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Abstract

This thesis deals with non-intrusive solution methods of Galerkin systems
arising from stochastic PDE discretizations. We review the classic (intru-
sive) stochastic FEM method and discuss two non-intrusive techniques, the
simpler discrete projection method and a more elaborate low-rank tensor
approximation. The latter technique is coupled with error estimators to
adaptivly generate spatial and stochastic refinement. Both methods rely
on high-dimensional quadrature which is realized with dimension adaptive
sparse grid methods, which are introduced along with implementation de-
tails.
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1. Introduction

Partial differential equations (PDE) which describe natural or technical systems are of
great interest in many scientific areas like physics, chemistry, biology, medicine, engi-
neering, economics and many more. Numerical sciences has made great progress in the
past decades to increase the accuracy of solutions. However, there are situations where
uncertainty of input data can easily outweigh elaborate numerical algorithms.

Often the data of a system has a certain degree of uncertainty. For example, data
may be obtained by measurements which naturally have measurement errors. Or there
might be a parameter of the system which is only known by upper and lower bounds. We
distinguish epistemic uncertainty, arising from incomplete knowledge of the system (like
the examples above), and aleatoric uncertainty, arising from phenomena which cannot be
quantified further by observation (like unexpected fluctuations of wind speed) [GWZ14].
A simple approach is to ignore the uncertainty and use averaged quantities. This is only
feasible if changing the parameter has neglectable impact on the solution. If this is not
the case, more elaborate techniques have to be employed.

Techniques which aim to quantify the effects of such uncertainty are termed Uncer-
tainty Quantification (UQ) and have received much interest lately. One major branch of
UQ are probabilistic methods, which aim to model uncertainty as stochastic entities by
the statistical characterization of the input data. See [GWZ14], [Zan12] and references
therein for a more detailed overview over UQ methods.

In this work we will use another major technique, namely random field expansions,
which model uncertainty as a random field. The resulting system is a stochastical par-
tial differential equation (SPDE). The focus of this thesis are non-intrusive methods,
an umbrella term for methods which rely on the reusage of existing solver code. Often
there is solver software available which solves the problem for given parametric val-
ues. It is evident that the solutions for different parametric values can be obtained
independently of each other (and possibly in parallel), which is also termed uncoupled.
In contrast, methods labeled as intrusive do not allow the incorporation of parametric
solver software, or where the solver software requires some degree of rewriting in or-
der to use it for solving the stochastic problem. Often, coupled methods arising from
Galerkin of Rayleigh-Ritz discretizations are labeled intrusive, which is not always the
case. In this thesis we consider Galerkin type SPDE discretizations and solve them
non-intrusively [GLL+14],[EGSZ15].

The outline of this work is as follows. In Chapter 2 we introduce a model problem
along with random fields and their discretizations. Then we review the stochastic Finite
Element Method, the classic but intrusive method for solving SPDEs. In Chapter 3
we discuss two basic non-intrusive methods for creating an approximation of the SPDE
solution. Chapter 4 introduces a low-rank tensor approximation, for which we will dis-
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1. Introduction

cuss two construction methods. Both are non-intrusive methods, one is a more general
method, the other is limited to linear problems but possesses a more elaborate update
step. Since all non-intrusive techniques rely on high-dimensional quadrature, we intro-
duce in Chapter 5 sparse grid methods, and more efficient dimension-adaptive methods
along with implementation details. In Chapter 6 numerical results are discussed before
drawing a conclusion and providing an outlook in Chapter 7.

I would like to thank my supervisors Prof. Dr. Volker John and Dr. Martin Eigel
who provided much insight in numerous meetings. I am grateful for the competent help
and code of Dipl.-Math. Johannes Neumann regarding parallelization.

Moreover i would like to thank Mag. Christoph Walzer who raised my interest in
mathematics, and everyone else who supported and encouraged me on this way. Danke!
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2. Stochastic finite element method

Here we introduce the stochastic finite element method (SFEM), a method for solving a
stochastic boundary value problem which was first introduced in [GS91]. The method
involves a eigenvalue problem and leads to a large coupled Galerkin system. It is an
intrusive method, making no use of a deterministic solver.

2.1. Boundary value problem with random data

2.1.1. Model problem

Throughout this thesis we denote by N the naturals without zero and write N0 if we
want to include it.

Definition 2.1. Denote by D ⊂ Rd a domain with boundary ∂D. The data consists
of the random field κ : D → R and f : D → R, both smooth in C2. The deterministic
boundary value problem with homogeneous boundary conditions seeks the solution u :
D̄ → R such that

−∇ · (κ(x)∇u(x)) = f(x), x ∈ D, (2.1)

u(x) = 0, x ∈ ∂D. (2.2)

We derive a weak formulation by choosing an appropriate function space W := H1
0 (D)

(compare Def. A.4) in which the solution is sought. Multiplication with a test function
v ∈ W , followed by integration over the domain and using Greens first Theorem A.2
leads to the problem of finding u ∈W such that

∀v ∈W : a(u, v) = `(v)

with

a(u, v) =

∫
D
κ∇u · ∇v dx, (2.3)

`(v) =

∫
D
fv dx. (2.4)

We transform the deterministic problem (2.1), (2.2) into a stochastic one by letting
κ, f become random fields.

Definition 2.2. Let (Ω,A, µ) be a complete probability space with set of outcomes Ω,
σ-algebra A ⊂ 2Ω and probability measure µ : A→ [0, 1]. A random field κ : D×Ω→ R
is defined such that for all x ∈ D, the map κ(x, ·) is a random variable with respect to
(Ω,A, µ). In other words: for each realization ω ∈ Ω, the random field κ(x, ω) is a real
valued random variable for each x ∈ D (and analogously for f).

7



2. Stochastic finite element method

Definition 2.3. Let L be a possible nonlinear elliptic operator such that

L(κ)(u) = f in D (2.5)

for u : D̄ × Ω → R, a random field κ as above and suitable boundary conditions. Let
W (D) be a Banach space consisting of functions v : D → R, we define the space

Lqµ(Ω;W (D)) :=

{
v : Ω→W (D) | v is strongly measurable,

∫
Ω
‖v(·, ω)‖qW (D) dµ(ω) <∞

}
for q ∈ [1,∞).

A concrete example of such an operator L is given in the following stochastic model
problem.

Definition 2.4. Let κ : D×Ω→ R be a random field which is continuously differentiable
in D̄ and µ-almost surely uniformly bounded from above and below such that

∃amin, amax ∈ (0,∞) : µ
(
ω ∈ Ω | ∀x ∈ D̄ : κ(x, ω) ∈ [amin, amax]

)
= 1,

and f : D × Ω→ R square integrable with respect to µ, that is∫
D
E[f2] dx =

∫
D

∫
Ω
f2(x, ω) dµ(ω) dx <∞.

The stochastic boundary value problem seeks a solution u : D̄ × Ω→ R such that

−∇ · (κ(x, ω)∇u(x)) = f(x, ω), x ∈ D, (2.6)

u(x) = 0, x ∈ ∂D (2.7)

with ω ∈ Ω.

The assumptions guarantee that for W = H1
0 (D) the operator (2.5) has realizations

in the Banach space W . In other words, µ-almost surely it holds u(·, ω) ∈ W , and for
all ω ∈ Ω it holds

‖u(·, ω)‖W ≤ C̃‖f(·, ω)‖W ∗

with W ∗ denotes the dual of W and C̃ a constant independent of ω. Moreover the
assumptions imply that f ∈ L2

µ(Ω,W ∗(D)) is such that the solution u is uniquely defined
and bounded in L2

µ(Ω;W (D)) [EEU07], [GWZ14, Part 2].

2.1.2. Karhunen–Loève expansion

The Karhunen–Loève expansion is a popular technique for modeling the random field.
As we will see in Chapter 2.2.1, the SFEM discretizes the variables x, ω in (2.6) indepen-
dently of each other. The Karhunen–Loève expansion approximates the random field κ
as a sum of terms only depending in those variables.

We start with some stochastic terminology.
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2. Stochastic finite element method

Definition 2.5. Let X : Ω→ R be a random variable, we define its mean as

〈X〉 :=

∫
Ω
X(ω) dµ(ω)

and the mean (or expectation) of the random field κ at any point x ∈ D by

κ̄(x) := 〈κ(x, ·)〉 =

∫
Ω
κ(x, ω) dµ(ω). (2.8)

The covariance of κ at any x, y ∈ D is defined to be

Covκ(x, y) := 〈(κ(x, ·)− κ̄(x)) · (κ(y, ·)− κ̄(y))〉

and the variance of κ at any x is

Varκ(x) := Covκ(x, x) =
〈
(κ(x, ·)− κ̄(x))2

〉
and finally the standard deviation at x is

σκ(x) :=
√

Varκ(x).

We introduce the space of square integrable random variables

L2
µ := L2(Ω,A, µ) =

{
X : Ω→ R measurable,

∫
Ω
X2(ω) dµ(ω) <∞

}
equipped with inner product

〈X,Y 〉L2
µ

:= 〈XY 〉 =

∫
Ω
X(ω)Y (ω) dµ(ω)

for X,Y ∈ L2
µ.

Now we are able to make some assumptions on the random field κ. We assume
that it is homogeneous, i.e., that the random field is invariant under coordinate shift,
or equivalently: the covariance of the random field depends only on the translation
τ = x − y. That means the covariance only depends on relative rather than absolute
locations, which implies κ̄ ≡ constant. We further assume it to be isotropic, i.e., that
the random field is invariant under coordinate rotation, or equivalently: the covariance
of the random field depends only on the distance r := ‖τ‖ = ‖x− y‖ [Van84, Chapter
2.2].

Consider the bounded and real-valued operator

C : L2(D) −→ L2(D)

u(y) 7−→
∫
D

Covκ(x, y)u(x) dx,
(2.9)
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2. Stochastic finite element method

with associated eigenproblem∫
D

Covκ(x, y)κj(x) dx = λjκj(y) (2.10)

with eigenvalues λj and eigenfunction κj . The operator Covκ is symmetric and positive
definite, such an operator can be expanded as a sum of eigenpairs of κ converging in
L2(D ×D) as

Covκ(x, y) =

∞∑
j=0

λjκj(x)κj(y). (2.11)

The eigenfunctions form an orthonormal basis of L2(D) such that∫
D
κj(x)κk(x) dx = δjk (2.12)

using the Kronecker delta δjk. For continuous covariance of κ, Mercers Theorem [GWZ14,
Thm. B.1] yields absolute and uniform convergence of (2.11) in D ×D. The operator
Covκ possesses countable many eigenvalues which have accumulation point zero. Hence
we may assume the eigenvalues to be ordered decreasingly. The decay rate depends on
the choice of covariance kernel and increases with correlation length, compare [GWZ14,
Thm B.2, B.3]. [EEU07][GWZ14, Part 2, Appendix B]

We may decompose the random field as

κ(x, ω) = κ̄(x) + θ(x, ω) (2.13)

for a stochastic process θ(x, ω) with zero mean and covariance equal to the covariance
of κ.

Lemma 2.6. The expansion

θ(x, ω) =
∞∑
j=0

√
λjκj(x)ξj(ω) (2.14)

satisfies θ̄(x, ω) = 0 and Covθ(x, y) = Covκ(x, y).

Proof. The first claim θ̄(x, ω) = 0 follows directly from (2.13). For the second claim we
multiply (2.14) with θ(y, ω) and take the mean, which yields

Covθ(x, y) = 〈θ(x, ω)θ(y, ω)〉

=

∞∑
j=0

∞∑
k=0

√
λjλkκj(x)κk(y)〈ξj(ω)ξk(ω)〉. (2.15)
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2. Stochastic finite element method

Multiplication of (2.15) with κm(y), integrating over the domain along y and using (2.10)
and the orthonormalization of the eigenfunctions (2.12) yields

λmκm(x) =

∫
D

Covκ(x, y)κm(y) dy

=

∞∑
j=0

∞∑
k=0

√
λjλk〈ξj(ω)ξk(ω)〉κj(x)

∫
D
κk(y)κm(y) dy

=

∞∑
j=0

√
λjλm〈ξj(ω)ξm(ω)〉κj(x).

(2.16)

Similarly we multiply (2.16) with κn(x) and integrate along x, so it holds

λmδmn =

∫
D
λmκm(x)κn(x) dx

=
√
λmλn〈ξm(ω)ξn(ω)〉

(2.17)

which is equivalent to
δmn = 〈ξm(ω)ξn(ω)〉. (2.18)

By inserting (2.18) into the covariance of θ (2.15) we see that it is equal to the spectral
decomposition of the covariance of κ equation (2.11).

Definition 2.7. The Karhunen–Loève expansion of a random field κ is given by

κ(x, ω) = κ̄(x) +

∞∑
j=1

√
λjκj(x)ξj(ω). (2.19)

Theorem 2.8. The KL-expansion is unique, i.e., the random variables in the KL–
expansion (2.19) satisfy orthonormality (2.18) if and only if λn, κn are an eigenpair of
the covariance kernel such that they solve (2.10).

Proof. The ”if” direction was just discussed. The ”only if” direction can be seen by
using orthonormality (2.18) in equation (2.15), multiplication with κm(y) followed by
integration over the domain along y such that∫

D
Covθ(x, y)κm(y) dy =

∞∑
j=0

λjκj(x)δjm

= λmκm(x).

An explicit expression of the random variables is given by

ξj(ω) =
1√
λj

∫
D
θ(x, ω)κj(x) dx,
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2. Stochastic finite element method

which can be seen by the usual routine of multiplying (2.14) with κn and integrating
along x.

Note that it holds∫
D

Varκ(x) dx =

∫
D

∫
Ω
θ2(x, y) dω dx =

∫
D

Covθ(x, ω) dx (2.20)

=
∞∑
j=1

∞∑
k=1

√
λjλk〈ξj(ω)ξk(ω)〉

∫
D
κj(x)κk(x) dx (2.21)

=

∞∑
j=1

λj , (2.22)

where we make use of the eigenvalue expansion (2.15) and (2.18), the orthogonality of
the eigenvalues (2.12) and Lemma 2.6. We may assume a decreasing ordering of the
eigenvalues, and since they converge to zero, a truncated KL-expansion

κ(x, ω) = κ̄(x) +
M∑
j=1

√
λjκj(x)ξj(ω) (2.23)

yields more and more of the total variance of κ with increasing M [GS91, Chapter 2.3].

Remark 2.9 (On the covariance functions). Denote by r = ‖x− y‖2 the Euclidian
distance and consider a homogeneous and isotropic random field such that Covκ(x,y) =
ζ(r). We introduce the correlation length, a length scale for the distance over which the
random fields exhibits significant correlations. It is defined to be 1

ζ(0)

∫∞
0 ζ(r) dr, and the

correlation between x and y as Covκ(x,y)
σκ(x)σκ(y) which for a homogeneous and isotropic random

field is equivalent to ζ(r)
ζ(0) . Some common choices of (geostatistical) covariance functions

are listed below:

Covκ(x,y) = σ2
κ · exp

(
−|x1 − y1|

c1
− |x2 − y2|

c2

)
,

Covκ(x,y) = σ2
κ · exp

(
−r
c

)
,

Covκ(x,y) = σ2
κ · exp

(
−r

2

c2

)
,

Covκ(x,y) = σ2
κ ·
(
−r
c

)
· Y1

(r
c

)
,

for correlation lengths c, c1, c2, and Y1 the modified Bessel function of second kind with
order one.

A widley used modeling assumption is that the random field is of second order, that is,
for any fixed point x ∈ D, the random field κ(x, ·) is a random variable with finite mean
and variance. In that case, mean and covariance are well defined; yet such a random
field is not uniquely defined by these two properties unless it is a Gaussian random
field [Ull08, Chapter 2.2], [EEU07].
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2. Stochastic finite element method

2.2. Stochastic finite element method

2.2.1. Discretization

We are going to discretize the spatial variables independently from the discretization of
the random variables. To this end, let

W (D)h = span{φ1, . . . , φNx} ⊂W (D) (2.24)

be any suitable finite-dimensional subspace with Nx basis elements φi.
The discretization of the random variables is more involving. As first step we are

going to discretize Ω by truncating the KL-expansion after M terms (compare (2.23))
such that the stochastic dependence of the approximated random field is now only on
the random variables ξ1, . . . , ξM :

κ(x, ω) = κ(x, ξ(ω)) := κ(x, ξ1(ω), . . . , ξM (ω)), (2.25)

f(x, ω) = f(x, ξ(ω)). (2.26)

Let Γm := ξm(Ω) denote the range of ξm and assume for all ξm probability denisty
ρm : Γm → [0,∞). By independence of the random variables, their joint probability
density is given by

ρ(ξ) = ρ1(ξ1), . . . , ρM (ξM ), ξ ∈ Γ := Γ1 × · · · × ΓM .

We now replace the space of random variables with finite variance L2
µ(Ω) by L2

ρ(Γ) such
that we seek u ∈ H1

0 (D)⊗ L2
ρ(Γ) solving

∀v ∈ H1
0 (D)⊗ L2

ρ(Γ) : 〈a(u, v)〉 = 〈`(v)〉 (2.27)

for

〈a(u, v)〉 =

∫
Γ
ρ(ξ)

∫
D
κ(x, ξ)∇u(x, ξ) · ∇v(x, ξ) dx dξ, (2.28)

〈`(v)〉 =

∫
Γ
ρ(ξ)

∫
D
f(x, ξ)v(x, ξ) dxdξ. (2.29)

In the next step we construct a finite-dimensional subspace

W (Γ)h = span
{
ψ1(ξ), . . . , ψNξ(ξ)

}
⊂ L2

ρ(Γ),

with basis functions ψi, i = 1, . . . , Nξ, so we can finally seek the solution uh in

W (D)h ⊗W (Γ)h =
{
v ∈ L2(D × Γ) | v ∈ span{φ(x)ψ(x) : φ ∈W (D)h, ψ ∈W (Γ)h}

}
.

(2.30)
There are several choices for the basis functions ψi, a popular choice is inspired by the
tensor product structure of

W (Γ)h =

M⊗
i=1

L2
ρi(Γi)
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2. Stochastic finite element method

and uses Hermite polynomials, i.e., multivariant polynomials consisting of univariant
Hermite polynomials

W (Γ)h = span

{
ψα(ξ) =

M∏
m=1

ψαm(ξm) : ψαm ∈W (Γ)hm ⊂ Lρm(Γm)

}
(2.31)

for multiindices α ∈ NM0 [EEU07].

2.2.2. Structure of Galerkin equations

From (2.30) it follows that the solutions uh ∈W (D)h ⊗W (Γ)h can be represented by a
sum

uh(x, ξ) =

Nx∑
i=1

Nξ∑
j=1

ui,jφi(x)ψj(ξ)

with Nx ·Nξ coefficients ui,j . By using this sum and test functions v(x, ξ) = φk(x)ψl(ξ)
for k = 1, . . . , Nx, l = 1, . . . , Nξ in (2.28),(2.29) in the weak formulation (2.27) we derive
a coupled system of equations

∀k, l :

Nx∑
i=1

Nξ∑
j=1

(∫
Γ
ρ(ξ)ψj(ξ)ψl(ξ) [K(ξ)]i,k dξ

)
ui,j

=

∫
Γ
ρ(ξ)ψl(ξ) [f(ξ)]k dξ

where we have defined the matrices

[K(ξ)]i,k :=

∫
D
κ(x, ω)∇φi(x) · ∇φk(x) dx, K(ξ) ∈ RNx×Nx , (2.32)

[f(ξ)]k :=

∫
D
f(x, ω)φk(x) dx, f(x) ∈ RNx . (2.33)

The Galerkin formulation is of coupled structure and takes the form

Au = f (2.34)

for block matrix and block vector

A =

 A1,1 · · · A1,Nx
...

...
ANξ,1 · · · ANξ,Nx

 , f =

 f1
...
fNξ

 (2.35)

consisting of matrices respectively vectors

Al,j := 〈ψj(ξ)ψl(ξ)K(ξ)〉, Al,j ∈ RNx×Nx , (2.36)

fl := 〈ψl(ξ)f(ξ)〉, fl ∈ RNx , (2.37)

such that the system matrix A is of size (Nξ · Nx) × (Nξ · Nx) and system right-hand
side f is of size (Nξ ·Nx)× 1 [EEU07].
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2. Stochastic finite element method

2.2.3. Structure of the random field

If the random field is approximated by a truncated KL-expansion, the expansion consists
of terms linear in the random variables {ξm(x)}Mm=1. Moreover, if the random field is a
Gaussian process, the random variables ξm(x) are Gaussian as well, and since they are
uncorrelated they are independent as well [GS91, Chapter 2.3].

For random fields

κ(x, ξ) = κ0(x) +

M∑
m=1

κm(x)ξm, (2.38)

f(x, ξ) = f0(x) +

M∑
m=1

fm(x)ξm (2.39)

the associated matrices are of the form

K(ξ) = K0 +

M∑
m=1

Kmξm, (2.40)

f(ξ) = f0 +

M∑
m=1

fmξm (2.41)

for m = 0, . . . ,M , where we defined the matrices

[Km]i,k := 〈κm∇φk,∇φi〉L2(D) , (2.42)

[fm]k := 〈fm, φk〉L2(D) (2.43)

with i, k = 1, . . . , Nx, where the matrix respectively vector K0,f0 correspond to the
mean of the random fields. Thus, the system matrix A and right-hand side f in (2.34)
possess a tensor product structure

A = G0 ⊗K0 +

M∑
m=1

Gm ⊗Km, (2.44)

f = g0 ⊗ f0 +

M∑
m=1

gm ⊗ fm (2.45)

with matrices Gm and vectors gm given in terms of the stochastic basis W (Γ)h and
random variables {ξm}Mm=1 as

[G0]l,k = 〈ψkψl〉, [Gm]l,k = 〈ξmψkψl〉, (2.46)

[g0]l = 〈ψl〉, [gm]l = 〈ξmψl〉 (2.47)

for m = 1, . . . ,M and k, l = 1, . . . , Nx.
The matrices Gm in (2.46) can be brought into diagonal form, such that A becomes

a block diagonal matrix. To this end, one has to choose global orthogonal polynomials
as basis functions of W (Γ)h, see [EEU07] and references therein.
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2. Stochastic finite element method

2.3. Computational aspects

2.3.1. The eigenvalue problem

The KL-expansion requires solving the covariance eigenproblem (2.10). As in Remark 2.9
we consider covariance kernels ζ(r) depending on the Euclidian distance on a homoge-
neous and isotropic random field. Although we could use the spatial discretization
W (D)h in (2.24), the eigenvalue problem typically has other discretization requirements.
Therefore we introduce another spatial discretization

Y h = span{η1, . . . , ηN} ⊂ L2(D).

The Galerkin condition

∀v ∈ Y h : 〈Cu, v〉L2(D) = λ 〈u, v〉L2(D)

is equivalent to the eigenvalue problem in matrix form

Cu = λMu

with symmetric positive semidefinite matrix C and symmetric positive definite matrix
M given by

Ci,j := 〈Cηj , ηi〉L2(D) , C ∈ RN×N , (2.48)

Mi,j := 〈ηj , ηi〉L2(D) , M ∈ RN×N . (2.49)

The number of terms M in the truncated KL-expansion (2.23) is usually smaller
than N . In this setting, Krylov subspace methods may be used to solve the eigenvalue
problem. In [EEU07], the authors propose the usage of Lanczos thick-restart method,
another popular choice is an implicitly restarted Arnoldi method, see [EEU07] and ref-
erences therein.

2.3.2. Solving the Galerkin system

Usually, the spatial discretization number Nx is rather large, such that even for moderate
choices of Nξ the block matrix A becomes huge as it is of size (Nx · Nξ) × (Nx · Nξ).
Solving such system is an expensive task. One may use double orthogonal polynomials
for the discretization of W (Γ)h to derive a system matrix A which is of block diagonal
form, such that there are Nξ uncoupled problems of blocksize Nx × Nx to solve. Such
smaller problems can be solved in parallel.

There are settings where this task becomes simpler. For a stochastic right-hand side
problem, that is only the right-hand side data is random, and left-hand side is deter-
ministic (as opposed to the model problem (2.6), (2.7)), one may choose a orthonormal
basis of W (Γ)h. Now the system matrix A becomes a block diagonal matrix with con-
stant blocks Al,j . This allows the usage of block Krylov solvers. A stochastic left-hand
side problem deals with the opposite, so there is a random field κ on the left while the
right-hand side f is deterministic, see [EEU07] and references therein.
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3. Non-intrusive Galerkin method

Following [GLL+14], we introduce a non-intrusive method for solving a parameter-
dependent stochastical problem. That means the method makes use of deterministic
solver software for solving the stochastic problem. It is apparent that already available
deterministic software makes this method attractive. The method computes coefficients
to a parametric equation such that once those coefficients are computed, solutions to
new sets of parameters can be computed quickly.

3.1. Parameter-dependent deterministic problems

Here we review a classical iterative scheme to solve a parameter-dependent deterministic
problem, that is for a fixed set of parameters.

A discretized parameter-dependent problem may be written in the form of

A(p;u) = f(p) (3.1)

with maps A : P × U → U and f : P → U for u ∈ U element of a finite-dimensional
Hilbert space with dimU := N <∞ and p ∈ P element of the parameter space.

Assume now that for all p ∈ P, equation (3.1) is a well-posed problem. That means
that for fixed p, the mapping u 7→ A(p;u) is bijective and continuously invertible. In that
case, for all p ∈ P, f(p) ∈ U there exists a unique solution u∗(p) satisfying A(p, u∗(p)) =
f(p) for all p.

An iterative solver converging for all p generates successive iterates

u(k+1)(p) = C
(
p;u(k), R

(
p;u(k)(p)

))
(3.2)

for k = 0, . . . with u(k)(p)
k→∞−−−→ u∗(p). It denotes C one cycle of the solver, taking

inputs p, the current iterate u(k) and the current residual

R
(
p;u(k)(p)

)
= f(p)−A

(
p;u(k)

)
(3.3)

which we will conveniently refer to as R(k). A fixed-point solution u∗(p) is found when
the residual vanishes.

One may rewrite (3.2) as
u(k+1) = u(k) + ∆u(k) (3.4)

with

∆u(k) := C
(
p;u(k), R(k)

)
− u(k), (3.5)

P (∆u(k)) = R(k) (3.6)

17



3. Non-intrusive Galerkin method

Algorithm 3.1 Iteration for (3.2)

Use some initial guess u(0)

k ← 0
while no convergence do

Compute ∆u(k) using (3.5) or (3.6)
u(k+1) ← u(k) + ∆u(k)

k ← k + 1
end while

for a preconditioner P may depending on the parameter p, the iteration counter k and
the current iterate u(k) such that

C
(
p;u(k), R(k)

)
= u(k) + P−1R(k).

In either case, we assume P to be linear in its arguments and non-singular in ∆u(k).
For the following convergence analysis we assume that the iteration converges at least

linearly such that ∥∥∥∆u(k+1)(p)
∥∥∥
U
≤ %(p)

∥∥∥∆u(k)(p)
∥∥∥
U

with Lipschitz constant %(p) < 1 which we assume to be bounded uniformly for all
p ∈ P, so there is a constant %∗ with %(p) ≤ %∗ < 1, such that the solver C is a
uniformly Lipschitz continuous contraction∥∥∥C(p;u(p), R(p;u(p))

)
− C

(
p; v(p), R(p; v(p))

)∥∥∥
U
≤ %∗ ‖u(p)− v(p)‖U (3.7)

for all u, v ∈ U .
The deterministic iteration is given in Algorithm 3.1, where an initial guess u(0) and

a convergence criterion has to be supplied by the user.
For later use we state

Theorem 3.1 (Banach fixed-point Theorem [Zei95, Thm. 1.A]). For a Banach space
U and a contraction mapping C : U → U with Lipschitz factor %∗ < 1 such that (3.7)
holds, there exists a unique fixed-point u∗ and the iteration converges to it. Moreover the
a posteriori error estimate∥∥∥u∗(p)− u(k+1)(p)

∥∥∥
U
≤ %∗

1− %∗
∥∥∥∆u(k)(p)

∥∥∥
U

(3.8)

holds true.

3.2. Galerkin approximation of parameter dependence

We want to approximate the parameter dependent solution u∗(p) in the form

u∗(p) ≈ uI(p) :=
∑
α∈I

uαψα(p) (3.9)
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3. Non-intrusive Galerkin method

with row vectors uα ∈ U to be determined, and {ψα}α∈I : P → R basis functions
spanning the space of ansatz functions QI , which is a finite-dimensional subspace of a
Hilbert space Q.

Note that representation (3.9) allows quick computation of solutions for any set of
parameters p, once the coefficients uα are determined. This property is termed rapid
evaluation.

Definition 3.2 ([GWZ14, Chapter 4.2]). We choose an ansatz degree n and define the
total degree (TD) index set

ITD :=

α ∈ Nd0 :
d∑
j=1

αj ≤ n

 ,

the sparse Smolyak (SS) index set

ISS :=

α ∈ Nd0 :

d∑
j=1

γ(αj) ≤ γ(n)


with

γ(n) :=


0 n = 0,

1 n = 1,

dlog2(n)e n ≥ 2,

and the hyperbolic cross (HC) index set

IHC :=

α ∈ Nd0 :
d∑
j=1

log2(αj + 1) ≤ log2(n+ 1)

 .

Compare Figure 3.1 for their cardinality. We assume that an arbitrary but fixed
ordering of I is chosen, e.g., lexicographically.

3.2.1. Galerkin equations for the residual

Using a Galerkin method to solve (3.1), we must reformulate the problem as weak formu-
lation, i.e., multiplying the problem with linearly independent parametric test functions
{ϕβ}β∈I : P → R spanning the space of test functions Q̂I , followed by integration over
the domain and usually applying Gauss’ or Greens theorem (compare Appendix A).
We denote this integration step as Galerkin projection GQ. The coefficients uα of the
approximation uI(·) are determined by requiring that

∀β ∈ I : GQ (ϕβ(·)R(·, uI)) = GQ (ϕβ(·) (f(·)−A(·, uI))) = 0. (3.10)

The choice of the ansatz spaceQI determines how well the solution u∗(p) is approximated
as a parametric function uI(p). The choice of the test space Q̂I is responsible for the
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3. Non-intrusive Galerkin method
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Figure 3.1.: Ansatz index sets cardinality for total degree (red), sparse Smolyak (blue)
and hyperbolic cross (green)

stability of the method, as it determines the projection onto the ansatz space in such a
way that it is orthogonal to Q̂I :

∀ϕ ∈ Q̂I : GQ (ϕ(·)(u∗(·)− uI(·))) = 0. (3.11)

For sake of simplicity, we assume a Galerkin method such that ansatz and test spaces
coincide QI = Q̂I ,∀α ∈ I : ϕα = ψα, in contrast to Petrov-Galerkin methods where
those spaces differ QI 6= Q̂I .

We introduce

∀w ∈ U : 〈GQ (ϕ(·)ψ(·)v) , w〉U = 〈ϕ,ψ〉Q 〈v, w〉U (3.12)

for v ∈ U and a bilinear duality pairings 〈·, ·〉Q , 〈·, ·〉U . As the residual R(p;uI(p)) is a
parametric function for p ∈ P, it may be represented as a sum

R(p;uI(p)) =
∑
α∈I

ψα(p)vα (3.13)

with orthonormal basis functions vα spanning U .
Using the linearity of the Galerkin projection and (3.13) we can rewrite (3.10) as

∀β ∈ I : 0 = GQ (ϕβ(·)R(·;uI)) = GQ

(
ϕβ(·)

∑
α∈I

ψα(·)vα

)
=
∑
α∈I

GQ (ϕβ(·)ψα(·)vα) =
∑
α∈I
〈ϕβ, ψα〉Q vα.
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3. Non-intrusive Galerkin method

If P is a measure space with measure µ, the choice of bilinearity pairing is often

〈ϕ,ψ〉Q =

∫
P
ϕ(p)ψ(p)µ(dp), (3.14)

if furthermore µ(P) = 1 holds we can consider P as probability space with induced L2

norm and expectation operator

E(ϕ) =

∫
P
ϕ(p)µ(dp)

such that E(ϕψ) = 〈ϕ,ψ〉Q holds.
Inserting the solution (3.9) into the projected residual (3.10) yields

∀β ∈ I : GQ

(
ϕβ(·)

(
f(·)−A

(
·;
∑
α∈I

uαψα(·)

)))
= 0 (3.15)

which is a coupled system of equations with M unknowns uα ∈ U = RN . Due to the
different structure of (3.15) and (3.1) one may conclude that a solver of type (3.2) cannot
be used here. In the following, [GLL+14] show that this is not true in general, and the
above problem may be solved non-intrusively.

3.2.2. Galerkin fixed-point equations

We will use equation (3.2) as starting point for the non-intrusive computation, rather
than (3.1) or (3.3). First we show that this is feasible.

Lemma 3.3. Projecting the fixed-point equation associated to (3.2), namely

uI = uI + P−1R(·;uI) (3.16)

is equivalent to projecting the preconditioned residual such that

∀β ∈ I : GQ
(
ϕβ(·)P−1R(·;uI)

)
= 0. (3.17)

Moreover, if the preconditioner P from equation (3.6) does not depend on p nor u, we
derive

∀β ∈ I : GQ (ϕβ(·)R(·;uI)) = 0. (3.18)

Proof. We start with the equivalence of (3.16) and (3.17). From the linearity of the
Galerkin projection it follows

∀β ∈ I : GQ
(
ϕβ(·)(uI + P−1R(·;uI))

)
= GQ (ϕβ(·)uI) +GQ

(
ϕβ(·)P−1R(·;uI)

)
= 0.

(3.19)

Now if (3.16) holds it follows that P−1R(·;uI) = 0, and with (3.19) it is immediate
that (3.17) holds as a fixed point is found. On the other hand, if (3.17) holds it follows
P−1R(·;uI) = 0 since P−1R(·;uI) ∈ U , and thus (3.16) holds.
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3. Non-intrusive Galerkin method

For the second claim note that for a linear map L on U we have

GQ (ϕ(·)L(ψ(·)v)) =

∫
P
ϕ(p)Lψ(p)v µ(dp) = 〈ϕ,Lψ〉Q v = L 〈ϕ,ψ〉Q v

= LGQ (ϕ(·)ψ(·)v) .

In case the preconditioner does not depend on p or u, it follows immediately that

∀β ∈ I : 0 = GQ

(
ϕβ(·)P−1R(k)

)
= P−1GQ

(
ϕβ(·)R(k)

)
implies

∀β ∈ I : GQ

(
ϕβ(·)R(k)

)
= 0

because P was assumed to be non-singular.

Expanding the k-th iterate as

u(k) =
∑
α∈I

u(k)
α ψα(p)

and inserting it into the Galerkin projection in (3.19) yields

∀β : GQ

(
ϕβ(·)

∑
α∈I

u(k+1)
α ψα(·)

)
=

GQ

(
ϕβ(·)

∑
α∈I

u(k)
α ψα(·)

)
+GQ

(
ϕβ(·)R−1R(k)

)
.

This can be written in matrix form

∀β :
∑
α∈I

Mβ,αu
(k+1)
α =

∑
α∈I

Mβ,αu
(k)
α +GQ

(
ϕβ(·)R−1R(k)

)
(3.20)

where we use (3.12) for the entries of M , and arrange the coefficients and the residual
projection in a column-wise form

Mβ,α = 〈ϕβ, ψα〉Q, M ∈ RM×M , (3.21)

u(k)
α =

[
. . . , u(k)

α , . . .
]
∈ RN×M , (3.22)

GQ

(
P−1R(k)

)
=
[
. . . ,GQ

(
ϕα(·)P−1R(k)

)
, . . .

]
∈ RN×M . (3.23)

Equation (3.20) may be written in the form

u(k+1)MT = u(k)MT +GQ

(
P−1R(k)

)
,

or equivalently

u(k+1) = u(k) +GQ

(
P−1R(k)

)
M−T . (3.24)

22



3. Non-intrusive Galerkin method

Algorithm 3.2 block Jacobi iteration of (3.24)

Use some initial guess u(0) ∈ RN×M
k ← 0
while no convergence do

Compute ∆Q(u(k)) using (3.25) in the form of (3.23)
u(k+1) ← u(k) + ∆Q(u(k))
k ← k + 1

end while

For biorthogonal bases of ansatz and test functions (3.21) the situation simplifies to
∀α, β ∈ I : Mβ,α = δβαMα,α, hence M = diag(Mα,α). In case the basis functions are
normalized (which we assume from now on) it holds Mα,α = 1, and thus the matrix
∆Q(u(k)) has the form of (3.23).

The block Jacobi fixed-point iteration associated to (3.24) is given in Algorithm 3.2,
where we use the definition

∆Q(u(k)) := GQ

(
P−1R(k)

)
M−T . (3.25)

An approximation of the residual ∆Q(u(k)) will be computed non-intrusively in Chapter
3.3. Beforewe analyze the convergence of such a coupled iteration.

3.2.3. Convergence analysis

Recall from Chapter 3.1 that we assumed the iteration cycle C to be a contraction with
Lipschitz constant %∗ < 1. We now want to show that the map

SQ : UI −→ UI

u(k) 7−→ u(k) + ∆Q(u(k)).
(3.26)

is also a contraction with the same Lipschitz constant.
Since the residual (3.13) is a parametric map p 7→ u(p), it can be written as sum∑
α∈I ψα(p)wα with wα ∈ U , which we identify with a sum in the Hilbert tensor product

space ∑
α∈I

ψα(p)wα ∈ Q⊗ U .

We define the inner product in this space as the product of inner products of the re-
spective spaces 〈ψ1 ⊗ v1, ψ2 ⊗ v2〉Q⊗U := 〈ψ1, ψ2〉Q 〈w1, w2〉U . Since we assumed Q to
be a Hilbert space with closed subspace QI we can apply the orthogonal decomposition
theorem [Kan03, Thm. 1.36] to derive a decomposition into a direct sum Q = QI ⊕Q⊥I
which leads to the decomposition Q⊗ U = (QI ⊗ U)⊕ (Q⊥I ⊗ U) of the tensor product
space by using distributivity of the tensor product over the direct sum [Eps10, Chapter
3.1.1].
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3. Non-intrusive Galerkin method

In the following we factorize SQ to see that its Lipschitz factor only depends on the
solver cycle C . To this end we define UI := RN×M consisting of u = [. . . , uα, . . .] ∈ UI
with α ∈ I and a map

J : UI −→ (QI ⊗ U) ⊂ (Q⊗ U)

u 7−→
∑
α∈I

ψα(·)uα, (3.27)

which is bijective onto QI ⊗ U since {ψα}α∈I form a basis of QI . If we define

‖u‖2UI := ‖Ju‖2Q⊗U =

∥∥∥∥∥∑
α∈I

ψα(·)uα

∥∥∥∥∥
2

Q⊗U

=
∑
α∈I
‖uα‖2U (3.28)

using unit measure of the basis functions in the last equality, we see that 〈Ju, Ju〉Q⊗U =∑
α 〈uα, uα〉U , so J is a unitary map and thereby ‖J‖ = 1. We can conclude that J

induces norm and inner product on UI by (3.28). Now consider J : UI → Q⊗ U as a
mapping into the larger tensor product space extended by inclusion.

Lemma 3.4. The maps GQ : Q ⊗ U → UI and J : UI → Q ⊗ U are adjoint, with
‖GQ‖ = ‖J‖ = 1.

Proof. For φ⊗ w ∈ Q⊗ U and v ∈ UI it holds

〈GQ (φ⊗ w) ,v〉UI =
〈
[. . . , 〈ψα, φ〉Qw, . . .], [. . . , v

α, . . .]
〉
UI (3.29)

=
∑
α∈I
〈ψα, φ〉Q 〈w, v

α〉U (3.30)

=

〈
φ⊗ w,

∑
α∈I

ψα ⊗ vα
〉
Q⊗U

(3.31)

= 〈φ⊗ w, Jv〉Q⊗U (3.32)

where we use in (3.29) the form of the Galerkin projection (3.12), in (3.30) bilinearity
of the inner product, in (3.31) the definition of the inner product (3.28) and in (3.32)
the definition of J in (3.27). Hence GQ and J are indeed adjoint. As above discussed J
is an isometry ‖J‖ = 1, and since adjoint operators in Hilbert spaces have equal norms
the claim follows.

By projecting equation (3.2) and using linearity of the Galerkin projection along with
definitions (3.25),(3.26) and Lemma 3.4 we derive

GQ

(
C
(
·;u(k)(·), R(k)(·)

))
= GQ

(
u(k)(·) + P−1R(k)(·)

)
= u(k) +GQ

(
P−1R(k)(·)

)
= u(k) + ∆Q(u(k)) = SQ(u(k)).

24



3. Non-intrusive Galerkin method

With this observation we can factor the map

SQ : UI J−→ Q⊗ U S̃−→ Q⊗ U GQ−−→ UI (3.33)

with
S̃ : Q⊗ U −→ Q⊗ U

u(·) 7−→ C
(
·;u(·), R(·;u(·))

) (3.34)

such that SQ = GQ ◦ S̃ ◦ J holds. Using this factorization we are now able to prove the
contraction factor of the map SQ.

Proposition 3.5. The map S̃ in (3.34) has the same Lipschitz constant %∗ < 1 as the
deterministic solver cycle C in (3.2).

Proof. Recall from (3.14 that we assumed the inner product on Q to be given in the form
of an integral 〈ϕ,ψ〉Q =

∫
P ϕ(p)ψ(p)µ(dp). Thus we can identify Q with L2(P, µ;R)

such that Q⊗U is isometrically isomorph to L2(P, µ;U). Using the contraction property
(3.7) we have for all u(·), v(·) ∈ L2(P, µ;U):∥∥∥S̃(u(·))− S̃(v(·))

∥∥∥2

L2(P,µ;U)

=

∫
P
‖S(p;u(p), R(p;u(p))− S(p; v(p), R(p; v(p))‖2U µ(dp)

≤ (%∗)2
∫
P
‖u(p)− v(p)‖2U µ(dp)

= (%∗)2 ‖u(·)− v(·)‖2L2(P,µ;U) .

The claim follows by taking square roots.

Corollary 3.6. The map SQ in (3.26) is a contraction with Lipschitz factor %∗ < 1,
i.e.

∀u,v ∈ UI : ‖SQ(u)− SQ(v)‖UI ≤ %
∗ ‖u− v‖UI ,

moreover there exists a unique fixed-point solution u∗ ∈ UI .

Proof. We use the decomposition (3.33), apply norms and Lemma 3.4, Proposition 3.5
to derive

‖SQ‖UI =
∥∥∥GQ ◦ S̃ ◦ J∥∥∥

UI

≤ ‖GQ‖UI ·
∥∥∥S̃∥∥∥

UI
· ‖J‖UI =

∥∥∥S̃∥∥∥
UI
≤ %∗ < 1.

Applying Banachs fixed-point Theorem 3.1 finishes the proof.

Using above results, we can now relate the convergence speed of Algorithm 3.2 to the
convergence speed of Algorithm 3.1.
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3. Non-intrusive Galerkin method

Theorem 3.7. Algorithm 3.2 converges with the same linear speed as Algorithm 3.1.
Moreover, the following a posteriori error estimate holds:∥∥∥u∗ − u(k+1)

∥∥∥
UI
≤ %∗

1− %∗
∥∥∥∆Q(u(k))

∥∥∥
UI
.

Proof. This is a consequence from Corollary 3.6, the error estimate is proved by Banachs
fixed-point Theorem 3.1.

3.3. Non-intrusive methods

Now we introduce the non-intrusive methods. The first is the interpolation method – a
non-intrusive computation of identity (3.24) with ∆Q in the form of (3.23). The second
method is the discrete projection, which relies on the best approximation property.

3.3.1. Numerical integration

Both methods use numerical integration and interpolation, for which we define some no-
tation. We want to approximate an integral representation by some numerical quadra-
ture in the form of ∫

P
φ(p)µ(dp) ≈

Z∑
z=1

wzφ(pz) (3.35)

for quadrature points pz, z = 1, . . . , Z and associated weights wz. We will use Gauss-
Legendre quadrature later in the example (Chapter 3.4). A more sophisticated quadra-
ture is developed in Chapter 5.

Using the above approximation we can compute (3.23) without any further assump-
tions on A as

GQ

(
ϕα(·)P−1R(k)

)
≈ ∆Z,αu

(k) :=
Z∑
z=1

wzϕα(pz)∆u
(k)
z , (3.36)

where
∆u(k)

z := C
(
p;u(k)(pz), R

(k)(pz)
)

(3.37)

for the expansion

u(k)(pz) =
∑
α∈I

u(k)
α ψα(pz).

In case the deterministic solver cycle C in (3.2) returns the next iterate u(k+1) instead
of the preconditioned residual P−1R(k), equation (3.37) becomes

∆u(k)
z = C

(
p;u(k)(pz), R

(k)(pz)
)
− u(k).
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3.3.2. Interpolation method

In this section we present two algorithms, one is the non-intrusive counterpart of Al-
gorithm 3.1, the other computes the preconditioned residuals non-intrusively using the
deterministic solver cycle C and numerical integration. The former is given in Algo-
rithm 3.3. It is a variant of the block Jacobi Algorithm 3.1, iterating equation (3.25).
We denote the coefficients with ũ to emphasize the approximation ∆Z of ∆Q, in contrast
to the exact Algorithm 3.2.

Algorithm 3.4 computes the increment ∆Z(ũ(k)) for Algorithm 3.3. It is an approxi-
mation by numerical integration

∆Q(u(k)) =
[
. . . ,GQ

(
ϕα(·)P−1R(k)

)
, . . .

]
≈ ∆Z(u(k)) =

[
. . . ,∆Z,αu

(k), . . .
]

(3.38)

which is computed using (3.36).

Algorithm 3.3 block Jacobi iteration of (3.25)

Use some initial guess ũ(0) = [. . . , ũ
(0)
α , . . .] ∈ RN×M

k ← 0
while no convergence do

Compute ∆Z(ũ(k)) using Algorithm 3.4
ũ(k+1) ← ũ(k) + ∆Z(ũ(k))
k ← k + 1

end while

Algorithm 3.4 non-intrusive residual (3.23) in the form (3.38)

for α ∈ I do
∆Z,au

(k) ← 0U
end for

for z ← 1, . . . , Z do

Compute ∆u
(k)
z using (3.36)

rz ← wz∆u
(k)
z

for α ∈ I do
∆Z,αu

(k) ← ∆Z,αu
(k) + ψα(pz)rz

end for
end for

Now the question arises how well the original sequence {u(k)}k is approximated by
{ũ(k)}k.

Theorem 3.8 ([MZ12, Thm. 4.1]). Assume the numerical integration in Algorithm 3.4
to satisfy ∥∥∥GQ (ψα(·)P−1R(·; ũ(k))

)
−∆Z,αũ

(k)
∥∥∥
UI
≤ ε√

M
. (3.39)
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3. Non-intrusive Galerkin method

The error in (3.38) is estimated by∥∥∥∆Q(ũ(k))−∆Z(ũ(k))
∥∥∥
UI
≤ ε (3.40)

and the a posteriori error estimate holds∥∥∥u∗ − ũ(k+1)
∥∥∥
UI
≤ %∗

1− %∗
∥∥∥∆Z(ũ(k))

∥∥∥
UI

+
ε

1− %∗
. (3.41)

Moreover, it holds

lim sup
k→∞

∥∥∥u∗ − ũ(k)
∥∥∥
UI
≤ ε

1− %∗
. (3.42)

Proof. Squaring equation (3.39) followed by summing up over I yields

∑
α∈I

∥∥∥GQ (ψα(·)P−1R(·; ũ(k))
)
−∆Z,αũ

(k)
∥∥∥2

UI
≤M ε2

M
.

Using the triangle inequality and taking square root proves (3.40). The other identities
are proved in [MZ12, Thm. 4.1].

Equation (3.41) shows that the approximated sequence doesn’t necessarily converge
to u∗, even if ∆Z(u(k))→ 0 for k →∞, but by (3.42) the sequence clusters around u∗

in an ε–neighborhood.

3.3.3. Discrete projection

Discrete projection is as an alternative to the interpolation method for computing the
coefficients. Recall that for Hilbert spaces Q,QI an orthonormal projection onto the
subspace Q → QI has minimal error in ‖ · ‖Q [KS10, Satz 2.8]. With {ϕα}α∈I being
orthonormal, such a projection u∗ 7→ uI is given by

uα = 〈ϕα, u∗〉Q =

∫
P
ϕα(p)u∗(p)µ(dp) ≈

Z∑
z=1

wzϕα(pz)u
∗(pz). (3.43)

Hence, as an alternative to the interpolation method we can compute the coefficients uα

by Algorithm 3.5. Computing the coefficients with the discrete projection has the benefit
of integrating only once to compute the coefficient uα, rather than integrating for each

solver cycle to compute iterates u
(k)
α as in the interpolation method. The quadrature

method in Chapter 5 possesses some algorithmical overhead, thus we will subsequently
focus on this method.

3.3.4. Computational effort

We will show now that the computational effort of the interpolation method and the
discrete projection are comparable when using an quadrature method of type 3.3.1.
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Algorithm 3.5 Discrete projection for (3.43)

for α ∈ I do
uα ← 0U

end for

for z ← 1, . . . , Z do
Compute u(pz) using algorithm 3.1
rz ← wzu(pz)
for α ∈ I do

uα ← uα + ψα(pz)rz
end for

end for

When examining Algorithms 3.4, 3.5 we expect the invocations of the solver cycle C
respectively the invocation of Algorithm 3.1 to be the dominating factor, neglecting the
additional effort for linear algebra operations and calculating basis functions. For large
enough systems this assumption is certainly true.

Recall that we assumed the iteration in Algorithm 3.1 to posses a contraction factor
%∗. Assume that this iterations needs L invocations of the solver C to converge with
desired accuracy εtol. The interpolation requires the evaluation of Z solver points for
the non-intrusive residual (Algorithm 3.4), and this residual is computed L times by the
block Jacobi Algorithm 3.3. Thus we have in total Z×L invocations of the solver cycle.
The discrete projection (Algorithm 3.5) requires for each of the Z integration points the
invocation of the deterministic solver. The deterministic solver takes L iterations, hence
also here we find Z × L. We conclude that those methods are comparable in terms of
computational effort.

3.4. Example

We present an example of the theory developed in the previous sections. Consider the
electrical network in Figure 3.2, it has nodes {1, . . . , 6} of which node 6 is grounded,
hence u6 = 0. We seek the solution for nodes u1, . . . , u5 in form of a vector u ∈ U = R5

because we can omit the grounded node. Moreover there are resistors R with equal
resistance R = 1/100.

Ohm’s law [Ler97, Chapter 27.4] states that for current f [ampere], voltage u [volt]
and resistance R [ohm], it holds

u

R
= f.

Kirchhoffs current law [Che04, Chapter 2.3] states that for any node in an electrical
network, the inflow of current equals the outflow.

We formulate the system for the remaining 5 nodes using above laws to derive the
formulation

Ku = f

29
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Figure 3.2.: Electrical network with nodes 1, . . . , 6 and resistors R. Figure taken from
[GLL+14].

with

K =
1

R


3 −1 −1 0 −1
−1 3 −1 −1 0
−1 −1 4 −1 −1

0 −1 −1 3 −1
−1 0 −1 −1 4

 .

We add a global cubic nonlinearity to our system by introducing the term (uTu)u,
and add uncertainty to the feed-in f and the cubic term such that

A(p;u) := Ku+ (p1 + 2)(uTu)u = (p2 + 25)f0 =: f(p),

f0 :=
(
1 0 0 0 0

)T
for a random parameter p = (p1, p2) with p1, p2 independently distributed in [−1, 1].
This nonlinear terms have no particular physical meaning and are just meant to make
the system nonlinear. Still, according to [GLL+14], the term (uTu)u can be interpreted
as additional conductivity between the nodes (including node 6), where conductivity
increases with the total dissipated power, which is proportional to (uTu).

Note that (3.4) is a concrete example of (3.1), with the residual given as (compare
(3.3))

R(p;u) = (p2 + 25)f0 −Ku− (p1 + 2)(uTu)u.

We choose the preconditioner P := K = DuA(p,0), hence it is independent of p and u.
We seek the iterative solution to the fixed-point equation

u(k+1) = C
(
p;u(k), R(p;u(k))

)
=

= P−1

(
(p2 + 25)f0 − (p1 + 2)

((
u(k)

)T
u(k)

)
u(k)

)
.
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For the integration and interpolation we choose a variant of Gauss-Legendre quadra-
ture. Recall that Legendre polynomials `n of degree n ∈ N0 have unit measure∫ 1

−1
`n(p) dp = 1

and that they are orthogonal ∫ 1

−1
`n(p)`m(p) dp = 0

for n 6= m. Moreover it holds ∫ 1

−1
`2n(p) dp =

2

2n+ 1
,

so we can normalizing the Legendre polynomials by multiplication with a factor
√

2n+1
2

to derive ∫ 1

−1

(√
2n+ 1

2
`n(p)

)2

dp = 1. (3.44)

This leads to the following definition.

Definition 3.9. The multivariant normalized Legendre polynomials in dimension d are
constructed as a tensor product of univariant normalized Legendre polynomials

L̃α(p) :=
d∏
i=1

√
2αi + 1

2
`αi(pi).

The multivariant Legendre polynomials are a possible choice for the ansatz functions,
another common choice are multivariant Hermite polynomials. Due to their non-compact
support we subsequently use Legendre polynomials as ansatz functions, so for the elec-
trical network the ansatz functions are

ψα(p) := L̃α(p) =
2∏
i=1

√
2αi + 1

2
`αi(pi). (3.45)

Possible choices for the multi-index set have been introduced in Def. 3.2. For this
example we need two-dimensional quadrature, the quadrature points are constructed as
cartesian product of one-dimensional Gaussian quadrature points, e.g. for three points
in one dimension as

(pi,j)i,j=1,...,3 =

−
√

3/5
0√
3/5

×
−

√
3/5

0√
3/5

 ,
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with corresponding quadrature weights

(wi,j)i,j=1,...,3 =
(
5/9 8/9 5/9

)5/9
8/9
5/9

 .

Using this we can apply the non-intrusive theory from Chapter 3.3, and represent the
solution in terms of (3.9) as

u∗(p) ≈ uI(p) =
∑
α∈I

uαL̃α(p)

with uα =
(
uα,1, . . . , uα,5

)T ∈ U = R5 computed non-intrusively.

As convergence criterion we may choose
∥∥∆u(k)

∥∥
2
> εtol in the deterministic Algo-

rithm 3.1, and maxα∈I
∥∥∆Z,αũ

(k)
∥∥

2
> εtol in the non-intrusive block Jacobi iteration

(Algorithm 3.3) for a suitable error tolerance εtol.
We want to compare the results obtained non-intrusively with solutions obtained by

the deterministic solver.

Definition 3.10. The root-mean-squared (RMS) error of N random points qn ∈ [−1, 1]2

is given by

ε =

√√√√ 1

N

N∑
n=1

‖u(qn)− uI(qn)‖2.

where u(qn) are deterministic solutions obtained by Algorithm 3.1.

Due to the simplicity of this example we refrain from giving examples, and rather
discuss the results for the model problem (2.6), (2.7) in Chapter 6.
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In this chapter we construct a low-rank tensor approximation for nonlinear problems. To
be precise it is a rank 1 approximation which is non-intrusive and allows rapid evaluation.
The approximation is done in a greedy fashion.

Subsequently we replace the greedy update mechanism by a more elaborate algorithm
which introduces adaptiveness in terms of the spatial mesh and the stochastic dimensions
and stochastic basis elements. However, this technique is only applicable for linear
problems.

4.1. General construction

This section follows [GLMN15].

4.1.1. Alternating updates

Here we want to express the approximation ur(p) ≈ u∗(p) of (3.1) in the form of

ur(p) :=

r∑
i=1

λi(p)vi, (4.1)

where
λi(p) := ψι(i)(p)

with a map ι : N → I, such that λi(p) ∈ Q and vi ∈ U . In other words, the map ι
uniquely identifies a rank i with a multi-index α. We refer to λi ⊗ vi as rank i, and ur
as rank r approximation.

The following Theorem provides the foundation of the method.

Theorem 4.1 ([GLMN15, Thm. 2.1]). Assume that

1. the map v 7→ J(v; p) is strongly convex uniformly in p, meaning that there exists a
constant C > 0 independent of p such that for all v, w ∈ U and for all t ∈ [0, 1] we
have

J(tv + (1− t)w; p) ≤ tJ(v; p) + (1− t)J(w; p)− C

2
t(1− t) ‖v − w‖2U ,

2. the map v 7→ J(v; p) is Fréchet differentiable with gradient

∇J(v; p) = A(v; p)− b(p),
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3. the map p 7→ A(0; p)− b(p) is in Lk(P;U)′ for some k ≥ 2,

4. the map p 7→ J(v; p) is µ-integrable and

5. the map v 7→ A(v; p)−b(p) is locally Lipschitz continuous such that for all v, w ∈ U
with max {‖v‖U , ‖w‖U} ≤ r it holds

‖A(v; p)−A(w; p)‖U ≤ K(p, r) ‖v − w‖U ,
where K : P × R+ → R+,

6. and finally that for R ∈ Lk(P), the function p 7→ K(p,R(p)) is in Lj(P) with
1
j + 2

k = 1.

Then a solution of (3.1) exists and is unique for all p so that we can define a solution
map u : P → U . Moreover, u is the unique minimizer in Lk(P;U) of the functional

JP : u 7→
∫
P
J(u(p); p)µ(dp),

and is equivalently characterized by∫
P
〈A(u(p); p)− b(p), δu(p)〉U µ(dp) = 0 ∀δu ∈ Lk(P;U). (4.2)

Assume now we computed ur and want to compute a new rank λ⊗ v := λr+1 ⊗ vr+1.
By using Theorem 4.1, we can compute the two updates (λ, v) by solving

min
(λ,v)∈Q⊗U

JP(ur + λv).

In [GLMN15] it is proposed to use an alternating minimization algorithm, which com-
putes for fixed λ the update v by minimizing∫

P
〈A(ur(p) + λ(p)v; p)− b(p), λ(p)δv〉U µ(dp) = 0 ∀δv ∈ U . (4.3)

By setting

Rλ(v) :=

∫
P

(b(p)−A(ur(p) + λ(p)v; p))λ(p)µ(dp) (4.4)

we can reformulate (4.3) as

〈Rλ(v), δv〉U = 0 ∀δv ∈ U . (4.5)

The update λ is obtained similarly for fixed v by solving∫
P
〈A(ur(p) + λ(p)v; p)− b(p), δλ(p)v〉U µ(dp) = 0 ∀δλ ∈ Q,

which can be expressed equivalently as

〈Rv(λ), δλ〉Q =

∫
P
Rv(λ)(p)δλ(p)µ(dp) = 0 ∀δλ ∈ Q (4.6)

by defining
Rv(λ) : p 7→ 〈b(p)−A(ur(p) + λ(p)v; p), v〉U . (4.7)

The basic alternating minimization algorithm is given in Algorithm 4.6, the proper gen-
eralized decomposition (PGD).
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Algorithm 4.6 Basic PGD

Initialize u0

r = 0
while no convergence of ur do

Initialize v, λ
while no convergence of λ⊗ v do

λ = λ/ ‖λ‖Q
v = solve (4.5)
v = v/ ‖v‖U
λ = solve (4.6)

end while
ur+1 = ur + λ⊗ v
r = r + 1

end while

4.1.2. Computation of the projected residual

It remains to solve equations (4.5), (4.6) for v and λ respectively. Assuming again a
quadrature method of type (3.35), we can discretize (4.4) as

Rλ(v) :=

∫
P
R (ur(p) + λ(p)v; p)λ(p)µ(dp)

≈
Z∑
z=1

wzλ(pz)R(ur(pz) + λ(pz)v; pz)

where we use again the short notation for the residual as in (3.3). Hence (4.5) becomes

〈Rλ(v), δv〉U =

∫
P
〈R (ur(p) + λ(p)v; p) , δv〉U λ(p)µ(dp)

≈
Z∑
z=1

wzλ(pz) 〈R (ur(pz) + λ(pz)v; pz) , δv〉U ∀δv ∈ U .

Analogously we derive for (4.6) the quadrature

〈Rv(λ), δλ〉Q ≈
Z∑
z=1

wz 〈R (ur(pz) + λ(pz)v; pz) , v〉U δλ(pz) ∀δv ∈ U .

Having discretized the integrals, we need to choose a method for solving

Rλ(v) = −∇Jλ(v) = 0,

Rv(λ) = −∇Jv(λ) = 0.

Newton’s method uses the iteration scheme

vk+1 = vk − [∇Rλ(vk)]
−1Rλ(vk),

λk+1 = λk − [∇Rv(λk)]−1Rv(λk),
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but requires the computation of Hessian matrices for the functional. For the computation
of v we need to compute

−∇2Jλ(v) = −∇Rλ(v) =

∫
P
λ(p)2∇A (ur(p) + λ(p)v; p) µ(dp),

and for the λ updates we have

−∇2Jv(λ)(δλ1, δλ2) = −〈∇Rv(λ)δλ1, δλ2〉Q

:=

∫
P
〈∇A (ur(p) + λ(p)v; p) v, v〉U δλ1(p)δλ2(p)µ(dp).

Both Hessian matrices require the matrix ∇A(·; p), which prevents the application of
Newtons method in a non-intrusive, nonlinear setting.

Aiming for nonlinear problems, [GLMN15] propose the usage of a quasi-Newton
method, namely the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Using this
method, we need only to compute the residuals which can be carried out in a non-
intrusive fashion by numerical quadrature. Before giving the algorithm in Algorithm 4.7
we fix some notation. Denote by x one of the updates v, λ, any y the other, moreover
X to be one of the spaces U ,Q with corresponding inner product 〈·, ·〉X .

The BFGS algorithm iterates

x(k+1) = x(k) + ρkCkRy(x
(k)),

where ρk ∈ R to be explained later, and a matrix Ck being an approximation of the
Hessian ∇2Ry(xk).

The BFGS algorithm starts by initializing an initial value for x, a good choice to gauge
convergence is the deterministic solution (e.g. at the origin), but may also be a static
defined vector.

We need to choose a suitable initial preconditioner C0. In case of solving for v such
that Rλ(v) = 0, a reasonable preconditioner is given by the inverse of the system matrix
A(0). The algorithm is formulated in a matrix-free manner, such that we only need to
store the current preconditioner Ck, and the next preconditioner Ck+1 is computed in
each iteration step based on the current state. To this end we define

zk = − (Ry(xk+1)−Ry(xk)) ,
tk = xk+1 − xk,
sk = Ckzk.

The next preconditioner matrix Ck+1 is computed recursively by

Ck+1 = Ck +
〈zk, tk〉X + 〈zk, sk〉X

〈zk, tk〉2X
(tk ⊗ tk)−

1

〈zk, tk〉X
(sk ⊗ tk + tk ⊗ sk) (4.8)

and satisfies Ck+1zk = tk.
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Finally we describe the scalar factor ρ, it acts as insurance policy against divergence.
We introduce the maps

Jv : λ 7−→ JP(ur + λv),

Jλ : v 7−→ JP(ur + λv).

The factor ρ is computed by a coarse linesearch, meaning that we want to approximate
the solution of the problem

min
ρ∈R

Jy

(
x(k) + ρdl

)
.

This problem can be solved in the same non-intrusive manner by numerical quadrature.
The linesearch can be carried out very coarse, and we may sample only a few ρ here. Due
to the convex nature of the functional it is sufficient to evaluate 3 samples and perform a
second-order least-square fit on this data to find its minimum. At the minimum it holds

∂

∂ρ
Jy

(
x(k) + ρdk

)
= 0,

and hence 〈
Ry

(
x(k)

)
, dl

〉
X

= 0.

Algorithm 4.7 BFGS algorithm for solving Ry(x) = 0

Initialize x(0)

C0 = P−1
y

k = 0
d0 = Ck ·Ry

(
x(0)

)
while no convergence of x do

ρk = minρ Jy
(
x(k) + ρdk

)
tk = ρkdk
x(k+1) = x(k) + tk
dk+1 = Ck ·Ry

(
x(k+1)

)
compute Ck+1 according to (4.8)
k = k + 1

end while
return x

4.2. Adaptive updates

We restrict ourself now to linear problems such as the model problem (2.6), (2.7). For
such a linear problem one does not have to employ the BFGS method, but rather compute
the updates directly.

Moreover we want to replace the basic PGD algorithm by a variant of the ASGFEM

algorithm proposed in [EGSZ15], which is only applicable if the problem is linear. This
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algorithm uses error indicators to select multiindices α to be added to the tensor approxi-
mation. Moreover, spatial error indicators decide upon adaptive refinement of the spatial
mesh, which is an advantage of using this method. The described routines are provided
by the uncertainty quantification framework ALEA [EZ] and used in our implementation.

4.2.1. Preliminaries

The basic idea of ASGFEM is to adaptively enlarge the stochastic basis (by adding new
ranks with new α), or to adaptively refine the spatial mesh. In each step both errors are
estimated a posteriori, and the larger receives subsequent refinement.

First, note that for a linear operator A, equation (4.3) becomes∫
P
λ(p)2 〈A(v; p), δv〉U µ(dp) =

∫
P
λ(p) 〈b(p)−A(ur(p); p), δv〉U µ(dp) ∀δv ∈ U ,

(4.9)
such that updates v are computable without the BFGS algorithm by integrating both
the left-hand side and the right-hand side and solving the system[

Z1∑
z=1

wzλ(pz)
2A(pz)

]
v =

[
Z2∑
z=1

wzλ(pz) (b(pz)−A(ur(pz); pz))

]
(4.10)

for v, where we use for clarity the notation A(pz)v := A(v; pz). Hence an update v
requires two quadratures and one solver call. The quadrature of both sides is performed
separately, because the variance of the left-hand side is mainly governed by the factor
λ(p)2, where the left hand side depends mainly on the factor λ(p). There is another
reason for this resulting from using sparse grid quadrature, which will be discussed in
Chapter 5.3.3.

In contrast to the discrete projection method, we do not choose a predefined set I but
construct the multi-index set I adaptively. We need to adapt the definition slightly.

Definition 4.2. The index set I is a subset of

F := {α ∈ N∞0 | supp(α) <∞}

with support
supp(α) := {m ∈ N | αm 6= 0},

furthermore we define for any subset I ⊂ F the support

supp(I) :=
⋃
α∈I

supp(α).

Let em := (δmn)∞n=1 denote the Kronecker sequence. The boundary of I is the infinite
set

∂I := {α ∈ F \ I | ∃m ∈ N : ν − em ∈ I ∨ ν + em ∈ I}

and the active boundary

∂°I := {ν ∈ F \ I | ∃m ∈ supp(I) : ν − em ∈ I ∨ ν + em ∈ I}
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4. Non-intrusive tensor approximation

which is for finite I a finite set with cardinality

|∂°I| ≤ 2 · |I| · |supp(I)|.

4.2.2. Spatial error estimator and refinement

We assume a spatial mesh T consisting of triangular cells T ∈ T . The spatial residual
error estimator considers each mesh cell T for all α ∈ I. The error per cell T and α ∈ I
is given by

ηα,T (ur) =

(
h2
T

∥∥∥κ̄−1/2 (fδα0 +∇ · σα(ur))
∥∥∥2

L2(T )
+ hT

∥∥∥κ̄−1/2, [σα(ur)]
∥∥∥2

L2(∂T∩D)

)1/2

,

where [ · ] denotes the normal jump over the facets of a triangular cell T and σ the flow
such that

[σ] := σ|T1 · n1 + σ|T2 · n2

for ni the exterior unit normal of a facet Ti, for details we refer to [EGSZ15].
Summing over α ∈ I, we define the error of a mesh cell T as

ηT (ur, I) :=

(∑
α∈I

ηα,T (ur)
2

)1/2

, (4.11)

and for any subset M⊂ T the global error

η(ur, I,M) :=

(∑
T∈M

ηT (ur, I)2

)1/2

. (4.12)

The routine
η(ur, I, T ), {ηT (ur, I)}T∈T ← Estimatex (ur, I, T )

outputs the error indicators (4.11), (4.12).
Next, the cell indicators are used to decide which cell has to be refined. For a weighting

parameter 0 < ϑx < 1, the marking routine

M ← Markx
(
η (ur, I, T ) , {ηT (ur, I)}T∈T , ϑx

)
returns a subset M⊂ T satisfying the Dörfler property

η (ur, I,M) ≥ ϑx · η (ur, I, T ) .

The subset M is used in the subsequent mesh refinement of the routine

T ← Refinex (T ,M)

where each cell in M is refined at least once.
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4. Non-intrusive tensor approximation

4.2.3. Stochastic truncation error estimator and refinement

The multiindices α ∈ I correspond to stochastic basis functions λι−1(α). The multiindices
F \ I can be seen as basis elements which haven’t been added to the basis yet. Hence
we term the estimator a truncation error, or tail refinement.

As the construction of multiindices α ∈ I suggests, we don’t assume a fixed stochastic
dimension now, but rather start with a 1-dimensional approximation and enlarge the set
I adaptively. By enlarging we mean the addition of multiindices, either in the current
dimension or a higher dimensional multi-index.

For any α ∈ ∂I the error is estimated by

ζα(ur) =
∞∑
m=1

∥∥∥κm
κ̄

∥∥∥
L∞(D)

(
βmαm+1 ‖ur,α+εm‖V + βmαm ‖ur,α−εm‖V

)
, (4.13)

for details see again [EGSZ15]. The summation of (4.13) over supp(I) is a finite sum
since all other terms are zero. For any subset ∆ ⊂ ∂I we define

ζ(ur,∆) :=

(∑
α∈∆

ζα(ur)
2

)1/2

.

Due to the infinite cardinality of ∂I the sum ζ(ur, ∂I) is an infinite sum. However, for
α ∈ ∂I \ ∂°I, i.e., α = α′ + εm for α′ ∈ I and m ∈ N \ supp(I) it holds

ζα(ur) =
∥∥∥κm
κ̄

∥∥∥
L∞(D)

βm1
∥∥ur,α′∥∥V .

Summing there terms over all inactive dimensions m leads to the lumped error indicator

ζ̄α′(ur, I) :=

 ∑
m∈N\supp(I)

ζα′+εm(ur)
2

1/2

=
∥∥ur,α′∥∥V

 ∑
m∈N\supp(I)

(∥∥∥κm
κ̄

∥∥∥
L∞(D)

βm1

)2
1/2

for α′ ∈ I. The infinite sum remaining in ζ̄α′(ur, I) is independent of ur and α′, depend-
ing only on supp(I). Thus we can represent ζ(ur, ∂I) by the finite sum

ζ(ur, ∂I)2 =
∑
α∈∂°I

ζα′(ur)
2 +

∑
α′∈I

ζ̄α(ur, I)2. (4.14)

The routine
ζ (ur, ∂I) , {ζα(ur)}α∈∂°I ← Estimatey (ur, I)

returns the global error indicator (4.14) and the error indicators (4.13) on the active
boundary.
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4. Non-intrusive tensor approximation

Next the choice of multiindices to be included in I has to be made. We allow multiple
new multiindices to be added at a time, as to be explained in the next section. The
choice of multiindices is carried out by the routine

∆ ← Marky
(
{ζα(ur)}α∈∂°I , ϑy

)
with a user supplied choice of weighting parameter 0 < ϑy < 1. It constructs a nonempty
set of new multiindices ∆ such that the Dörfler property

ζ (ur,∆) ≥ ϑy · ζ (ur, ∂I) .

is satisfied. The routine selects not only from multiindices on the active boundary.
Suppose the current dimension is d; every time a multi-index of the for ν = α+ ed with
α ∈ I is added to ∆ the routine also estimates indices α+ ed+1. In doing so we achieve
dimension-adaptiveness in the sense that the truncation error governs the dimensionality
of the tensor approximation.

The simplest choice for a new set of multiindices is I∗ = I ∪∆, but the algorithm is
not restricted in such a way. If favorable, other properties besides downward closedness
of I can be enforced. To this end a larger set I ∪∆ ⊂ I∗ ⊂ ∂I is chosen, which can be
implemented in the optional routine

I∗ ← Refiney (I,∆) .

4.2.4. Algorithm

We formulate the ASGFEM update mechanism presented in Algorithm 4.8. It should be
noted that the initialization of I is not limited to d = 1, as well as we may supply
further predefined α ∈ I besides 0. We assume the output of Refiney to be a set of
new multiindices ∆ as in Marky. By abuse of notation and for sake of clarity we denote
by αj the multi-index corresponding to rank j, and not its components. The order of
multiindices added to the approximation in one step is not important. We just check if
such a multi-index has larger dimension than the maximal dimension in I, and if so we
process all new multiindices in this new dimension.

An initial spatial mesh T has to be supplied, the triangulation of the spatial mesh may
be limited by an appropriate criterion, e.g., the number of vertices. When the spatial
mesh T of a rank r approximation is refined, all r ranks have to be updated. We refrain
from interpolating vi, i = 1, . . . , r onto the new meshes, since only ranks > r will profit
from this refinement. Rather we perform an update where the tensor approximation
is reconstructed, in the sense that we recompute all vi, i = 1 . . . , r successively using
the spatial triangulation. Thus, the update step is expensive in terms of quadratures
required.
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4. Non-intrusive tensor approximation

Algorithm 4.8 Tensor approximation coupled with ASGFEM

I = {0 =: α1}
v1 ← solve (4.10) for λι−1(α1) using initial mesh T
r ← 1
while no convergence of ur do

η(ur, I, T ), {ηT (ur, I)}T∈T ← Estimatex (ur, I, T )
ζ (ur, ∂I) , {ζα(ur)}α∈∂°I ← Estimatey (ur, I)
if η(ur, I, T ) ≥ ζ (ur, ∂I) then . spatial refinement
M ← Markx

(
η (ur, I, T ) , {ηT (ur, I)}T∈T , ϑx

)
T ← Refinex (T ,M)
for j = 1, . . . , r do . update meshes

vj ← recompute (4.10) for λι−1(αj) using T
end for

else . enlarge stochastic basis
∆ ← Marky

(
{ζν(ur)}ν∈∂°I , ϑy

)
∆ ← Refiney (I,∆) . optional
for α ∈ ∆ do . add new ranks

r ← r + 1
αr ← α
I ← I ∪ αr
vr ← solve (4.10) for λι−1(αr) using T

end for
end if

end while
return

∑r
j=1 λι−1(αj)(·)vj
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5. Sparse Grids

For the electric example network Chapter 3.4 we performed quadrature on a two-
dimensional grid constructed as cartesian product of one-dimensional grid points. We
call such a grid a full grid, and clearly the number of grid points in dimension d is
Nd, where N is the number of one-dimensional grid points. This exponential behavior
was termed curse of dimensionality by Richard Bellman [Bel72]1. Even for moderate
choices of N , the exponential growth of grid points limits the application of such grids
to low-dimensional problems.

Sparse grids delay the curse of dimensionality by a more elaborate construction than
full grid, leading to significantly fewer grid points. Using such grids, it is possible to
extend the non-intrusive methods to higher-dimensional domains. The construction
was proposed in 1963 by Soviet mathematician Sergey A. Smolyak [Smo63]2. With the
introduction of powerful computers in the 1990s, sparse grids became a popular technique
with applications in many scientific areas. They are still an active field of research.

5.1. Classical sparse grids

The following material is gathered from [Pfl10], [Feu10], [Ach03].

5.1.1. Preliminaries

The goal is to approximate a function f : P → R with compact domain P ⊂ Rd, and
without loss of generality we assume the domain the be the d-dimensional hypercube
P = [0, 1]d. By approximation we mean quadrature as well as interpolation. The domain
boundary will be denoted as ∂P and the interpolant of f is denoted by u.

We use several terms related to grids in higher-dimensional settings as well as in the
one-dimensional case: grid, grid points x = (x1, . . . , xd) ∈ P and step size hl. We will
frequently use d-dimensional multiindices l := (l1, . . . , ld) with the usual norms

|l|1 :=
d∑
j=1

|lj |, |l|∞ := max
1≤j≤d

|lj |.

By abuse of notation we define for multiindices l,k the relation

l ≤ k ⇔ lj ≤ kj , j = 1, . . . , d,

and moreover the multi index 1 = (1, . . . , 1).

1cited after [Feu10]
2cited after [GG98]
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5. Sparse Grids

5.1.2. Hierarchical basis in one dimension

For now consider the one-dimensional case, i.e., a function f : P = R → R to be
approximated which vanishes on the boundary.

Definition 5.1. The standard hat function is given by

Λ: R→ R, Λ(x) =

{
1− |x| x ∈ [−1, 1],

0 else.

By translating and dilating we derive the one-dimensional standard hat basis

Λl,i : [0, 1] −→ R,

x 7−→ Λ
(

2lx− i
)
,

with l ∈ N0, 0 ≤ i ≤ 2l.

Definition 5.2. The one-dimensional grid of level l ∈ N, l ≥ 1 (without boundary) is
given by

G1
l :=

{
xl,i := ihl | 0 < i < 2l

}
(5.1)

with step size hl = 2−l and grid points xl,i. The index i specifies the location of the grid
point xl,i within the level l. The nodal basis space is defined to be

V 1
l := span

{
Λl,i | 0 < i < 2l

}
.

The generalized hat functions are centered at points xl,i (compare Figure 5.1). The
space V 1

n has the property of nonempty support with its neighboring functions, that is
supp(Λl,i) = [xl,i−1, xl,i+1].

We now decompose this space into subspaces possessing disjoint supports on each level
respectively.

Definition 5.3. A one-dimensional hierarchical index set of level l ≥ 1 (without bound-
ary) is defined as

I1
l :=

{
i ∈ N | 0 < i < 2l, i odd

}
The one-dimensional hierarchical subspace of level l ≥ 1 (without boundary) is defined
as

W 1
l := span

{
Λl,i | i ∈ I1

l

}
.

Distinct basis functions of W 1
l have local support, such that the d-dimensional volume

vanishes
vold (supp(Λl,i1) ∩ supp(Λl,i2)) = 0,

while the support of basis functions from different levels might be nonempty depending
on i (compare once more Figure 5.1). Note that we have the identities

V 1
1 = W 1

1 ,

V 1
l = V 1

l−1 ⊕W 1
l , l ≥ 2,

(5.2)
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5. Sparse Grids

Figure 5.1.: Shown in the first three rows the one-dimensional spaces W1,W2,W3 consist-
ing of standard hat basis functions; black points indicate the corresponding
grid points xl,i. The approximation V3 is shown in the fourth row, it is the
direct sum of the above (compare (5.4)).

which imply the decomposition

V =
∞⊕
j=1

W 1
j (5.3)

with an approximation of level l

V ≈ V 1
l =

l⊕
j=1

W 1
j . (5.4)

Definition 5.4. One-dimensional interpolations of level l can be written in the form

f(x) ≈ Υ1
l (x) :=

∑
1≤j≤l

∑
i∈I1j

ωl,iΛl,i(x) (5.5)

with hierarchical surplusses ωl,i corresponding to grid points xl,i. In the same manner,
one-dimensional integration of level l can be written as∫

P
f(x) dx ≈ Φ1

l (f) :=
∑

1≤j≤l

∑
i∈I1j

ωl,i

∫
P

Λl,i(x) dx. (5.6)

Now the hierarchical surplusses have to be computed, we use an idea dating back to
Archimedes [Edw12]. Archimedes considered a parabola and approximated its area by
subsequently inscribing triangles of smaller size as shown in Figure 5.2. Our problem is
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5. Sparse Grids

Figure 5.2.: Archimedes’ idea of the numerical quadrature of a parabola: subsequent
inscribing of triangles. The same principle is used with hierarchical hat
basis functions. Figure taken from [Bel].

quite the same. We start on level l = 1 by setting the hierarchical surplus to ω1,1 :=
f(x1,1). For levels l ≥ 2, we evaluate all grid points corresponding to that level – that is
f(xl,i) for xl,i ∈ Gn. Next, we subtract for each point the interpolation of the lower levels.
So, the hierarchical surplusses in one dimension are computed successively levelwise as
the difference of the function value and the interpolation of lower levels at that point

ωl,i = f(xl,i)−Υ1
l−1(xl,i). (5.7)

If the function f is twice continuously differentiable, it holds the estimate

ωl,i ≈ −
1

2
h2
l ·
∂2f

∂x2
(xl,i)

with an estimate

|ωl,i| ≤ C · 2−2l−1 ·
∥∥∥∥∂2f

∂x2

∥∥∥∥
∞

(5.8)

with a constant C independent of the step size hl. It follows that the decay of hierarchical
surplusses is O

(
4−l
)
, supporting our intuition that higher levels contribute less to the

approximation.

Remark 5.5. While we use only equidistant grids (5.1), other choices have been pro-
posed. The Clenshaw–Curtis formulas introduce non-equidistant grid points defined by
the extreme points (or zeros) of Chebyshev polynomials. For the decomposition (5.4) it
is crucial to have nested grid points, which is only satisfied using the extreme points.
The Filippi formulas are a variant of Clenshaw–Curtis which omits boundary points.
The Gauss–Patterson formulas are a nested extension of the common Gauss–Legendre
quadrature which is in general not nested. See [GG98] and references therein.
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5.1.3. Higher dimensions

The extension to higher dimensions is based on tensoring of the one-dimensional con-
struction.

Definition 5.6. The d-dimensional hat basis is defined as

Λl,i : [0, 1]d −→ R

x 7−→
d∏
j=1

Λlj ,ij (xj),

for x = (x1, . . . , xd) and lj ∈ N0, ij = 0, . . . , 2lj .

Definition 5.7. The d-dimensional grid of level l = (l1, . . . , ld) : lj ≥ 1, j = 1, . . . , d
(without boundary) is given by the cartesian product of one-dimensional grids

Gl :=
d

×
j=1

G1
lj

=
{
xl,i := (xl1,i1 , . . . , xld,id) | ∀j = 1, . . . , d : xl1,i1 ∈ G1

lj

}
with grid points xl,i and step sizes (2−h1 , . . . , 2−hd). The space spanned by the piecewise
linear generalized hat functions of level n ≥ 1 (without boundary) is denoted by

Vl := span
{

Λl,i | 0 < ij < 2lj , 1 ≤ j ≤ d
}
.

Definition 5.8. Introducing the d-dimensional index set (without boundary) correspond-
ing to the multi-index l = (l1, . . . , ld) as

Il :=
d

×
j=1

I1
lj

=
{
i : 1 < ij < 2lj , ij odd, 1 ≤ j ≤ d

}
let us define the hierarchical subspace (without boundary) of level corresponding to l

Wl := span {Λl,i | i ∈ Il} .

Similar as before we have a decomposition

V =
∞⊕
j=1

Wn,

along with an approximation

V ≈ Vn =

n⊕
j=1

Wj , (5.9)

for which we can formulate the following definition.
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Definition 5.9. The hierarchical surplus in d dimensions is a tensor product of one-
dimensional surplusses

ωl,i :=

d∏
j=1

ωlj ,ij .

Interpolation in dimension d > 1 of level n ≥ 1 using u ∈ Vn can be written in the form

f(x) ≈ Υn(x) :=
∑

1≤j≤l

∑
i∈Ij

ωl,iΛl,i(x). (5.10)

Integration in dimension d > 1 of level n ≥ 1 using u ∈ Vn can be written as∫
P
f(x) dx ≈ Φn(f) :=

∑
1≤j≤l

∑
i∈Ij

ωl,i

∫
P

Λl,i(x) dx. (5.11)

Analogously to (5.8) we have for f ∈ C2 an estimate

|ωl,i| ≤ 2−d · 2−2|l|1 ·
∥∥∥∥ ∂2df

∂x2
1 · · · ∂x2

d

∥∥∥∥
∞
, (5.12)

hence also in higher dimensions the decay of hierarchical surplusses is of order O
(
4−|l|1

)
.

5.1.4. Sparse formulation

Until now we have not introduced sparsity to the grid, as decomposition (5.9) corresponds
to a full grid (compare Figure 5.3). Our goal is to exclude grid points while maintaining
accuracy. If there is a priori knowledge of f available, one may choose a suitable vector,
with each component limiting the refinement of a dimension. However, such knowledge
is usually not available. As already discussed, higher order levels contribute less to the
approximation, therefore it is a reasonable choice to include only level indices l : |l|1 ≤
d − 1 + n for a suitable maximal level n. This can be formulated for grids without
boundary as

Vn =
⊕

d≤|l|1≤d−1+n

Wl, (5.13)

An example of a sparse grid without boundary in dimension 2 of level 4 is shown in
Figure 5.8.

Sparse grids reduce the number of grid points significantly from O
(
h−dn

)
(full grid) to

O
(
h−1
n · (log h−1

n )d−1
)
, while the asymptotic accuracy detoriates only slightly from full

grid O
(
h2
n

)
to O

(
h2
n · (log h−1

n )d−1
)
.

A more efficient approach selects the refinement of dimensions at run time, this is
called (dimension)-adaptivity and will be covered in Chapter 5.3.
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5. Sparse Grids

Figure 5.3.: Refinement strategies in two dimension. Left: decomposition (5.9) which
corresponds to a full grid. Middle: sparse decomposition V4 in the form of
(5.13). Right: A priori chosen or adaptive refinement for a function which
is quasi-linear in x and more stiff in y.

5.1.5. Boundary treatment

So far we considered only functions vanishing on the boundary. For functions with non-
homogeneous Dirichlet boundary conditions or Neumann/Robin boundary conditions
we have to modify the construction. In order to increase accuracy near the boundary,
grid points on the boundary have to be constructed. For that, we include the boundary
indices 0, 2l in the previous definitions.

Definition 5.10. One-dimensional grids of level l ≥ 0 are defined by

GBl :=
{
xl,i := jhl | 0 ≤ j ≤ 2l

}
,

and in dimension d ≥ 1 by

GBl :=
d

×
j=1

GBlj .

The piecewise linear space in d dimensions is given by

V B
l := span

{
Λl,i | 0 ≤ ij ≤ 2lj , 1 ≤ j ≤ d

}
.

The index sets are defined as

IB1 :=
{
i ∈ N | 0 < i < 2l, i odd

}
∪ {0, 1},

IBl :=
{
i ∈ N | 0 < i < 2l, i odd

}
, l ≤ 2,

IBl = IBl1 × · · · × I
B
ld

with newly introduced one-dimensional basis functions Λ0,0(x) := 1− x corresponding to
x0,0 and Λ0,1(x) := x corresponding to x0,1. The hierarchical subspaces are

WB
l := span

{
Λl,i | i ∈ IBl

}
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Figure 5.4.: Boundary modification on level 1: two new grid points and basis function.
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Figure 5.5.: Number of grid points for level n = 5 and dimension d = 1, . . . , 10.

such that we have a decomposition

V B
n =

⊕
0≤|l|1≤d−1+n

WB
l , (5.14)

compare (5.13).

In Figure 5.5 the number of grid points for this two possible boundary construction are
compared with the number of grid points without boundary. Note that the majority of
grid points are located on the boundary. The reason for locating the boundary points on
level 1 rather then on a newly introduced level 0 comes from the fact that this would lead
to additional subspaces in the decomposition (5.14). We see that the construction with
level 0 possesses far to many grid points to be applicable even in medium dimensional
settings. Still the vast number of newly introduced boundary points is problematic, even
with the boundary points located on level 1. In settings where high accuracy close to the
boundary is not required, or the function f admits extrapolation towards the boundary,
it might not be necessary to introduce boundary points at all. A modified hat basis
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5. Sparse Grids

Figure 5.6.: Modified hat basis functions (5.15) on one-dimensional grids without bound-
ary. Shown are grids corresponding to levels 1, . . . , 4.

function folded up towards the boundary which is given by

Λl,i(x) =



1 if l = 1 ∧ i = 1,{
2− 2l · x if x ∈ [0, hl]

0 else
if l > 1 ∧ i = 1,{

2l · x+ 1− i if x ∈ [1− hl, 1]

0 else
if l > 1 ∧ i = 2l − 1,

Λ
(
2l · x− i

)
else.

(5.15)

can be used to extrapolate towards the boundary. We will use only this modified basis
functions rather then the standard hat basis, it is shown in Figure 5.6 (compare Figure
5.1).

5.2. Implementation

5.2.1. Grid Structure

Implementation of sparse grids requires efficient data handling since the number of grid
points is likely to be high. A sparse grid can be represented in a d-dimensional tree-like
structure, with grid points of level n on tree height n. A grid point possesses up to
2d pointers to child nodes (on level n + 1) and up to d pointers to father nodes (on
level n − 1), so the actual data structure is not a classical tree. A variety of methods
dealing with such tree-like structures has been proposed, see [Feu10, Chapter. 2.2.3] and
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5. Sparse Grids

references therein. As the number of pointers is growing quick, managing those pointers
can become algorithmically involving.

Therefore we use another approach. Since a grid point is completely described by
its multiindices l, i we will use those to perform grid operations like hierarchization,
interpolation and quadrature. The drawback of using multiindices is that each time we
want to access a grid point we have to perform 2d lookup operations in the multiindices
l, i. To overcome this drawback we employ hashing, a mapping from an arbitrary sized
domain to a codomain of fixed size. Common hash functions suffer from collisions, that is
non-injectivity of the hash map, and non-surjectivity which introduces storage overhead
in the codomain size. A well behaved hash function would be an injective and surjective
function map from the set of grid points {(l, i)}|l|1≤d−1+n onto the naturals {0, . . . , |Gn|}.
As it enumerates the grid points uniquely it is therefore called unique hashing.

5.2.2. Unique hashing

The unique hashing hashing of (l, i) was proposed in [Feu05]. We are going to use a
variant of this subsequently proposed in [Feu10], it relies on hashing of the multiindices
separately.

We start with the hashing of the level index l and introduce n(l) = |l|1 − d + 1. We
denote the number of points in dimension d with level n by

Pn,d :=
∣∣∣{l ∈ Nd : n(l)

}
≤ n

∣∣∣
The recurrence formula

Pn,d =
n∑

m=1

Pm,d−1 (5.16)

with base cases Pn,0 = 0, Pn,1 = n can be seen by induction with respect to d.
In the following consider the level indices forming a d-dimensional simplex. In order

to align with our notation, we assume that the simplex has coordinates

(1, . . . , 1), (n, 1, . . . , 1), (1, n, 1, . . . , 1), . . . , (1, . . . , 1, n),

rather than the usual definition which locates the simplex at the origin (0, . . . , 0). Levels
k of level n are located on sections of the simplex, i.e., on a d−1 dimensional hyperplane
intersected with the simplex

Kd
n :=

{
k ∈ Nd : n(k) = n

}
. (5.17)

Note that this is a simplex with one dimension less (compare Figure 5.7).
Consider an arbitrary but fixed l ∈ Kd

n. The task is to enumerate the multi-index by
a function rn(l) =: rdn(l). Levels l on Kd

n can be described by

Kd
n =

l =


n+ d− 1

0
...
0

+

d∑
m=2

l̃m

(
−1
em−1

)
| ∀m = 2, . . . , d : l̃m > 0 such that l ∈ Nd


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where em denotes the m-th unit vector in Nd−1. Hence we have a lower-dimensional
representation of l in the form of l̃ = (l̃2, . . . , l̃d) ∈ Nd−1, which is again a simplex. The
idea is to proceed the enumeration process in this lower-dimensional simplex. For that we
have to count the levels k̃ which possess smaller n(k̃) than n(l̃), with n(l̃) = n(l)−(l1−1).
Those levels are drawn blue in the Figure 5.7, the number of points is given by

Pn(l̃)−1,d−1.

Additionally we have to count the points with n(k̃) = n(l̃) which are enumerated before
l̃ (shown in red), those are given by

rd−1

n(l̃)
n(l̃).

Hence we have a recursion formula

rdn(l) = Pn(l̃)−1,d−1 + rd−1

n(l̃)
n(l̃) (5.18)

with base case r1
n(l) = 0. By setting

nm(l) :=
d∑

k=m

(lk − 1) + 1 = n(l)−
∑
k<m

(lk − 1)

we derive from (5.18) the hash function

r̃(l) =
d∑

m=2

Pnm(l)−1,d−(m−1) (5.19)

with base cases Pn,1 = n, Pn,0 = 0.
It remains to specify the hashing of i. The hash depends on the level index as well

and is given by

rl(i) :=

d∑
j=1

⌊
ij
2

⌋∏
k<j

2lk−1.

The values (5.16) can be precomputed by Algorithm 5.9 in time O
(
dn2
)

with memory
consumption O (dn) for maximal level n. The computation of (5.19) is described in
Algorithm 5.10.

5.2.3. Grid storage

Using the hashing developed above, we set up our grid data structure as follows. As-
sume that level index l corresponds to level n, that is l : |l|1 = n − d + 1. Assume
further that there are g multiindices i1, . . . , ig corresponding to level l. Each time a
level index is added to the grid3 we compute i1, . . . , ig, so we have g new grid points

3in a non-adaptive grid, for level n the level indices l : |l|1 = n− d+ 1 are added simultaneously; in a
dimension-adaptive grid only one level index is added at a time
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Algorithm 5.9 Setup phase for Algorithm 5.10

P = Array(N, n× d)
for k = 0, . . . , n do

P k,1 = k
end for
for m = 2, . . . , d do

for k = 0, . . . , n do
P k,m =

∑k
q=1 P

q,m−1

end for
end for
return P

Algorithm 5.10 Unique level hashing of l = (l1, . . . , ld)

d̂ = 0
n = 1
r̃ = 0
for m = d, . . . , 1 do

d̂ = d̂+ 1
n = n+ lm − 1
r̃ = r̃ + Pn−1,d̂

end for
return r̃

Figure 5.7.: Shown as colored dots are the level indices in K3
4 , so all those points have

n(l) = 4. We consider the green point g = (1, 2, 3), it holds n(g̃) = 4.
Marked as blue are points k ∈ K3

4 : n(k̃) < 4, red points correspond to
points with n(k̃) = 4 which are counted before g. The black point (1, 1, 4)
is the only level to be counted after g.
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(l, i1), . . . , (l, ig). For each of those grid points we compute its coordinates, its evaluation
and its hierarchical surplus. Now we compute the levelhash r̃(l) using Algorithm 5.10.
A pointer with index r̃(l) is created, which points to an array holding the coordinates
and surplusses in a row-wise form such that the data of grid point (l, ik) is stored in row
rl(ik), k = 1, . . . , g.

Thus we can store and access a grid point in O (d) access operations, independent of
the number of grid points N .

Remark 5.11. Note that that the matrices {A(p) : p ∈ P} from (4.10) possess the same
sparsity structure for a fixed triangulation T . Hence, when performing the left-hand side
quadrature in (4.10) we can economize the degrees of freedom which have to be stored
in the grid by omitting the zero entries of the matrices. To this end we store the row
and column pointers of the Compressed Sparse Row (CSR) format [Saa11, Chapter 2.2]
of such a matrix, which is provided when using the uBLAS4 linear algebra backend. Now
only non-zero entries of the matrix have to be processed by the quadrature. The storage
reduction is significant, and the matrix can be reassembled by using the stored row and
column pointers.

Another possibility is to store the whole sparse matrices, and use the fast axpy oper-
ation (compare Definition B.2) to perform additions and subtractions of matrices while
hierarchizing and assembling the left-hand side matrix.

5.2.4. Hierarchization

In equation (5.7) the hierarchical surplusses are computed by using the interpolation of
lower levels. If we have N grid points we need time O

(
N2
)

to compute the surplusses
of all grid points. This quadratic behaviour is a major bottleneck as the number of
grid points grows. Note that the majority of grid points will not contribute to a certain
surplus because of the local support of the basis functions. Thus, it would be beneficial
to include just the points in the interpolation which are necessary.

Consider a d-dimensional grid point x := (l, i) of level n, with l := (l1, . . . , ld) and
i := (i1, . . . , id). From (5.7) it follows that contributing grid points are located on levels
1, . . . , n − 1. As described earlier, in a tree-like structure each grid point has up to d
father nodes, that is maximal one in each dimension. The idea is to find all father nodes
of x on level n− 1, and recursively find their father nodes until we reach the ancestor of
all points – that is (1,1). A father node may occur multiple times while following the
paths upwards (compare Figure 5.8), we need to keep track of already identified fathers.
We use again unique hashing to mark those fathers for each hierarchization ωl,i in the
same manner as we store the grid.

The (possibly existing) father node of x{l, i} in dimension k ∈ 1, . . . , d can be found
easily. If lk = 1, there is no father node in this direction, if lk > 1 we subtract a level in
in this component, so this father of x has level index

(l1, . . . , lk−1, lk − 1, lk+1, . . . , ld) . (5.20)

4as part of the C++ libraries boost
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We need to update the index as well: if ik = 1, the index is unchanged. If ik > 1, we
decide whether ik−1

2 or ik+1
2 is odd, and use the respective formula to get the father

index (
i1, . . . , ik−1,

ik ± 1

2
, ik+1 . . . , id

)
.

Figure 5.8.: The classical 2-dimensional grid of level 4. The black point corresponds to
level 1, blue points to level 2 and red to level 3. The small gray points
correspond to level 4, those will not contribute to the hierarchization of
((3, 2), (1, 3)). The arrows represent the identification of a father in the
respective dimension. The path marked with (∗) is only followed once,
because we identify ((2, 1), (1, 1)) as a known father as soon as it is met
first.

5.3. Dimension-adaptive sparse grids

The sparse grids introduced so far possess significantly fewer grid points than a full grid.
However, as noted in the beginning of this chapter, they just delay the curse of dimen-
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sionality. To see this, consider a function where only a minority of stochastic dimensions
has crucial impact on the function value. To increase the accuracy of the approximation,
all dimensions must be refined, while only the minority of dimensions profits significantly
from this refinement. Since refinement corresponds to solving problems of type (3.1),
this overhead is significant.

Dimension adaptive grids aim to refine only where it is beneficial for error reduction.
This chapter follows [GG03] which introduces such an adaptive method. Rather than
using their proposed array based data structure we use the hash structure developed
above.

For further reference, there are even more sophisticated methods which are not only
dimension-adaptive, but can also refine dimensions locally at areas where the function
is stiff [JR11], [MZ09]. Such techniques will not be covered here.

5.3.1. Preliminaries

The idea of the algorithm is to heuristically construct a set of level indices l ∈ G such
that the integral ∫

P
f(x) dx ≈

∑
l∈G

∑
i∈Il

ωl,i

∫
P

Λl,i(x) dx,

is a good approximation of (5.11) while using less work.
Note that the construction of the set G is governed by the progress of the algo-

rithm, e.g., require points of l = (2, 2) the existence of the points corresponding to
(1, 2), (2, 1), (1, 1), thus it is not admissible to make a refinement selection (1, 1) →
(2, 1)→ (2, 2).

Definition 5.12. We define the forward neighbourhood of an index l as

{l+ ej | j = 1, . . . , d} ,

and analog its backward neighborhood

{l− ej | j = 1, . . . , d}

for unit vectors ej.
The index set G to be constructed is partitioned into two disjoint sets, an old index

set O and an active index set A. We call members of this sets old indices and active
indices, respectively. A multi-index l is admissible, if

∀j = 1 . . . , d : l− ej ∈ O. (5.21)

We denote the differential integral of a level index l by

∆lf :=
∑
i∈Il

ωl,i

∫
P

Λl,i(x) dx.
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5.3.2. Method

We initialize the algorithm with O = ∅ and A = {l := 1}. Each step of the algorithm
removes the index with the largest error from active set A, transfer this index to the old
set O and computes all its admissible forward neighbors.

A possible choice to measure the error reduction of a level l is the error indicator

gl :=

∣∣∣∣ ∆lf

∆Initf

∣∣∣∣ , (5.22)

where we set ∆Initf := ∆1f , which corresponds to a greedy selection of the levels to be
refined.

It might happen that a level has small error reduction, but its forward neighbourhood
contributes significantly. With a greedy approach, this level will not be refined further
as long as there are active indices with higher error indicator.

Another possible choice is a generalized error indicator

g̃l := max

{∣∣∣∣ ∆lf

∆Initf

∣∣∣∣ , (1− %)
nInit

nl

}
,

with weighting parameter % ∈ [0, 1], and denoting the involved work for a level l – that
is the number of grid point evaluations – by

nl :=

d∏
j=1

∣∣Ilj ∣∣ ,
and set nInit := n1. The choice % = 1 corresponds to the greedy approach and % = 0
to the classical sparse grid where only involved work matters. The benefit of using the
generalized error indicator with values % ∈ (0, 1) is that the algorithm will refine levels
if they have small error reduction, but require few work compared to other levels with
similar or higher error reduction. The drawback of using the generalized error indicator
is that we mix convergence information of the differential integral ∆lf with the required
work.

When dealing with high-dimensional problems, the cardinality of the active index set
A grows fast. Therefore it is inefficient to search the largest error indicator in each
step. As we are only interested in the current largest error indicator, we use a heap data
structure for A (see Appendix B), which enables us to find the largest error indicator gl
efficiently in O (1).

5.3.3. Modifications for product integrals

In contrast to the Gaussian quadrature in the discrete projection (3.43) we cannot apply
Algorithm 3.5 any more, since the hierarchical surplusses are not linear in the sense that

ωf ·ψαl,i 6= ωfl,i · ω
ψα
l,i
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Thus we have to compute the product integrals separately in the form of

uα ≈
∑
l∈G

∑
i∈Il

ωf ·ψαl,i

∫
P

Λl,i(x) dx. (5.23)

Note that ωf ·ψα1,1 vanishes for all α which have an odd entry, since any odd univari-
ant Legendre polynomial vanishes at 0 and thus also the multivariant polynomial. An
immediate consequence of this is that we cannot use the error indicator (5.22) as now
∆1(f · ψα) = 0. Moreover, if αj is odd for j ∈ {1, . . . , di}, and it holds lj = 1 it follows

that ωf ·ψαl,i = 0 and thus ∆l(f ·ψα) = 0 for the same reason as above. If α has many odd
entries, the number of such vanishing levels will be vast and thus we cannot initialize
the algorithm with 1 and refine aimless until we encounter a non-vanishing level. Hence
we need to identify the first contributing level, this level is given by

l : lj =

{
1 αj even,

2 αj odd,
(5.24)

where we make the assumption that the solution of (3.1) does not vanish which is
reasonable for dim U large enough.

Consider now again the level indices as d-dimensional simplex. Levels l : lj = 1
correspond to the facet in dimension j, respectively multiple facets if there are multiple
such entries. From the father identification (5.20) it follows that once we reach a grid
point (l, i) with l on such a vanishing facet, we can stop this hierarchization path early,
since all its fathers will vanish as well. Moreover, we never need to compute the values
and hierarchical surplusses of these points, since we know that their values will vanish
and hence also their hierarchical surplusses.

Remark 5.13. We face the situation of vanishing levels again when performing direct
tensor approximation updates for linear problems by solving (4.4). Furthermore, note
that the solution of (4.10) is not possible in each quadrature point pz, as the equation
has no solution whenever λ(pz) = 0, since the left-hand side vanishes. The reasoning
from above applies here as well.

5.3.4. Algorithm

Before giving the algorithm we discuss an algorithmic modification for the discrete pro-
jection method which allows us to economize solver calls. This technique is not applicable
for the tensor approximation, nevertheless we give the most general algorithm here, as
the discussed modifications just become obsolete for the tensor product quadrature. We
can apply the algorithm to product integrals as well as integrals of type

∫
P f(x) dx,

since this equals
∫
P f(x) · ψ0(x) dx because the first univariant Legendre polynomial is

the constant function 1.
As solving the problem (3.1) is costly, we want to reuse this information rather then

recomputing it when encountering the evaluations of grid points in the different product
integrals (5.23). To this end we store such evaluations separately; the quadrature of

59



5. Sparse Grids

a product integral will perform a lookup if these evaluations were already done by a
previous product integral quadrature. If this data is available we multiply with ψα and
hierarchize, if not we evaluate the grid points and store this data, and then proceed
as before. We store this function evaluations in the same manner as we store the grid
(compare Chapter 5.2.3). We denote this hash structure by B and by Bl we denote the
function evaluations of a level l, moreover it denotes Bl,i a evaluation of a single grid
point.

We denote by Dl the data of a level – that is an array holding (l, i, xl,i, ωl,i) such that
each row corresponds to a grid point. By H we denote the hash structure of the grid,
that is the collection of all level data Dl.

For sake of runtime we can parallelize the evaluation and hierarchization of grid points
on different (local) CPU cores. Since an admissible forward neighbor may require only
few work, while other admissible forward neighbors require more work, it is more efficient
to gather the necessary points of all admissible forward neighbors in a list J and work
on all of them in a parallelized manner.

(a) f(x, y) = 1
10
e−x

2

+ 10e−y
2 (b) f(x, y) = ex + ey (c) f(x, y) = ex + ey + exy

Figure 5.9.: Two-dimensional adaptive refinements (top) and corresponding grids (bot-
tom).
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Algorithm 5.11 Dimension-adaptive grid generation with input α,B
l = (5.24)
A = {l}
Dl,Bl = computeLevel(l,B)
∆Init(f · ψα) = ∆l(f · ψα)
Store Dl to H
Store Bl in B if it was computed newly
O = ∅
A = {(l, gl)}
η = gl
while η < tol do . One step

if A = ∅ then . No convergence within maximal level
break

end if
Select l from A with largest gl
A = A \ {(l, gl)}
O = O ∪ {l}
η = η − gl
J = ∅
for j = 0, . . . , d do
k = l+ ej . Find forward neighbors
if ∀q = 1, . . . , d : k − eq ∈ O then . Check for admissibility

compute grid point locations (l, i, xl,i) corresponding to k
append them to J

end if
{Dk}k admissible, {Bk}k admissible = computeLevel(J,B) . worker process
for k admissible do

Store Dk to H
Store Bk in B if it was computed newly
A = A ∪ {(k, gk)}
η = η + gk

end for
end for

end while
return H,B
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Algorithm 5.12 computeLevel(J , B)

for all grid points in J do . parallelized
if grid point ∈ B then . lookup and hierarchize

lookup Bl,i
ωl,i = hierarchize Bl,i · ψα(xl,i)

else . evaluate and hierarchize
Bl,i = f(xl,i)
ωl,i = hierarchize Bl,i · ψα(xl,i)

end if
end for
return Dl,Bl
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6. Numerical Results

As a test example we use the Poisson model problem (2.6), (2.7) with homogeneous
boundary conditions and an artificially generated random field.

The implementation is done in Python1, a popular object-oriented language. The
FEM problem is solved by using FEniCS [LMW12], a powerful framework for solving
differential equations with Python and C++ interfaces. The model problem is provided
by ALEA, which is also implemented in Python and uses FeniCS as backend.

6.1. Discrete Projection

As already said, due to the integration overhead we focus on the discrete projection
method (Chapter 3.3.3) where the integrals have to be computed only once, not in each
iteration cycle.

For the tests we use 602 degrees of freedom for the spatial mesh triangulation and
perform tests in 3, 5, 8 stochastic dimensions. We use the index sets from Def. 3.2 each
of them with ansatz degree 0, . . . , 4. We choose quadrature tolerances 10−2, 10−3, 10−4,
and for the collocation method (sparse grid interpolation) we also compute with toler-
ance 10−5. The grid generation tolerance is not an absolute error measure, but rather
measures the error reduction starting with the initial differential integral. Different
product integrals have initial values which may differ in the orders of magnitude. Thus
the quadrature accuracy of product integrals is not directly comparable. To prevent
the quadrature from getting stuck while reducing the error of a low initial differential
integral, we limit the quadrature with 60 iterations. A more elaborate approach would
be to implement a stagnation criterion based on (5.12).

We plot the RMS error against the amount of work measured in solver calls. The
results are shown in Figure 6.1, 6.2, 6.3. As reference we plot the RMS error of the
collocation method as well. We neglect the inaccurate ansatz degrees 0, 1, and compute
the total degree ansatz set only in dimension 3 due to its size. The similar amount of
work between quadrature tolerances results from the limited quadrature iterations. For
the RMS error we use 5000 Monte Carlo points.

The drawback of both methods from Chapter 3 has already been indicated in Figure
3.1 – the vast number of ansatz functions when using a predefined index set I. Due to
the index set cardinality we expect total degree index set to be most accurate, followed
by sparse Smolyak and hyperbolic cross. The tests verify this behaviour, however the
accuracy is paid with notably more work in terms of solver calls.

1http://www.python.org
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We see that the discrete projection method is capable of producing higher accuracy
results than the collocation method, for example in dimension 8 (Figure 6.3), the ansatz
sets IHC and ISS with quadrature tolerance 10−3 and ansatz degrees 3, 4 are more ac-
curate than the collocation method with the same quadrature tolerance. However, the
amount of work which has to be invested is magnitudes larger. It is doubtful if we can
ever achieve such results within a comparable amount on work invested. For dimensions
> 10, the ansatz degree has to be chosen very low in order to compute the results in
reasonable time, yet this limits the accuracy of the approximation. All together, the
method does not seem capable of tackling medium or high-dimensional problem within
a reasonable amount of work.

6.2. Tensor approximation

Here, we focus on the tensor approximation with adaptive updates using the ASGFEM

estimators (Chapter 4.2).
We use initial dimension 1 and a triangular mesh T consisting of 2 · 302 mesh cells

and conforming piecewise cubic finite elements P3 (compare [Joh13, Chapter 5.2]), re-
sulting in 8281 degrees of freedom. We use 300 Monte Carlo points for the RMS error
computation.

In Figure 6.4 we plot the RMS error against the tensor approximation rank r with
deactivated mesh refinement. We plot two tests with initial dimension 1, one without
predefined initial multiindices α besides (0), and one with predefined initial multiindices
(0), . . . , (9) (compare Chapter 4.2.4). We see in both cases stagnation of the error re-
duction rather than convergence. The reason for this behaviour could not be found in
time, but the test with predefined index set suggests that there is a bug when choos-
ing the next multiindices to be added, since the better error reduction seems to result
from the higher multiindices in the first dimension. The tensor approximation without
predefined multiindices does not reach (9) until the test was stopped. Moreover there
remains a problem in the mesh refinement step resulting in an error increase for refined
triangulations. Also this problem could not be found in time.

For clarity of Algorithm 4.8 we simplified the setup step such that only 0 is the initial
multiindex, but for reasons of implementation the ASGFEM routines assume nonempty
supp(I), so in fact the initial multiindices must contain also (1, 0, . . .). This is the
reason for the larger error in the first RMS test with predefined multiindices, since for
this test we carry out the RMS computation after each new multiindex, rather than
after each refinement step which may add more than one multiindex. We see that the
RMS errors at rank 2 are quite the same as expected, the minor difference results from
choosing different sets of Monte Carlo points.

First we can rule out that the problem of choosing multiindices lies in the ASGFEM

routines, as they are successfully used in [EGSZ15]. Moreover, we can rule out that the
reason for both problems lie in inaccurate quadrature (we chose tolerance 10−4) or that
the triangulation T is too coarse, as we also tested with 2 · 402 mesh cells. One possible
reason for the stagnation is that the used test field (of type monomials [EZ]) causes
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the problems, which has not been tested extensively as Dr. Eigel noted. It was not
possible to use to original proposed test field EF-square-cos, as this test field possesses
symmetries which result in vanishing of certain initial differential integrals (5.24) in the
right hand side of (4.10). For example, this happens at quadrature level 2 for identical
function values b(pi) − A(ur(pi); pi), i = 1, 2, which vanish due to the antisymmetric
nature of the second Legendre polynomial. Either a more elaborate method to find the
initial non-vanishing differential integral has to be employed, or the test field has to
be modified. Still the modification of the test field would not be satisfying, since the
method is expected to work for arbitrary (linear) problems. In the following chapter we
discuss some possible improvements for the quadrature which overcome this problem.
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Figure 6.1.: Discrete projection for 3 stochastic dimensions
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Figure 6.2.: Discrete projection for 5 stochastic dimensions
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Figure 6.3.: Discrete projection for 8 stochastic dimensions
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Figure 6.4.: Two tensor approximations, red without further predefined initial multi-
indices, blue with predefined multiindices in the first dimension
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7. Conclusion and outlook

In this thesis we applied the non-intrusive discrete projection method on a real life FEM
problem rather than the very simple example from Chapter 3.4. However, due to the
usage of rigid predefined index sets (Definition 3.2) the amount of work which has to be
invested makes the method impractical for high-dimensional problems. Without a priori
knowledge of the problem which enables us to define a better suited predefined index set,
either the ansatz degree has to be chosen very low, or an index set which is even sparser
than the hyperbolic cross has to be chosen. Both approaches deteriorate the accuracy
of the method. Another drawback of the method is that we have to solve a system
Av = b for each quadrature point, which is expensive for large systems, although the
method allows the reusage of solutions of such solver calls. The interpolation method
from Chapter 3.3.2 is basically impracticable, since all integrals corresponding to the
index set have to be evaluated for each iteration of the solver.

The non-intrusive tensor approximation coupled with ASGFEM overcomes the problem
of large index sets by constructing an optimal index set at run time. Clearly this is
a major benefit compared to the discrete projection. Moreover, rather that having to
solve a system for each quadrature point, we only need evaluations of the matrices A(p)
in the left hand side of (4.10) which is inexpensive, and a matrix-vector multiplication
A(p)ur(p) in the right hand side which still requires less work than solving a system as
in the discrete projection method. The tensor approximation only requires one solver
call for each rank, which is another benefit of this method. Moreover, the method is
equipped with an spatial error estimator (and mesh refinement) which none of the other
discussed non-intrusive methods provide. The drawback of this method is that it is only
applicable for linear problems such as the model problem (2.6),(2.7).

While the BFGS method does not require any solver calls at all, we have to perform
for each rank several quadratures: one quadrature Ry(x

(k)) per BFGS iteration, plus
(at least) three quadratures for the linesearch in each BFGS iteration (which may be
omitted once the method converges). A benefit of this method is somewhat more general
as is may be used to solve non-linear problems.

All discussed non-intrusive methods rely on high-dimensional quadrature. The imple-
mented dimension-adaptive algorithm is crucial, since classical sparse grids still require
far to many quadrature points. Unique hashing proves to be a simple method of access-
ing grid points efficiently, although it limits the quadrature dimension – depending on
chosen maximal level – as we encounter hash values exceeding int64 data types. The
maximal levels used in this thesis allow for integration of at least 30 dimensions. The
implemented parallelization of the quadrature is essential for run time.

Several improvements of the discussed methods are possible.

68



7. Conclusion and outlook

From viewpoint of implementation it would be beneficial to use Cython1, a superset
of Python which allows static typing (which Python lacks) and compiles to C, both
are beneficial for run time of the application. Although using Cython does not require
major changes in the code, this could not be done in time as one needs to identify where
static typing proves to be beneficial. We have also noticed that integrals of the discrete
projection and especially in the tensor approximation require quite different amounts of
work. Hence a stagnation criterion based on (5.12) would be a more elaborate approach
to decide when to stop the quadrature, rather than providing a small enough quadrature
tolerance and limiting the quadrature with a large enough number of iterations.

From the mathematical viewpoint there are several improvements. For the quadrature,
Dr. Eigel noted that it is beneficial to use global basis functions rather than local hat
basis functions, in conjunction with non-equidistant quadrature points (compare Remark
5.5).

There is a recent paper improving the implemented dimension-adaptive quadrature
algorithm, capable of using non-nested quadrature points and supporting quadrature on
unbounded sets [NTTT15]. Moreover, there is a recent (unpublished) paper which deals
with multilevel quadrature for PDEs with log-normal distributed random fields, which
allows reusage of quadrature points [HPS].

1http://www.cython.org
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A. Functional Analysis

Theorem A.1. Gaussian theorem [Joh13, Corollary 3.43] Let D ⊂ Rd, d ≥ 2, be a
bounded domain with Lipschitz boundary ∂D. Then, the following identity holds for all
u ∈W 1,1(D) ∫

D
∂iu(x) dx =

∫
∂D

u(s)ni(s) ds

with ni the unit outer normal vector on ∂D and the i-th partial derivative ∂i.

Theorem A.2. First Green’s formula [Joh13, Corollary 3.46] Let D ⊂ Rd, d ≥ 2, be a
bounded domain with Lipschitz boundary ∂D. Then, the following identity holds for all
u ∈ H2(D) and v ∈ H1(D):∫

D
∇u(x) · ∇v(x) dx =

∫
∂D

∂n

∂n
(s)v(s) ds−

∫
D

∆u(x)v(x) dx.

Definition A.3. Derivatives of functions [Joh14, Definition A.20] For a d-dimensional
multi-index µ = (µ1, . . . , µd), µj ∈ N0, j = 1, . . . , d we define the derivative

Dµ :=
∂|µ|1

∂xµ11 · · · ∂x
µd
d

.

Definition A.4. Function spaces [Joh14, Definition A.20], [Joh13, Ch. 3] We recall
some common function spaces. We denote by x a point of the domain D.

Ck(D) := {f : f and all its derivatives up to order k are continuous in D}

Lk(D) :=

{
f :

∫
D
|f(x)|k dx <∞

}
, k ∈ [1,∞)

C∞(D) :=
∞⋂
j=0

Cj(D)

C∞0 (D) := {f : f ∈ C∞(D), supp(f) ⊂ D} , supp(f) := {x ∈ D : f(x) 6= 0}
W k,p(D) := {f ∈ Lp(D) : (∀µ : |µ| ≤ k) : Dµf ∈ Lp(D)} , p ∈ [1,∞), k ∈ N0

Hk(D) := W k,2(D)

H1
0 (D) := C∞0 (D)

‖·‖W1,2(D)
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B. Computer science

Definition B.1. Heap [KM14, Chapter 13] A heap is a tree based data structure. It
is a binary tree which is complete (except possibly on deepest level), and satisfies the
max-heap property such that parent nodes are larger that their children, and the w.l.o.g.
left child has smaller value the right child. To maintain this structure, each insertion of
an arbitrary element or the removal of the root node requires subsequent heapification -
that is a reordering of the tree such that the max-heap property is satisfied. By the heap
property, the largest element is always the root node and thus accessible in O (1).

A heap is a basic data structure and thus provided by most programming languages.

Definition B.2. Axpy [Ste98, Chapter 3.2] Axpy are optimized routines for linear com-
binations of vectors

a← a+ kb,

for vectors a, b and scalar k, or for linear combinations of matrices A,B in the form

A← A+ kB.

The linear algebra backend uBLAS which is used in our implementation provides this
functionality.
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(Numerik I). Lecture notes, 2010

[Ler97] Lerner, L.S.: Physics for Scientists and Engineers. Jones and Bartlett,
1997 (Physics for Scientists and Engineers Bd. 2)

[LMW12] Logg, A. ; Mardal, K.-A. ; Wells, G.N.: Automated Solution of Differ-
ential Equations by the Finite Element Method. Springer New York, 2012

[MZ09] Ma, X. ; Zabaras, N.: An Adaptive Hierarchical Sparse Grid Colloca-
tion Algorithm for the Solution of Stochastic Differential Equations. In: J.
Comput. Phys. 228 (2009), Nr. 8, S. 3084–3113

73



BIBLIOGRAPHY

[MZ12] Matthies, H.G. ; Zander, E.: Solving stochastic systems with low-rank
tensor compression. In: Linear Algebra and its Applications 436 (2012), Nr.
10, S. 3819 – 3838

[NTTT15] Nobile, F. ; Tamellini, L. ; Tesei, F. ; Tempone, R.: An adaptive sparse
grid algorithm for elliptic PDEs with lognormal diffusion coefficient / École
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