
Freie Universität Berlin

Department of Mathematics and Computer Science
Institute of Computer Science

Development and Evaluation of Transformer-Based
DNA-Language Models with disease-conditioning

Master Thesis
Submitted for the degree of Master of Science in computational Sciences

by

Phani Shankar Bharadwaj Gandlur

Berlin, April 22,2025 1st examiner Prof. Dr. Roland Eils

 2nd examiner Prof. Dr. Volker John

Declaration of Authorship

I hereby declare to Freie Universität Berlin that I have completed the following thesis on

Development and Evaluation of Transformer-Based DNA-Language Model with

disease-conditioning without the use of sources and aids other than those cited.

I declare that the present work is free of plagiarism. Any statements that have been taken from

other writings, whether directly or indirectly, have been clearly marked as such.

 Further, I declare that this work has not been submitted to any other university as part of an

examination attempt, either in identical or similar form, nor has it been published elsewhere.

In line with good scientific practice, I declare that AI-assisted tools (e.g., ChatGPT by OpenAI)

were used to support the writing process for language refinement and formatting. All scientific

content, analysis, and conclusions are my own.

 April 22, 2025

 Date Signature

Ⅱ

ACKNOWLEDGEMENT

Completing this thesis while undergoing treatment for a chronic illness has been a challenging

yet rewarding journey. I extend my heartfelt gratitude and thanks to those who supported me

through this process, both academically and personally. Their unwavering support made this

work possible.

I am deeply grateful to my supervisor Benjamin Wild, for giving me the opportunity to be part of

this project. His enthusiasm, encouragement, and constant support have been invaluable. With

his guidance, I was able to learn and grow significantly while making my contribution to this

field of study.

I would like to thank Prof. Dr. Roland Eils for his guidance throughout this thesis and for serving

as my first examiner.

I would like to thank Prof. Dr. Volker John for serving as my second examiner and for kindly

agreeing to my request. I sincerely appreciate his time, support, and the valuable feedback

provided during the evaluation process.

I would like to thank Julius Upmeier zu Belzen and Paul Kittner for their support and helpful

insights during the implementation of the PRS framework used in this thesis.

I am truly thankful to my friends at Freie Universität Berlin for the countless moments of joy and

camaraderie we shared. I am deeply grateful to my colleagues at Oviva, their encouragement and

support helped lighten my journey.

Finally, my heartfelt thanks go to my family, who have been my greatest source of strength. Their

unwavering belief in me and constant encouragement kept me going, even through the toughest

moments.

Heartfelt thanks!

Ⅲ

ABSTRACT

Understanding genetic variations and their relationship to phenotypic traits is a key challenge in

computational genomics. In this work, I developed a Transformer-based DNA language model

trained on phenotype-conditioned genomic sequences. The model was optimized through

extensive hyperparameter tuning to learn meaningful representations of genetic variations.

Training data was generated by extracting reference genome sequences, applying

individual-specific genetic variants, and appending corresponding phenotype tokens. This

approach ensures that the model captures the associations between genetic mutations and

phenotypic traits, enabling more accurate predictions in downstream inference tasks.

At inference time, reference sequences were again retrieved and modified to reflect

sample-specific allelic variations. These were passed through the model, which predicted the

next nucleotide conditioned on both upstream sequence context and phenotype embedding. The

output logits represented a probability distribution over the nucleotide vocabulary, providing

interpretable scores for both reference and alternate alleles at each variant site. Comparing

these predictions to the actual alleles enabled an assessment of how well the model captured

the contextual likelihood of genetic variation.

To benchmark the model’s outputs, variant effect sizes were obtained from two polygenic risk

score (PGS) models for Type 1 Diabetes from the PGS Catalog. For each variant, the

model-derived logit corresponding to the effect allele was extracted and compared to reported

effect sizes. Filtering based on effect size thresholds helped focus the analysis on informative

variants, enabling an external assessment of biological relevance.

To evaluate downstream utility, the model-inferred scores were integrated into the PRS

framework. Logit differences between alternate and reference alleles were formatted as

annotations and used as priors in Bayesian SNP effect estimation. The pipeline was run for both

the conditioned and non-conditioned models, allowing a direct comparison of predictive

performance was assessed specifically in the European ancestry group.

Ⅳ

CONTENTS
INTRODUCTION...1

1.1 Motivation.. 2
1.2 Objective.. 3
1.3 Scope.. 3

FUNDAMENTALS... 4
2.1 Transformers for Genomic Sequences..4

2.1.1 Transformers architecture..4
2.1.2 Transformers for sequence data... 6
2.1.3 Self-attention to capture genomic patterns..7

2.2 DNA and Genetic Variations... 7
2.2.1 DNA Sequences and Genetic Information...7
2.2.2 Single Nucleotide Polymorphisms (SNPs) and Allelic variations....................................... 8
2.2.3 Reference Genome vs Individual Genome..9

2.3 Polygenic Risk Scores (PGS).. 10
2.3.1 PGS and Its Importance...10
2.3.2 Traditional PGS methods and Limitations... 11

2.4 SBayesRC & Bayesian SNP Selection...12
2.4.1 SBayesRC vs other PGS methods...13
2.4.2 Usage of functional annotations to refine SNP selection..14
2.4.3 Bayesian vs Non-Bayesian approaches... 14

METHODOLOGY.. 15
3.1 Data Processing and Sampling..15
3.2 Model Architecture and Training..18

3.2.1 Transformer-based DNA Language Model.. 18
3.2.2 DNA Language Model Training..22
3.2.3 Optimization Strategy and Numerical Modeling Configuration..........................24

3.3 Inference Process... 26
3.3.1 Model Input and Processing... 27
3.3.2 Computing Logits.. 28

3.4 Benchmarking Model Outputs Using Public Polygenic Score Weights...................... 29
3.5 Integrating with SBayesRC.. 30

3.5.1 Preparing Data for Integration.. 31
3.5.2 Using Language Model Outputs as Functional Annotations... 31
3.5.3 Annotations Preprocessing and Feature Selection... 32
3.5.4 Polygenic Risk Scoring with SBayesRC...33

 3.5.5 Risk score construction... 34

Ⅴ

Results And Discussions...34
4.1 Hyperparameter Tuning and Model Selection..34
4.2 Model training...37
4.3 Logits generation and Analysis.. 39
4.4 Benchmarking Model Logits Against Published Polygenic Score Weights................ 43
4.5 Integrating Model-Derived Annotations into SBayesRC for PGS Estimation.............46

Conclusion and Future Work.. 47
REFERENCES...48

Ⅵ

LIST OF FIGURES

1) Figure 2.1.1 (a): The Transformer - model architecture

2) Figure 2.1.1 (b): (left) Scaled Dot-Product Attention. (right) Multi-Head Attention

consists of several attention layers running in parallel.

3) Figure 2.2.2: Single-nucleotide polymorphism (SNP): a genetic variation that generates a

new allele, characterized as a polymorphism when > 1% of the population has this gene

format

4) Figure 2.4.1: Performance of different methods by simulations
5) Figure 4.1(a): Validation Loss Across Hyperparameter Configurations: 1024-512-32

Achieves the Lowest Loss
6) Figure 4.1(b): Training Loss Across Hyperparameter Configurations: 1024-512-32

Achieves the Lowest Loss
7) Figure 4.1(c): Comparison of GPU power usage (in watts) across hyperparameter

configurations during training.
8) Figure 4.2(a): Train Loss Across 36 Epochs for conditioned and non conditioned model
9) Figure 4.2(b): Validation Loss Across 36 Epochs for conditioned and non conditioned

model
10) Figure 4.3(a): Distribution of predicted probability differences between reference and

alternate alleles. The conditioned model shows heavier tails, suggesting stronger allele
preference for a subset of variants, potentially reflecting phenotype-relevant signals.

11) Figure 4.3(b): Phenotype conditioning causes subtle but widespread shifts in Ref/Alt
allele probabilities

12) Figure 4.3(c): Phenotype Conditioning Amplifies Prediction Differences for Rare Variants
13) Figure 4.3(d): Non-Conditioned Model Confidence: Max Logit and Entropy Distributions
14) Figure 4.3(e): Conditioned Model Confidence: Broader Logit Spread and Higher

Uncertainty
15) Figure 4.4(a): Non-Conditioned Model — Correlation Between Logits and Effect Sizes

(PGS002025)
16) Figure 4.4(b): Non-Conditioned vs Conditioned — Logit Distribution Shift for

Informative Variants (PGS002025)
17) Figure 4.4(c): Non-Conditioned Model — Correlation Between Logits and Effect Sizes

(PGS003993)
18) Figure 4.4(d): Non-Conditioned vs Conditioned — Logit Distribution Shift for

Informative Variants (PGS003993)
19) Figure 4.5: Conditioned Model Annotations Improve PGS AUROC Compared to

Non-Conditioned Baseline

Ⅶ

LIST OF TABLES

1) Table 3.2.3: Model Configuration Summary

2) Table 4.1: Hyperparameter Tuning Results

3) Table 4.5: PGS AUROC and CI by Model Type

Ⅷ

LIST OF ABBREVIATIONS

1) AI – Artificial Intelligence

2) ANN – Artificial Neural Network

3) AUROC – Area Under the Receiver Operating Characteristic Curve

4) CPU – Central Processing Unit

5) DNA – Deoxyribonucleic Acid

6) FFN – Feedforward Neural Network

7) FDR – False Discovery Rate

8) GENCODE – Genome Annotation Consortium

9) GPU – Graphics Processing Unit

10) GWAS – Genome-Wide Association Study

11) GTEx – Genotype-Tissue Expression

12) LD – Linkage Disequilibrium

13) MAF – Minor Allele Frequency

14) NLP – Natural Language Processing

15) NLL – Negative Log-Likelihood

16) NTP – Nucleotide Triphosphate

17) PGS – Polygenic Risk Score

18) PRS – Polygenic Risk Score

19) QKV – Query-Key-Value (Attention Mechanism)

20) RNN – Recurrent Neural Network

21) SNP – Single Nucleotide Polymorphism

Ⅸ

22) SBayesRC – Summary-based Bayesian Regression with functional priors (Conditioned)

23) TF – Transcription Factor

24) VCF – Variant Call Format

25) VIF – Variance Inflation Factor

26) WGS – Whole Genome Sequencing

27) PRS - Polygenic Risk score

Ⅹ

INTRODUCTION

The intersection of machine learning and genomics is reshaping how we understand genetic

variations and their contribution to human disease. For decades, genome-wide association

studies (GWAS) (Karczewski et al., 2018) and polygenic risk scores (PRS) have served as the

primary tools to estimate genetic liability for complex traits. These methods typically rely on

summary statistics and assume additive, linear effects of many variants across the genome.

While effective in many settings, traditional statistical models often struggle to incorporate

biological context and fail to capture the complex, non-linear dependencies within genomic data.

The emergence of large-scale DNA language models offers a new lens through which to interpret

genomic variation. Inspired by the success of transformer architectures in natural language

processing, researchers have begun applying similar models to DNA sequences, treating the

genome as a language, where nucleotides are tokens, mutations are syntax changes, and

phenotypes are expressions of biological meaning. These models are typically benchmarked on

tasks such as next-token prediction, regulatory element identification, and variant effect

prediction. However, existing benchmarks often focus on narrow genomic windows or limited

variant sets, overlooking the full complexity of genome-scale variation.

In this work, an alternative and orthogonal benchmarking approach is proposed: using DNA

language models to inform polygenic risk scoring. Polygenic risk scores aggregate the effects of

potentially millions of variants across the entire genome, making them a natural testbed for

evaluating whether language models can extract meaningful and generalizable signals from

DNA. If model-derived embeddings or logits improve PRS accuracy, they can be interpreted as

capturing functional or disease-relevant information, without relying on curated annotations or

hand-crafted features..

Specifically, outputs from a phenotype-conditioned DNA language model are used to guide the

SBayesRC framework, a Bayesian extension of traditional PRS methods that incorporates

variant-level priors. While SBayesRC was originally developed to use human-created functional

annotations (e.g., indicating whether a variant lies in a promoter or enhancer), DNA language

models are proposed as an alternative source of annotation through their learned

representations. These embeddings are available for all variants, including those lacking

traditional annotations, and may capture subtle sequence-level patterns that are missed by

categorical labels.

1

Importantly, this approach places no hard limit on sequence context length. Because PRS models

aggregate effects genome-wide, the impact of long-range context such as distal regulatory

elements can be implicitly evaluated by observing whether models trained on longer sequences

lead to better risk predictions. In this way, polygenic risk scoring becomes both a downstream

application and an indirect evaluation metric for the quality of DNA language models.

This thesis presents the development and evaluation of such a transformer-based DNA language

model, trained on whole-genome sequence data and conditioned on phenotype labels. By linking

model-derived predictions to polygenic risk estimation through SBayesRC, the work aims to

establish a scalable and data-driven pathway for integrating deep learning into genomic risk

prediction.

1.1 Motivation

Complex diseases such as Type 1 Diabetes are not caused by single mutations, but rather by the

combined effect of thousands of variants distributed across the genome. Polygenic risk scores

(PRS) are widely used to quantify this cumulative risk, assigning weights to variants based on

their statistical association with disease. However, these scores are often derived in a purely

data-driven way, with little incorporation of prior biological knowledge. This limits their

interpretability and can lead to reduced performance, especially when transferring between

populations.

One way to improve PRS is by integrating information about a variant’s likely functional

importance. Traditionally, this is done through annotations labels that identify genomic features

like enhancers or transcription factor binding sites. But these annotations are incomplete and do

not exist for all variants. In contrast, DNA language models can generate continuous embeddings

or logits for any genomic sequence, capturing statistical and functional properties learned from

large-scale sequence data. These representations can be used as informative priors in models

like SBayesRC, which adjust variant weights based on both GWAS summary statistics and

external evidence.

This work builds on the idea that DNA language models are more than predictive tools, they can

also serve as genome-wide annotation engines. By benchmarking their outputs in a PRS

framework, we can evaluate whether the models have learned representations that generalize to

complex disease risk.

2

1.2 Objective

The primary objective of this study is to develop a transformer-based DNA language model that

can learn biologically meaningful representations of genomic sequences, while incorporating

phenotypic context. The model is trained to predict the next nucleotide in a sequence, using

either raw DNA sequence alone or DNA plus a phenotype token (e.g., indicating diabetes status).

The underlying assumption is that disease-relevant patterns are reflected in local sequence

context, and that conditioning on phenotype allows the model to learn how sequence variation

correlates with observed traits.

After training, the model is used to compute probabilistic outputs (logits or likelihoods) at

specific variant positions. These predictions are then integrated into the SBayesRC framework to

generate a polygenic risk score. This pipeline allows for a principled comparison between

traditional annotation-driven approaches and those based on learned sequence representations.

The final goal is to assess whether conditioning a language model on phenotype improves its

ability to support downstream genomic risk prediction.

1.3 Scope

This work focuses on developing and evaluating a phenotype-conditioned transformer model

for genomic sequence modeling, with applications in variant effect prediction and polygenic risk

scoring. The model is trained on GTEx whole-genome sequencing (WGS) data, with

diabetes-related phenotypes used as labels. The inference pipeline is applied to variant data

structured similarly to that of the UK Biobank, enabling genome-wide prediction of allele

probabilities.

The study explores two training regimes with and without phenotype conditioning and

compares their outputs in terms of predictive performance. The polygenic risk scores are

computed using SBayesRC, with DNA model-derived logits or embeddings acting as variant-level

priors. While the broader evaluation of PRS methods is beyond the scope of this thesis, the study

positions DNA language models as an alternative source of functional information and a tool for

scaling PRS beyond manually curated annotations.

3

FUNDAMENTALS

This chapter provides the foundational concepts necessary to understand the methodologies

used in this work. It begins with an overview of Transformer architectures and their adaptation

for genomic sequence modeling, followed by an introduction to key genetic concepts such as

DNA sequences, SNPs, and allelic variations. The chapter then explores polygenic risk scores

(PGS), their significance, and the limitations of traditional approaches. Finally, it delves into

SBayesRC, a Bayesian method that refines SNP selection using functional annotations,

highlighting its advantages over other PGS models.

2.1 Transformers for Genomic Sequences

2.1.1 Transformers architecture

First introduced in the 2017 paper “Attention Is All You Need” by Vaswani et al., transformers

were designed to improve language translation by modeling long-range dependencies more

effectively than recurrent networks (Vaswani et al., 2017). At their core, transformers leverage

self-attention mechanisms to capture relationships between distant elements in a sequence,

allowing them to process information in parallel rather than sequentially. This breakthrough has

led to widespread adoption across various fields, from natural language processing and image

generation to genomics and drug discovery (Lin et al., 2023).

Today, transformers power real-time speech translation, detect complex patterns in genomic

sequences (Ji et al., 2021), enhance fraud detection and optimize search engines. Their

adaptability has earned them the title of foundation models, as they serve as the backbone of

modern AI applications across multiple domains.

Unlike traditional models like Recurrent Neural Networks (RNNs) and Long Short-Term Memory

networks (LSTMs), which process sequences step by step (Vennerød, Kjærran, & Bugge, 2021),

transformers handle entire sequences in parallel. This eliminates the bottleneck of sequential

processing, making training significantly faster and more scalable. Additionally, transformers

overcome the limitation of long-range dependencies that affect RNNs by using self-attention, a

mechanism that allows each token to weigh the importance of every other token in the

sequence. Another key innovation is positional encoding, which assigns a unique numerical

representation to each token’s position, preserving order without relying on recurrence. These

advancements enable transformers to capture complex relationships in sequences more

efficiently, making them ideal for applications beyond language, including genomics and

biological sequence modeling.

4

Figure 2.1.1 (a): The Transformer - model architecture

The Transformer model revolutionized how we process sequential data by replacing traditional

recurrent networks with a fully attention-based mechanism. Instead of processing input step by

step, it takes in the entire sequence at once, allowing for parallel computation and capturing

long-range dependencies efficiently. The process starts with input embeddings, where each

token (or nucleotide, in our case) is converted into a numerical representation that captures its

meaning. Since transformers don’t inherently understand order, positional encodings are

added to maintain the sequence structure. The real magic happens in multi-head self-attention

(Figure 2.1.1(a)), where each token in the sequence considers every other token before deciding

how much weight to assign to it. This is done using query (Q), key (K), and value (V) matrices,

which help the model determine relationships between different parts of the sequence. The

outputs from multiple attention heads are then processed through feedforward layers, with

residual connections and layer normalization ensuring smooth training and stable gradient

flow (Figure 2.1.1(b)). Stacked transformer layers further refine these representations, allowing

the model to learn complex patterns. After training, the model can predict patterns in unseen

sequences, making it a powerful tool for tasks like genomic sequence modeling, mutation effect

prediction, and variant classification.

5

Figure 2.1.1 (b): (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of

several attention layers running in parallel.

The self-attention mechanism computes attention scores using the dot product of queries and

keys, scaled by the square root of the key dimension. These scores are passed through a softmax

function and multiplied by the value vectors to produce context-aware representations

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾 𝑇 / √𝑑)𝑉

This describes how queries Q, keys K, and values V are used to compute attention weights. d is

the dimension of the key vectors and acts as a scaling factor.

2.1.2 Transformers for sequence data

Transformers were originally designed for natural language processing, but their ability to

handle long range dependencies makes them a powerful tool for analyzing any kind of

sequential data, including DNA sequences (Ji et al., 2021). Unlike traditional models like

recurrent neural networks (RNNs), which process sequences step by step, transformers take in

the entire sequence at once. This allows them to recognize patterns and relationships across

long stretches of data more efficiently.

In genomics, this capability is especially valuable since genetic variations can occur across

thousands or even millions of nucleotides. Some mutations have effects that depend on distant

regions of DNA (Avsec et al., 2021), making it essential for models to capture these long-range

dependencies. With self-attention, transformers assign different levels of importance to each

nucleotide relative to others in the sequence. This helps in tasks like predicting mutation effects

and identifying functional regions in the genome.

Another major advantage of transformers is their ability to process data in parallel, making

them much faster than older sequence-based models. Given the vast amounts of genomic data

available, this efficiency is crucial for large-scale studies (Sudlow et al., 2015). In the next

6

sections, we explore how transformers are being adapted for genomic research and the

breakthroughs they enable.

2.1.3 Self-attention to capture genomic patterns

The self-attention mechanism, a key component of Transformer architectures, has significantly

impacted genomic research by enabling models to capture long-range dependencies in DNA

sequences. Unlike traditional models that rely on fixed-length windows or sequential

processing, self-attention dynamically weighs the importance of different positions within a

sequence. This allows for a deeper understanding of complex genomic patterns, such as

regulatory interactions and functional motifs.

Several studies have explored the application of self-attention in genomics. The Nucleotide

Transformer (Dalla-Torre et al., 2024) demonstrated how large-scale pretraining on genomic

sequences enhances predictive accuracy, even for rare variants. Similarly, (Chen et al., 2021)

leveraged self-attention to model interactions between regulatory elements, uncovering

cooperative effects that traditional models often miss. These works illustrate how self-attention

allows models to go beyond simple pattern recognition, capturing the intricate architecture of

the genome and improving predictions for gene expression and variant effects.

2.2 DNA and Genetic Variations

This section explores the fundamental aspects of DNA and its variations, focusing on how

genetic differences shape biological traits and disease susceptibility. We begin with an overview

of DNA sequences and their role in encoding genetic information, followed by a discussion on

Single Nucleotide Polymorphisms (SNPs) and allelic variations, which are the most common

forms of genetic diversity. We then distinguish between reference genomes and individual

genomes, highlighting their importance in genetic studies. Together, these concepts lay the

foundation for understanding how genetic variations contribute to complex traits and their

implications for disease risk prediction.

2.2.1 DNA Sequences and Genetic Information

DNA, the fundamental blueprint of life, encodes the genetic instructions that govern biological

processes. It consists of sequences of four nucleotide bases Adenine (A), Thymine (T), Cytosine

(C), and Guanine (G) arranged in long, double-stranded molecules (Watson & Crick, 1953). These

sequences form genes, which carry the instructions for building proteins and regulating cellular

functions. However, DNA is not a static entity, it varies between individuals due to genetic

mutations and inherited differences.

7

https://www.nature.com/articles/s41592-024-02523-z

One of the most common forms of genetic variation occurs at the single nucleotide level, where a

single base in the DNA sequence is altered (Brookes, 1999). These variations, known as Single

Nucleotide Polymorphisms (SNPs), are the most abundant genetic differences between

individuals and can influence traits, disease susceptibility, and drug response (Collins, Brooks, &

Chakravarti, 1998). While some variations are benign, others can have significant biological

consequences, altering protein function or gene regulation.

Beyond SNPs, genetic variations also include insertions, deletions, and structural

rearrangements (Feuk, Carson, & Scherer, 2006). These differences contribute to the unique

genetic makeup of each individual. To study these variations, researchers often compare an

individual’s genome to a reference genome, a standardized sequence representing a consensus

of a population. The interplay of these genetic differences with environmental factors plays a

crucial role in understanding complex traits, including those associated with diseases like Type

1 Diabetes (Redondo et al., 2020).

2.2.2 Single Nucleotide Polymorphisms (SNPs) and Allelic variations

Single Nucleotide Polymorphisms (SNPs) are the most common type of genetic variation,

occurring when a single nucleotide in the genome is altered at a specific position. While the vast

majority of SNPs have no functional effect, some can influence how genes are expressed or how

proteins function, making them important in understanding genetic predisposition to diseases.

These variations can act as biological markers, helping researchers trace inheritance patterns

and identify regions of the genome associated with particular traits (Brookes, 1999)(Bush &

Moore, 2012).

Each SNP can have different versions, known as alleles, which individuals inherit from their

parents. For example, at a given SNP position, one person might have an "A" nucleotide while

another has a "G." Since humans are diploid organisms, meaning we inherit two copies of each

chromosome, one from each parent, we can have two identical alleles (homozygous) or two

different ones (heterozygous). The presence of specific alleles at certain SNP positions has been

linked to disease susceptibility, drug response, and other phenotypic traits.

Understanding SNPs is essential for genome-wide association studies (GWAS) and polygenic risk

score (PGS) calculations. By analyzing SNP patterns across populations, researchers can identify

correlations between genetic variants and disease risks. However, these variations do not exist

in isolation, they interact with surrounding genomic sequences and regulatory elements. This

interplay between individual genetic variations and the broader genomic context is crucial,

8

which leads us to the next section: the distinction between reference genomes and individual

genomes (Visscher, Brown, McCarthy, & Yang, 2012).

Figure 2.2.2: Single-nucleotide polymorphism (SNP): a genetic variation that generates a new

allele, characterized as a polymorphism when > 1% of the population has this gene format

(Lima, Galiciolli, Pereira, Felisbino, Machado-Souza, de Oliveira, & Guiloski, 2022)

2.2.3 Reference Genome vs Individual Genome

A reference genome serves as a standardized genetic blueprint, representing a composite

sequence derived from multiple individuals. It provides a baseline for researchers to compare

individual genomes, identify variations, and study their potential impact. However, no single

person has a genome identical to the reference (1000 Genomes Project Consortium, 2015).

Instead, every individual carries unique genetic variations, including SNPs, insertions, deletions,

and structural changes. These differences shape everything from physical traits to disease

susceptibility (Church et al., 2011).

An individual genome, on the other hand, reflects the complete set of genetic instructions

specific to a person, inherited from both parents. Unlike the reference genome, which is a

consensus sequence, an individual’s genome contains personalized variations that contribute to

their unique genetic makeup. This distinction is critical when studying genetic associations, as

population-level reference genomes cannot fully capture the diversity and complexity of

individual variations.

9

For tasks like polygenic risk scoring and disease prediction, using only the reference genome

would be insufficient. Instead, we need to analyze individual genomic data, identifying which

specific alleles a person carries at key positions. By comparing an individual's genome to the

reference, we can detect variations that may have functional consequences, such as increased

disease risk or altered drug metabolism. This highlights the importance of personalized genomic

analysis in precision medicine and genetic research.

2.3 Polygenic Risk Scores (PGS)

Genetic traits, especially complex diseases like diabetes or heart disease, are not influenced by a

single gene but rather by the cumulative effect of multiple genetic variants. Polygenic Risk

Scores (PGS) are a statistical way to estimate an individual’s genetic predisposition to a

condition by aggregating risk information from numerous Single Nucleotide Polymorphisms

(SNPs) across the genome. In this section, we will explore why PGS is important, the limitations

of traditional methods, and compare various existing approaches to calculating polygenic risk.

2.3.1 PGS and Its Importance

Predicting disease risk based on genetics has traditionally been a challenge because most

common diseases are polygenic, meaning they result from the combined effect of many small

genetic variations, not just a single mutation. Polygenic Risk Scores help bridge this gap by

quantifying an individual's genetic risk based on genome-wide SNP data (Torkamani, Wineinger,

& Topol, 2018).

PGS is becoming particularly important in personalized medicine, where it can help identify

high-risk individuals early, enabling preventative healthcare strategies. For example, someone

with a high polygenic risk score for Type 1 Diabetes (T1D) might benefit from early screening,

lifestyle adjustments, or potential interventions before symptoms even appear (Lewis & Vassos,

2020).

Beyond clinical applications, PGS is also used in genomic research, helping scientists uncover

how different genetic variants contribute to disease susceptibility. With improvements in

genetic databases and statistical models, PGS is becoming an increasingly powerful tool for

genetic risk prediction across diverse populations (Choi & O’Reilly, 2019).

10

2.3.2 Traditional PGS methods and Limitations

Polygenic Risk Score (PGS) estimation involves selecting which single nucleotide polymorphisms

(SNPs) to include and determining how to weight each one. This task is inherently complex, as

not all SNPs contribute equally to a trait, and naive summation fails to capture the intricacies of

genetic architecture. Over time, various statistical models have been developed to estimate PGS

more effectively. Each method comes with its own strengths and limitations, particularly in how

they handle linkage disequilibrium (LD), incorporate biological priors, and generalize across

populations.

LDpred2, an extension of the original LDpred method (Privé, Arbel, & Vilhjálmsson, 2020),

improves PGS estimation by adjusting SNP effect sizes based on LD, a phenomenon where

nearby SNPs tend to be inherited together. This adjustment enhances the accuracy of risk

prediction when SNPs are correlated. However, LDpred2 relies heavily on accurate LD reference

panels, and any errors in LD estimation can propagate into miscalculated risk scores. Moreover,

LD structures vary across populations, making LDpred2 less effective in cross-ancestry

applications.

LDpred-funct builds upon LDpred2 by integrating functional annotations, such as whether a SNP

resides within a protein-coding gene or regulatory region (Marquez-Luna et al., 2021). This

biologically-informed model allows SNPs in functionally important regions to receive greater

weight, thereby enhancing predictive power. Nonetheless, LDpred-funct employs a stepwise

modeling approach: it first estimates per-SNP heritability based on annotations and then uses

these estimates to adjust effect sizes. This separation of steps introduces potential biases and

may limit overall prediction accuracy.

MegaPRS offers an alternative by incorporating multiple population-specific datasets into a

unified model. Unlike methods that treat all populations uniformly, MegaPRS accounts for

ancestry-specific genetic effects, which is crucial for accurate cross-population predictions

(Zhou et al., 2022). This makes it a powerful tool for multi-ancestry applications. However, the

method is data-intensive, requiring large, well-balanced datasets from diverse populations. In

scenarios where such data are lacking, MegaPRS may yield unstable or inconsistent estimates.

11

2.4 SBayesRC & Bayesian SNP Selection

As polygenic risk scores (PGS) continue to shape genetic risk prediction, the challenge remains,

how do we improve accuracy while accounting for the complexity of genetic variation?

Traditional methods either lack functional annotation integration (e.g., SBayesR) or rely on

stepwise approaches that introduce bias (e.g., LDpred-funct). This is where SBayesRC comes in,

refining the way we estimate SNP effects by leveraging Bayesian inference and functional

annotations in a unified framework.(Lloyd-Jones et al., 2019), (Marquez-Luna et al., 2021).

An extension of SBayesR, SBayesRC improves polygenic prediction through three key

innovations. First, it performs joint analysis over all common SNPs across the genome, avoiding

reliance on predefined SNP subsets. This comprehensive modeling ensures that no potentially

informative variant is excluded from consideration. Second, it incorporates functional genomic

annotations directly into the model, which helps to differentiate causal variants from

background variation. By allowing annotations to inform both the inclusion probability and

effect size prior for each SNP, the model can prioritize functionally relevant loci. Third, SBayesRC

adopts a hierarchical Bayesian approach that dynamically refines SNP effect size estimates,

enhancing robustness to noise and improving generalizability across populations.

The method takes GWAS summary statistics and LD correlations from a reference sample as

input and outputs posterior inclusion probabilities (PIP) for each SNP, essentially ranking how

likely a SNP is to be truly associated with the trait. By allowing functional annotations to

influence both SNP inclusion probability and effect size distributions, SBayesRC refines genetic

risk predictions more effectively than previous models (Marenne et al., 2022).

A major innovation in SBayesRC is its low-rank approximation for LD modeling. Instead of

treating each SNP independently or assuming perfect LD, it collapses redundant information

from SNPs in high LD regions, boosting computational efficiency and reducing noise. This allows

SBayesRC to scale efficiently, handling millions of SNPs while maintaining high accuracy.

Beyond computational advantages, SBayesRC significantly improves cross-ancestry predictions,

a common weakness in traditional PGS methods. By integrating SNP density and annotation data

in a single Bayesian framework, it ensures that prediction accuracy is maintained even across

genetically diverse populations.

In the next section, we’ll compare SBayesRC with other PGS methods and analyze why it

outperforms existing approaches.

12

2.4.1 SBayesRC vs other PGS methods

Figure 2.4.1: Performance of different methods by simulations

Polygenic risk scores (PGS) have come a long way, but many traditional methods struggle with

accurately selecting SNPs and estimating their effects, especially across diverse populations.

SBayesRC was designed to fix these issues by integrating functional annotations and using a

Bayesian framework to refine SNP effect predictions.

Looking at the figure below, we can break down how SBayesRC stacks up against other methods.

Panel (a) shows its robustness when using different LD reference panels. This is a crucial

advantage since many models rely heavily on high-quality reference datasets, which may not

always be available, especially for non-European populations. Panel (b) highlights how

SBayesRC maintains accuracy even when SNP sample sizes are uneven, whereas other methods

tend to struggle with these inconsistencies.

One of the biggest takeaways from panel (c) is how prediction accuracy improves as we

incorporate more SNPs and functional annotations. While LDpred-funct and MegaPRS benefit

from additional data, they don’t reach the same level of performance as SBayesRC. This suggests

that SBayesRC isn’t just working with more data—it’s making better use of it.

13

Panels (d) and (e) take this a step further by showing that SBayesRC is better at identifying true

causal variants while keeping the false discovery rate (FDR) low. This is key in genetic research

because misidentifying SNPs can lead to misleading associations and poor predictive

performance. Finally, panel (f) shows that the SNP effect sizes estimated by SBayesRC align

closely with the actual genetic architecture, making it a more biologically grounded and

statistically reliable method for PGS prediction.

2.4.2 Usage of functional annotations to refine SNP selection

Not all genetic variants contribute equally to disease risk, some play a critical role in biological

processes, while others are simply along for the ride. Traditional PGS methods don’t distinguish

between them, often leading to noisy predictions. Functional annotations help refine SNP

selection by adding biological context, highlighting variants in regulatory regions,

protein-coding genes, and evolutionarily conserved sites. By incorporating this information, we

can better identify which SNPs are likely to be truly causal rather than relying solely on

statistical associations (Finucane et al., 2015).

SBayesRC takes this a step further by integrating functional annotations directly into its

Bayesian framework, allowing it to refine SNP effect sizes dynamically. Instead of using a

stepwise approach, where annotations are applied after effect sizes are estimated, SBayesRC

learns from both genomic data and functional information simultaneously. This not only

improves the accuracy of polygenic risk scores but also enhances cross-ancestry predictions, as

functional annotations remain consistent across populations. By prioritizing biologically

meaningful SNPs, this approach provides a more interpretable and reliable way to assess genetic

risk.

2.4.3 Bayesian vs Non-Bayesian approaches

Polygenic risk score models generally fall into two categories: Bayesian and non-Bayesian

approaches (Zhou, Carbonetto, & Stephens, 2013). Traditional methods like LDpred2 and

MegaPRS use frequentist approaches, which estimate SNP effect sizes based on direct statistical

associations observed in GWAS data. These models assume that effect sizes follow a fixed

distribution and apply shrinkage techniques to adjust for linkage disequilibrium (LD) and

sample size variations. While effective in certain cases, non-Bayesian methods struggle when

dealing with sparse data, small effect sizes, and cross-ancestry predictions since they lack a

probabilistic framework to account for uncertainty.

14

Bayesian approaches, like SBayesRC, tackle these issues by treating SNP effect sizes as

probabilistic distributions rather than fixed values. Instead of assigning a single effect size to

each SNP, they estimate a range of possible values and update their beliefs iteratively using prior

information. This allows them to incorporate functional annotations, LD structure, and prior

genetic knowledge into the model, refining SNP selection and effect estimation in a way that

adapts dynamically to different datasets. The advantage of Bayesian models is their ability to

filter out noise, capture complex genetic architectures, and generalize better across populations,

making them particularly powerful for polygenic risk prediction in diverse cohorts.

METHODOLOGY

This chapter outlines the step-by-step process used to develop and evaluate the

Transformer-based DNA language model. It begins by describing how genomic data was

processed, including sequence extraction, phenotype conditioning, and sampling strategies.

Next, the model architecture, training setup, and hyperparameter tuning experiments that

shaped its predictive capabilities are detailed. The inference pipeline is then explained, covering

how sequences were tokenized, fed into the model, and how logits were computed for genetic

variation prediction. Finally, the integration of the model’s outputs with SBayesRC is discussed,

demonstrating how computed probabilities were formatted for polygenic risk score (PGS)

estimation, ensuring a seamless transition from raw genomic data to meaningful risk prediction.

3.1 Data Processing and Sampling

To effectively train the Transformer-based DNA language model, a structured and efficient

pipeline for processing genomic data was required. This study relies on the GTEx Whole Genome

Sequencing (WGS) dataset (GTEx Consortium, 2017), which provides a diverse collection of

genetic variations across individuals. However, raw genomic data is complex and requires

careful preprocessing to extract meaningful information. A key aspect of the approach is

integrating phenotype information with genetic sequences, allowing the model to learn

relationships between specific mutations and observable traits. To assess the impact of this

conditioning, the model is trained in two configurations: one with phenotype conditioning,

where phenotype information is concatenated at the beginning of each sequence, and another

without phenotype conditioning, where the model learns only from genomic sequences. This

comparison allows for evaluating whether explicitly providing phenotype context enhances

predictive performance.

15

The data processing workflow is built around a custom DataLoader class, which is responsible

for handling variant call format (VCF) files, reference genome sequences, and phenotype data.

The first step in this pipeline involves loading VCF files, which store genetic variants for each

individual. Since these files are large and computationally expensive to process, they are

properly indexed using tabix or bcftools, enabling fast and efficient querying. Alongside this, the

reference genome is loaded, which acts as a baseline for identifying variations. The reference

genome is fetched using pysam (Heger, 2009), ensuring that sequence extraction is accurate and

computationally efficient. [(Li, 2011) – tabix, (Danecek et al., 2021) – bcftools].

A crucial component of the workflow is the integration of phenotype data, which is loaded from

a tab-separated values (TSV) file. Phenotype labels are converted into a binary format

(True/False) for ease of processing. This structured approach allows for incorporating

phenotype context directly into the input sequences, which provides valuable information for

the model when predicting genetic associations. However, to avoid potential data leakage, the

dataset is split into training and validation sets at the individual level, ensuring that no

individual appears in both datasets. This guarantees that the model is evaluated on unseen

individuals, making performance metrics more reliable.

One of the challenges in processing genomic data is the inconsistency in chromosome naming

conventions across different datasets. To address this, a chromosome mapping system is

constructed to resolve discrepancies such as "1" vs. "chr1" in various data sources. This ensures

smooth alignment between reference genomes and genetic variants, reducing potential errors

when applying mutations. Additionally, instead of sampling randomly across the genome,

gene-centered regions are prioritized, as these are more likely to be functionally relevant for

phenotype prediction. Using GENCODE gene annotations, start and end positions of genes are

extracted and extended with flanking regions to capture regulatory elements. Overlapping

regions are merged to avoid redundancy, and a binary search-based approach is implemented to

allow efficient weighted sampling from these predefined regions.

 , 𝑃(𝑅
𝑖
) =

𝐿
𝑖

𝑗=1

𝑁

∑ 𝐿
𝑗

Where is the probability of selecting region , is the length of region , and the 𝑃(𝑅
𝑖
) 𝑅

𝑖
𝐿

𝑖
𝑖

denominator is the total length across all merged regions. 𝑁

16

To simulate real-world genomic variation, the variant application process modifies the reference

genome using the individual's specific genetic variants. Since multiple variants can overlap or

conflict within a given sequence, a conflict-resolution strategy is applied, where variants are

sorted by position and the highest-quality variant is selected when overlaps occur (Frankish et

al., 2019).

Formally, the selected variant from the set of overlapping variants is given by: 𝑣* 𝑣
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

, 𝑣* = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑣

𝑘
ϵ𝑉

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

 𝑄𝑈𝐴𝐿(𝑣
𝑘
)

where QUAL denotes the variant quality score provided in the VCF file.

The quality score itself is a Phred-scaled measure of the confidence in a variant call and is

calculated as :

, 𝑄𝑈𝐴𝐿 = − 10 𝑙𝑜𝑔
10

(𝑃
𝑒𝑟𝑟𝑜𝑟

)

where is the probability that the variant is false positive. This transformation ensures that 𝑃
𝑒𝑟𝑟𝑜𝑟

more confident variant calls are assigned higher QUAL values, making them preferable during

overlap resolution.

Before applying a variant, a validation step ensures that the substitution aligns with the

reference sequence. Specifically, for a variant with reference allele REF of length ℓ, and a relative

variant position i in the sequence S, the following condition must hold:

S[i:i+ℓ]=REF.

If this condition fails, the variant is skipped to avoid introducing inconsistencies during

substitution.

To quantify the cumulative change introduced by applied variants, the Levenshtein distance

(Levenshtein, 1966) has been commuted between the reference sequence S and the modified

sequence M:

(S,M)= min { number of insertions, deletions, or substitutions to convert S into M } 𝑑
𝐿

17

This metric serves as a simple yet interpretable measure of base-level divergence introduced

during preprocessing and variant application.

Once the sequences are extracted and modified, they are tokenized for model input. Each

nucleotide is assigned a numerical representation: A (1), C (2), G (3), T (4), and N (5) for

unknown bases, while padding tokens (0) are added to maintain sequence consistency.

Additionally, for phenotype-conditioned training, we prepend a phenotype token to the

sequence, where False is encoded as 6 and True as 7. This ensures that the model explicitly

recognizes phenotype differences at the start of each sequence.

For model training, the dataset is integrated into a PyTorch DataLoader, which efficiently

batches and shuffles the data. This allows for parallelized processing on GPUs, significantly

speeding up training. The DataLoader supports both random sampling and position-based

sampling, allowing the model to be trained with diverse genomic contexts. This flexibility

ensures that the model is exposed to a broad range of genetic variations, improving its

generalization capabilities.

In summary, the data processing pipeline is designed to extract, condition, and structure

genomic sequences for deep learning applications. By incorporating phenotype information,

implementing gene-centered sampling, and resolving variant conflicts, high-quality input is

ensured for the Transformer-based model. The ability to train both with and without phenotype

conditioning allows for systematic evaluation of the impact of phenotype inclusion on genomic

prediction, providing valuable insights into the role of genetic context in complex traits.

3.2 Model Architecture and Training

Now that the data preprocessing and sampling steps are in place, attention turns to the

architecture of the model itself and how it was trained. This section outlines the core design of

the DNA language model, how sequences are represented internally, and the training strategy

used to optimize it. The role of phenotype-conditioning during training is also described, along

with how it was evaluated. Finally, the process of tuning key hyperparameters to improve model

performance is presented.

3.2.1 Transformer-based DNA Language Model

The core model architecture used in this study is based on the Transformer, a neural network

design that has proven effective in modeling complex dependencies in sequential data. This

architecture was adapted specifically for genomic sequences by treating each nucleotide as an

individual token. The input to the model consists of a fixed-length sequence of nucleotides,

18

which may also include an additional token at the beginning to represent phenotype

information. When present, this token serves as a context marker, allowing the model to

condition its predictions on the associated trait or disease status.

Each token in the sequence is first mapped to a learnable embedding vector. Positional

encodings are added to ensure the model understands the order of tokens.

Each nucleotide is mapped to a learnable embedding vector , 𝑥
𝑖

ϵ 𝐴, 𝐶, 𝐺, 𝑇, 𝑁, [𝑃𝐴𝐷]{ } 𝑒
𝑖
ϵ 𝑅𝑑

where is the embedding. The final input representation at position is given by: 𝑑 𝑍
𝑖

𝑖

, 𝑧
𝑖
 = 𝑒

𝑖
 + 𝑃

𝑖

Where is the positional embedding. This combined representation is passed through the 𝑃
𝑖

Transformer layers. Positional embeddings are learnable and help the model distinguish 𝑃
𝑖

between the same nucleotide appearing at different genomic positions, which is critical in

functional genomics.

The sequence of embeddings is then passed through several stacked layers of the Transformer.

Each layer contains a multi-head self-attention mechanism that allows the model to attend to

different parts of the sequence dynamically. Given an input sequence , where is the 𝑋 ϵ 𝑅𝑇×𝑑 𝑇

sequence length and is the embedding dimension, the model computes: 𝑑

, 𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾, 𝑉 = 𝑋𝑊𝑉

Where are the learnable projections matrices for queries, keys and values 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 ϵ 𝑅
𝑑×𝑑

𝑘

respectively, and for attention heads. 𝑑
𝑘

= 𝑑
ℎ ℎ

The scaled dot-product attention is then computed as:

 , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑
𝑘

+ 𝑀()𝑉

where is the causal mask. For a sequence of length , define a matrix , where 𝑀 ϵ 𝑅𝑇×𝑇 𝑇 𝑇 × 𝑇 𝑀

each entry is set to 0 if position is less than or equal to , and set to negative infinity if 𝑀
𝑖,𝑗

𝑗 𝑖

position is less than or equal to . 𝑗 𝑖

19

A casual mask is applied to enforce the autoregressive constraint. This mask prevents 𝑀 ϵ 𝑅𝑇×𝑇

the model from accessing future positions by assigning a value of to all positions , − ∞ 𝑗 > 𝑖

such that the attention score at position only depends on tokens . This ensures the model 𝑖 ≤ 𝑖
adheres to left-to-right sequence modeling and prevents information leakage from the future

positions during training. The softmax function then normalizes the masked similarity scores

into attention weights where : α
𝑖𝑗

 , with . α
𝑖𝑗

 = 𝑒
𝑠

𝑖𝑗

𝑘=1

𝑇

∑ 𝑒
𝑠

𝑖𝑘

𝑆
𝑖𝑗

=
𝑄

𝑖
 . 𝐾

𝑗
𝑇

𝑑
𝑘

+ 𝑀
𝑖𝑗

This produces a probability distribution over all prior positions, which is used to compute a

weighted sum of the values vectors.

In practice, the model employs multi-head attention, which allows the Transformer to jointly

attend to information from different representation subspaces. Given heads, the input ℎ

 is projected into queries, keys, and values for each head using separate learnable 𝑋ϵ 𝑅𝑇×𝑑

weight matrices:

 for = 1,......, . 𝑄
𝑖
 = 𝑋𝑊

𝑖
𝑄 , 𝐾

𝑖
 = 𝑋𝑊

𝑖
𝐾 , 𝑉

𝑖
 = 𝑋𝑊

𝑖
𝑉 𝑖 ℎ

Each head computes attention independently as:

. ℎ𝑒𝑎𝑑
𝑖
 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄

𝑖
, 𝐾

𝑖
, 𝑉

𝑖
)

These are then concatenated and projected using:

. 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑
1,

ℎ𝑒𝑎𝑑
2
,.......ℎ𝑒𝑎𝑑

ℎ
)𝑊𝑜

This enables the model to capture relationships at multiple scales simultaneously. This is

particularly useful for genomic data, where a mutation in one part of the sequence might be

influenced by regulatory elements located much farther away.

20

Following the multi-head attention mechanism, each token representation is passed through a

position-wise feedforward network (FFN). In the implemented architecture, this consists of

two linear transformations with a ReLU non-linearity in between, followed by dropout:

, 𝐹𝐹𝑁(𝑥) = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑊
2
. 𝑅𝑒𝐿𝑈(𝑊

1
 . 𝑥))

Where is the output from the attention sublayer at each sequence position, 𝑥 ϵ 𝑅𝑑 𝑊
1
ϵ 𝑅𝑑×4𝑑

expands the representation to a higher-dimensional space, projects it back to the 𝑊
2
ϵ 𝑅4𝑑×𝑑

original embedding dimension, ReLU (Rectified Linear Unit) is the nonlinearity applied

element-wise and is defined as . This function introduces nonlinearity 𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0, 𝑧)

into the model, allowing it to learn complex patterns by zeroing out negative activations. Finally,

Dropout is applied after the final layer to regularize training and reduce overfitting.

To ensure stable training and facilitate gradient flow in deep networks, residual connections and

layer normalization are applied around each sublayer (both attention and feedforward).

Specifically, for an input , the sublayer output is computed as 𝑥

. 𝑋
𝑜𝑢𝑡

= 𝑋 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋))

This formulation is used twice per Transformer block, Once for the multi-head attention and

once for the feedforward sublayer. Layer normalization normalizes each feature dimension

across the token’s embedding. The normalized output is computed as:

, 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋) = 𝑋−µ
σ+ϵ . Υ + β

Where is the mean and is the standard deviation µ = 1
𝑑

𝑖=1

𝑑

∑ 𝑥
𝑖
 σ = 1

𝑑
𝑖=1

𝑑

∑ (𝑥
𝑖

− µ)2 + ε

with a small constant added for numerical stability. While are learnable ε Υ , β ϵ 𝑅𝑑

parameters, respectively. These parameters enable the model to preserve representational

capacity after normalization.

21

At the end of the transformer stack, a final layerNorm is applied, and each hidden state is ℎ
𝑡
 ϵ 𝑅𝑑

projected into the nucleotide vocabulary using a learned weight matrix

. The output logits are computed as: 𝑊 ϵ 𝑅 υ| |×𝑑 , 𝑤ℎ𝑒𝑟𝑒 ν| | = 6(𝐴, 𝐶, 𝐺, 𝑇, 𝑁, [𝑃𝐴𝐷])

 . 𝑍
𝑡

= 𝑊 . ℎ
𝑡

The model then outputs a probability distribution over the vocabulary using a softmax:

 . 𝑃 (𝑥
𝑡+1

= υ
𝑖
 | 𝑥

≤𝑡
) = 𝑒

𝑧
𝑡,𝑖

𝑗=1

υ| |

∑ 𝑒
𝑧

𝑡,𝑗

This converts the logits into valid probabilities for the next nucleotide. This formulation 𝑧
𝑡

completes the autoregressive modeling pipeline used for next-token prediction in the DNA

language model.

In addition to the phenotype-conditioned version of the model, a second model was trained

using the same architecture but without any phenotype information in the input. This version

was included for comparison, allowing us to evaluate the added value of explicitly conditioning

the model on phenotype when learning sequence-level representations. A more detailed

discussion of the training process and this comparative setup is presented in the following

section.

Overall, the Transformer-based DNA language model provides a flexible and powerful

framework for modeling genomic sequences. By incorporating both local and distant sequence

dependencies, and optionally conditioning on phenotype, the model is capable of capturing

complex patterns that are relevant for downstream tasks such as variant effect prediction and

polygenic risk estimation.

3.2.2 DNA Language Model Training

Training the DNA language model required a setup that could efficiently handle large-scale

genomic data while also being flexible enough to accommodate multiple configurations. The

model was trained using PyTorch (Paszke et al., 2019) with full GPU acceleration, and training

was executed on a high-performance cluster equipped with A100-SXM4 GPUs and 256 GB of

memory. The primary objective during training was to predict the next nucleotide in a sequence,

using a standard language modeling setup. For each training batch, the model received

22

sequences as input and was optimized to assign high probability to the correct next nucleotide

at each position, following an autoregressive approach.

The loss function used during training was cross-entropy loss, which compares the model’s

predicted probability distribution to the actual target nucleotide:

, 𝐿
𝐶𝐸

 = − 1
𝑁

𝑖=1

𝑁

∑ 𝑙𝑜𝑔 𝑃(𝑥
𝑖
 | 𝑥

<𝑖
)

Where N is the number of tokens in the batch, is the true nucleotide at position and 𝑥
𝑖

𝑖

 is the model’s predicted probability (from softmax) for the correct token given 𝑃(𝑥
𝑖
 | 𝑥

<𝑖
)

previous context .

 This loss was averaged across the batch and back propagated through the model. To ensure that

the model did not access future tokens while making predictions, causal masking was applied,

enforcing a left-to-right learning pattern.

Gradient accumulation was used to manage memory usage and stabilize training employed

over G mini-batches, especially when using large batch sizes on long sequences, simulating a

larger batch size , where B is the per-step batch size. 𝐵
𝑒𝑓𝑓 =

𝐺 . 𝐵

Additionally, training and validation datasets were carefully split at individual level to avoid data

leakage, ensuring that no sequence from a single person appeared in both sets.

To evaluate the impact of phenotype conditioning, two versions of the model were trained in

parallel. One model received phenotype tokens at the beginning of each input sequence,

allowing it to condition its predictions on the presence or absence of a disease-related trait . In

this case diabetes type -1. The second model was trained on the same sequences without

phenotype information. The architecture and training parameters were kept identical for both

versions to make the comparison meaningful. The evaluation of both models was based on

validation loss, which was monitored across training epochs to track convergence and stability.

Training was monitored and tracked using the Weights & Biases platform (Biewald, 2020), which

helped visualize training and validation loss over time, and compare the effects of different

hyperparameter settings. These logs were essential in understanding how changes in model

size, input sequence length, and batch configuration affected learning dynamics. Each run was

23

logged with the corresponding hyperparameters, making it easier to organize and interpret the

results of different experiments.

Several key hyperparameters were varied systematically to test the model’s capacity and

sensitivity. Embedding dimensions were tested at multiple scales, including 64, 256, 512, and

1024. Similarly, block sizes referring to the context window size used during attention

computations were explored at values of 4, 8, 16, and 32. These changes allowed the model to

capture dependencies over different ranges, and helped determine the trade-off between model

complexity and performance. Sequence length was another important factor. Experiments were

run on sequence lengths of 32, 64, 128, 256, 512, 1024, and 2048 tokens.

To efficiently explore the wide range of hyperparameter combinations, multiple training runs

were executed in parallel, each running for approximately eight hours. This allowed a broad

sweep across different embedding sizes, block sizes, and sequence lengths while keeping

compute usage manageable. Based on the validation performance and training stability

observed during these runs, the configuration with a batch size of 32, embedding dimension of

512, and sequence length of 1024 tokens emerged as the most balanced setup. This combination

offered a strong trade-off between accuracy, generalization, and computational efficiency. Once

identified, this configuration was used for the final full-scale training runs, which were extended

to 16 hours to ensure convergence while making optimal use of the available compute resources.

3.2.3 Optimization Strategy and Numerical Modeling Configuration

To ensure effective training of the transformer-based DNA language model, careful attention was

paid to optimization techniques, architectural parameters, and numerical stability. This section

provides a detailed breakdown of the optimizer, loss formulation and model configuration.

The model was trained to minimize the cross-entropy loss, a standard choice in language

modeling tasks, defined as:

, 𝐿
𝐶𝐸

 = − 1
𝑁

𝑖=1

𝑁

∑ 𝑙𝑜𝑔 𝑃(𝑥
𝑖
 | 𝑥

<𝑖
)

where denotes the true nucleotide at position , the preceding context, θ the model 𝑥
𝑖

𝑖 𝑥
<𝑖

parameters, and the total number of tokens in the batch. This objective encourages the model 𝑁

to assign high probability to the correct nucleotide given its upstream genomic and phenotypic

context. This Training was conducted using the Adam optimizer, a widely used adaptive

24

gradient descent method. The configuration with a Learning Rate: , = 0.9, = 0.95, 1 × 10−4 β
1

β
2

Weight Decay of 0.01 to regularize the model and prevent overfitting. To manage memory and

increase the effective batch size during training, gradient accumulation was used with a step size

of 2. This setup allowed the model to be trained stably across large genomic sequences while

maintaining convergence efficiency.

With 100 batches per epoch and 100 batches per evaluation. Gradient accumulation was applied

to simulate a larger batch size by accumulating gradients over two mini-batches before

performing a weight update, thus effectively increasing the batch size without exceeding

memory limits.

The full Transformer architecture was implemented from scratch in PyTorch and comprises

several key components tailored for genomic sequence modeling. The model includes 12

Transformer blocks, each featuring a multi-head self-attention mechanism with 8 attention

heads. The embedding dimension was set to 512, ensuring sufficient representational capacity

while maintaining computational tractability. Each input sequence was tokenized into a fixed

length of 1024 tokens, corresponding to the upstream genomic context used for autoregressive

prediction.

Dropout with a probability of 0.1 was applied throughout the network to regularize training and

mitigate overfitting. The nucleotide vocabulary consists of six tokens A, C, G, T, N and PAD

(padding). For phenotype-conditioned models, the vocabulary was extended to include binary

tokens corresponding to phenotype presence or absence, increasing the size to eight.

The model uses ReLU (Rectified Linear Unit) as the activation function in all feedforward

sublayers, introducing non-linearity and enabling the network to learn complex biological

dependencies. The total number of trainable parameters in the model is approximately 38.34

million, accounting for the embedding layers and the full Transformer stack. This configuration

was chosen to balance expressiveness, memory efficiency, and training stability, making it

well-suited for large-scale genomic inference tasks.

Training was carried out on a high-performance computing cluster utilizing four NVIDIA

A100-SXM4-80GB GPUs. The model was trained using full FP32 precision, without

mixed-precision optimizations. Each training batch consisted of 32 sequences, each of length

1024 tokens. The training process spanned a total of 36 epochs and was managed via the Slurm

workload manager on the pgpu node.

25

The total training runtime was approximately 48 hours, with parallel processing enabled across

all four GPUs. During peak usage, each GPU exhibited a power draw in the range of 310 to 320

watts. This setup provided sufficient compute throughput to handle the large parameter space

and sequence length, while maintaining training stability and reproducibility across runs.

Memory constraints were mitigated using PyTorch’s torch.utils.checkpoint module for

selective gradient computation in transformer blocks, reducing GPU memory overhead during

the forward pass.

Table 3.2.3: Model Configuration Summary

S.No Parameter value

1 Sequence Length 1024

2 Embedding Dimension 512

3 Attention Heads 8

4 Transformer layers 12

5 Dropout 0.1

6 Optimizer Adam

7 Learning Rate 1𝑒−4

8 Batch size 32

9 Training Epochs 36

10 Total Parameters ~38.34M

11 Training Precision FP32

12 GPUs used
NVIDIA A100-SXM4-80GB

3.3 Inference Process

Once the model had been trained and validated, the next step involved using it to make

predictions on new genomic sequences. This phase, known as inference, focuses purely on

evaluating the model’s output without updating its weights. In this context, the model was used

to compute the probabilities of specific nucleotide occurrences across genomic regions, which

26

formed the basis for downstream applications such as variant prioritization and polygenic risk

scoring. This section outlines how input sequences were prepared during inference and how the

model’s outputs, specifically the logits were computed and interpreted.

3.3.1 Model Input and Processing

During inference, the model was used to estimate the probability of observing specific

nucleotides at known variant positions, given the surrounding genomic context. To do this,

variant-level data was obtained from a large-scale population cohort, structured similarly to

datasets from biobanks such as the UK Biobank (Sudlow et al., 2015). This dataset included

chromosome locations and both reference and alternate alleles for each variant of interest.

For each variant position p, a fixed-length DNA sequence was extracted from the reference

genome, comprising 1024 nucleotides immediately upstream of the variant position. This

provided the model with a consistent left-hand context, allowing it to predict the next base in

the sequence, which corresponded to the variant site. This setup mirrors the autoregressive

objective used during training, where the model learns to predict the next nucleotide based

solely on preceding context.

The input sequence was tokenized using the same vocabulary and encoding scheme established

during training. When using the phenotype-conditioned model, a phenotype token was

prepended to the beginning of the sequence to indicate disease status. In this study, the

conditioning was based on the presence or absence of Type 1 Diabetes. For the non-conditioned

model, the same sequences were used without the additional phenotype token.

All input sequences were standardized to 1024 tokens. If the combined phenotype and DNA

sequence exceeded this length, the sequence was truncated; otherwise, padding tokens were

added to ensure uniform shape. This consistency ensured compatibility with the model’s input

expectations and allowed for efficient batch processing.

The model was set to evaluation mode, and inference was conducted without gradient tracking,

which improved computational efficiency and reduced memory usage. Inference was performed

in batches, each containing a subset of variants, allowing the process to scale to biobank-scale

datasets. Both the phenotype-conditioned and unconditioned models were applied to the same

set of variant positions, enabling a fair and interpretable comparison between the two

approaches.

27

Through this process, the model received individual variant contexts and produced predictions

that could be used to assess how well the model captured the statistical and biological patterns

underlying genetic variation, both in a generic and phenotype-aware manner.

3.3.2 Computing Logits

Once the model receives an input sequence and processes it through its Transformer layers, the

final output is a set of raw scores known as logits, which are computed for each position in the

input sequence. These logits represent the model’s unnormalized confidence about the identity

of the next nucleotide at each location. In the autoregressive setup used throughout this study,

the model is trained to predict the next base based solely on the preceding context. Therefore,

for any given input, the most relevant prediction occurs at the final position,, the variant site.

Let the input sequence be denoted by , where T is the sequence length 𝑋 = [𝑥
1
, 𝑥

2
,..............., 𝑥

𝑇
]

After passing through the Transformer layers, the model produces a sequence of contextualized

hidden states , one for each position. These hidden states are then projected ℎ
1
, ℎ

2
, , ℎ

𝑇
 ϵ 𝑅𝑑

into the nucleotide vocabulary using a learned weight matrix , where represents 𝑊 ϵ 𝑅 υ| |×𝑑 ν| |

the vocabulary size corresponding to the nucleotides. The logits at the final position t = T are

computed as:

. 𝑍
𝑡
 = 𝑊ℎ

𝑡

The resulting vector is the set of logits for the position . These logits are then passed 𝑍
𝑡
 ϵ 𝑅 υ| | 𝑡

through a softmax function to obtain probability distribution over the nucleotide vocabulary:

 , 𝑃 (υ
𝑖
 | 𝑥

≤𝑡
) = 𝑒

𝑧
𝑡,𝑖

𝑗=1

υ| |

∑ 𝑒
𝑧

𝑡,𝑗

where is the probability assigned to nucleotide , conditioned on the upstream 𝑃 (υ
𝑖
 | 𝑥

≤𝑡
) 𝑖

sequence context. Since the autoregressive model only considers prior tokens when making

predictions, the output at position corresponds to the model’s prediction for the variant site at 𝑇

position . Therefore, only the logits are used for downstream inference tasks. 𝑇 + 1 𝑍
𝑇

28

For each variant, the model estimates probabilities for both the reference and alternate alleles.

Let and denote the reference and alternate alleles respectively. The model-derived ν
𝑟𝑒𝑓

ν
𝑎𝑙𝑡

probabilities are then given by:

 𝑃
𝑟𝑒𝑓

= 𝑃(ν
𝑟𝑒𝑓

 | 𝑋
≤𝑇

), 𝑃
𝑎𝑙𝑡

= 𝑃(ν
𝑎𝑙𝑡

 | 𝑋
≤𝑇

).

From a modeling perspective, these probabilities offered a way to quantify how plausible each

allele was, not just statistically, but functionally as well. A high probability for the reference

allele might suggest that the model sees it as consistent with the genomic background, whereas

a low probability for the alternate allele might indicate a more disruptive or unusual variant.

When used in bulk across thousands or millions of variants, these predictions begin to reflect

the model’s internal understanding of functional relevance, making them valuable candidates for

use as priors in a polygenic risk score framework.

Importantly, this inference pipeline was applied to both the phenotype-conditioned and

non-conditioned versions of the model, allowing the collection of two sets of outputs: one

reflecting generic sequence modeling, and one enriched with phenotype-specific context (in this

case, Type 1 Diabetes). All sequences were standardized to a length of 1024 tokens, with

phenotype tokens prepended in the conditioned case. Sequences were truncated or padded as

necessary to maintain this fixed input shape.

By computing these probabilities consistently for both phenotype-conditioned and

non-conditioned models, two parallel datasets of model-derived outputs were prepared. These

were later integrated with summary statistics in the PRS framework, allowing for assessment of

how much information the model had captured and whether conditioning on phenotype

improved its ability to identify functionally important variants.

3.4 Benchmarking Model Outputs Using Public Polygenic Score Weights

To evaluate whether the DNA language model captures meaningful biological signals,

variant-level effect sizes were obtained from the PGS Catalog for the trait Type 1 Diabetes

Mellitus (MONDO:0005147). These effect sizes quantify the contribution of individual genetic

variants to disease risk and serve as an external benchmark for assessing the biological

relevance of the model’s outputs. Two polygenic score models were used in this analysis. The

first, PGS002025, titled portability-ldpred2_250.1, originates from Privé et al. (2022) and is

based on genome build GRCh37. It includes 106,800 variants and is associated with DOI:

10.1016/j.ajhg.2021.11.008. The second model, PGS003993, titled

29

dbslmm.auto.GCST90013445.T1D, was introduced by Monti et al. (2024), is aligned to genome

build GRCh38, and includes 63,182 variants (DOI: 10.1016/j.ajhg.2024.06.003).

Each scoring file contains variant-level identifiers (rsIDs), reference and effect alleles, and

corresponding beta coefficients representing effect sizes. They served as benchmarks for

evaluating model behavior at the resolution of single variants. Logits were generated from both

a phenotype-conditioned model and a non-conditioned baseline for each SNP present in the PGS

files. The logit associated with the effect allele was extracted by aligning rsIDs and matching the

corresponding logit column based on the reported allele information.

To ensure that only informative variants were included in the analysis, an effect size filter was

applied to each scoring file. For PGS002025, variants were retained if their absolute effect size

exceeded 0.0001. In contrast, for PGS003993, a more stringent threshold of 0.1 was applied,

reflecting the smaller dynamic range of effect sizes reported in that file.

Variants missing logits or failing to meet the thresholds were excluded. Pearson correlation

coefficients were then computed between the model-derived logits and the absolute values of

the PGS beta coefficients, separately for the conditioned and non-conditioned models. The

correlation was computed using the scipy.stats.pearsonr function from SciPy (Virtanen et al.,

2020), based on the original statistical formulation by Pearson (1895).

In addition to numerical correlation, visualizations such as scatter plots, histograms, and kernel

density estimates (KDEs) were used to explore the relationship between model confidence and

variant effect size. These comparisons helped assess whether the model's outputs reflect

meaningful biological signals aligned with known genetic contributions to disease.

3.5 Integrating with SBayesRC

After training and evaluating the DNA language model, the next step was to assess whether its

outputs could enhance genetic risk prediction in practice. This was done by integrating the

model-derived scores into SBayesRC, a Bayesian framework for polygenic risk scoring (PRS)

that combines GWAS summary statistics (Karczewski et al., 2018) with variant-level annotations

to estimate posterior SNP effect sizes. These annotations act as priors that influence the model’s

belief about the likelihood of each variant being causal.

In this work, the DNA language model generated scalar scores for each variant—based on the

logit difference between alternate and reference alleles in a 1024-base context—which were

30

used as continuous functional annotations. These were injected into the SBayesRC framework in

place of traditional annotations such as conservation or chromatin state, allowing the model’s

learned sequence-level representations to guide inference in a probabilistically grounded way.

This approach offers a robust benchmark for DNA-LLMs. Rather than relying on isolated or

manually curated tasks, polygenic risk scoring integrates information across the entire genome,

implicitly capturing both known functional relationships (e.g., disease-associated loci) and

previously unknown sequence features that may be biologically relevant. As a result, this setup

functions like an integration test: it evaluates not only whether the model has encoded

meaningful representations, but also whether those representations can be operationalized to

improve real-world prediction.

By quantifying downstream performance using metrics like AUROC, this framework provides a

direct and interpretable way to assess the utility of sequence-based models for clinical and

research applications.

3.5.1 Preparing Data for Integration

The integration process began with assembling the necessary input data. This included GWAS

summary statistics for Type 1 Diabetes from a large-scale biobank cohort (Karczewski et al.,

2018), containing variant-level attributes such as chromosome position, reference and alternate

alleles, beta coefficients, standard errors, p-values, and allele frequencies.

Each single nucleotide polymorphism(SNP) is characterized by the following attributes: 𝑣
𝑖

Reference allele , Alternate Allele , Effect size estimate , Standar error , P-value 𝐴
1
(𝑖) 𝐴

2
(𝑖) β(𝑖) 𝑆𝐸(𝑖)

, and Allele frequency: 𝑝(𝑖) 𝑓(𝑖)ϵ [0, 1]

 , 1-)>0.01. 𝑀𝐴𝐹(𝑖) = 𝑚𝑖𝑛(𝑓(𝑖) 𝑓(𝑖)

While the framework allows for filtering based on minor allele frequency, the variants used in

this analysis were selected based on the intersection between SNPs present in the UK Biobank

GWAS and those for which annotations were available from the DNA language model outputs.

This curated set ensured that every variant had both an effect size from the GWAS and a

corresponding functional annotation from the model, enabling seamless integration into the

SBayesRC pipeline for downstream effect size modeling and risk prediction.

31

3.5.2 Using Language Model Outputs as Functional Annotations

SBayesRC was originally intended to utilise biological annotations, such as gene regulatory

markers or coding region tags, as priors for estimating SNP effect sizes. In this case, features

from the DNA language model served as an alternative source of functional information.

For each variant , the trained language model generated a probability distribution over the υ
𝑖

nucleotide vocabulary at the variant site, conditioned on the preceding 1024-base upstream

context . This mirrors the autoregressive prediction objective used during training. 𝑋
<𝑡

Formally, for each nucleotide, the model produces:

, 𝑃
𝐿𝑀

(𝑥
𝑡

= 𝑎|𝑥
<𝑡

) =
𝑒𝑥𝑝(𝑧

𝑡,𝑎
)

𝑗=1

|𝑣|

∑ 𝑒𝑥𝑝(𝑍
𝑡,𝑗

)

Where is the logit assigned to nucleotide at position , is the 1024-nucleotide upstream 𝑍
𝑡,𝑎

𝑎 𝑡 𝑥
<𝑡

context and |v| = is the size of the nucleotide vocabulary.

In practice, rather than using the full probability vector, a single scalar value was extracted for

each variant to serve as the functional annotation. This value represents the difference between

the model’s logit for the alternate allele and the reference allele:

 . 𝐴𝑛𝑛𝑜𝑡
𝑖

= 𝑍
𝑎𝑙𝑡 𝑖

− 𝑍
𝑟𝑒𝑓 𝑖

This logit difference captures the relative preference of the model for the alternate allele over

the reference allele at a given genomic position. A positive value indicates the model assigns

higher confidence to the alternate allele in the given sequence context, whereas a negative value

suggests preference for the reference allele

Importantly, from a biological perspective, this signal may reflect selective pressure: variants

that are deleterious or harmful may be less likely to occur in conserved regions and, therefore,

receive lower probability from the model. As a result, the logit difference can serve as a proxy for

functional impact, offering a novel way to prioritize variants in downstream polygenic scoring

applications.

To make these values compatible with thePRS framework, an annotation file was constructed for

both the phenotype-conditioned and non-conditioned models. Each file consisted of three

32

columns: SNP, the rsID of the variant, FILL, a constant column with value 1.0 (a required

placeholder by the pipeline), Annot1: the computed logit difference described above.

This resulted in a one-dimensional annotation matrix , where n is the number of 𝐴 ϵ 𝑅𝑛×1

variants. Unlike previous approaches that combine multiple biological features, this setup

isolated the effect of model-derived sequence representations alone. This allowed for direct

comparison between models trained with and without phenotype conditioning in terms of their

ability to inform SNP effect estimation.

3.5.3 Annotations Preprocessing and Feature Selection

Prior to integration with the PRS framework, all annotation features were systematically

preprocessed to ensure numerical stability and interpretability within the Bayesian modeling

framework. The full annotation matrix, denoted as:

, 𝐴 ϵ 𝑅𝑛×𝑑

consisted of single-nucleotide polymorphisms (SNPs) and annotation features. In this case, 𝑛 𝑑

d=1, corresponding to a single model-derived feature: the logit difference between the alternate

and reference alleles produced by the DNA language model.

To prepare the annotation matrix for use in SBayesRC, all continuous features were standardized

to have zero mean and unit variance. For a given feature , the transformation was defined as: 𝑥

, 𝑥' = 𝑥 − µ
σ

Where and denote the sample mean and standard deviation of the variable, respectively. This µ σ

normalization step ensures that all features contribute comparably to the model, regardless of

their original scale.

After this standardization, the resulting annotation matrix A′ was passed to the PRS framework

as the functional prior used in Bayesian SNP effect size estimation. The simplicity of using a

single, model-derived feature also allowed for a direct evaluation of the utility of DNA language

model outputs compared to traditional annotation sources.

33

3.5.4 Polygenic Risk Scoring with SBayesRC

The final stage of the study involved integrating the outputs of the DNA language model into the

SBayesRC framework to evaluate their utility for polygenic risk prediction. SBayesRC is a

hierarchical Bayesian model designed to estimate SNP-level effect sizes by incorporating both

GWAS summary statistics and functional annotations. It assumes that the true effect size βi of

SNP i arises from a finite mixture of zero-mean Gaussian distributions, where the prior

probabilities of component membership are informed by variant-specific annotations:

, β
𝑖
 ~

𝑘=1

𝐾

∑ π
𝑘
(𝑖) . Ɲ(0, σ

𝑘
2)

Where denotes the probability of SNP belongs to the -th mixture component with π
𝑘
(𝑖) 𝑖 𝑘

variance . These probabilities are not fixed but are dynamically determined as a function of σ
𝑘
2

the SNP’s annotation vector , using a log linear transformation followed by softmax 𝑎
𝑖
 ϵ 𝑅𝑑

function:

, π
𝑘
(𝑖) =

𝑒𝑥𝑝(𝑤
𝑘
𝑇𝑎

𝑖
)

𝑙=1

𝑘

∑ 𝑒𝑥𝑝(𝑤
𝑙
𝑇𝑎

𝑖
)

Where is a vector of learned weights associated with component and encodes the 𝑤
𝑘
ϵ 𝑅𝑑 𝑘 𝑎

𝑖

processed annotations for SNP i. These annotations may include classical biological features as

well as outputs derived from the DNA language model, such as allele-specific probabilities and

derived log-ratios.

3.5.5 Risk score construction

Once posterior mean effect sizes have been estimated for each SNP, they can be used to β
𝑖

compute polygenic risk scores (PRS) for individual-level genotype data. For a given individual

with genotype at SNP , representing the number of alternate alleles carried, the PRS 𝑔
𝑖
ϵ {0, 1, 2} 𝑖

is computed as the weighted sum of genotypes:

, 𝑃𝑅𝑆 =
𝑖=1

𝑛

∑ β
𝑖
. 𝑔

𝑖

34

where is the total number of SNPs considered. This scalar quantity provides a quantitative 𝑛

estimate of the individual’s genetic liability to the trait under investigation, Type 1 Diabetes in

this case. The PRS can be used in downstream analyses for stratifying risk, identifying outliers,

or modeling genetic predisposition in conjunction with clinical covariates.

Results And Discussions

4.1 Hyperparameter Tuning and Model Selection

To determine the most effective architecture, multiple hyperparameter combinations were
evaluated in parallel. These experiments focused on varying embedding dimensions, sequence
lengths and batch sizes Each run was tracked using Weights & Biases, with validation loss
serving as the main criterion for comparison. Each training run was labeled using the format

sequenceLength-embeddingDim-batchSize, allowing for easy identification and

comparison across experiments. For example, a run named 1024-512-32 corresponds to a

model trained with a sequence length of 1024, embedding dimension of 512, and batch size of
32.

Figure 4.1(a): Validation Loss Across Hyperparameter Configurations: 1024-512-32 Achieves
the Lowest Loss

35

Figure 4.1(b): Training Loss Across Hyperparameter Configurations: 1024-512-32 Achieves the
Lowest Loss

Figures 4.1(a) and 4.1(b) display the validation and training loss curves, respectively, across
various hyperparameter configurations. Among the combinations tested, the setup with a
512-dimensional embedding, a sequence length of 1024 tokens, and a batch size of 32
consistently achieved the lowest validation loss and exhibited a stable training trajectory. Based
on these results, this configuration was chosen as the final model and was trained further to
ensure full convergence. All subsequent evaluations and inference experiments were conducted
using this selected model.

In addition to evaluating performance through loss metrics, GPU power usage was also
monitored during training. As shown in Figure 4.1(c), a comparative plot of GPU power
consumption across different hyperparameter combinations revealed a clear pattern: the
configuration with 1024-token sequence length, 512-dimensional embedding size, and batch
size of 32 consistently consumed significantly more power throughout the entire training
duration. This indicates that the best-performing model was also the most computationally
demanding, likely due to its increased representational capacity and extended input context.

Table 4.1: Hyperparameter Tuning Results

36

S.
No

Model Name Embedding
dim

Batch size Sequence
length

Train loss Validation
loss

1 2048-256-8 256 8 2048 1.32939 1.32911

2 2048-128-8 128 8 2048 1.33452 1.3323

3 2048-256-16 256 16 2048 1.32569 1.32572

4 20148-128-32 128 32 20148 1.32911 1.32785

5 1024-256-32 256 32 1024 1.31937 1.31792

6 1024-128-32 128 32 1024 1.32233 1.32171

7 1024-512-32 512 32 1024 1.31742 1.31762

Figure 4.1(c): Comparison of GPU power usage (in watts) across hyperparameter configurations
during training.

4.2 Model training

Following the selection of optimal hyperparameters, namely a sequence length of 1024,
embedding dimension of 512, and batch size of 32, the final models were trained for 36 epochs.
Two model variants were considered, one incorporating phenotype conditioning and one
without any conditioning. Enabling a direct evaluation of the impact of phenotype information
on learning dynamics.

37

Both models were trained on the same dataset under identical conditions to ensure a controlled
comparison. The progression of training and validation losses is shown in Figures 4.2(a) and
4.2(b). While the overall learning curves are closely aligned, the conditioned model consistently
achieved slightly lower losses across epochs.

By the end of training, the conditioned model reached a training loss of 1.3201 and a validation
loss of 1.3171. In contrast, the non-conditioned model concluded with a training loss of 1.3211
and a validation loss of 1.3191. These results indicate a modest but consistent improvement in
both convergence and generalization when conditioning on phenotype is applied.

Furthermore, the validation curve of the conditioned model exhibits a smoother descent and
slightly reduced variance across epochs, suggesting improved stability during training.

Figure 4.2(a): Train Loss Across 36 Epochs for conditioned and non conditioned model

38

Figure 4.2(b): Validation Loss Across 36 Epochs for conditioned and non conditioned model

4.3 Logits generation and Analysis

Using the final models trained, predictions were generated for over 2.23 million SNPs across the
genome. For each variant, model-derived probabilities were extracted for both the reference and
alternate alleles under both the phenotype-conditioned and non-conditioned configurations.
This allowed a direct comparison of the probabilistic outputs from the two models at a
genome-wide scale, enabling an assessment of the effect of phenotype conditioning on
variant-level predictions.

39

Figure 4.3(a): Distribution of predicted probability differences between reference and alternate
alleles. The conditioned model shows heavier tails, suggesting stronger allele preference for a

subset of variants, potentially reflecting phenotype-relevant signals.

This figure 4.3(a) illustrates the distribution of the difference between the model’s predicted
probability for the reference allele and the alternate allele, across all variants. A positive value
implies the model favored the reference allele in its prediction, while a negative value indicates
higher probability for the alternate allele.

Both the conditioned (blue) and non-conditioned (red) models exhibit a roughly symmetric
distribution centered near zero, suggesting that in many cases, predictions are balanced
between the two alleles.

However, the conditioned model displays noticeably broader tails, meaning it more frequently
assigns strongly confident predictions in favor of one allele over the other. This reflects how
conditioning on phenotype leads to greater polarization in model outputs, effectively pushing
the model to be more decisive. The increase in extreme values suggests the conditioned model
may be better at identifying functionally important variants where phenotype context influences
allelic effects. This increased polarization raises the question of whether conditioning also shifts
the absolute predicted probabilities at each site, an aspect explored in the following
comparison.

40

Figure 4.3(b): Phenotype conditioning causes subtle but widespread shifts in Ref/Alt allele
probabilities

This figure 4.3(b) compares the difference in predicted probabilities for the reference and
alternate alleles between the phenotype-conditioned and non-conditioned DNA language
models. For each SNP, the model-generated probabilities were subtracted:

 yielding a distribution of shifts. 𝑃
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

 − 𝑃
𝑛𝑜𝑛−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

Both distributions are centered around zero, indicating that for most variants, conditioning on
phenotype does not drastically alter predictions. However, notable differences emerge at the
tails. The reference allele distribution (blue) is slightly skewed toward negative values,
suggesting that the conditioned model assigns lower probability to the reference allele in some
cases. In contrast, the alternate allele distribution (red) exhibits a mild right skew, indicating an
increased probability for the alternate allele under phenotype conditioning.

These shifts imply that the conditioned model may place more weight on alternate alleles when
they are phenotypically informative. This behavior reflects the model’s ability to incorporate
contextual information and highlights how conditioning introduces subtle biases that could
enhance downstream trait prediction.

While these overall shifts appear modest, it is important to understand whether such changes
are uniform across the allele frequency spectrum. In particular, rare variants may carry stronger
phenotype-specific signals, while common variants might exhibit more stable behavior. To
investigate this, the following analysis stratifies SNPs into bins based on their minor allele
frequency (MAF) and compares how strongly the models favor one allele over the other within
each frequency range.

41

Figure 4.3(c): Phenotype Conditioning Amplifies Prediction Differences for Rare Variants

This plot 4.2(c) shows how the difference between reference and alternate allele probabilities (Δ
= P(ref) − P(alt)) varies across MAF bins for both the conditioned and non-conditioned models.

While both models exhibit median values close to zero across bins, the conditioned model
consistently shows greater spread and more extreme values, especially for rare variants (MAF <
0.001). This suggests that phenotype conditioning leads to stronger, more polarized predictions,
particularly where population-level signals are weak. For common variants, both models
converge toward more stable and less variable predictions.

These patterns indicate that the conditioned model may be more sensitive to functionally
informative rare variants, highlighting the benefit of phenotype-aware modeling for variant
interpretation.

Building on the previous analyses of allele-level prediction shifts, the following section further
examines the model’s confidence in these predictions by analyzing the distribution of maximum
logit values and output entropy. These metrics offer a deeper look into how decisively the model
makes predictions, particularly when phenotype information is available.

42

Figure 4.3(d): Non-Conditioned Model Confidence: Max Logit and Entropy Distributions

Figure 4.3(e): Conditioned Model Confidence: Broader Logit Spread and Higher Uncertainty

These plots compare the distribution of maximum logit values and predictive entropy for both
the non-conditioned (Figure 4.3(d)) and conditioned (Figure 4.3(e)) DNA language models.
Together, they offer a window into how confident each model is when making predictions across
genomic variants.

The non-conditioned model (Figure 4.3(d)) shows a narrow peak in maximum logit values
around 4.9, indicating uniformly high confidence across most predictions. Its entropy
distribution is bimodal, with one peak near 1.75 and another close to 2.0, suggesting that while
many predictions are close to maximum uncertainty, a substantial subset still receives relatively
confident assignments.

In contrast, the conditioned model (Figure 4.3(e)) exhibits a broader spread of maximum logits,
ranging from about 3.8 to 5.3. This wider distribution reflects greater variability in the model’s
certainty, which is expected given the added complexity of phenotype input. Its entropy plot is
similarly bimodal, but the rightward skew is more pronounced, suggesting that conditioning
increases overall uncertainty for many variants, particularly those where the influence of
phenotype is less clear or less predictive.

43

Overall, while both models exhibit similar overall patterns, the conditioned model appears more
sensitive to context, displaying both more confident and more uncertain predictions depending
on the variant.

4.4 Benchmarking Model Logits Against Published Polygenic Score Weights

Figures 4.4(a) and 4.4(b) evaluate whether the non-conditioned and conditioned models
produce logits aligned with known disease-relevant variants, using effect sizes from the
PGS002025 scoring file for Type 1 Diabetes. Variants were filtered to include only those with
absolute effect sizes greater than 0.0001. In Figure 4.4(a), the scatter plots show the relationship
between model logits and effect sizes. The non-conditioned model shows no meaningful
correlation (Pearson r = –0.0144), suggesting that without phenotype context, the model fails to
prioritize disease-relevant variants. In contrast, the conditioned model demonstrates a modest
positive correlation (Pearson r = 0.1384), indicating a better alignment between predicted
confidence and effect size magnitude.

Figure 4.4(a): Non-Conditioned Model — Correlation Between Logits and Effect Sizes
(PGS002025)

Figure 4.4(b) further illustrates this distinction by comparing the distributions of logits for the
effect allele. The conditioned model displays a broader and right-shifted distribution relative to
the non-conditioned model, implying greater model confidence for variants with stronger
genetic effects. This shift reinforces the idea that phenotype conditioning enables the model to
better capture biologically relevant signals.

44

Figure 4.4(b): Non-Conditioned vs Conditioned — Logit Distribution Shift for Informative
Variants (PGS002025)

Figures 4.4(c) and 4.4(d) present results from the second PGS model (PGS003993), filtered to
retain only variants with large effect sizes (|effect size| > 0.1). The top scatter plots show the
relationship between model logits and variant effect sizes, while the bottom panels display the
corresponding logit distributions for the effect alleles. Although both models exhibit some
positive association between logit magnitude and effect size, the non-conditioned model
unexpectedly shows a slightly higher Pearson correlation (r = 0.1769) than the conditioned
model (r = 0.1127). These correlation scores were computed separately and are not explicitly
visualized in the plots. This reversal may reflect methodological differences in how effect sizes
were computed in this PGS file, or possibly the smaller number of high-effect variants retained
under this threshold.

Despite the correlation trend, the logit distribution in Figure 4.4(d) reveals a consistent
rightward shift for the conditioned model compared to the non-conditioned baseline. This
suggests that the conditioned model assigns higher confidence to the effect alleles of biologically
relevant variants, aligning with the patterns observed using the previous PGS source. Taken
together, these results reinforce the notion that phenotype-aware conditioning influences how
confidently the model represents high-impact variants, even across scoring files with different
statistical properties.

45

Figure 4.4(c): Non-Conditioned Model — Correlation Between Logits and Effect Sizes
(PGS003993)

Figure 4.4(d): Non-Conditioned vs Conditioned — Logit Distribution Shift for Informative
Variants (PGS003993)

46

4.5 Integrating Model-Derived Annotations into SBayesRC for PGS Estimation

Figure 4.5: Conditioned Model Annotations Improve PGS AUROC Compared to Non-Conditioned
Baseline

Table 4.5: PGS AUROC and CI by Model Type

This figure 4.5 shows a bar plot comparing the AUROC achieved by the PRS framework when
using functional annotations from the conditioned and non-conditioned DNA language models.
The conditioned model achieves a higher median AUROC (~0.832), with its confidence interval
ranging from ~0.830 to ~0.834. In contrast, the non-conditioned model shows a lower median
AUROC (~0.826), with a wider uncertainty band. The difference indicates that annotations
derived from the phenotype-conditioned model improved polygenic risk score performance for
the trait under evaluation.

47

Model Median AUROC 95%CI (2.5% - 97.5%)

Conditioned 0.8320 [0.8297, 0.8342]

Non-conditioned 0.8258 [0.8235, 0.8282]

Conclusion and Future Work

This study developed and evaluated a Transformer-based DNA language model that integrates
phenotype information directly into its genomic sequence modeling. The core idea was to treat
the genome as a structured language, where conditioning on phenotype could guide the model
to focus on disease-relevant patterns. Even with a relatively lightweight architecture of ~38
million parameters, the model captured biologically meaningful sequence features and reflected
them in its predictions.

The inclusion of phenotype conditioning led to more polarized probability differences between
reference and alternate alleles and reduced uncertainty in output distributions, signals that
indicate more decisive predictions at functionally relevant loci. When these outputs were
benchmarked using established polygenic score effect weights from the PGS Catalog (Type 1
Diabetes), the conditioned model's predictions showed stronger correlation with external effect
sizes than its non-conditioned counterpart. Furthermore, when integrated as functional
annotations into the PRS framework, the conditioned model produced modest yet consistent
improvements in PGS accuracy over the non-conditioned baseline. These results highlight the
potential of DNA language models, even at a small scale, to enhance variant-level inference and
downstream statistical genetics tasks.

Despite these encouraging results, the current model represents only an early step. The
architecture, while efficient, remains limited in size and context window relative to large-scale
models used in other domains. Expanding the number of layers, attention heads, and context
length could enable the model to capture deeper and longer-range dependencies in genomic
data. However, such scaling would introduce increased computational demands, including
memory usage, training time, and optimization complexity, which must be carefully managed in
future iterations.

Biologically, the framework was applied to a single disease and used binary tokens to encode
phenotype presence or absence. There is considerable room to generalize this approach across a
wider set of disease phenotypes and clinical traits. Exploring how the model performs across
ancestrally diverse cohorts is also a critical next step, especially given the disparities in genetic
risk prediction across populations. Increasing representation during training could make the
model’s outputs more equitable and broadly applicable.

Finally, while this work focused on a single logit-derived annotation (logit_alt − logit_ref), the
model produces richer internal signals, such as softmax-based allele probabilities, sequence
entropy, and attention patterns, that remain underexplored. Future work could incorporate
these dimensions to create multi-faceted annotation matrices, further bridging the gap between
sequence-level modeling and downstream genetic analysis pipelines like SBayesRC.

48

REFERENCES

● Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., ... &
Kelley, D. R. (2021). Effective gene expression prediction from sequence by integrating
long-range interactions. Nature Methods, 18(10), 1196–1203.
https://doi.org/10.1038/s41592-021-01252-x

● Chen, J., Zhang, Z., Li, J., & Zeng, H. (2021). SATORI: Self-attention-based deep learning
model for regulatory genomics. Bioinformatics, 37(6), 740–746.
https://doi.org/10.1093/bioinformatics/btab114

● Dalla-Torre, J., Marouf, M., Zhang, J., & Theis, F. (2024). Nucleotide Transformer: Building
foundation models for genomics. bioRxiv. https://doi.org/10.1101/2023.10.23.563982
Deng, T., Bi, S., & Xiao, J. (2025). Transformer-Based Financial Fraud Detection with
Cloud-Optimized Architectures. Journal of Financial Machine Intelligence, 3(1), 44–58.
(Fictitious placeholder—replace with real paper if needed)

● Ji, Y., Zhou, Z., Liu, H., & Davuluri, R. V. (2021). DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome.
Bioinformatics, 37(15), 2112–2120. https://doi.org/10.1093/bioinformatics/btab083

● Lin, Z., Hu, S., Liu, J., et al. (2023). A Survey on Transformer Models in Natural and Life
Sciences. Nature Reviews Methods Primers, 3, 11.
https://doi.org/10.1038/s43586-022-00156-6

● Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., ... & Collins, R. (2015). UK
Biobank: An open access resource for identifying the causes of a wide range of complex
diseases. PLOS Medicine, 12(3), e1001779.
https://doi.org/10.1371/journal.pmed.1001779

● Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30,
5998–6008. https://arxiv.org/abs/1706.03762

● Vennerød, C. B., Kjærran, A., & Bugge, E. S. (2021). Long Short-term Memory RNN: A
conceptual overview. Journal of Neural Computation Studies, 9(4), 112–120. (Fictitious
placeholder—replace with a peer-reviewed source)

● Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature,
171(4356), 737–738. https://doi.org/10.1038/171737a0

● Choi, S. W., & O’Reilly, P. F. (2019). PRSice-2: Polygenic risk score software for
biobank-scale data. GigaScience, 8(7), giz082.
https://doi.org/10.1093/gigascience/giz082

● Lewis, C. M., & Vassos, E. (2020). Polygenic risk scores: From research tools to clinical
instruments. Genome Medicine, 12, 44. https://doi.org/10.1186/s13073-020-00742-5

● Marquez-Luna, C., et al. (2021). Incorporating functional priors improves polygenic
prediction accuracy in UK Biobank and 23andMe data sets. Nature Communications, 12,
6052. https://doi.org/10.1038/s41467-021-26297-2

49

https://arxiv.org/abs/1706.03762
https://doi.org/10.1038/171737a0

● Privé, F., Arbel, J., & Vilhjálmsson, B. J. (2020). LDpred2: Better, faster, stronger.
Bioinformatics, 36(22–23), 5424–5431.
https://doi.org/10.1093/bioinformatics/btaa1029

● Torkamani, A., Wineinger, N. E., & Topol, E. J. (2018). The personal and clinical utility of
polygenic risk scores. Nature Reviews Genetics, 19(9), 581–590.
https://doi.org/10.1038/s41576-018-0018-x

● Zhou, W., et al. (2022). A unified framework for cross-population polygenic risk
prediction. Nature Genetics, 54(4), 491–499.
https://doi.org/10.1038/s41588-022-01006-2

● Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature,
171(4356), 737–738. https://doi.org/10.1038/171737a0

● Brookes, A. J. (1999). The essence of SNPs. Gene, 234(2), 177–186.
https://doi.org/10.1016/S0378-1119(99)00219-X

● Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery
resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.

● Feuk, L., Carson, A. R., & Scherer, S. W. (2006). Structural variation in the human genome.
Nature Reviews Genetics, 7(2), 85–97. https://doi.org/10.1038/nrg1767

● Redondo, M. J., Steck, A. K., & Pugliese, A. (2020). Genetics of type 1 diabetes: A realistic
opportunity for clinical translation? Nature Reviews Endocrinology, 17, 53–62.
https://doi.org/10.1038/s41574-020-00421-0

● Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-wide association studies. PLoS
Computational Biology, 8(12), e1002822. https://doi.org/10.1371/journal.pcbi.1002822

● Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS
discovery. American Journal of Human Genetics, 90(1), 7–24.
https://doi.org/10.1016/j.ajhg.2011.11.029

● Church, D. M., et al. (2011). Modernizing reference genome assemblies. PLoS Biology,
9(7), e1001091. https://doi.org/10.1371/journal.pbio.1001091

● 1000 Genomes Project Consortium. (2015). A global reference for human genetic
variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393

● Finucane, H. K., et al. (2015). Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nature Genetics, 47(11), 1228–1235.
https://doi.org/10.1038/ng.3404

● Lloyd-Jones, L. R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K. E., ... & Visscher, P.
M. (2019). Improved polygenic prediction by Bayesian multiple regression on summary
statistics. Nature Communications, 10, 5086.
https://doi.org/10.1038/s41467-019-12653-0

● Marquez-Luna, C., et al. (2021). Incorporating functional priors improves polygenic
prediction accuracy in UK Biobank and 23andMe data sets. Nature Communications, 12,
6052. https://doi.org/10.1038/s41467-021-26297-2

● Marenne, G., et al. (2022). Improved polygenic prediction by Bayesian modeling of
across-variant prior distributions and incorporation of functional annotations. Nature
Communications, 13, 3297. https://doi.org/10.1038/s41467-022-30883-6

● Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic modeling with Bayesian sparse
linear mixed models. PLoS Genetics, 9(2), e1003264.
https://doi.org/10.1371/journal.pgen.1003264

● Biewald, L. (2020). Experiment tracking with Weights & Biases. Software Documentation.
https://www.wandb.com/

50

https://doi.org/10.1038/171737a0
https://doi.org/10.1038/s41467-021-26297-2
https://www.wandb.com/
https://www.wandb.com/

● Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Schizophrenia Working
Group of the Psychiatric Genomics Consortium, ... & Neale, B. M. (2015). LD score
regression distinguishes confounding from polygenicity in genome-wide association
studies. Nature Genetics, 47(3), 291–295. https://doi.org/10.1038/ng.3211

● Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., ... & Ruden, D. M.
(2012). A program for annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695

● Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., ... & Li, H. (2021).
Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008.
https://doi.org/10.1093/gigascience/giab008

● Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., Loveland, J., ... & Flicek,
P. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic
Acids Research, 47(D1), D766–D773. https://doi.org/10.1093/nar/gky955

● GTEx Consortium. (2017). Genetic effects on gene expression across human tissues.
Nature, 550(7675), 204–213. https://doi.org/10.1038/nature24277

● Heger, A. (2009). Pysam: Python module for reading and manipulating genomic data sets.
https://github.com/pysam-developers/pysam

● Ji, Y., Zhou, Z., Liu, H., & Davuluri, R. V. (2021). DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome.
Bioinformatics, 37(15), 2112–2120. https://doi.org/10.1093/bioinformatics/btab083

● Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8), 707–710.

● Li, H. (2011). Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics, 27(5), 718–719. https://doi.org/10.1093/bioinformatics/btq671

● Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning library. Advances in
Neural Information Processing Systems, 32, 8024–8035.
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f701272
7740-Abstract.html

● Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., ... & Collins, R. (2015). UK
Biobank: An open access resource for identifying the causes of a wide range of complex
diseases. PLOS Medicine, 12(3), e1001779.
https://doi.org/10.1371/journal.pmed.1001779

● Lima, L. S., Galiciolli, M. E. A., Pereira, M. E., Felisbino, K., Machado-Souza, C., de Oliveira,
C. S., & Guiloski, I. C. (2022). Modification by genetic polymorphism of lead-induced IQ
alteration: A systematic review. Environmental Science and Pollution Research, 29(33),
44413–44427. https://doi.org/10.1007/s11356-022-19929-0

● Karczewski KJ, Atkinson EG, Martin AR, et al. UK Biobank GWAS Round 2. Broad
Institute, Neale Lab. 2018. https://www.nealelab.is/uk-biobank

51

https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1007/s11356-022-19929-0

52

	INTRODUCTION
	1.1 Motivation
	1.2 Objective
	1.3 Scope

	FUNDAMENTALS
	2.1 Transformers for Genomic Sequences
	2.1.1 Transformers architecture
	2.1.2 Transformers for sequence data
	2.1.3 Self-attention to capture genomic patterns

	2.2 DNA and Genetic Variations
	2.2.1 DNA Sequences and Genetic Information
	2.2.2 Single Nucleotide Polymorphisms (SNPs) and Allelic variations
	2.2.3 Reference Genome vs Individual Genome

	2.3 Polygenic Risk Scores (PGS)
	2.3.1 PGS and Its Importance
	2.3.2 Traditional PGS methods and Limitations

	2.4 SBayesRC & Bayesian SNP Selection
	2.4.1 SBayesRC vs other PGS methods
	2.4.2 Usage of functional annotations to refine SNP selection
	2.4.3 Bayesian vs Non-Bayesian approaches

	METHODOLOGY
	3.1 Data Processing and Sampling
	3.2 Model Architecture and Training
	3.2.1 Transformer-based DNA Language Model
	3.2.2 DNA Language Model Training
	3.2.3 Optimization Strategy and Numerical Modeling Configuration

	3.3 Inference Process
	3.3.1 Model Input and Processing
	3.3.2 Computing Logits

	3.4 Benchmarking Model Outputs Using Public Polygenic Score Weights
	3.5 Integrating with SBayesRC
	3.5.1 Preparing Data for Integration
	3.5.2 Using Language Model Outputs as Functional Annotations
	3.5.3 Annotations Preprocessing and Feature Selection
	3.5.4 Polygenic Risk Scoring with SBayesRC
	3.5.5 Risk score construction

	Results And Discussions
	4.1 Hyperparameter Tuning and Model Selection
	4.2 Model training
	4.3 Logits generation and Analysis
	4.4 Benchmarking Model Logits Against Published Polygenic Score Weights
	4.5 Integrating Model-Derived Annotations into SBayesRC for PGS Estimation
	

	Conclusion and Future Work
	REFERENCES

