ ∈ V

〈R,ψ〉 =

∫

Ω

fψ +

∫

Γnat

unatψ −
∫

Ω

K∇ϕh∇ψ

=

∫

Ω

fψ +

∫

Γnat

unatψ +
∑

K∈T



∫

K

K∆ϕhψ −
∫

∂K

K∇ϕhψ · nK




=
∑

K∈T

∫

K

(f +K∆ϕh)ψ +
∑

E∈EΓnat

∫

E

(unat −K∇ϕh · nE)ψ −
∑

E∈EΩ

∫

E

[
|K∇ϕh · nE |

]
Eψ

by element-wise integration by parts and the assumption that K = K I. Here,
[
|ψ|
]
E denotes

the jump of ψ across the facet E ∈ E in direction of nE . To define the jump, let K1,K2 ∈ T
be cells with the common edge E ∈ E . The vector nE is fixed as the outer unit normal vector
of K1 at E. Then, the jump of a function ψ across the edge E in the point s ∈ E is defined
by

[
|ψ|
]
E(s) := lim

y→s
y∈K1

ψ(y)− lim
y→s
y∈K2

ψ(y).

It should be noted that this definition depends on the enumeration of the cells; if the order
is reversed, the direction of nE changes and therefore also the sign of the jump.

3.14 Remark [On the essential boundary data]. If one is in the situation that meas(Γess) > 0
and ϕess 6= 0, one obtains in (49) the additional right-hand side term −(K∇ϕess,∇ψ)0. How-
ever, this term can be included in 〈f, ψ〉, allowing to treat homogeneous and inhomogeneous
essential boundary conditions in the same way.

It then is

〈R,ψ〉 =

∫

Ω

rψ +

∫

Σ

jψ

with
r
∣∣
K

:= f +K∆ϕh

and

j
∣∣
E

:=





−
[
|K∇ϕh · nE |

]
E , for E ∈ EΩ,

unat −K∇ϕh · nE , for E ∈ EΓnat ,

0 , for E ∈ EΓess ,

for all K ∈ T , E ∈ E = EΓess ∪EΓnat ∪EΩ.
In order to meet the conditions of Theorem 3.11, an upper bound for the residual has to be

provided. To this end, one can use nodal shape functions. These are specific functionals of
the finite element discretization as considered in Section 2.1.2. They are uniquely defined as,
in the case of simplices linear and in the case of quadrilaterals bilinear, continuous functions
λz on each element for all z ∈ N with

λz(z) = 1 and λz(w) = 0 for all w ∈ N \{z}.
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3.15 Lemma. It is

0 ≤ λz ≤ 1, suppλz = ωz,
∑

z∈NK

λz = 1,
∑

z∈NE

λz = 1.

Proof. The second assertion suppλz = ωz is given by the definition of the λz. For the other
assertions, the convexity of K ∈ T is needed. Since K = conv(NK), i.e., the convex hull of
its vertices, one obtains

K =



x ∈ Rd : x =

| NK |∑

i=1

αivi, vi ∈ NK , αi ≥ 0,

| NK |∑

i=1

αi = 1



 ,

see, e.g., [Gru07, p. 42]. The weights αi summing up to one and being non-negative implies,
that in particular 0 ≤ αi ≤ 1.

Let x =
∑| NK |

i=1 αivi ∈ K be fixed. Using the linearity of the λz and λvi(vj) = δij , one
obtains

| NK |∑

j=1

λvj (x) =

| NK |∑

j=1

λvj



| NK |∑

i=1

αivi


 =

| NK |∑

j=1

αj = 1,

i.e., the third assertion.
The fourth assertion follows by the same arguments, since faces of convex polytopes are

convex and E ∈ E is a face of some K ∈ T , cf. [Gru07, p. 245].

3.16 Remark [On the uniqueness of the nodal shape functions]. Taking into account the
mapping between reference cell and grid cell FK : K̂d → K as introduced in Section 7, one
can write

λz = λ̂z ◦ F−1
K ,

i.e., λz takes values on the reference cell K̂d. The condition on the nodal shape functions is
for vertices {v1, . . . ,vn} and basis functions B = {β1, . . . , βn} that

δij = λi(vj) =
n∑

k=1

αikβk(vj),

where αi1, . . . , αin are the coefficients for the i-th nodal shape function λi = λvi . This condi-
tion can also be expressed as the matrix product I = AB with (A)ij = αij and Bij = βi(vj).
Thus, for existence and uniqueness of the nodal shape functions, B has to be invertible.

In the case of simplices, the basis of linear functions is given by

B = {1, x1, . . . , xd}.

Therefore, B is given by

B =




1 · · · 1

v
(1)
1 · · · v

(1)
n

...
...

v
(d)
1 · · · v

(d)
n



.

The determinant of the matrix is detB = d!meas(K̂d) and therefore positive, assuming that
the simplex is not degenerated, which is given in case of the reference simplex. Therefore,
the nodal shape functions are uniquely defined on simplices.
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In the case of quadrilaterals, the basis is given by

B =

{
d∏

i=1

xαii = xα : αi ∈ {0, 1}
}

=
d⋃

i=0

Bi

with Bi = {xα ∈ B : |α| = i}. Without loss of generality it can be assumed that K̂d = [0, 1]d.
Further it can be assumed that the basis functions are ordered with respect to the Bi, i.e.,
if βi ∈ Bk1 and βj ∈ Bk2 with k1 < k2, then i < j. Now the vertices v(1), . . . ,v(n) can be
ordered such that they correspond directly to the multi-indices of the definition of the βi,

i.e., for v(i) it should hold that v
(i)
j = αj where αj is the j-th entry of α in βi = xα.

In the case of d = 3 this means that

B = {1} ∪ {x1, x2, x3} ∪ {x1x2, x1x3, x2x3} ∪ {x1x2x3}

with corresponding vertices

N
K̂d

=








0
0
0





 ∪








1
0
0


 ,




0
1
0


 ,




0
0
1





 ∪








1
1
0


 ,




1
0
1


 ,




0
0
0





 ∪








1
1
1





 .

Grouping the basis functions with |α| = k for k = 0, . . . , d and therefore also grouping the
vertices with k entries that are 1 yields a block-wise representation

B =




D0 ∗ · · · ∗
0

. . .
. . .

...
...

. . .
. . . ∗

0 · · · 0 Dd



,

where the Di are identity matrices up to interchanged columns. Indeed, the rows in B
belonging to Di correspond to basis functions with |α| = i and the columns correspond to
vertices v ∈ N

K̂d
with

h(v) := |{j : vj = 1}| = i,

i.e., the number of entries in v that are 1 should be i. Therefore, for β = xα ∈ B|α| and v
with h(v) = k, one obtains β(v) = 0 if k < |α|, since β is a product out of more than k
factors. If k = |α|, the there is exactly one β ∈ B|α| such that β(v) = 1.

Again in the case of d = 3, one obtains

B =




1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 1

0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0




.

Altogether this yields

detB =

d∏

i=0

detDi = 1,

which proves that the nodal shape functions exist and are unique.
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These nodal shape functions allow the construction of the quasi-interpolation operator of
Clément (cf. [Ver13, Section 3.5.1])

Ih : L1(Ω)→ V h, v 7→





0 , if z ∈ N Γess ,∑
z∈N

∫
ωz
λzv∫

ωz
λz
λz , otherwise,

(50)

with the approximation properties

‖v − Ihv‖Lp(K) ≤ CK‖v‖Lp(ω̃K),

‖v − Ihv‖Lp(K) ≤ CKhK‖∇v‖Lp(ω̃K), (51)

‖∇(v − Ihv)‖Lp(K) ≤ CK‖∇v‖Lp(ω̃K),

‖v − Ihv‖Lp(E) ≤ CEh
1− 1

p

E ‖∇v‖Lp(ω̃E), (52)

for 1 ≤ p <∞.

3.17 Theorem [Upper bound for the residual]. The residual in the dual norm of V is
bounded from above by

‖R‖V ∗ ≤ C(ηT + θT )

with

ηT =

( ∑

K∈T
h2
K‖fh +K∆ϕh‖20,K +

∑

E∈EΩ

hE

∥∥∥
[
|K∇ϕh · nE |

]∥∥∥
2

0,E

+
∑

E∈EΓnat

hE‖uhnat −K∇ϕh · nE‖0,E
) 1

2

, (53)

θT =


∑

K∈T
hK‖f − fh‖20,K +

∑

E∈EΓnat

‖unat − uhnat‖20,E




1
2

, (54)

where fh and uhnat are piecewise polynomial approximations of f and unat respectively.

Proof. Let v ∈ V be arbitrary and vh = Ihv ∈ V h. By the Galerkin orthogonality it is

〈R, vh〉 = 0⇒ 〈R, v〉 =

∫

Ω

r(v − vh) +

∫

Σ

j(v − vh).
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The residual can be estimated by

|〈R, v〉| =

∣∣∣∣∣∣
∑

K∈T

∫

K

r(v − Ihv) +
∑

E∈E

∫

E

j(v − Ihv)

∣∣∣∣∣∣

≤
∑

K∈T
‖r‖0,K‖v − Ihv‖0,K +

∑

E∈E
‖j‖0,E‖v − Ihv‖0,E , using Cauchy–Schwarz,

≤ C
(∑

K∈T
hK‖r‖0,K‖v‖V (ω̃K) +

∑

E∈E
h

1/2
E ‖j‖0,E‖v‖V (ω̃E)

)
, using (51) and (52),

≤ C
(∑

K∈T
h2
K‖r‖20,K +

∑

E∈E
hE‖j‖20,E

) 1
2

×
(∑

K∈T
‖v‖2V (ω̃K) +

∑

E∈E
‖v‖2V (ω̃E)

) 1
2

,

where the last step was obtained by applying the Cauchy–Schwarz inequality for sums. Fur-
ther it is (∑

K∈T
‖v‖2V (ω̃K) +

∑

E∈E
‖v‖2V (ω̃E)

) 1
2

≤ C‖v‖V ,

with the constant taking into account that the faces are being counted multiple times. This
estimate shows that the norm of the residual is bounded from above by

‖R‖V ∗ ≤ C
(∑

K∈T
h2
K‖r‖20,K +

∑

E∈E
hE‖j‖20,E

) 1
2

.

Substitution of f = fh + f − fh, unat = uhnat + unat − uhnat and an application of the triangle
inequality plus the inequality √

a+ b ≤ √a+
√
b

for a, b ≥ 0 yields the statement of the theorem.

The above theorem already gives an error indicator which is reliable. The next condition
of the Theorem 3.11 is a bound from below, i.e., efficiency. The efficiency estimate should be
applicable to a local portion of the grid, which is why one could use cut-off functions, often
due to their shape also referred to as ‘bubble functions’. These are defined on the elements
K ∈ T and their facets E ∈ E by

ψK = βK
∏

z∈NK

λz, ψE = βE
∏

z∈NE

λz

with factors βK and βE such that the functions attain the value 1 at the barycenters of K
and E respectively, as indicated for βK in Figure 5. Further it holds that ψK

∣∣
∂K

= 0 and

ψE
∣∣
∂ωE

= 0.

3.18 Lemma [Properties of the cut-off functions]. It is supp(ψK) = K, supp(ψE) = ωE ,
0 ≤ ψK ≤ 1, 0 ≤ ψE ≤ 1 and maxx∈K ψK(x) = maxx∈E ψE(x) = 1. Further, the following
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Figure 5: Graph of the cut-off function ψK for K = [0, 1]2.

inverse estimates hold for all polynomials v ∈ P (K) of degree k and w ∈ P (E) of degree k:

‖v‖0,K ≤ CK,k‖ψ1/2
K v‖0,K , (55)

‖∇(ψKv)‖0,K ≤ CK,kh−1
K ‖v‖0,K , (56)

‖w‖0,E ≤ CE,k‖ψ1/2
E w‖0,E , (57)

‖∇(ψEw)‖0,K ≤ CE,K,kh−1/2
E ‖w‖0,E , (58)

‖ψEw‖0,K ≤ CE,K,kh1/2
E ‖w‖0,E . (59)

Proof. The estimates can be found in [Ver13, Proposition 3.37]. Since suppλz = ωz, the prod-
uct in the definition of the cut-off functions restricts their support to K and ωE respectively,
i.e.,

suppψK =
⋂

z∈NK

ωz = K

and
suppψE =

⋂

z∈NE

ωz = ωE .

The support regarding the edge yields ωE since ωE is contained in all ωz.

3.19 Theorem [Lower bound for the residual]. The residual can be bounded from below by

ηR,K ≤ c∗
(
‖K∇(ϕ− ϕh)‖2ωK + θh

) 1
2

with

ηR,K =

(
h2
K‖fhK +K∆ϕh‖20,K +

1

2

∑

E∈EK,Ω

hE

∥∥∥
[
|∇ϕh · nE |

]
E

∥∥∥
2

0,E

+
∑

E∈EK,Γnat

hE‖uhnat,E −∇ϕh · nE‖20,E

) 1
2

(60)
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where fhK and uhnat are piecewise polynomial approximations as defined below and θT is
defined as in (54).

Proof. First, f and unat are being replaced on every element K ∈ T and edge E ∈ EΓnat by
their respective piecewise polynomial approximations fh and uhnat. Set

fhT =
∑

K∈T
fhKχK , uhnat,T =

∑

E∈EΓnat

uhnat,EχE ,

where χA denotes the characteristic function with respect to the set A.
The local bound is now going to be derived by successively inserting appropriate test

functions into the Lp representation of the residual.

(i) Let K ∈ T be arbitrary and insert

wK = (fhK +K∆ϕh)ψK

into the Lp representation of the residual, yielding

〈R,wK〉 =

∫

Ω

rwK +

∫

Σ

jwK =

∫

K

rwK , since suppwK ⊂ K,

= (K∇(ϕ− ϕh),∇wK)K .

It then is

(r, wK)0,K + (fhK − f, wK)0,K = (K∇(ϕ− ϕh),∇wK)0,K + (fhK − f, wK)0,K

and on the other hand

(r, wK)0,K + (fhK − f, wK)0,K = (fhK +K∆ϕh, wK)0,K = ((fhK +K∆ϕh)2, ψK)0,K ,

by the definition of r. This yields

(K∇(ϕ− ϕh),∇wK)0,K + (fhK − f, wK)0,K = ((fhK +K∆ϕh)2, ψK)0,K .

The right-hand side can be estimated with the inverse estimate (55), resulting in

((fhK +K∆ϕh)2, ψK)0,K ≥ C−2
K,k‖fhK +K∆ϕh‖20,K .

The left-hand side’s terms can be estimated by

|(K∇(ϕ− ϕh),∇wK)0,K | ≤ ‖K∇(ϕ− ϕh)‖0,K‖∇wK‖0,K , using Cauchy–Schwarz,

≤ ‖K∇(ϕ− ϕh)‖L2(K)

× CK,kh−1
K ‖fhK +K∆ϕh‖0,K , using (56),

|((fhK − f), wK)0,K | ≤ ‖fhK − f‖0,K‖wK‖0,K , using Cauchy–Schwarz,

≤ ‖fhK − f‖0,K‖fhK +K∆ϕh‖0,K , using 0 ≤ ψK ≤ 1.

Thus, combining the above estimates and rearranging terms yields

hK‖fhK +K∆ϕh‖0,K ≤ C3‖K∇(ϕ− ϕh)‖0,K + C2hK‖f − fhK‖0,K , (61)

where the constant C only depends on the shape parameter of K and the polynomial
degree k.
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(ii) Let E ∈ EΩ be arbitrary and insert

wE = −
[
|K∇ϕh · nE |

]
EψE

into the Lp representation of the residual, yielding

〈R,wE〉 = (r, wE)0 + (j, wE)0,Σ = (r, wE)0,ωE + (j, wE)0,E , since suppwE ⊂ ωE ,
〈R,wE〉 = 〈L(ϕ− ϕh), wE〉 , using (41),

= (K∇(ϕ− ϕh),∇wE)0,ωE .

This gives together with

(j, wE)0,E = (K∇(ϕ− ϕh),∇wE)0,ωE − (r, wE)0,ωE , and,

(j, wE)0,E = (−
[
|K∇ϕh · nE |

]
E , wE)0,E , by definition of j,

= (
[
|K∇ϕh · nE |

]
2
E , ψE)0,E , by definition of wE ,

that

(
[
|K∇ϕh · nE |

]
2
E , ψE)0,E

= (K∇(ϕ− ϕh),∇wE)0,ωE − (r, wE)0,ωE

= (K∇(ϕ− ϕh),∇wE)0,ωE − (f +K∆ϕh + fhωE − f
h
ωE
, wE)0,ωE

= (K∇(ϕ− ϕh),∇wE)0,ωE −
∑

K⊂ωE

(fhK +K∆ϕh, wE)0,K −
∑

K⊂ωE

(f − fhE , wE)0,K .

The terms are again being estimated separately. The left-hand side can be estimated
with the inverse estimate (57)

(
[
|K∇ϕh · nE |

]
2
E , ψE)0,E ≥ C−2

E,k

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
2

0,E
.

The terms on the right-hand side can be estimated by

|(K∇(ϕ− ϕh),∇wE)0,K |
≤ ‖K∇(ϕ− ϕh)‖0,K‖∇wE‖0,K , using Cauchy–Schwarz,

≤ ‖K∇(ϕ− ϕh)‖0,KCE,k,kh
− 1

2
E

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
0,E

, using (58),

|(fhK +K∆ϕh, wE)0,K |
≤ ‖fhK +K∆ϕh‖0,K‖wE‖0,K , using Cauchy–Schwarz,

≤ ‖fhK +K∆ϕh‖0,KCE,K,kh
1
2
E

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
0,E

, using (59),

|(f − fhE , wE)0,K |
≤ ‖f − fhE‖0,K‖wE‖0,K , using Cauchy–Schwarz,

≤ ‖f − fhE‖0,KCE,K,kh
1
2
E

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
0,E

, using (59).

yielding

C−2
E,k

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
0,E
≤ CE,k,kh

− 1
2

E ‖K∇(ϕ− ϕh)‖0,ωE

+
∑

K⊂ωE

CE,K,kh
1
2
E‖fhK +K∆ϕh‖0,K +

∑

K⊂ωE

CE,K,kh
1
2
E‖f − fhE‖0,K .
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Combining this estimate with (61) gives

C−2
E,k

∥∥∥
[
|K∇ϕh · nE |

]
E

∥∥∥
0,E
≤ C‖K∇(ϕ− ϕh)‖0,ωE + C

∑

K⊂ωE

hK‖f − fhK‖0,K , (62)

where the constants only depend on the shape parameter of T and the polynomial
degree used in the inverse estimates.

(iii) Let E ∈ EΓnat be an arbitrary edge on the boundary with natural boundary conditions
and let

wE = (uhnat −∇ϕh · nE)ψE

be a test function. It then is

(j, wE)0,E = (K∇(ϕ− ϕh),∇wE)K − (r, wE)0,K , same as in (ii),

(j, wE)0,E = (unat −∇ϕh · nE , wE)0,E , by definition of j,

= (uhnat −∇ϕh · nE , wE)0,E + (unat − uhnat, wE)0,E

= ((uhnat −∇ϕh · nE)2, ψE)0,E + (unat − uhnat, wE)0,E , by definition of wE ,

which implies that

((uhnat −∇ϕh · nE)2, ψE)0,E

= (K∇(ϕ− ϕh),∇wE)0,K − (r, wE)0,E + (uhnat − unat, wE)0,E

= (K∇(ϕ− ϕh),∇wE)0,K − (fhK +K∆ϕh, wE)0,K

− (f − fhK , wE)0,K + (uhnat − unat, wE)0,E .

The L2 scalar product is over K instead of ωE since it is a boundary facet. Same as
in (i) and (ii) the terms are now being estimated separately. The left-hand side can be
estimated with (57) by

((uhnat −∇ϕh · nE)2, ψE)0,E ≥ C−2
E,k

∥∥∥uhnat −∇ϕh · nE
∥∥∥

2

0,E
.

The terms on the right-hand side can be estimated by

|(K∇(ϕ− ϕh),∇wE)0,K | ≤ ‖K∇(ϕ− ϕh)‖0,KCE,K,kh
− 1

2
E ‖uhnat −∇ϕh · nE‖0,E ,

|(fhK +K∆ϕh, wE)0,K | ≤ ‖fhK +K∆ϕh‖0,ECE,K,kh
1
2
E‖uhnat −∇ϕh · nE‖0,E ,

|(f − fhK , wE)0,K | ≤ ‖f − fhK‖0,KCE,K,kh
1
2
E‖uhnat −∇ϕh · nE‖0,E ,

|(uhnat,E − unat, wE)0,E | ≤ ‖uhnat,E − unat‖0,E‖uhnat −∇ϕh · nE‖0,E ,
with application of the Cauchy–Schwarz inequality and estimates (58), (59), (59) and
that 0 ≤ ψE ≤ 1 respectively. Altogether this gives

h
1
2
E‖uhnat −∇ϕh · nE‖0,E ≤ C‖K∇(ϕ− ϕh)‖0,K + ChE‖fhK +K∆ϕh‖0,E

+ ChE‖f − fhK‖0,K + Ch
1
2
E‖unat − uhnat,E‖0,E ,

where the constants only depend on the shape parameter of T and the polynomial
degree used in the inverse estimates. Using (61) this can be further estimated by

h
1
2
E‖uhnat −∇ϕh · nE‖0,E
≤ C‖K∇(ϕ− ϕh)‖0,K + C(hK + hE)‖f − fhK‖0,K + Ch

1
2
E‖unat − uhnat,E‖0,E . (63)
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The above derived estimates (61), (62) and (63) can now be applied to ηR,K together with a
variant of Young’s inequality

(a+ b)2 ≤ 2a2 + 2b2

for a, b ∈ R, yielding the theorem’s statement, where the factor of 1
2 in ηR,K takes into account

that every edge is being counted twice while summing up the jumps.

Theorems 3.17 and 3.19 show that all assumptions of Theorem 3.11 of the abstract setting
are fulfilled with

Y h ⊂ Ỹ h = span{ψKv
∣∣
K
, ψEv

∣∣
E

: K ∈ T , E ∈ E , v ∈ V h}.

Therefore,

ηT =

(∑

K∈T
η2
R,K

) 1
2

as defined in (53) and (60) indeed bounds the error in the energy norm | · |1 from above and
below and thus is reliable and efficient.

3.1.2 Application to the Stokes equations

This section applies the results of Section 2.2 to the abstract framework for linear problems
presented in Section 3. The parameters are

X = Y = V ×Q , see (15),

‖(u, p)‖X =
(
‖u‖2V + ‖p‖2Q

) 1
2 =

(
‖∇u‖20 + ‖p‖20

) 1
2 ,

B((u, p), (v, q)) = a(u,v) + b(v, p)− b(u, q) , see (17),

〈`, (v, q)〉Y = 〈f̃ ,v〉 = (f ,v)0 + 〈TN ,v〉Γnat , see (17),

Bh((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh)) , see (20),

〈`h, (vh, qh)〉Y h = 〈f̃ ,vh〉 , see (20).

The equation for B(·, ·) is obtained by subtracting the two equations in (17). Since a con-
forming finite element discretization is assumed, Galerkin orthogonality is given. In order to
derive the Lp representation (43), one can apply element-wise integration by parts as in the
following. Let (v, q) ∈ V×Q be a test function. Inserting this test function into the residual
equation of the Laplace form yields

〈R, (v, q)〉 = (f ,v)0 + 〈TN ,v〉Γnat − a(uh,v)− b(v, ph) + b(uh, q) , see (17),

= (f ,v)0 + 〈TN ,v〉Γnat +
∑

K∈T

(
(ν∆uh,v)0,K − (ν∇uh · nK ,v)0,∂K

)

−
∑

K∈T

(
(v,∇ph)0,K − (v · nK , ph)0,∂K

)
−
∑

K∈T
(∇ · uh, q)0,K

=
∑

K∈T
(f + ν∆uh −∇ph,v)0,K −

∑

E∈EΩ

(
[
|(ν∇uh − ph I) · nE |

]
E ,v)0,E

+
∑

E∈EΓnat

(TN − (ν∇uh + ph I) · nE ,v)0,E −
∑

K∈T
(∇ · uh, q)0,K .
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Similarly, inserting (v, q) into the Cauchy stress form yields

〈R, (v, q)〉 = (f ,v)0 + 〈TN ,v〉Γnat +
∑

K∈T

(
(2ν∇ ·D(uh),v)0,K − (2νD(uh) · nK ,v)0,∂K

)

−
∑

K∈T

(
(∇ph,v)0,K − (ph,v · nK)0,∂K

)
−
∑

K∈T
(∇ · uh, q)0,K

=
∑

K∈T
(f +∇ · (2νD(uh)− ph I),v)0,K −

∑

E∈EΩ

([
|(2νD(uh)− ph I) · nE |

]
E ,v

)
0,E

+
∑

E∈EΓnat

(TN − (2νD(uh)− ph I) · nE ,v)0,E −
∑

K∈T
(∇ · uh, q)0,K ,

giving altogether

〈R, (v, q)〉 =

∫

Ω

r(v, q)T +

∫

Σ

j(v, q)T (64)

with

r
∣∣
K

= (f +∇ ·T(uh, ph),∇ · uh)T ,

j
∣∣
E

=





(−
[
|T(uh, ph) · nE |

]
E , 0)T , on EΩ,

(TN −T(uh, ph) · nE , 0)T , on EΓnat ,

(0, 0)T , on EΓess ,

for all K ∈ T and E ∈ E .

3.20 Remark [On the essential boundary data]. If one has inhomogeneous essential bound-
ary data, one obtains in (64) the additional right-hand side term

{
−(2νD(uess),D(v))0 , in case of the Cauchy stress form,

−(ν∇uess,∇v) , in case of the Laplacian form.

This term however can be included into the source term (f ,v)0, allowing to treat inhomoge-
neous and homogeneous essential boundary data in the same way.

In order to apply Theorem 3.11, upper and lower bounds need to be provided.

3.21 Theorem [Upper bound for the residual]. The residual in the dual norm of X is
bounded from above by

‖R‖X∗ ≤ C(ηT + θT )

with

ηT =

( ∑

K∈T
h2
K‖fh −∇ ·T(uh, ph)‖20,K +

∑

K∈T
‖∇ · uh‖20,K

+
∑

E∈EΩ

hE‖
[
|T(uh, ph) · nE |

]
E‖20,E +

∑

E∈EΓnat

hE‖T hN −T(uh, ph) · nE‖20,E

) 1
2

, (65)

θT =


∑

K∈T
h2
K‖f − fh‖20,K +

∑

E∈EΓnat

hE‖TN − T hN‖20,E




1
2

, (66)

where fh denotes a piecewise polynomial approximation of f and T hN denotes a piecewise
polynomial approximation of TN .
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Proof. Let (v, q) ∈ V×Q be arbitrary and vh = Ihv ∈ Vh, where Ih is the quasi-interpolation
operator (50) applied to the components of v. With the Galerkin orthogonality one obtains

〈R, (vh, qh)〉 = 0⇒ 〈R, (v, q)〉 =

∫

Ω

r(v − Ihv, q − Ihq)T +

∫

Σ

j(v − Ihv, q − Ihq)T .

With this identity the residual can be estimated by

|〈R, (vh, qh)〉| ≤
∑

K∈T
‖f +∇ ·T(uh, ph)‖0,K‖v − Ihv‖0,K

+
∑

E∈EΩ

‖
[
|T(uh, ph) · nE |

]
E‖0,E‖v − Ihv‖0,E

+
∑

E∈EΓnat

‖TN −T(uh, ph) · nE‖0,E‖v − Ihv‖0,E

+
∑

K∈T
‖∇ · uh‖V,K‖q‖0,K , using Cauchy–Schwarz,

≤
∑

K∈T
CEhK‖f +∇ ·T(uh, ph)‖0,K‖v‖V(ω̃K) , using (51),

+
∑

E∈EΩ

CEh
1
2
E‖
[
|T(uh, ph) · nE |

]
E‖0,E‖v‖V(ω̃E) , using (52),

+
∑

E∈EΓnat

CEh
1
2
E‖TN −T(uh, ph) · nE‖0,E‖v‖V(ω̃E) , using (52),

+
∑

K∈T
‖∇ · uh‖V,K‖q‖0,K

≤ C
(∑

K∈T
h2
K‖f +∇ ·T(uh, ph)‖20,K

) 1
2

‖v‖V

+ C


∑

E∈EΩ

hE‖
[
|T(uh, ph) · nE |

]
E‖20,E




1
2

‖v‖V

+ C


 ∑

E∈EΓnat

hE‖TN −T(uh, ph) · nE‖20,E




1
2

‖v‖V

+ C

(∑

K∈T
‖∇ · uh‖20,K

) 1
2

‖q‖0 , using Cauchy–Schwarz,

≤ C‖(v, q)‖X
( ∑

K∈T
h2
K‖f +∇ ·T(uh, ph)‖20,K

+
∑

K∈T
‖∇ · uh‖20,K +

∑

E∈EΩ

hE‖
[
|T(uh, ph) · nE |

]
E‖20,E

+
∑

E∈EΓnat

hE‖TN −T(uh, ph) · nE‖20,E
) 1

2

,
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where the last inequality is due to an implication of Young’s inequality, namely

(
√
a‖v‖V +

√
b‖q‖Q)2 ≤ (‖v‖2 + ‖q‖2)(a+ b)⇔ 2

√
ab‖v‖V‖q‖Q ≤ ‖v‖2Vb+ ‖q‖2Qa,

for a, b ≥ 0. Since v and q were arbitrary, replacement of f by fh+f−fh, TN by T hN +TN−T hN
and an application of the triangle inequality yields the theorem’s statement.

3.22 Theorem [Lower bound for the residual]. It holds that

ηR,K ≤ C
(
‖ν∇(u− uh)‖2ωK + ‖p− ph‖2ωK + θT

)

with

ηR,K =

(
h2
K‖fh +∇ ·T(uh, ph)‖20,K + ‖∇ · uh‖20,K +

1

2

∑

E∈EK,Ω

hE

∥∥∥
[
|T(uh, ph) · nE |

]
E

∥∥∥
2

E

+
∑

E∈EK,Γnat

hE‖T hN −T(uh, ph) · nE‖20,E
)

(67)

and θT as in Theorem 3.21.

Proof. Similarly to the lower bound of the Darcy equation’s residual a posteriori estimator,
this lower bound is going to be provided by successively inserting appropriate test functions
into the L2 representation of the residual. To this end, let

fhT :=
∑

K∈T
fhχK , T hN,T :=

∑

E∈Enat

T hNχE

be cell-restricted versions of fh and T hN respectively.

(i) Let K ∈ T be arbitrary and insert

(wK , 0) = ((fh +∇ ·T(uh, ph))ψK , 0)

as test function into the residual equation, yielding

〈R, (wK , 0)〉 = (r, (wK , 0))K , since supp wK ⊂ K,
〈R, (wK , 0)〉 = B((u− uh, p− ph), (wK , 0)) , using (41),

= a(u− uh,wK) + b(wK , p− ph).

Inserting the definition of r
∣∣
K

and wK into the first equation gives

〈R, (wK , 0)〉 = (r, (wK , 0)) = (f +∇ ·T(uh, ph),wK)K

= ((fh +∇ ·T(uh, ph))2, ψK)K + (f − fhK ,wK)K ,

yielding

((fh +∇ ·T(uh, ph))2, ψK)K = a(u− uh,wK) + b(wK , p− ph) + (f − fhK ,wK)K .

The left-hand side can be estimated by applying the inverse estimate (55) which results
in

((fh +∇ ·T(uh, ph))2, ψK)K ≥ C−2
K,k‖fhK +∇ ·T(uh, ph)‖20,K .
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The terms on the right-hand side are being estimated individually. To this end, note
that one obtains by application of the triangle inequality that

‖D(v)‖0 =
1

2
‖∇v +∇vT ‖0 ≤ ‖∇v‖0.

Thus, when deriving upper bounds it can be assumed that the laplace version of a(·, ·)
is being used, as the Cauchy–Stress version yields the same results up to a factor of 2
which can be absorbed into the constants. The terms can be estimated by

|a(u− uh,wK)|
≤ Ca‖ν∇(u− uh)‖0,K‖∇wK‖0,K , using Cauchy–Schwarz,

≤ CaCK,kh−1
K ‖ν∇(u− uh)‖0,K‖fh +∇ ·T(uh, ph)‖0,K , using (56),

|b(wK , p− ph)|
≤ ‖∇ ·wK‖0,K‖p− ph‖0,K , using Cauchy–Schwarz,

≤
√
d‖∇wK‖0,K‖p− ph‖0,K , using Lemma 2.12,

≤
√
dCK,kh

−1
K ‖p− ph‖0,K‖fh +∇ ·T(uh, ph)‖0,K , using (56),

|(f − fhK ,wK)0,K |
≤ ‖f − fhK‖0,K‖wK‖0,K , using Cauchy–Schwarz,

≤ ‖f − fhK‖0,K‖fh +∇ ·T(uh, ph)‖0,K , using 0 ≤ ψK ≤ 1,

where

Ca =

{
1 , if a(u,v) = (ν∇u,∇v)0,

2 , if a(u,v) = (2νD(u),D(v))0.

Combining the above estimates and dividing by ‖fh −∇ ·T(uh, ph)‖0,K yields

hK‖fh +∇ ·T(uh, ph)‖0,K
≤ C

(
‖ν∇(u− uh)‖0,K + ‖p− ph‖0,K + hK‖f − fh‖0,K)

)
, (68)

where the constant only depends on the spatial dimension of the problem, the shape
parameter of K and the polynomial degree k.

(ii) Similarly to step (i), one can assume the laplace version of a(·, ·). Let E ∈ EΩ be
arbitrary and

(wE , 0) = (−
[
|T(uh, ph) · nE |

]
EψE , 0)

a test function which inserted into the residual equation yields

〈R, (wE , 0)〉 = (r, (wE , 0))0,ωE + (j, (wE , 0))0,E , since supp wE ⊂ ωE ,
〈R, (wE , 0)〉 = a(u− uh,wE) + b(wE , p− ph) , using (41).

Thus on the one hand one obtains by using the definition of j, that

(j, (wE , 0))0,E = (−
[
|T(uh, ph) · nE |

]
E ,wE)0,E = (

[
|T(uh, ph) · nE |

]
2
E , ψE)0,E ,

and on the other hand using

(r, (wE , 0))0,ωE = (f +∇ ·T(uh, ph) + fhωE − fhωE )0,ωE

=
∑

K⊂ωE

(fhK +∇ ·T(uh, ph),wE)−
∑

K⊂ωE

(f − fhK ,wE)0,ωE
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together with the definition of the residual as above, that

(j, (wE , 0))0,E = a(u− uh,wE) + b(wE , p− ph)− (r, (wE , 0))0,ωE

=
∑

K⊂ωE

(ν∇(u− uh),∇wE)0,K +
∑

K⊂ωE

(∇ ·wE , p− ph)0,K

−
∑

K⊂ωE

(fhK +∇ ·T(uh, ph),wE)−
∑

K⊂ωE

(f − fhK ,wE)0,ωE .

By applying the inverse estimate (57) to the first equation for j one obtains

([
|T(uh, ph) · nE |

]
2
E , ψE

)
0,E
≥ C−2

E,k

∥∥∥
[
|T(uh, ph)|

]
E

∥∥∥
2

0,E
.

The terms of the second equation for j can be estimated separately by

|(ν∇(u− uh),∇wE)0,K | ≤ CE,K,kh
− 1

2
E ‖ν∇(u− uh)‖0,K

∥∥∥
[
|T(uh, ph) · nE |

]∥∥∥
0,E

,

|(∇ ·wE , p− ph)0,K | ≤ CE,K,kh
− 1

2
E

√
d‖p− ph‖0,K

∥∥∥
[
|T(uh, ph) · nE |

]∥∥∥
0,E

,

|(fhK +∇ ·T(uh, ph),wE)0,K | ≤ CE,K,kh
1
2
E‖fhK +∇ ·T(uh, ph)‖0,K

∥∥∥
[
|T(uh, ph) · nE |

]∥∥∥
0,E

,

|(f − fhK ,wE)0,K | ≤ CE,K,kh
1
2
E‖f − fhK‖0,K

∥∥∥
[
|T(uh, ph) · nE |

]∥∥∥
0,E

,

with application of the Cauchy–Schwarz inequality and estimates (58), Lemma 2.12 and
(58), (59) and (59) respectively. Applying these estimates to the equations for j yields

C−2
E,kh

1
2
E

∥∥∥
[
|T(uh, ph) · nE |

]∥∥∥
0,E
≤
∑

K⊂ωE

CE,K,k‖ν∇(u− uh)‖0,K

+
√
d
∑

K⊂ωE

CE,K,k‖p− ph‖0,K + hE
∑

K⊂ωE

CE,K,k‖fhK +∇ ·T(uh, ph)‖0,K

+ hE
∑

K⊂ωE

CE,K,k‖f − fhK‖0,K .

By applying the previous lower bound estimate (68) one obtains

h
1
2
E

∥∥∥
[
|T(uh, ph) · nE |

]
E

∥∥∥
0,E
≤ C

(
‖ν∇(u− uh)‖0,ωE + ‖p− ph‖0,ωE

+
∑

K⊂ωE

hK‖f − fhK‖0,K
)
, (69)

where in the last term hE has been estimated by a of the triangulation, concrete mesh
cells and edges independent constant times hK , which is possible due to the shape
regularity.

(iii) Similarly to (i) and (ii), one can assume the laplace version of a(·, ·). Let E ⊂ EΓnat be
an arbitrary edge on the natural boundary and

(wE , 0) = ((T hN −T(uh, ph) · nE)ψE , 0)
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a test function. By taking into account that in this case it is supp wE ⊂ ωE = K, one
obtains similarly as in (ii)

(j, (wE , 0))0,E = (TN −T(uh, ph) · nE ,wE)

= ((T hN −T(uh, ph) · nE)2, ψE) + (TN − T hN ,wE)0,K , and,

(j, (wE , 0))0,E = a(u− uh,wE) + b(wE , p− ph)− (r, (wE , 0))0,K

= (ν∇(u− uh),∇wE)0,K + (∇ ·wE , p− ph)0,K

+ (fhK +∇ ·T(uh, ph),wE)0,K − (f − fhK)0,K ,

by definition of j and its relation to the cell part of the residual, respectively. As in (i)
and (ii), estimating the terms individually yields

((T hN −T(uh, ph) · nE)2, ψE) ≥ C−2
E,k‖T hN −T(uh, ph) · nE‖20,E ,

|(ν∇(u− uh),wE)0,K | ≤ CE,K,kh
− 1

2
E ‖ν∇(u− uh)‖0,K‖T hN −T(uh, ph) · nE‖0,E ,

|(∇ ·wE , p− ph)0,K | ≤ CE,K,kh
− 1

2
E

√
d‖p− ph‖0,K‖T hN −T(uh, ph) · nE‖0,E ,

|(fhK +∇ ·T(uh, ph),wE)0,K | ≤ CE,K,kh
1
2
E‖fhK +∇ ·T(uh, ph)‖0,K‖T hN −T(uh, ph) · nE‖0,E ,

|(f − fhK ,wE)0,K | ≤ CE,K,kh
1
2
E‖f − fhK‖0,K‖T hN −T(uh, ph) · nE‖0,E ,

|(TN − T hN ,wE)0,K | ≤ ‖TN − T hN‖0,K‖T hN −T(uh, ph) · nE‖0,E ,

by applying the Cauchy–Schwarz inequality and (57), (58), Lemma 2.12 and (58), (59),
(59) and that 0 ≤ ψE ≤ 1, respectively. Combining these estimates, dividing by

‖T hN −T(uh, ph) · nE‖0,E and multiplication with h
1
2
E yields

C−2
E,kh

1
2
E‖T hN −T(uh, ph) · nE‖0,E ≤ C

(
‖ν(u− uh)‖0,K + ‖p− ph‖0,K

+ hE‖fhK +∇ ·T(uh, ph)‖0,K + hE‖f − fhK‖0,K + h
1
2
E‖TN − T hN‖0,K

)

Further, one can estimate hE by hK like in (ii) and apply estimate (68), yielding

h
1
2
E‖T hN −T(uh, ph) · nE‖0,E ≤ C

(
‖ν(u− uh)‖0,K + ‖p− ph‖0,K

+ hK‖f − fhK‖0,K + h
1
2
E‖TN − T hN‖0,E

)
. (70)

With use of Lemma 2.12 and ∇ · u = 0 one can obtain

‖∇ · uh‖0,K = ‖∇ · (u− uh)‖0,K ≤
√
d‖∇(u− uh)‖0,K .

Inserting this estimate together with estimates (68), (69) and (70) into the definition of ηR,K
(67) and taking into account that the inner edges are being counted twice gives the statement
of the theorem.

Theorems 3.21 and 3.22 show that all assumptions of Theorem 3.11 of the abstract setting
are fulfilled with

Y h ⊂ Ỹ h = span{ψKv
∣∣
K
, ψEv

∣∣
E

: K ∈ T , E ∈ E ,v ∈ X = V ×Q}.
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Thus,

ηT =

(∑

K∈T
η2
R,K

) 1
2

as defined in (65) and (67) bounds the error in the energy norm ‖(v, q)‖X =
(
|v|21 + ‖q‖20

) 1
2

for (v, q) ∈ V ×Q from below and above and is therefore reliable and efficient.

3.2 Dual weighted residual method

The previously considered a posteriori error estimates measure the error in a norm which
is natural to the problem itself. This however might not be desirable in practice when one
is interested in specific quantities like, e.g., drag and lift coefficients of a flow around an
obstacle. Further, one usually has unknown constants C which might be far from 1 on the
right-hand side of (30) and (31), cf. [Joh00, Section 5].

The dual weighted residual method (also known as DWR method for short) deals with both
of these issues. It is a goal-oriented approach since it gives information on the error with
respect to a functional of interest. In particular, local residuals are being multiplied with
weights which indicate the dependence of the error on them. These weights are obtained by
the solution of a linear dual problem. Thus, it is comparably cheap to calculate the weights
in the setting of a nonlinear problem and more expensive in the setting of a linear problem.

In the following, the DWR method is going to be derived in an abstract setting based on
the analysis presented in [BR03a] and [BR03b]. To this end, let (X, ‖ ·‖X) be a Banach space
and L : X → R be a differential functional. Then, a stationary point x ∈ X of L(·) is being
sought, i.e.,

L′(x)(y) = 0 ∀y ∈ X, (71)

where the derivative refers to the first parenthesis and L is linear with respect to all arguments
in the second parenthesis. This stationary point corresponds to a solution of an optimization
problem with the goal to solve a variational problem subject to minimizing the error with
respect to a given functional. The discretization is performed by a conforming Galerkin
method using a finite-dimensional subspace Xh ⊂ X. The corresponding discrete problem is
then to find xh ∈ Xh such that

L′(xh)(yh) = 0 ∀yh ∈ Xh. (72)

The goal of the next lemma and proposition is to find a suitable representation of the ap-
proximation error in L, i.e., L(x) − L(xh), which is later going to be used in the derivation
of an error representation in the setting of a variational problem.

3.23 Lemma [Truncation error in the trapezoidal rule]. Let f : [a, b] → R be a twice
continuously differentiable function, then the trapezoidal rule is given by

b∫

a

f ≈ (b− a)
f(a) + f(b)

2
.

Its truncation error fulfills the identity

b∫

a

f(τ)dτ − f(b) + f(a)

2
(b− a) =

1

2

b∫

a

((
τ − a+ b

2

)2

−
(
b− a

2

)2
)
f ′′(τ)dτ.
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Proof. Integration by parts yields

1

2

b∫

a

((
τ − a+ b

2

)2

−
(
b− a

2

)2
)
f ′′(τ)dτ =

b∫

a

(
a+ b

2
− τ
)
f ′(τ)dτ

=

b∫

a

f(τ)dτ − f(a) + f(b)

2
(b− a).

3.24 Proposition [Error representation of the abstract problem]. For the Galerkin approx-
imation of the variational problem (71) it is

L(x)− L(xh) =
1

2
L′(xh)(x− Ihx) +R, (73)

where e := x− xh is the error, Ihx ∈ Xh is arbitrary and

R :=
1

2

1∫

0

τ(τ − 1)L′′′(xh + τe)(e, e, e)dτ

is the remainder and vanishes if L(·) is quadratic.

Proof. With

L′(xxh)(y) :=

1∫

0

L′(xh + τe)(y)dτ

it is by the fundamental theorem of calculus that

L′(xxh)(e) = L(xh + τe)

∣∣∣∣
τ=1

τ=0

= L(xh + x− xh)− L(xh) = L(x)− L(xh).

Application of the trapezoidal rule to L′(xxh)(e) with a = 0 and b = 1 and the fact that
e ∈ X and therefore L′(x)(e) = 0 yields

L′(xxh)(e) =
L′(x)(e) + L′(xh)(e)

2
+

1

2

1∫

0

τ(τ − 1)L′′′(xh + τe)(e, e, e)dτ

=
1

2
L′(xh)(e) +R.

Let Ihx ∈ Xh be arbitrary. By linearity it then is

L′(xh)(e) = L′(xh)(x− Ihx) + L′(xh)(Ihx− xh) = L′(xh)(x− Ihx),

since Ihx− xh ∈ Xh and therefore L′(xh)(Ihx− xh) = 0.
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The above derived abstract problem can now be applied to a standard Galerkin approxi-
mation of variational forms. Let

a : V × V → R, a(u)(v) = f(v) ∀v ∈ V

be a semilinear form on V and f a linear functional. Further, let J : V → R be a differentiable
function which represents the quantity of interest and whose error J(u) − J(uh) should be
minimized. The task of computing J(u) can ultimately also be formulated as the following
optimization problem: Find u ∈ V such that

J(u)→ min, a(u)(v) = f(v) ∀v ∈ V. (74)

If there is a unique solution of the problem to find u ∈ V such that

a(u)(v) = f(v) ∀v ∈ V,

the minimization problem (74) is trivial since there is only one solution that can be inserted
into J(·).

For deriving a solution of (74), the Euler–Lagrange approach is being applied, i.e., one
considers the Lagrangian functional

L(u, z) = J(u) + f(z)− a(u)(z)

where z ∈ V is the so-called adjoint variable. With respect to the abstract setting, the
functional L is the functional L. Minima of the optimization problem correspond to stationary
points of L(·, ·), i.e.,

0 = ∂uL(u, z) = J ′(u)(w)− a′(u)(w, z) ∀w ∈ V,
0 = ∂zL(u, z) = f(v)− a(u)(v) ∀v ∈ V, (75)

where the first equation is the adjoint equation.
When applying the Galerkin method in order to obtain a discretized problem, one considers

a finite-dimensional subspace V h ⊂ V and seeks (uh, zh) ∈ V h × V h such that

a′(uh)(wh, zh) = J ′(uh)(wh) ∀wh ∈ V h,
a(uh)(vh) = f(vh) ∀vh ∈ V h.

(76)

With the solution of the discrete problem above, one can define the the so-called primal
residual

ρ : V → V ∗, ρ(uh)(·) = f(·)− a(uh)(·), (77)

and associated to zh the adjoint or dual residual

ρ∗ : V → V ∗, ρ∗(zh)(·) = J ′(uh)(·)− a′(uh)(·, zh), (78)

together with the adjoint error e∗ := z − zh.

3.25 Theorem [Error representation]. Let a(·)(·) and J(·) be three times differentiable,
(u, z) a solution of (74) and (uh, zh) a solution of (76). Then there is the a posteriori error
representation

J(u)− J(uh) =
1

2
ρ(uh)(z − Ihz) +

1

2
ρ∗(zh)(u− Ihu) +R, (79)
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where Ihz ∈ V h and Ihu ∈ V h are arbitrary. The remainder term is given by

R :=
1

2

1∫

0

τ(τ − 1)
(
J ′′′(uh + τe)(e, e, e)− a′′′(uh + τe)(e, e, e, zh + τe∗)

− 3a′′(uh + τe)(e, e, e∗)
)
dτ.

Proof. This proof is based on the application of Proposition 3.24 in the general framework.
To this end, set X = V × V , Xh = V h × V h, x = (u, z), xh = (uh, zh) and L(x) = L(u, z).

Let (u, z) ∈ V × V and (uh, zh) ∈ V h × V h be the solutions of (75) and (76), respectively.
Since these are stationary points, the requirements for Proposition 3.24 are fulfilled. Further,
note that

L(x)− L(xh) = J(u) + f(z)− a(u)(z)− (J(uh) + f(zh)− a(uh)(zh))

= J(u)− J(uh).

Application of the proposition yields then that

J(u)− J(uh) =
1

2
L′(xh)(x− Ihx) +R

=
1

2
(J ′(uh)(u− Ihu)− a′(uh)(u− Ihu, zh) + f(z − Ihz)− a(uh)(z − Ihz)) +R

=
1

2
ρ(z − Ihz) +

1

2
ρ∗(u− Ihu) +R,

where Ihx = (Ihu, Ihz) ∈ Xh is arbitrary. In order to compute the remainder

R =
1

2

1∫

0

τ(τ − 1)L′′′(xh + τe)(e, e, e)dτ,

one needs to calculate the third derivative of L. Since the dependence of L(x) = L(u, z) on
z is linear, second order and higher derivatives with respect to u vanish and one obtains

L′′′ = ∂uuuL+ 3∂uuzL+ ∂uzzL+ ∂zzzL.

This yields

L′′′(xh + τ(e, e∗))((e, e∗), (e, e∗), (e, e∗))

= J ′′′(uh + τe)− a′′′(uh + τe)(e, e, e, zh + τe∗)− 3a′′(uh + τe)(e, e, e∗)

and therefore the statement.

The remainder R in (79) is cubic in the errors e and e∗ and therefore usually can be
neglected. Neglecting it results in the error indicator

η(uh, zh) :=
1

2
ρ(uh)(z − Ihz) +

1

2
ρ∗(zh)(u− Ihu). (80)

Its evaluation however requires the exact primal and dual solutions u and z.
In the following a simplified error representation is developed which involves only one

residual. To this end, the next proposition considers a term which reflects the difference
between the primal and dual residual. This difference term is then used to absorb the dual
residual into a remainder term with one order less.
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3.26 Proposition. Let the primal and dual residuals be given as in (77) and (78) respectively,
then it is

ρ∗(zh)(u− Ihu) = ρ(uh)(z − Ihz) + ∆ρ, (81)

where Ihu, Ihz ∈ V h are arbitrary and

∆ρ =

1∫

0

(
a′′(uh + τe)(e, e, zh + τe∗)− J ′′(uh + τe)(e, e)

)
dτ.

Proof. First, define

g(τ) := J ′(uh + τe)(u− Ihu)− a′(uh + τe)(u− Ihu, zh + τe∗).

Using the definitions e = u−uh and e∗ = z−zh as well as the first equation of the optimization
problem (75), one obtains

g(1) = J ′(u)(u− Ihu)− a′(u)(u− Ihu, z) = 0.

On the other hand it is

g(0) = J ′(uh)(u− Ihu)− a′(uh)(u− Ihu, zh)
(78)
= ρ∗(zh)(u− Ihu).

By using the linearity of the latter arguments of a′(·)(·, ·) and the definition of functional
derivatives, the derivative of g(τ) can be obtained by

g′(τ) = lim
h→0

g(τ + h)− g(τ)

h

= J ′′(uh + τe)(e, u− Ihu)

− lim
h→0

a′(uh + (τ + h)e)(u− Ihu, zh + (τ + h)e∗)− a′(uh + τe)(u− Ihu, zh + τe∗)

h

= J ′′(uh + τe)(e, u− Ihu)

− lim
h→0

a′(uh + (τ + h)e)(u− Ihu, zh + τe∗)− a′(uh + τe)(u− Ihu, zh + τe∗)

h

− lim
h→0

a′(uh + (τ + h)e)(u− Ihu, he∗)
h

= J ′′(uh + τe)(e, u− Ihu)− a′′(uh + τe)(e, u− Ihu, zh + τe∗)

− a′(uh + τe)(u− Ihu, e∗).

Applying the fundamental theorem of calculus yields

ρ∗(zh)(u− Ihu) =

0∫

1

g′(τ)dτ

=

1∫

0

(
a′′(uh + τe)(e, u− Ihu, zh + τe∗)− J ′′(uh + τe)(e, u− Ihu)

)
dτ

+

1∫

0

a′(uh + τe)(u− Ihu, e∗)dτ,
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where the last term is the primal residual, since

1∫

0

a′(uh + τe)(u− Ihu, e∗)dτ = a(uh + e)(e∗)− a(uh)(e∗) = a(u)(e∗)− a(uh)(e∗)

= f(e∗)− a(uh)(e∗) = ρ(uh)(z − zh).

Since it was initially assumed that f(·) is linear and ρ(uh)(vh) = 0 for all vh ∈ V h, one
obtains

ρ(uh)(z − zh) = f(z)− a(uh)(z)− (f(zh)− a(uh)(zh))︸ ︷︷ ︸
=0

= ρ(uh)(z − Ihz)

with an arbitrary Ihz ∈ V h and thus altogether

ρ∗(zh)(u− Ihu) = ρ(uh)(z − Ihz)

+

1∫

0

(
a′′(uh + τe)(e, u− Ihu, zh + τe∗)− J ′′(uh + τe)(e, u− Ihu)

)
dτ.

It remains to show that the last term is the remainder ∆ρ. By applying the first equation of
the optimization problem (75), one obtains

1∫

0

(
a′′(uh + τe)(e, u− Ihu, zh + τe∗)− J ′′(uh + τe)(e, u− Ihu)

)
dτ

= ∆ρ+

1∫

0

(
a′′(uh + τe)(e, uh − Ihu, zh + τe∗)− J ′′(uh + τe)(e, uh − Ihu)

)
dτ

= ∆ρ+
(
a′(u)(uh − Ihu, z)− J ′(u)(uh − Ihu)

)

−
(
a′(uh)(uh − Ihu, zh)− J ′(uh)(uh − Ihu)

)

(75)
= ∆ρ+ 0− 0 = ∆ρ.

3.27 Theorem [Simplified error representation]. Let the primal and dual residuals be given
as in (77) and (78) respectively, then there is the a posteriori error representation

J(u)− J(uh) = ρ(uh)(z − Ihz) +R (82)

with Ihz ∈ V h arbitrary and a quadratic remainder

R =

1∫

0

(
a′′(uh + τe)(e, e, z)− J ′′(uh + τe)(e, e)

)
τdτ.

Proof. Using the in Theorem 3.25 derived error representation together with the in Proposi-
tion 3.26 derived connection between the residuals yields

J(u)− J(uh) =
1

2
ρ(uh)(z − Ihz) +

1

2
ρ∗(zh)(u− Ihu) + R̃ = ρ(uh)(z − Ihz) +

1

2
∆ρ+ R̃,
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where R̃ denotes the remainder of the error representation of Theorem 3.25. It remains to
show that R = R̃ + 1

2∆ρ. To this end, consider the terms separately. Integration by parts
yields

∆ρ =
[
τ
(
a′′(uh + τe)(e, e, zh + τe∗)− J ′′(uh + τe)(e, e)

)]τ=1

τ=0

−
1∫

0

(
a′′′(uh + τe)(e, e, e, zh + τe∗)− J ′′′(uh + τe)(e, e, e) + a′′(uh + τe)(e, e, e∗)

)
τdτ

R =

[
1

2
τ2
(
a′′(uh + τe)(e, e, z)− J ′′(uh + τe)(e, e)

)]τ=1

τ=0

− 1

2

1∫

0

(
a′′′(uh + τe)(e, e, z)− J ′′′(uh + τe)(e, e, e)

)
τ2dτ.

When considering R − R̃ − 1
2∆ρ, the first term of R cancels with the first term of 1

2∆ρ.
Simplifying the expression by collecting like terms, using the linearity of the latter arguments
of a′′′(·)(·, ·, ·, ·) and the definition of e∗ yields

R− R̃− 1

2
∆ρ =

1

2

( 1∫

0

(
a′′′(uh + τe)(e, e, e, τe∗ − e∗) + 3a′′(uh + τe)(e, e, e∗)

)
τ2dτ

− 2

1∫

0

a′′(uh + τe)(e, e, e∗)τdτ

)
.

Applying integration by parts once more and using linearity finally gives

R− R̃− 1

2
∆ρ

=
1

2

(
−
[
τ2a′′(uh + τe)(e, e, e∗)

]τ=1

τ=0
+

1∫

0

a′′′(uh + τe)(e, e, e, e∗)τ2dτ

+
[
τ3a′′(uh + τe)(e, e, e∗)

]τ=1

τ=0
−

1∫

0

a′′′(uh + τe)(e, e, e, e∗)τ3dτ

+

1∫

0

a′′′(uh + τe)(e, e, e, τe∗ − e∗)τ2dτ

)

=
1

2

(
−

1∫

0

a′′′(uh + τe)(e, e, e, e∗)τ3dτ +

1∫

0

a′′′(uh + τe)(e, e, e, τe∗)τ2dτ

)

= 0

and therefore the statement of the theorem.

3.28 Remark [On the remainder]. When considering a linear functional J(·) and a linear
variational equation, the remainder term of the simplified error representation and ∆ρ vanish.
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If this is not the case, the remainder is still quadratic in e and thus can be assumed to be
relatively small. Also, the two residuals do not coincide anymore and their difference ∆ρ
indicates the influence of the nonlinearity on the error.

Neglecting the remainder gives the simplified dual weighted residual error estimator

η̂(uh) = ρ(uh)(z − Ihz). (83)

3.29 Remark [Application to a linear problem with a linear functional]. In case of a linear
problem a(·)(·) = a(·, ·) it is

a′(uh)(·, zh) = a(·, zh).

If the functional is linear as well, it is

J ′(uh)(·) = J(·).

Considering Proposition 3.26, one can see that the remainder term ∆p vanishes if both a(·)(·)
and J(·) are linear and therefore the primal residual and dual residual coincide. Applying
this equality of residuals to the error representation (79) yields

J(u)− J(uh) = J(e) = ρ(uh)(z − Ihz),

where the remainder vanishes, since all higher order derivatives of the variational form and
the functional vanish.

3.2.1 Application to the Darcy equations

This section applies the results of Section 3.2 to the Darcy equations. Since the problem is
linear, the dual problem and its conforming Galerkin discretization are to find z ∈ V and
z ∈ V h respectively, such that

a(w, z) = J ′(u)(w) ∀w ∈ V, (84)

a(wh, zh) = J ′(uh)(wh) ∀wh ∈ V h, (85)

where a(·, ·) is given as in (7).

3.30 Theorem [DWR error indicators for the Darcy equations]. For the simplified error
indicator (83) one obtains in the setting of the Darcy equations that

|J(u)− J(uh)| ≤ ηT :=
∑

K∈T
ηDWR,K =

∑

K∈T
ρKωK

with

ρK :=

(
‖r‖2K +

1

4hK
‖j‖2∂K

) 1
2

,

ωK :=
(
‖z − Ihz‖2K + hK‖z − Ihz‖2∂K

) 1
2
.

Assuming that the functional J ′(·)(·) can be written in the form of an integral over the
domain, i.e.,

J ′(·)(·) =
∑

K∈T

∫

K

jK(·)(·),
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one obtains for the error indicator (80) that

|J(u)− J(uh)| ≤ η̃T :=
∑

K∈T

(
1

2
ηDWR,K +

1

2
η∗DWR,K

)
=
∑

K∈T

(
1

2
ρKωK +

1

2
ρ∗Kω

∗
K

)

with ηDWR,K as in the case of the simplified error indicator and

ρ∗K =



∥∥∥jK(uh)(u− Ihu) +K∆zh

∥∥∥
2

K
+

1

4hK

∥∥∥∥∥∥
∑

E∈E∂K

[
|K∇zh · nE |

]
E

∥∥∥∥∥∥

2

∂K




1
2

,

ω∗K =
(
‖u− Ihu‖2K + ‖u− Ihu‖2∂K

) 1
2
.

Proof. Using the Lp representation of the residual which was derived in Section 3.1.1 and the
triangle inequality, one obtains for the error indicator (83) of the abstract framework that

|J(u)− J(uh)| = |ρ(uh)(z − Ihz)| ≤
∑

K∈T

∣∣∣∣
(
r
∣∣
K
, z − Ihz

)
K

+
1

2

(
j
∣∣
∂K
, z − Ihz

)
∂K

∣∣∣∣ .

The factor of 1
2 takes into account, that every facet of K is being considered twice in the

sum. Application of the Cauchy–Schwarz inequality and the Cauchy–Schwarz inequality for
sums yields the statement for the simplified error indicator.

The second part of the theorem requires to develop a Lp representation of the dual residual.
To this end, let wh ∈ V h be a test function and apply cell-wise integration by parts to the
bilinear form, i.e.,

a(wh, zh) = (K∇wh,∇zh)0 =

∫

Ω

(∇zh)T K∇wh

=

∫

Ω

(KT ∇zh)T∇wh

=
∑

K∈T



∫

∂K

K∇zhwh · nK −
∫

K

∇ · (KT ∇zh)wh


 (86)

=
∑

K∈T



∫

∂Ω

K∇zhwh · nK −
∫

K

K∆zhwh


 , with K = K I,

which yields for the dual residual that

ρ∗(zh)(wh) = J ′(uh)(wh)− a′(uh)(·, zh)

= J ′(uh)(wh)− a(wh, zh) , by linearity,

= J ′(uh)(wh) +
∑

K∈T



∫

K

K∆zhwh −
∫

∂K

K∇zhwh · nK


 .

Using the assumed representation of J ′(·)(·), one can restrict ρ∗(zh)(wh) to a single cell K ∈ T
by

ρ∗
∣∣
K

(zh)(wh) = (jK(uh)(wh) +K∆zh, wh)K +
∑

E∈∂K
(
[
|K∇zh · nE |

]
E , w

h)E .

Applying the arguments of the first part of the theorem yields the statement.
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3.31 Remark. As one can see, the structure of the error indicator is the norm of the residual
times some weighting factor depending on the solution of the dual problem. However, for
practical use it is suggested in [BR03b, Remark 3.2] not to evaluate the norms but to evaluate
the scalar products directly, e.g.,

ηT =
∑

K∈T

∣∣∣∣
(
r
∣∣
K
, z − Ihz

)
K

+
1

2

(
j
∣∣
∂K
, z − Ihz

)
∂K

∣∣∣∣ ,

since further estimation leads to less sharp estimates.
Further, equation (86) was simplified by using the assumption that K = K I. In general,

it can only be assumed that K is positive definite and one obtains

ρ∗K =



∥∥∥jK(uh)(u− Ihu) +∇ · (KT ∇zh)

∥∥∥
2

K
+

1

4hK

∥∥∥∥∥∥
∑

E∈E∂K

[
|K∇zh · nE |

]
E

∥∥∥∥∥∥
∂K




1
2

.

Also, it was assumed that the functional J ′(·)(·) can be written in the form of an integral
over the domain. This assumption is especially fulfilled if J(·) is linear and continuous, since
then J ′(·)(·) = J(·) and the Riesz representation theorem gives the existence of a j ∈ V such
that J(w) = (j, w)V = (j, w)0 for all w ∈ V .

3.2.2 Application to the Stokes equations

This section applies the results of Section 3.2 to the Stokes equations. Let ϕ = (u, p) ∈ V×Q,
ϕh = (uh, ph) ∈ Vh × Qh be the solution and the solution of the Galerkin discretization
respectively. As the Darcy equations, they yield a linear problem and thus the continuous
and discretized dual problems are to find ψ = (z, r) ∈ V ×Q and ψh = (zh, rh) ∈ Vh ×Qh
respectively, such that

a(w, z) + b(z, s)− b(w, r) = J ′(ϕ)((w, s)) ∀(w, s) ∈ V ×Q,
a(wh, zh) + b(zh, sh)− b(wh, rh) = J ′(ϕh)((wh, sh)) ∀(wh, wh) ∈ Vh ×Qh,

where the bilinear forms a(·, ·) and b(·, ·) are given as in (16). Since it is a(·, ·) is symmetric,
one obtains

a(z,w)− b(−z, s) + b(w,−r) = J ′(ϕ)((w, s)) ∀(w, s) ∈ V ×Q,
a(zh,wh)− b(−zh, sh) + b(wh,−rh) = J ′(ϕh)((wh, sh)) ∀(wh, sh) ∈ Vh ×Qh,

which is the weak formulation of
{
−∇ ·T(z,−r) = J ′v(ϕ)
∇ · (−z) = ∇ · z = J ′p(ϕ)

,

{
−∇ ·T(zh,−rh) = J ′v(ϕ

h)
∇ · (−zh) = ∇ · zh = J ′p(ϕ

h)
,

with an L2 representation {J ′v, J ′p} of the functional J ′(·), i.e., again a (possibly compressible)
Stokes problem but with negated pressure field. Since flow is always directed from areas with
high pressure to areas with low pressure, the dual problem reverses the direction of the flow
field.
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3.32 Theorem [DWR error indicators for the Stokes equations]. For the simplified error
indicator (83) one obtains in the setting of the Stokes equations that

|J(ϕ)− J(ϕh)] ≤ ηT :=
∑

K∈T
ηDWR,K =

∑

K∈T
ρKωK

with

ρK :=

(
‖r‖2K +

1

4hK
‖j‖2∂K

) 1
2

,

ωK :=
(
‖ψ − Ihψ‖2K + hK‖ψ − Ihψ‖2∂K

) 1
2
,

where r and j are given as in the Lp representation of the residual (64).
Assuming that the functional J ′(·)(·) can be written in the form of an integral over the

domain, i.e.,

J ′(·)(·) =
∑

K∈T

∫

K

jK(·)(·),

one obtains for the error indicator (80) that

|J(ϕ)− J(ϕh)| ≤ η̃T :=
∑

K∈T

(
1

2
ηDWR,K +

1

2
η∗DWR,K

)
=
∑

K∈T

(
1

2
ρKωK +

1

2
ρ∗Kω

∗
K

)

with ηDWR,K given as in the case of the simplified error indicator and

ρ∗K =

(∥∥∥
(
jK(ϕh)(ϕ− Ihϕ) +∇ ·T(zh,−rh),∇ · zh

)∥∥∥
2

K

+
1

4hK

∑

E∈E∂K

∥∥∥−
[
|T(zh,−rh) · nE |

]
E

∥∥∥
2

∂E

) 1
2

,

ω∗K =
(
‖ϕ− Ihϕ‖2K + hK‖ϕ− Ihϕ‖2∂K

) 1
2
.

Proof. The proof can be performed analogously to the proof of Theorem 3.30. To this end,
use the Lp representation of the residual which was derived in Section 3.1.2 and apply the
triangle inequality to the error indicator (83) of the abstract framework, yielding

|J(ϕ)− J(ϕh)| = |ρ(ϕh)(ψ − Ihψ)| ≤
∑

K∈T

∣∣∣∣
(
r
∣∣
K
,ψ − Ihψ

)
K

+
1

2

(
j
∣∣
∂K
,ψ − Ihψ

)
∂K

∣∣∣∣ .

The factor of 1
2 takes into account, that every facet of K is being considered twice in the

sum. Application of the Cauchy–Schwarz inequality and the Cauchy–Schwarz inequality for
sums yields the statement for the simplified error indicator.

Since the dual problem is again a problem of the Stokes kind, one can replace the solution
(u, p) by (z,−r), the solution of the discretized problem (uh, ph) by (zh,−rh) and then repeat
the first part of the proof.

3.33 Remark. As in Remark 3.31, it might be of advantage to evaluate the scalar products
directly since further estimation leads to less sharp estimates. In the case of a linear and
continuous functional J(·), the form assumed in the theorem of an integral over the domain
exists.
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3.2.3 Practical evaluation of the error estimators

Evaluating the error estimators possesses the problem that either the solution of the contin-
uous dual problem z or even both, z and the solution of the continuous primal problem u
have to be known, which in general is not the case. In the following, the practical evaluation
of the simplified error estimator ηT will be discussed, therefore only z is replaced by some
suitable discrete approximation z̃. There are three main approaches to this task:

(i) Approximation by a higher-order method. In this approach one replaces z by a solution
z̃ to the dual problem on a finer grid or with a higher order finite element method. This
however means, that the computation of the dual, auxiliary problem in order to apply
the estimator in fact dominates the actual problem with respect to computational costs.
An approximation can be achieved by, e.g., solving the dual problem on a coarser grid
with higher order finite elements, i.e., z̃ = Ih2hz

h
(2), where zh(2) denotes the solution of

the discretized problem.

(ii) Approximation by higher-order interpolation. Another way of obtaining an approxima-
tion of z that does not require modifying the finite element spaces or changing the grid
is based on interpolation. If the order of the finite elements is p, one tries to get an
improved approximation by patch-wise interpolation of order p′ > p with the interpo-
lation nodes being the vertices on a patch which usually consists of four elements in
the case of quadrilaterals. If the grid contains hanging nodes or nonconforming finite
elements have been used, special care is required to preserve the higher-order accuracy
of the interpolation. In this case the function zh is discontinuous on the vertices and it
is suggested in [GHT04, Section 3] to apply the higher-order interpolation once to get
continuity and another time for actual interpolation purposes, i.e., z̃ = I2

interpz
h where

Iinterp denotes the interpolation.

(iii) Approximation by difference quotients. Using the representation |J(u) − J(uh)| =∑
K∈T ρKωK and the nodal linear interpolation fulfilling Ihz(x) = z(x) for all x ∈ N ,

one can apply the following interpolation estimates to the weights ωK .

3.34 Proposition [Interpolation estimates]. Assuming that z ∈ H2(Ω), the interpo-
lation estimates

‖z − Ihz‖20,K ≤ Ch4
K‖∆z‖20,K ,

hK‖z − Ihz‖20,∂K ≤ Ch4
K‖∆z‖20,K

for K ∈ T hold.

Proof. In [Cia91, Theorem 16.2] it is stated that for s being the highest order partial
derivative in the definition of the degrees of freedom and m, k ∈ N∪{0}, p, q ∈ [1,∞]
such that the inclusions

W k+1,p(K̂) ↪→ Cs(K̂),

W k+1,p(K̂) ↪→Wm,q(K̂),

Pk(K̂) ⊂ P (K) ⊂Wm,q(K̂)

hold, one obtains the interpolation estimate

‖v − Ihv‖Wm,q(K) ≤ Chk+1−m
K |v|Wk+1,p(K)
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for all v ∈ W k+1,p(K). Here, K̂ is the reference element corresponding to K ∈ T ,
W k,p(K̂) denotes the Sobolev space containing functions whose weak derivatives up to
order k are contained in Lp(K̂), Pk(K̂) is the space of polynomials of degree ≤ k and
P (K) is defined as in (9). For m = 0, k = 1 and p = q = 2 the first part of the
statement is yielded directly.

For the second part of the statement the inverse estimate [Cia91, Equation (17.23)] is
needed, which states that for h = maxK∈T hK one obtains

‖v − Ihv‖0,∂K ≤ Ch−
1
2 ‖v − Ihv‖0,K .

Applying the first part of the proof yields

h‖v − Ihv‖20,∂K ≤ Ch4
K‖∆v‖20,K

and with h ≥ hK for all K ∈ T the second part of the statement.

Application of the above proposition to ωK then yields ωK ≤ Ch2
K‖∆z‖K . Now the

second derivatives ∆z can be replaced by a second order difference quotient ∆hzh. This
yields

ρKωK ≤ C‖∆hzh‖K
(
h4
K‖r‖2K +

1

4
h3
K‖j‖2∂K

) 1
2

and therefore with the Cauchy–Schwarz inequality the error estimator

ηT =

(∑

K∈T

∥∥∥∆hzh
∥∥∥

2

K

(
h4
K‖r‖2K +

1

4
h3
K‖j‖2∂K

)) 1
2

.

In [Ver13, Section 1.11] it is also noted that if the estimate’s domain K is convex, the
regularity estimate ‖∆z‖0,K ≤ C holds for some known constant C, yielding with the
Cauchy–Schwarz inequality the error indicator

ηT =

(∑

K∈T
h4
Kρ

2
K

) 1
2

.

This means that, compared to the residual based error estimators (53) and (65), which
estimate the error in the energy norm, one gains an additional factor of hK cell-wise.

3.35 Remark [On the quality of the evaluation]. The quality of the error estimator can be
measured with a modified version of the efficiency index (32), which reads

IDWR
eff :=

∣∣∣∣
ηT

J(u)− J(uh)

∣∣∣∣ . (87)

It represents the degree over-estimation and should be close to one. In [BR03a, Section 4.1] it
is reported that the approximation by a higher-order method as well as the approximation by a
higher-order interpolation yield an efficiency index close to one with decreasing tolerance. The
approximation by difference quotients is reported to cause over-estimation, i.e., IDWR

eff � 1.
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4 Cell marking strategies

In the previous sections models for flow problems and corresponding a posteriori error esti-
mates have been derived. In virtue of the adaptive process as described by Algorithm 1.1,
this sections deals with part (iv).(a), i.e., strategies determining, which cells are to be re-
fined based on the previously derived error estimates. The two most popular approaches, cf.
[Ver13, Section 2.1.1], are the so-called “Maximum strategy” and the “Equilibration strategy”
or “Dörfler marking”.

The maximum strategy takes the maximal value of ηK , K ∈ T , and marks every cell with
an error that is higher than a prescribed percentage of that maximal value.

4.1 Algorithm [Maximum strategy, see [Ver13, Algorithm 2.1]]. Given: A partition T , error
indicators ηK for the elements K ∈ T and a threshold θ ∈ (0, 1).

Sought : A subset T̃ ⊂ T of marked elements that should be refined.

(i) Compute ηT ,max = maxK∈T ηK .

(ii) For each K ∈ T : If ηK ≥ θηT ,max, mark K for refinement and put it into the set T̃ .

Instead of taking the maximal ηK as reference value, one could also take the total error

ηT =
(∑

K∈T η
2
K

) 1
2 as reference value and mark the cells K ∈ T with ηK ≥ θηT for some

θ ∈ (0, 1). For θ ≈ 0, one obtains global refinement and for θ ≈ 1 one obtains very few
marked cells which represent most of the error. In the latter case, one is very efficient in
terms of degrees of freedom but needs a lot of iterations of the whole adaptive process. Since
a single iteration is rather costly, one could take a smaller θ, which then also potentially
results in more degrees of freedom. A strategy with the intention mark as few triangles as
possible while sustaining an uniform convergence of the whole process is the above mentioned
equilibration strategy which was first proposed in [Dör96, Section 4.2].

4.2 Algorithm [Equilibration strategy, adapted from [Ver13, Algorithm 2.2]]. Given: A
partition T , error indicators ηK for the elements K ∈ T and a threshold θ ∈ (0, 1).

Sought : A subset T̃ ⊂ T of marked elements that should be refined.

(i) Compute ΘT =
∑

K∈T η
2
K , set ΣT = 0 and T̃ = ∅.

(ii) If ΣT ≥ (1− θ)ΘT return T̃ and stop, otherwise continue with step (iii).

(iii) Compute η̃T ,max = max
K∈T \T̃ ηK .

(iv) For all elements K ∈ T \T̃ : Check whether ηK = η̃T ,max. If this is the case, put K in

T̃ and add η2
K to ΣT , otherwise skip K.

Once all elements have been checked, return to step (ii).

For θ → 0 and θ → 1 the same behaviors as in the maximum strategy can be observed.
When dealing with problems that possess a layer in their solution, it might happen that the

majority of the cells has only little error and most of it concentrates on very few cells. The
cells that have only little error might split up into cells which have almost no error and cells
which have significant error but still less than the ones that hold the majority of the overall
error. If this is the case, the cells with the “medium” error might never be refined, which
is disadvantageous for the convergence of the adaptive process. Being disadvantageous for
the convergence means that one potentially needs more iterations to arrive at a sufficiently
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Set minimum numbers
of cells to be refined

Apply marking
strategy, marking
cells to be refined

Refined
enough?

Relax strategy con-
ditions to allow more

cells to be refined

Stop

no

yes

Figure 6: Algorithm that marks at least a minimal number of cells for refinement per iteration
of the adaptive process, see [Joh00, Section 4].

accurate solution, which is more expensive than just refining more cells hoping to refine at
least some of the medium error ones. In total a cell marking algorithm could look like in
Figure 6.

Instead of relaxing the marking conditions like depicted in Figure 6, one could also just
mark the first

εM ≈ 1% (88)

cells holding the largest error and apply the marking strategy to the remaining cells, like
proposed in [Ver13, Section 2.1.1].

5 Cell refinement

Following the steps of Algorithm 1.1, this section corresponds to (iv).(b), the actual refinement
of marked cells and therefore construction of T k+1 out of T k. Here, only the two-dimensional
case will be considered.

Unlike uniform or global refinement where all cells in the current mesh T k are refined
in order to obtain T k+1, the kind of refinement relevant to the adaptive algorithm is of a
local nature. Often (cf., [Ver13, Section 2.1.2]), refinement of cells is achieved by introducing
vertices at the midpoint of the edges and then connecting the edge midpoints within each
triangle or quadrilateral, as shown in Figure 7. This scheme is known as the dyadic split
or the 1-to-4 split since one cell is split into four and the resulting cells are called red. Its
application yields cells whose shape parameter hK

ρK
does not change but also hierarchy of

meshes in which it is possible that cells of a higher refinement-level meet cells of a lower
refinement-level, introducing hanging nodes as described in the following definition.
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Figure 7: Refinement of triangles and quadrilaterals by the 1-to-4 split. The refined triangles
and quadrilaterals are red, the resulting hanging nodes are denoted by •.

5.1 Definition [Hanging nodes, conforming and nonconforming grid]. Hanging nodes are
vertices that arise when two elements of T are not disjoint and do not share a complete
lower-dimensional face of their boundaries, i.e., violate the admissibility condition on the
grid described in Section 2.1.2 like shown in Figure 7. If a grid has no hanging nodes, it is
called conforming, otherwise it is called nonconforming.

When a conforming grid is desired, one needs to resolve these hanging nodes by refining
adjacent unrefined cells. There are several ways of resolving, the here presented way can be
found in [Ver13, Section 2.1.3] and is the so called red-green-blue or red-green-blue-purple
refinement for triangles or quadrilaterals, respectively. The elements obtained are called
green, blue and purple and constructed by

• bisecting exactly one edge of an element for green elements,

• bisecting exactly two edges of an element for blue elements,

• bisecting exactly three edges of a quadrilateral for purple elements.

Figure 8 illustrates the different green, blue and purple refinements. In constrast to the red
refinement, the green, blue and purple refinements do create elements that are less shape
regular, which, if not prevented, could lead to a violation to the shape regularity condition.
This can be done by imposing conditions on the green and blue refinement:

• In a blue refinement, the longest edge of the refinement edges is bisected first, i.e., the
refinement as in the upper picture of Figure 9 is forbidden.

• When a green refinement can be performed, it is first checked if the edge that is to
be bisected was refined in the last ngen refinements. In that case, a blue refinement
is performed instead. In [Ver13] a value of ngen = 1 is suggested, as larger values can
cause a massive increase of the refinement area. The lower part of Figure 9 shows a
situation in which a green refinement can be performed but is forbidden.

As it was already mentioned in the condition on the green refinement, conforming closures of
the grid have the consequence that the marking of cells which are to be refined is less local.
On the other hand, one has to take special care in a purely nonconforming approach as well.
Here, the continuity across edges and faces gets violated complicating the matrix assembly
and the situation may arise that neighboring elements vastly differ in size. To prevent this,
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Figure 8: Resolving of hanging nodes in triangles (top row) and quadrilaterals (bottom row).
The element that is being subdivided has a bold boundary. In the top row from
left to right: Green, blue and red refinement. In the bottom row from left to right:
Green, blue, blue, purple and red refinement.

Figure 9: Forbidden blue and green refinements, hanging nodes are denoted with a •. In
the upper left the forbidden blue refinement, in the upper right the correct blue
refinement. In the lower left the for ngen = 1 forbidden green refinement, in the
lower right the corresponding blue refinement which introduces a new hanging node.

66



refinement is often restricted to “balanced” or “1-regular” meshes (cf., e.g., [BSW83, Section
2]), i.e., meshes where the refinement level of adjacent elements is not allowed to differ more
than one. One possibility to achieve 1-regular grids is to remove green, blue and purple
refinements before the next refinement. This however yields grid hierarchies which are no
subsets of each other, as depicted in Figure 4.

In the numerical studies the software ParMooN was used, which is the parallel version of
the finite element package MooNMD [JM04]. Here, the refinement is restricted to 1-regular
grids.

This section concludes by construction of T k+1 out of T k the last step of the adaptive
process as in Algorithm 1.1. In terms of sections, one now would go back to Section 2 and
solve the considered problem on the newly obtained mesh.

6 Numerical studies

This chapter deals with numerical examples and studies for Algorithm 1.1 in the residual
based case and the dual weighted residual case. The examples’ solutions should possess
layers or singularities such that an application of a posteriori estimates makes sense or is
even necessary. Further, instead of considering the Darcy equations like in the previous
sections, here the scalar convection–diffusion equations will be considered. In the case of
K = K I, they can be seen as a generalization of the Darcy equations.

The first two examples deal with convection–diffusion equations, followed by another two
examples for the Stokes equations and one example with the coupled Stokes–Darcy system.
For both the convection–diffusion and Stokes equations there is one example for the residual
based error estimator in the energy norm and one example concerning the dual weighted
residual method, as introduced in Section 3.1 and Section 3.2, respectively.

All computations were performed using the parallel finite element package ParMooN, which
is a fork of MooNMD [JM04]. The arising linear systems of equations were solved using the
direct solver UMFPACK. The adaptive algorithm was applied using the maximum strategy
of Algorithm 4.1.

6.1 Scalar convection–diffusion equations

Scalar convection–diffusion equations model the transport of scalar quantities like tempera-
ture or concentration. In the steady-state, dimensionless case, the associated problem reads
as follows:

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and f ∈ L2(Ω) a source term.
Then one wants to find u : Ω→ R such that




−ε∆u+ b · ∇u+ cu = f , in Ω,

u = g , on ΓD,
ε∇u · n = gN , on ΓN ,

(89)

where g and gN denote Dirichlet and Neumann boundary conditions on relatively open bound-
ary components ΓD ⊂ ∂Ω and ΓN ⊂ ∂Ω, respectively, such that

ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅,

and ε > 0 is the diffusion, b : Ω→ Rd the convection, and c : Ω→ R the reaction parameter.
The weak formulation of problem (89) reads as follows:
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Find u ∈ H1(Ω) such that
{
a(u, v) + b(u, v) + c(u, v) = (f, v) + (gN , v)ΓN ,

u = g , on ΓD,
(90)

for all
v ∈ V0 :=

{
v ∈ H1(Ω) : v

∣∣
ΓD

= 0
}
,

where
a(u, v) := (ε∇u,∇v)0, b(u, v) := (b · ∇u, v), c(u, v) := (cu, v).

Similarly as in Section 2.1.2 and Section 2.2.2, one can discretize the problem using a
conforming standard Galerkin discretization with a finite-dimensional subspace V h ⊂ V0.
For simplicity of the presentation homogeneous Dirichlet boundary conditions are assumed.
Then, a solution uh ∈ V h is sought such that

a(uh, vh) + b(uh, vh) + c(uh, vh) = (f, vh) + (gN , v
h)ΓN ∀vh ∈ V h. (91)

However, on coarse or moderately fine meshes the above discretization sometimes cannot
resolve all important features of the solution like in the case of the Hemker problem, see
Section 6.1.1. One then can equip the discretization with a stabilizing component. Here, the
SUPG stabilization was used, introducing an additional term on the left-hand side of (91),
namely, ∑

K∈T
(−ε∆uh + b · ∇uh + cuh − f, δKb · ∇vh)0,K ∀v ∈ V h.

The stabilization parameter δK is chosen for d = 2 as

δK(x, y) =
h̃K

2p‖b(x, y)‖ζ(PeK(x, y))

with

PeK(x, y) =
‖b(x, y)‖h̃K

2pε
, ζ(α) = cothα− α−1,

where h̃K is the length of a mesh cell K ∈ T in the direction of b, and p is the degree of the
used finite element space, see, e.g., [JS14].

Generally, residual based a posteriori error indicators for the scalar convection–diffusion
equations are of the form

η2
∗,K = αK‖f + ε∆uh − b · ∇uh − cuh‖20,K +

∑

E∈EK \ EΓN

βE
2

∥∥∥
[
|ε∇uh · nE |

]
E

∥∥∥
2

0,E
(92)

+
∑

E∈EK,ΓN

βE‖ε∇uh · nE − gN‖20,E , (93)

see [Joh00, Section 3.4]. For

αK = h4
K , βE = h3

E (94)

one obtains an residual based a posteriori error indicator in the L2-norm, see [Joh00, Section
3.5]. Another a posteriori error indicator ηK,eng for the Galerkin discretization with SUPG
stabilization in the energy norm was derived in [Ver98] with

αK = min{h2
Kε
−1, 1}, βE = min{hEε−1, ε−

1
2 }. (95)
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In the following, two numerical examples of the scalar convection–diffusion equations will
be studied. The first example considers a problem of which the solution is unknown, using the
error indicator given by (95). The quality of the grids was measured in terms of overshoots and
undershoots, i.e., unphysical values in the computed solution and it is going to be studied how
the parameteres εM and θ in the marking strategy influence the results in terms of required
computational effort.

The second example compares the numerical solution of the scalar convection–diffusion
equations to a given analytical solution which possesses layers. To obtain the numerical
solution, Algorithm 1.1 was applied using the dual weighted residual method with the mean
value of the solution in an area away from the layers as functional of interest. Since the
analytical solution is known, efficiency indices can be computed and it is going to be analyzed
how they are influenced by choosing different values of εM (88) in the marking strategy.

6.1.1 The Hemker problem

The Hemker problem was introduced in [Hem96] and describes in the case of ε� ‖b‖L∞(Ω) =
1 heat transfer from a hot circle. The solution has two interior layers in direction of the heat
transfer and a boundary layer at the hot circle. Its domain is given by

Ω = {(x, y) ∈ R2 : x ∈ [−3, 9], y ∈ [−3, 3], x2 + y2 > 1}

with relatively open boundary components ΓD and ΓN . The problem’s parameters are ε =
10−4, b = (1, 0)T , f = 0, gN = 0, g = uD with

uD(x, y) =

{
0 , if (x, y) ∈ {−3} × [−3, 3],

1 , if x2 + y2 = 1.

The initial triangulation of the domain with marked boundary components can be seen in
Figure 10. A numerical solution on a fine grid with no visible unphysical values is presented
in Figure 11. One can see the heat transfer and the resulting boundary and inner layers.

The computations were carried out for the energy-norm error indicator (95) and different
values of θ ∈ (0, 1) and different values of the minimum number of cells to be refined εM ∈
(0, 1] per iteration of the maximum strategy of Section 4 using P1 finite elements. If not
sufficiently many mesh cells were marked for refinement by θ, the parameter was updated by
θ → 0.7θ. One should, if possible, also apply uniform refinement of the initial grid before
applying the adaptive algorithm until the most important features of the solution become
recognizable, e.g., the position of the layers. This step can be seen as a kind of pre-processing
of the initial grid until it becomes sufficiently fine. The number of uniform refinement steps
highly depends on the problem and on the initial grid and thus has to be found by numerical
tests. In this example, no uniform refinement was performed before applying the adaptive
algorithm. Since the analytical solution is unknown, the quality of the numerical solutions is
here measured in terms of overshoots co and undershoots cu. These are values of the solution
that are not physical and can be caused by spurious oscillations. In this case, the values for
the undershoots are defined by the minimal value of the discrete solution and the values for
the overshoots are defined by the maximal value of the discrete solution subtracted by one,
i.e.,

cu := minuh, co := maxuh − 1,

see [ACF+11, Section 3.1].
When applying Algorithm 1.1 to the problem with cell marking strategy parameters θ = 1

2
and εM = 25%, cf. Section 4, a sequence of grids is generated of which the visually most
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ΓN

ΓN

ΓN

ΓD ΓD

Figure 10: Initial triangulation with 104 cells of the domain of the Hemker example, see
Section 6.1.1. The red part of ΓD corresponds to uD = 1, the orange part of ΓD
corresponds to uD = 0. On ΓN homogeneous boundary conditions are prescribed.

Figure 11: Solution of the Hemker problem.
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Figure 12: The evolution of grids for θ = 1
2 and a minimum of εM = 25% cells to be refined

per iteration of Algorithm 1.1. From top-left to bottom-right the grids belong to
iterations 2, 5, 8 and 11 of Algorithm 1.1, the grids consisted out of 484, 4206,
29987 and 217891 cells, respectively.

significant elements are depicted in Figure 12. One can see that the refinement concentrates
mostly around the boundary layer at the hot circle and the two interior layers in direction of
the heat transfer. This behavior is expected, since these are the regions in which the solution
changes most and thus requires a better resolution than elsewhere.

The goal is to compare the efficiency of the algorithm for different values of θ and different
values of εM and ultimately compare these results to uniform refinement. In Figure 13, tests
were run for εM = 5% and θ ∈ {0.1, 0.3, 0.7, 0.9}.

One can observe that for all tested values of θ, the algorithm reduces co and cu after a
certain number of iterations. This number of iterations is higher for higher values of θ and
lower for lower values of θ. Nevertheless, the number of iterations is no good measure for the
efficiency. Therefore, the number of degrees of freedom, i.e., efficiency in terms of memory
usage, as well as the cumulative execution time on a single-core 3.5 GHz CPU are being
compared in Table 1 for the level that yields values of co and cu which are closest to 10−2

and −10−2, respectively. The algorithm terminated after 35 levels or once the system to be
solved became larger than 2 GB which is an internal memory restriction of the direct solver
that was used.

The data indicates that the εM parameter dominates the θ parameter as soon as it is
≥ 0.25. Indeed, θ had to be decreased several times in the numerical tests. Also, it seems to
be easier to reduce the overshoots co by uniform refinement than the undershoots cu.

In the case of εM = 0.75, the undershoots were even worsened for all values of θ by applying
the adaptive algorithm and for εM = 0.5, the target quantity of −10−2 was never reached
before the memory requirements exceeded 2 GB. Further, the overshoots co require about
twice as much time (about 20 seconds) and more degrees of freedom for εM = 0.05 than for
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Table 1: Tables comparing required level, degrees of freedom (d.o.f.) and computation time
in seconds to get closest to cu = −10−2 (a) and co = 10−2 (b) for different values of
εM and θ.

(a) Table showing required level, degrees of freedom (d.o.f.) and needed time to get closest
to cu = −10−2 for different values of εM and θ.

cu Level d.o.f. time in seconds

εM = 0.05

θ = 0.1 −0.00918006 24 106237 15.797729
θ = 0.3 −0.00945207 26 107181 16.295698
θ = 0.7 −0.00819104 28 110582 16.210087
θ = 0.9 −0.00949332 29 87307 14.07319

εM = 0.25

θ = 0.1 −0.00199572 12 168352 13.473212
θ = 0.3 −0.00074229 12 177456 14.074377
θ = 0.7 −0.00201526 12 158205 12.687869
θ = 0.9 −0.000766904 12 175689 14.104466

εM = 0.50

θ = 0.1 −0.373561 10 857838 66.255399
θ = 0.3 −0.373561 10 833742 64.993061
θ = 0.7 −0.373561 10 810890 81.338537
θ = 0.9 −0.373561 10 821472 64.373674

εM = 0.75

θ = 0.1 −0.625846 0 70 0.029041
θ = 0.3 −0.625846 0 70 0.036025
θ = 0.7 −0.625846 0 70 0.021676
θ = 0.9 −0.625846 0 70 0.036853

(b) Table showing required level, degrees of freedom (d.o.f.) and computation time to get
closest to co = 10−2 for different values of εM and θ.

co Level d.o.f. time in seconds

εM = 0.05

θ = 0.1 0.00438 25 141218 20.921739
θ = 0.3 0.00462 27 149824 21.804098
θ = 0.7 0.00394 29 153826 21.849847
θ = 0.9 0.00176 31 156241 24.17644

εM = 0.25

θ = 0.1 0.00696 11 87472 7.139732
θ = 0.3 0.00689 11 91034 7.340307
θ = 0.7 0.00696 11 82659 6.719419
θ = 0.9 0.00691 11 90370 7.393496

εM = 0.50

θ = 0.1 0.00445 8 133147 9.602799
θ = 0.3 0.00445 8 129870 9.486261
θ = 0.7 0.00445 8 126574 12.430737
θ = 0.9 0.00445 8 127758 9.412674

εM = 0.75

θ = 0.1 0.00026 7 121941 12.647923
θ = 0.3 0.00026 7 114115 11.822957
θ = 0.7 0.00026 7 108481 8.313629
θ = 0.9 0.00026 7 103287 10.95962
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(a) Undershoots of the solution u of the
Hemker problem for levels 17, . . . , 32.

3323 24 25 26 27 28 29 30 31 32

0,18

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

level

ov
er

sh
oo

t v
al

ue

θ=0.1

θ=0.3

θ=0.9

θ=0.7

(b) Overshoots of the solution u of the
Hemker problem for levels 23, . . . , 33.

Figure 13: Undershoots (a) and overshoots (b) of the Hemker problem for a minimum
number of cells to refine of εM = 5% per level and refinement tolerances
θ ∈ {0.1, 0.3, 0.7, 0.9} in red, orange, yellow and green, respectively. The x-axis
represents the current level, the y-axis the undershoot or overshoot.

the other values of εM .
On the other hand, the undershoots were resolved by εM ∈ {0.05, 0.25} in almost the same

time, despite that εM = 0.05 requires about twice as many iterations as εM = 0.25. In the
case of εM = 0.05, one can observe that for increasing θ, one becomes more and more memory
efficient. For θ = 0.9, one even has about half the degrees of freedom than for εM = 0.25 and
any value of θ used.

When comparing the results to uniform refinement, the trend continues, i.e., the under-
shoots were not resolved up to −10−2 until the memory requirements exceeded 2 GB and
the overshoots were resolved up to 10−2 at level 6 with 214144 degrees of freedom, which is
approximately between 1.3 and 2.4 times the number of degrees of freedom that were required
for the adaptively refined grids. Thus, as one would expect, uniform refinement is much more
memory inefficient than adaptive refinement. On the other hand, this result was computed in
6.79 seconds, which is faster than the adaptive refinement except for the configuration with
parameters εM = 0.25 and θ = 0.7.

Altogether, if one is interested in reducing co as well as |cu|, the parameter εM should
either be around 0.25 regardless of θ or one should uniformly refine the initial grid a few
times before applying the adaptive algorithm with a value of εM around 0.05 and a value
of θ around 0.9 to be as efficient as possible with respect to computation time and memory
requirements.

6.1.2 Example with boundary layers

This example is Example 5.2 of [Joh00]. The solution is prescribed by

u(x, y) = xy2 − y2 exp

(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x− 1) + 3(y − 1)

ε

)

on the unit-square Ω = (0, 1)2 with ε ∈ {10−2, 10−4, 10−6}, b = (2, 3)T , c = 1, and ∂Ω = ΓD,
see Figure 14. The right-hand side and boundary conditions are chosen according to the

73



0.5
1x 0

0.5

1

y
0

0.5

1

u

Figure 14: Solution for the example given in Section 6.1.2 for ε = 10−6.

solution. The solution possesses boundary layers at x = 1 and y = 1. Goal of this section
is to apply the dual weighted residual method to this example for a functional of interest
that considers an area away from the boundary layers, compare the resulting mesh to a mesh
that was constructed by application of a residual based a posteriori error estimator and then
analyze its modified efficiency index (87) for different values of ε.

The computations were carried out for the dual weighted residual method in the L2-norm
by reweighting the error indicator (94), the weights were evaluated by difference quotients, cf.
Section 3.2.3. The used finite element space was P2. Concerning the cell marking strategy, the
minimum number of cells to be refined was chosen as εM = 25% together with θ = 0.5 and an
update of θ → 0.7θ if not sufficiently many cells were marked for refinement. The functional
of interest is the function average value in B = {(x, y)T : (x−0.7)2 + (y−0.3)2 ≤ 0.012}, i.e.,

J(u) =
1

|B|

∫

B

u. (96)

The initial grid and a selection of adaptively refined grids can be seen in Figure 15. One
can observe that the dual weighted residual method with ηdwr,L2 indeed concentrates the
refinement around B and leaves the layer area untouched, whereas the error indicator ηL2

yields a grid that is very fine exclusively in the area of the layer. Aside from the region B ⊂ Ω
that gets refined, there is also a stripe of refined cells from B into direction of the negative
gradient of the solution. The images of the dual solution in Figure 16 possess this stripe
as well with a slight decay into the direction of the boundary and are 0 elsewhere, which
coincides with the sequence of grids one can observe in Figure 15.

The degrees of freedom and efficiency indices for ε ∈ {10−2, 10−4, 10−6} are shown in Table
3. Generally the values indicate a strong over-estimation of the error which could be because
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Table 3: Efficiency indices and degrees of freedom for the example of Section 6.1.2 for ε ∈
{10−2, 10−4, 10−6}. The “-” indicates that the memory requirements exceeded 2 GB
and therefore the direct solver ran out of memory.

εM = 10−2 εM = 10−4 εM = 10−6

Level d.o.f. IDWR
eff d.o.f. IDWR

eff d.o.f. IDWR
eff

0 1089 232.646 1089 520.165 1089 536.665
1 1968 1234.49 2018 1065.5 2018 1075.18
2 3559 2957.45 3842 1056.27 3974 1092.1
3 7166 3044.73 7346 310.602 7490 338.037
4 14275 1560.94 14083 237.817 14103 264.182
5 29320 485.532 26414 157.408 26855 168.199
6 60608 337.526 61657 125.988 61383 100.6
7 115883 633.54 131491 120.078 133910 56.3008
8 224739 249.064 261908 151.483 269900 35.9318
9 414182 442.575 711988 546.933 624412 22.5777
10 812489 476.89 1394826 1038.08 1252220 8.01729
11 1517876 36.4234 - - - -

of the approximation of the continuous dual solution by difference quotients, as reported in
[BR03a, Section 4.1]. At least in the cases of ε = 10−2 and ε = 10−6 one can see decreasing
over-estimation, in the case of ε = 10−4 one might need more iterations.

6.2 Stokes equations

This section considers two numerical examples for the Stokes equations. First an example
with a known solution is being compared with results from the literature, as well as analyzed
with respect to the parameters εM and θ, which are part of the chosen cell marking strategy,
see Section 4.

In the second example, the goal is to compute a concrete physical quantity. The compu-
tations were carried out for the dual weighted residual method with a functional of interest
that represents the physical quantity, the unweighted error estimator (65) and for stepwise
uniformly refined grids. The different methods’ results are compared with respect to their
memory consumption that is required to calculate the quantity up to a certain tolerance.

6.2.1 Disc with a crack

This example deals with a Stokes problem for which the analytical solution is known. It is
given in polar coordinates (r, θ) ∈ [0,∞)× [0, 2π) by

u =
√
rub =

√
r

(
cos

θ

2
− cos

3θ

2
, 3 sin

θ

2
− sin

3θ

2

)
,

p = − 4√
r

cos
θ

2
,

with

x = r cos θ, y = r sin θ,
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Initial grid Level 3 of ηdwr,L2

Level 7 of ηdwr,L2 Level 10 of ηL2

Figure 15: The initial grid (top left) with 512 cells and 1089 degrees of freedom, the grid after
3 (top right) and 7 (bottom left) iterations of the dual weighted residual method
using the functional of interest given by (96) with 3691 cells and 7490 degrees of
freedom and 66855 cells and 133910 degrees of freedom, respectively. Further, the
grid after 10 (bottom right) iterations of the residual estimator ηL2 given by (94)
with 324045 cells and 676698 degrees of freedom.
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Level 3 Level 7

Figure 16: Dual solution of the problem given in Section 6.1.2 for levels 3 and 7 with 3691
and 66855 cells, respectively.

where (x, y) ∈ R2, see [Joh98, Example 11] and [BW90, Section 5.1].
The domain is a disc of radius 1 with the center (0, 0) ∈ R2 and a crack along the x-axis

between the points (0, 0) ∈ R2 and (1, 0) ∈ R2. The domain and its initial triangulation
are schematically depicted in Figure 17. The example’s boundary conditions are Dirichlet
boundary conditions which are given on the circle by ub and on the crack by homogeneous
boundary conditions, the right-hand side is according to the prescribed solution set to be
homogeneous. The viscosity is set to ν = 1.

The solution possesses in the pressure component a singularity in the origin, as can be
observed in Figure 18.

The computations were carried out using the a posteriori error indicator in the energy norm
(65) and P2/P1 finite elements. The cell marking strategy was chosen to be the maximum
strategy of Algorithm 4.1 for different parameters of εM and θ. If not sufficiently many cells
were marked for refinement, θ was updated by θ → 0.7θ. As in [Joh98], the quality of the
computed solution (uh, ph) was measured in terms of ‖u − uh‖0 and the resolution of the
singularity of the pressure. The resolution is measured with the minimal value phmin and the
maximal value phmax.

In Table 4 one can see for a selection of levels the cumulative needed time on a single-
core 2.3 GHz CPU, degrees of freedom, the L2 error of the velocity as well as the resolution
of the singularity for uniform refinement and the adaptive algorithm configured with εM ∈
{0.05, 0.25, 0.50} and θ ∈ {0.1, 0.5, 0.9}. For each configuration (εM , θ) there are two levels,
the first one being the one with an L2 error in the velocity closest to 0.0067, which is the
error of the uniform refinement for level 5 and the second selected level being the last level
that could be computed before the direct solver ran out of memory.

One can see that in terms of degrees of freedom, smaller values of εM with larger values
of θ are of advantage. While the using the adaptive algorithm with εM = 0.5 and θ = 0.1
at level 5 results in roughly 26% of the degrees of freedom of the uniform refinement at level
5, the same value of εM with θ = 0.9 already results in about 21%. The data in Table 4
shows that this trend continues, the best configuration seems to be εM = 0.05 with θ = 0.9,
where only about 1% of the degrees of freedom are used for comparable results. The corollary
that adaptive refinement needs significantly fewer degrees of freedom to achieve results that
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Figure 17: Sketch of the domain and its initial triangulation for the example presented in
Section 6.2.1.

Figure 18: Solution of the example presented in Section 6.2.1. The velocity component of the
solution is left, the pressure component is right.
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Table 4: Table displaying degrees of freedom, L2 error in velocity, phmin, phmax and cumula-
tive needed time on a single-core 2.3 GHz CPU for a selection of levels of uniform
refinement and the adaptive algorithm configured with εM ∈ {0.05, 0.25, 0.50} and
θ ∈ {0.1, 0.5, 0.9} for the numerical example of Section 6.2.1.

Level total d.o.f. ‖u− uh‖0 phmin phmax time

uniform refinement
4 43347 0.014 −34.6964 34.4638 0.44s
5 174243 0.0067 −49.4769 49.1456 2s

εM = 0.50

θ = 0.1
5 45879 0.0067 −49.4769 49.1456 1.1s
7 350406 0.0017 −99.5474 98.8813 10s

θ = 0.5
5 38934 0.0067 −49.4769 49.1456 1.2s
7 303060 0.0017 −99.5474 98.8813 8.8s

θ = 0.9
5 37263 0.0067 −49.4769 49.1456 1.1s
7 287913 0.0017 −99.5474 98.8813 8.9s

εM = 0.25

θ = 0.1
5 11847 0.0067 −49.4775 49.1462 0.57s
10 355230 0.00021 −282.043 280.156 25s

θ = 0.5
5 8031 0.0067 −49.4787 49.1473 0.41s
11 500334 0.0001 −398.918 396.249 23s

θ = 0.9
5 9048 0.0067 −49.4777 49.1471 0.24s
10 274305 0.00021 −282.043 280.156 16s

εM = 0.05

θ = 0.1
5 5028 0.0067 −49.4839 49.1524 0.4s
19 543381 2.4 · 10−6 −6383.93 6341.26 1.3 · 102s

θ = 0.5
6 1803 0.005 −44.528 44.1117 0.13s
23 537501 2.3 · 10−6 −16210.4 16045.9 2.1 · 102s

θ = 0.9
7 1713 0.0051 −44.5286 44.1115 0.25s
26 512400 2.4 · 10−6 −22924.1 22709.4 2.8 · 102s
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Level 10 with εM = 0.05, θ = 0.9 Level 10 with εM = 0.25, θ = 0.9

Figure 19: Grids for the problem of Section 6.2.1 for εM ∈ {0.05, 0.25} and θ = 0.9 at level
10 with 2356 and 230786 degrees of freedom, respectively.

are comparable to uniform refinement agrees with what was found in [Joh98, Example 11].
Besides the degrees of freedom, the computational time decreases as well with decreasing εM
and increasing θ. In particular, the shortest execution time was yielded by ε = 0.05 and
θ = 0.5 and needed only 6.5% of the time that uniform refinement required.

The figures of the levels that were the last levels before the memory barrier was hit indicate
that again smaller values of εM with values of θ close to 1.0 are advantageous to achieve better
results in terms of the quality of the computed solution. On the other hand, one can observe
that for εM = 0.05 the cumulative time of the maximal levels is about 10 times as high as
the time for the respective levels of εM = 0.25. This is the case, since for small values of εM
and large values of θ, fewer cells are refined on each level and therefore more levels can be
solved in total, where each subsequent level needs more time than the former ones and the
number of cells increases. This can also be seen in Figure 19, where the grid of level 10 for
εM = 0.25 possesses about 100 times as many degrees of freedom as the grid of level 10 for
ε = 0.05. Further, on each level, a discrete needs to be solved which means that more levels
require more solves and therefore more time. In particular, the number of solved levels for
ε = 0.05 is about twice as high as the number of solved levels for ε = 0.25.

Further, one can observe the the differences for different values of θ and a fixed value of
εM decrease with increasing εM . This behavior could be observed for the Hemker problem
of Section 6.1.1 as well. But in contrast to the Hemker problem with an advantageous
configuration of εM = 0.25, here larger values of θ together with smaller values of εM seem to
work better. This might be the case, since the solution of the Hemker problem possesses layers
which require more extensive refinement, whereas this problem possesses a point singularity
and therefore requires very concentrated refinement. That larger values of θ with smaller εM
yield sequences of grids whose refinement is more concentrated around the singularity can be
observed in Figure 19.

In Figure 20 one can see the efficiency index (32) for εM ∈ {0.05, 0.25, 0.5} and θ = 0.5. The
figure shows a strong over-estimation of the error and boundedness from below for εM = 0.05.
Therefore, in this case the error estimator is reliable. On the other hand, for εM ∈ {0.25, 0.5}
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Figure 20: Efficiency index for the example of Section 6.2.1 for values of εM ∈ {0.05, 0.25, 0.5}
and θ = 0.5.

the efficiency index is roughly 2 and is bounded from above and below, which means that the
error estimator is not only reliable but also efficient.

6.2.2 Flow around a cylinder

In this example, a flow around a cylinder is considered. Goal is to compare the performance of
uniform refinement, adaptive refinement, and the dual weighted residual method in terms of
computing the drag coefficient. The drag coefficient is a concrete physical quantity describing
the resistance of an object in a fluid environment. Although this example was introduced in
[ST96] for the Navier–Stokes equations, here the Stokes equations are being considered.

The example’s domain is given by

Ω = [0m, 2.2m]× [0m, H m]∩ S with S = {xm : x ∈ R2, ‖x‖2`2 ≤ 0.05}+ (0.155m, 0.155m)T ,

where H = 0.41, as depicted in Figure 21. The boundary ∂Ω consists of relatively open
components ΓD,in, ΓD, ΓN and ∂S, where on ΓD and ∂S homogeneous Dirichlet bound-
ary conditions, on ΓN homogeneous Neumann boundary conditions (outflow), and on ΓD,in
Dirichlet boundary conditions (inflow) with

u
∣∣
ΓD,in

(x, y) = 1.2
y(H − y)

H2
m s−1

are prescribed. The right-hand side f is set to be homogeneous and the viscosity is given by
ν = 10−3m2 s−1.
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Figure 21: Sketch of the domain used in the example presented in Section 6.2.2.

The drag coefficient is a dimensionless quantity defined by

cd :=
2

ρU
2
D

∫

∂S

(
ρν
∂utS
∂n

ny − pnx
)
, (97)

where D = 0.1m is the cylinder’s diameter, ρ = 1kg m−3 is the fluid’s density,

U =
2

3
u(0, H/2)m s−1

is the mean inflow velocity, n = (nx, ny)
T is the normal vector on ∂S directing into Ω and

utS is the tangential velocity for the tangential vector tS = (ny,−nx)T .
Since the drag coefficient is defined by a path integral and for numerical simulations, ∂S

needs to be approximated by a discrete boundary, the error in the quadrature might become
large. To prevent this, one can transform the line integral into an integral over Ω by applying
integration by parts.

To this end, one can see that

∂u1

∂t
= ∇u1 · t = 0⇔ ∂u1

∂x
ny =

∂u1

∂y
nx,

∂u2

∂t
= ∇u2 · t = 0⇔ ∂u2

∂x
ny =

∂u2

∂y
nx,

since u is constant on ∂S, which yields together with n2
x + n2

y = 1 that

∂utS
∂n

= ∇(u · t) · n =
∂u1

∂y
− ∂u2

∂x
.

Since u is divergence-free, one obtains

∇ · u = 0⇔ ∂u1

∂x
= −∂u2

∂y
.

Using this identity together with the easier form of the normal derivative of the tangential
velocity yields for ψ = (1, 0)T that

cd =
2

ρU
2
D

∫

∂S

ρnT T(u, p)ψ,
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which agrees with the definition of the drag coefficient in [BR03a, Section 11.1]. Inserting
the values for U , ρ and D and applying integration by parts yields

cd = 500

∫

∂S

nT T(u, p)ψ = 500

∫

Ω

(
−T(u, p)∇ψ +∇ ·T(u, p)ψ

)

= 500
(
−ν(∇u,∇ψ)0 + (p I,∇ψ)0 + ν(∆u,ψ)0 − (∇p,ψ)0

)

= −500ν(∇u,∇ψ)0 + 500(p I,∇ψ)0 + (f ,ψ)0,

where ψ is an extension of ψ into the interior of Ω with support along ∂S. Thus, (f ,ψ)0 = 0
and one arrives at the expression

cd = −500ν(∇u,∇ψ)0 + 500(p I,∇ψ)0 (98)

for the drag which does not involve line integrals anymore. As ansatz and test space the
finite element pair P3/P2 was chosen. When the adaptive algorithm was applied, it was
applied using the maximum strategy with the minimum number of cells to be refined set
to εM = 25% together with θ = 0.5. If on a certain level not sufficiently many cells were
marked for refinement, the strategy’s parameter was relaxed by θ → 0.7θ. The used error
estimators were energy norm a posteriori error indicator (65) and the dual weighted residual
error indicator of Theorem 3.32.

Concerning the dual weighted residual method, the error estimator was evaluated by ap-
proximation by difference quotients, see Section 3.2.3. The functional of interest was chosen
to be the drag coefficient as given in (98).

6.1 Remark [Discretization of the dual problem]. The discretization of the dual problem
requires special care in this case because it is in some points different from what was derived
for the Stokes equations in Section 2.2.2. Since the drag coefficient (98) is linear in velocity
and pressure, one obtains J ′((u, p))(·) = J(·). The extension ψ is actually of the form (ψ, 0)T ,
as it extends the vector (1, 0)T . Let q ∈ Qh be a pressure test function and v1 = v1e1 ∈ Vh

be a velocity test function for the first spatial dimension. One then obtains

J((v1, q)) = −500ν

∫

Ω

((∂v1
∂x

∂v1
∂y

0 0

)
:

(
∂ψ
∂x

∂ψ
∂y

0 0

)
+

(
q 0
0 q

)
:

(
∂ψ
∂x

∂ψ
∂y

0 0

))

= −500ν

∫

Ω

(
∂v1

∂x

∂ψ

∂x
+
∂v1

∂y

∂ψ

∂y

)
+ 500

∫

Ω

q
∂ψ

∂x
.

For the second dimension consider q ∈ Qh and v2 = v2e2 ∈ Vh. Analogously, one obtains

J((v2, q)) = 500

∫

Ω

q
∂ψ

∂x
.

In particular this means that the arising linear system looks like
(
A −BT

−B 0

)(
u
p

)
=

(
f1

f2

)

with

(f1)Nui=1 = −500ν

∫

Ω

(
∂v1,i

∂x

∂ψ

∂x
+
∂v1,i

∂y

∂ψ

∂y

)
, (f1)2Nu

i=Nu+1 = 0 · v2,i, (f2)
Np
i=1 = 500

∫

Ω

qi
∂ψ

∂x
,
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Figure 22: Initial triangulation of the domain (top) with 1056 total degrees of freedom and 99
cells, computed velocity solution (middle) and computed pressure solution (bot-
tom) of the “flow around a cylinder”-example of Section 6.2.2.

where v1,ie1 ∈ Vh, v2,ie2 ∈ Vh and qi ∈ Qh are the basis functions of the finite-dimensional
ansatz and test spaces. Thus, the dual problem is a discretization of the compressible Stokes
equations with inverted pressure field and therefore also inverted direction of flow.

The solution of the problem and its initial triangulation can be seen in Figure 22. One can
see that the flow is laminar, i.e., a flow without lateral mixing. The pressure is high left of
the cylinder and decaying right of the cylinder, indicating a mean flow direction from left to
right.

The a posteriori error indicator in the energy norm and the dual weighted residual method
both yield a sequence of adaptively refined grids, of which to level 2, 4, 6, and 8 correspond-
ing elements are depicted in Figure 23. One can see that the dual weighted residual error
indicator contains the refinement much more around the cylinder, whereas the a posteriori
error indicator also refines areas close to the right part of the domain’s boundary.

When comparing the corresponding degrees of freedom and number of cells in Table 5,
one can see that the dual weighted residual error estimator uses fewer cells per level, but the
above statement about the more local refinement still holds: The error estimator (65) yields
on level 6 a grid with about 6500 cells and refined in areas close to the right boundary of
the domain, whereas the dual weighted residual error estimator yields a more concentrated
refinement on level 8 with about 16000 cells.

In Figure 24 one can see that the dual weighted residual error estimator indeed works
better than the energy norm estimator (65) and also better than uniform refinement in terms
of memory that is required to achieve a certain accuracy of the drag coefficient.
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A posteriori error indicator in the energy norm A posteriori error indicator of the dual weighted residual method

Figure 23: Levels 2, 4, 6 and 8 (top to bottom) of the generated sequence of adaptively refined
grids for flow around a cylinder when applying the energy norm estimator (65)
on the left and the dual weighted residual error indicator of Theorem 3.32 on the
right. The respective number of cells and total degrees of freedom can be found
in Table 5.

Table 5: Table showing the number of cells and total degrees of freedom for the grids shown
in Figure 23.

estimator (65) DWR estimator
# cells total d.o.f. # cells total d.o.f.

Level 2 252 2279 232 2104
Level 4 1373 12763 981 9067
Level 6 6467 60765 3989 37093
Level 8 31760 300260 15858 147853
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Figure 24: Figure displaying for the example of Section 6.2.2 the computed drag coefficient
over the total degrees of freedom for uniform refinement (red), refinement with the
energy norm estimator (yellow) and refinement with the dual weighted residual
estimator (green). The crosses indicate the current level of the algorithm.
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Figure 25: Initial triangulation of the domain of the Stokes–Darcy example of Section 6.3.
The blue cells belong to the Stokes subdomain, the red cells belong to the Darcy
subdomain.

To investigate further the differences of the three methods, the iteration was stopped as
soon as the absolute change of the drag coefficient was smaller than 10−4. In the below table
one can see the corresponding number of cells and degrees of freedom as well as the required
time:

cd total d.o.f. # cells time

energy estimator 3.14219 123764 13135 7.36 s
DWR estimator 3.14221 75282 8080 7.85 s

uniform refinement 3.14224 960814 101376 63.49 s

One can see that the dual weighted residual estimator needs about 60% of the degrees of
freedom / cells of the energy estimator and about 8% of the degrees of freedom / cells of
uniform refinement to obtain a comparable result. Also the required time on a single-core 3.5
GHz CPU for the dual weighted residual estimator is only slightly higher than for the energy
estimator, even though it involves assembling and solving a dual problem.

Altogether the dual weighted residual method seems to be better suited when one is in-
terested in a concrete physical quantity than the energy norm estimator. If the considered
problem is nonlinear, the performance of the dual weighted residual method might even in-
crease compared to the other methods because the dual problem is linear and therefore easier
to solve.

6.3 Stokes–Darcy problem

This section deals with an example of the coupled Stokes–Darcy problem that was intro-
duced in Section 2.3. Here, the Darcy subdomain Ωp ⊂ Ω is entirely enclosed in the Stokes
subdomain Ωf ⊂ Ω, as sketched in Figure 25.

The outer boundary ∂Ω consists of relatively open components ΓD,ΓD,in and ΓN , that
correspond to the bold black, red and blue lines in Figure 25, respectively. On ΓD and ΓN
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Figure 26: Solution of the Stokes–Darcy problem of Section 6.3. The color indicates the
pressure and the Stokes velocities are indicated by the streamlines. The Darcy
velocity was recovered by up = −K∇ϕp and is indicated by unscaled arrows in
the Darcy subdomain.

homogeneous Dirichlet and Neumann boundary conditions are prescribed and on ΓD,in =
{0} × [0, 3] the Stokes velocity is prescribed by

uf
∣∣
ΓD,in

(x, y) = 3y(1− 3y).

The Darcy subdomain is coupled to the Stokes subdomain by the Neumann–Neumann cou-
pling, see (27). Due to the enclosedness of the Darcy subdomain, its boundary conditions
are completely determined by the coupling. The viscosity is set to ν = 1, the permeability
is set to K = 10−3 I and the right-hand sides of the equations in (27) are homogeneous. The
computations were carried out using P2/P1 finite elements for the Stokes subproblem and P1

finite elements for the Darcy subproblem.
To apply the adaptive algorithm, the errors were estimated separately with the energy

norm a posteriori indicator (65) for the Stokes subdomain and the energy norm a posteriori
indicator (53) for the Darcy subdomain and then marked for refinement according to two
separate marking strategies with εM = 0.25, θ = 0.5 and an update of θ → 0.7θ if not
sufficiently many cells were marked. If a cell at the interface of one subdomain was marked
for refinement, the opposite cell in the other subdomain was not necessarily marked for
refinement as well. The numerical solution of the problem can be seen in Figure 26.

One can observe that due to the pressure drop the mean flow direction is from left to right
and that the solution changes most in the corners of the Darcy subdomain. The interaction
between the Stokes and Darcy subdomains remains local, i.e., the Stokes flow around the
Darcy subdomain is still laminar. Most of the refinement is located indeed in and around
corners of the Darcy subdomain, even though a refinement at the interface of the Darcy
subdomain did not imply a refinement at the interface of the Stokes subdomain, whereas the
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interior if the Darcy subdomain as well as the portion of the Stokes subdomain right of the
Darcy subdomain remain almost untouched, see Figure 27.

This example demonstrates that one can transfer the error estimators of simpler, uncoupled
situations to more complex, coupled situations by just applying them separately together with
a separate marking strategy. Since all the parameters of the marking strategy are percentage
values, the separate marking strategies behave like one marking strategy for the whole domain,
just with taking into account the magnitude of the estimated errors in the subdomains.

7 Conclusion and outlook

This thesis discussed adaptive finite element methods for Stokes, Darcy, convection–diffusion
equations and the Stokes–Darcy system. In particular, residual based as well as dual weighted
residual error estimators have been derived for the Stokes and the Darcy equations. The
residual based error estimators were then applied to the coupled Stokes–Darcy problem. The
considered error estimators for the convection–diffusion equations were not derived but can
be found in the literature.

The numerical examples included two examples for the Stokes equations and for the
convection–diffusion equations each, where one example considered a residual based a poste-
riori error estimator and one example considered a dual weighted residual estimator for both
types of equations. It was discussed how parameters εM and θ of the maximum cell mark-
ing strategy influenced the efficiency of the adaptive algorithm as well as how the residual
based error estimators compare to the dual weighted residual error estimators. Further, one
example for the coupled Stokes–Darcy problem was discussed.

Considering the “Hemker problem”, which is a convection–diffusion problem, it turned out
that values of εM ≈ 25% are advantageous in terms of memory requirements and needed
computation time, whereas for the Stokes problem “disc with a crack”, values of εM ≈ 5%
and θ ≈ 90% worked best. However, this is not necessarily caused by the type of considered
partial differential equations but is more likely due to the different features of the solutions.
In particular, the solution of the Hemker problem contains layers in contrast to the Stokes
problem, which possesses a point singularity. The layers required a larger area to be adap-
tively refined in order to obtain a sufficiently well approximated solution; the point singularity
required most of the refinement around that single point. Consequently, a value of εM ≈ 25%
seems to be more suitable when larger areas need to be refined. The corresponding value of
θ is of little significance because it is dominated by εM as long as the error is still concen-
trated in a relatively small portion of the grid. On the other hand, small values of εM and
large values of θ cause a increasingly local refinement of the grid which is more suitable for
problems like the Stokes problem “disc with a crack”.

The weights of the dual weighted residual method were evaluated by an approximation by
difference quotients and applied to the convection–diffusion equations for an example that
includes boundary layers and to the Stokes equations with the goal to compute a concrete
physical quantity. The functional of interest for the convection–diffusion example was chosen
to be the function average value in a small area away from the layers. It turned out that
the layers remain unresolved and most of the refinement concentrates around the area of
interest, nevertheless a strong over-estimation could be observed which might be due to the
implementation of the dual weighted residual method with difference quotients, as reported
in the literature, see [BR03a, Section 4.1]. For the computation of the concrete physical
quantity in the Stokes example, the dual weighted residual method with a functional of inter-
est representing that exact quantity proved to be superior to the residual based a posteriori
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Level 3

Figure 27: Grids corresponding to levels 1, 2 and 3 of the adaptive algorithm for the Stokes–
Darcy example of Section 6.3.
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error estimator in the energy norm with respect to required memory in order to obtain a
comparable accuracy. With respect to required computational time comparable results were
yielded, even though the dual weighted residual method additionally involves assembling and
solving a dual problem. The performance might even increase when considering a non-linear
problem, as the dual problem is still linear and therefore easier to solve.

Finally, the residual based error estimators in the energy norm for the Darcy equations
as well as for the Stokes equations were combined in the more complicated example of the
coupled Stokes–Darcy system. It turned out that a possible way of applying them is to apply
them separately in their corresponding subdomain and with separate cell marking strategies
which were both configured with the same values of εM and θ, yielding sensible grids.

Altogether, the adaptive algorithm was successfully applied to Stokes and convection–
diffusion equations for residual based a posteriori error-estimators and the dual weighted
residual estimators and yielded a significant performance increase. It was also applied for the
more complicated situation of a coupled Stokes–Darcy system. The findings in the Section
about the Stokes example “disc with a crack” agreed qualitatively with what can be found
in [Joh98, Example 11]. It turns out that the dual weighted residual method is more suitable
than the considered residual based a posteriori error estimators when one is interested in
concrete quantities which are not the solution itself. The optimal choice of εM and θ in the
marking strategy depends on the considered example.

Further investigations could consider combining the adaptive algorithm with iterative
solvers and assessing the performance of the adaptive algorithm when applied to problems
with more than two spatial dimensions as well as to non-linear and time-dependent prob-
lems. It could also be investigated, how different cell marking strategies compare to each
other. Concerning the coupled Stokes–Darcy system, one could derive an error estimator
for the whole coupled domain and compare it to the application of the separate error esti-
mators. Such an error estimator for the whole domain in the more complicated case of the
Navier–Stokes–Darcy system is investigated in [HAN14].

The dual weighted residual method’s weights could be evaluated differently, possibly yield-
ing better results. Also it could be analyzed in how far the grids generated by the dual
weighted residual method are eligible for solving the dual problem. A possible extension of
the discussed adaptive algorithm is the use of anisotropic mesh refinement, i.e., the use of
streched mesh cells along regions of rapid change of the solution like layers which is discussed
in, e.g., [Ver13]. The use of these cells can result in more memory-efficient algorithms.
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[ST96] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a
cylinder. In Flow Simulation with High-Performance Computers II, volume 48 of
Notes on Numerical Fluid Mechanics (NNFM), pages 547–566. Vieweg+Teubner
Verlag, 1996.

[Ste08] Olaf Steinbach. Numerical Approximation Methods for Elliptic Boundary Value
Problems. Finite and Boundary Elements. Springer Science & Business Media,
2008.

[Tem01] Roger Temam. Navier-Stokes Equations: Theory and Numerical Analysis.
AMS/Chelsea publication. AMS Chelsea Pub., 2001.
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