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Introduction

Partial differential equations (PDEs) arise from a variety of problems in physics, engineer-
ing, ecology, economics and all other areas in which mathematical methods are necessary.
These PDEs describe certain aspects of phenomena in a mathematical way. These as-
pects vary from typical processes such as heat diffusion and populations balances, to crash
tests, fluid dynamics and weather forecast. The resulting PDEs are models for these phe-
nomena of interest. They take the characteristics into account and simplify the behavior
into an abstract model, such that the problem can be investigated on a theoretical- and
application-oriented basis. This approach leads to numerical simulations as well, since it
is possible to find discrete approximations to these PDEs and calculate an approximated
solution via high performance computers.

The theoretical handling of PDEs can be very challenging, since slight modifications of
the equations can cause huge mathematical issues.

In this thesis we consider the theoretical machinery behind the Navier-Stokes equations
(NSE) which describe the motion of a homogeneous incompressible Newtonian fluid. In
Chapter 1 we will derive the Navier-Stokes equation using an approach from continuum
mechanics. A brief introduction in turbulent flows and Kolmogorv’s theory is also given
here. Chapter 2 will cover the theoretical basics and notation to prove three important
theorems. We will discuss the difficulties we encounter during that process. Chapter 3
is a slightly application oriented chapter, where we discuss the challenge of solving the
NSE with direct numerical methods and their limitation. We will motivate turbulence
modeling and the Navier-Stokes-α (NS-α) approach will be introduced. Furthermore, we
will show that a solution of NS-α will converge in some sense to a solution of NSE, which
is a desired property to have. A convergence statement in the context of finite-elements
will be shown in Chapter 4. The last chapter will discuss explicit results using numerical
computations.
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1 THE NAVIER-STOKES EQUATION

1 The Navier-Stokes Equation

The fundamental equations of fluid dynamics are the so called Navier-Stokes equations.
These equations describe the behavior of a fluid from a mathematical point of view under
certain assumptions. In the following section, we will derive the NSE using an approach
from continuum mechanics.

1.1 Derivation

The equations essentially come from the conservation of mass and momentum (Newton’s
second law). Let’s recall the Gauss’ divergence theorem and the transport theorem first.

Theorem 1.1 (Gauss’ divergence theorem). Let Ω ⊂ R3 be a compact set with piece
wise smooth boundary and ~n be the outer unit field on ∂Ω. If f : G → R3 is a
continuously differentiable function on G with Ω ⊂ G, then we have:∫

Ω

div(~f(x))dx =

∫
∂Ω

~f(s) · ~n ds.

Proof. The proof can be found in any analysis book.

Let ω0 ⊂ Ω be a bounded subdomain and let

ω(t) = Ψ(·, t)(ω0) = {Ψ(x, t)|x ∈ ω0}

be the image of ω0 under Ψ. The mapping Ψ(x, t) is called a trajectory of a fluid particle
x ∈ ω0 in the velocity field v. Furthermore we observe that

Ψ(x, 0) = x,

Ψt(x, t) = v(Ψ(x, t), t).

Theorem 1.2 (Transport theorem). If f ∈ C1(Ω) then it holds:

d

dt

∫
ω(t)

f(x, t)dx =

∫
ω(t)

ft(x, t) +∇ · (f(x, t)v(x, t)) dx.

Proof. Using the Wronskian determinant, the substitution rule and some straightforward
calculations lead to the above statement.
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1 THE NAVIER-STOKES EQUATION 1.1 Derivation

1.1.1 Mass conservation and continuity equation

The continuity equation emerges from the mass conservation. Consider herefore a control
volume ω0 ⊂ Ω of a fluid with density ρ, then it holds for all t:

m(t) =

∫
ω(t)

ρ(t, x) dx. (1.1)

The law of mass conservation states that the mass in a closed system stays constant,
which means it has a vanishing derivative.

dm

dt
(t) = 0.

Using the transport theorem we reach the following conclusion:

dm

dt
(t) =

d

dt

∫
ω(t)

ρ(t, x) dx

=

∫
ω(t)

∂ρ

∂t
+∇ · (ρv) dx.

Through the arbitrary choice of ω0 and a localization argument, we conclude the continuity
equation:

∂tρ+∇ · (ρv) = 0. (1.2)

1.1.2 Momentum conservation and Newton’s second law

Now we will reformulate Newton’s second law in the context of fluid dynamics. It states:

force = mass× acceleration = change of momentum.

Considering the right-hand side first, we state:

momentum(t) = mass× velocity =

∫
ω(t)

ρv dx.

We now apply the transport theorem to the time derivative of each component of the
term above:

 d

dt

∫
ω(t)

ρv dx


j

=
d

dt

∫
ω(t)

ρvj dx =

∫
ω(t)

∂t(ρvj) +∇ · (ρvjv) dx.
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1.1 Derivation 1 THE NAVIER-STOKES EQUATION

We put all the components back together and get the following identity:

d

dt

∫
ω(t)

ρv dx =

∫
ω(t)

∂t(ρv) +∇ · (ρv ⊗ vt) dx,

where vt is the transpose of v and (a⊗ b)i,j = aibj is a tensor. Inserting this identity into
Newton’s second law results in:

force =

∫
ω(t)

∂t(ρv) +∇ · (ρv ⊗ vt) dx.

Let us consider the left-hand side now, namely the force term acting on a control volume,
ω(t). We distinguish between external and internal forces. Interneral forces are forces the
fluid exerts on itself like pressure and viscous drag. External forces are forces acting on
the fluid from outside, such as gravity. We get the following expression for the force term:

Ftotal =

∫
ω(t)

F (t, x) dx

︸ ︷︷ ︸
external forces

+

∫
∂ω(t)

σ · ~n ds

︸ ︷︷ ︸
internal forces

=

∫
ω(t)

F (t, x) dx+

∫
ω(t)

∇ · σ dx,

where σ is the Cauchy stress tensor. Inserting this identity into Newton’s second law
results in: ∫

ω(t)

F +∇ · σ dx =

∫
ω(t)

∂t(ρv) +∇ · (ρv ⊗ vt) dx.

Through the arbitrary choice of ω0 and a localisation argument, we conclude the following
representation of Newton’s second law:

F +∇ · σ = ∂t(ρv) +∇ · (ρv ⊗ vt).

We now have a representation of conservation of mass and momentum, but further model-
ing is necessary. The Cauchy stress tensor needs to be expressed in terms that are known
or can be calculated.

1.1.3 The Cauchy stress tensor

One fundamental property of a stationary fluid is that the tension acts in the opposite
direction than the outer normal. This means that for a stationary fluid the Cauchy stress
tensor σ only depends on the thermodynamic pressure p and it holds:

σ = −p Id.
If the fluid is being moved, we can decompose the stress tensor into its components,
namely the pressure p and the viscosity:

σ = −p Id+ τ,
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1 THE NAVIER-STOKES EQUATION 1.1 Derivation

where τ is the viscous stress tensor. However, we still need to find a suitable representation
for τ .
Assuming we have an isotropic, Newtonian fluid, we can express the viscous stress tensor
τ linearly by the gradient of the velocity field:

τ = λ(∇ · v)Id+ µ(∇v + (∇v)T ).

The resulting representation is a fundamental assumption for modeling the NSE. The vari-
ables λ and µ are only dependent on thermodynamical variables (pressure, temperature)
but not on the velocity v, they are called Lamé constants.

1.1.4 The homogeneous, incompressible NSE for isotropic, Newtonian fluids

If we assume we have an isotropic, Newtonian fluid and use the approximation of the
Chauchy stress tensor τ from our previous section, we can state Newton’s second law in
the following way:

F +∇ · σ = ∂t(ρv) +∇ · (ρv vt),

F +∇ ·
(
− pId+ λ(∇ · v)Id+ µ(∇v + (∇v)T )

)
= ∂t(ρv) +∇ · (ρv vt). (1.3)

Before we continue, let us simplify first. Consider the deformation tensor D(v) = 1
2

(
∇v+

(∇v)T
)
. Assuming enough regularity of v we can state:

∇ ·
(
∇v + (∇v)T

)
= ∆v +∇ · (∇v)T

= ∆v +∇ ·

∂1v1 · · · ∂nv1
...

...
∂1vn · · · ∂nvn


T

= ∆v +∇ ·

∂1v1 · · · ∂1vn
...

...
∂nv1 · · · ∂nvn


= ∆v +

∂1∂1v1 + · · ·+ ∂n∂1vn
...

...
∂1∂nv1 + · · ·+ ∂n∂nvn


= ∆v +

∂1∂1v1 + · · ·+ ∂1∂nvn
...

...
∂n∂1v1 + · · ·+ ∂n∂nvn


= ∆v +

∂1(∇ · v1)
...

∂n(∇ · vn)


= ∆v +∇(∇ · v).

(1.4)

On the right-hand side of equation (1.3) we can extract the continuity equation (1.2).
Before we do that we consider:
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1.1 Derivation 1 THE NAVIER-STOKES EQUATION

(
∇ · (ρv vt)

)
j

= ∇ · (ρvjv) =
∑
i

∂i(ρvjvi)

=
∑
i

(vj∂i(ρvi) + ρvi∂ivj)

= (v∇ · (ρv) + ρ(v · ∇)v)j .

Using this identity, we can consider the right-hand side of (1.3) now:

∂t(ρv) +∇ · (ρv vt) = ∂tρv + ρ∂tv + ρ(∇ · v)v + v∇ · (ρv)

= v (∂tρ+∇ · (ρv))︸ ︷︷ ︸
=0

+ρ∂tv + (∇ · v)ρv

= ρ∂tv + ρ(∇ · v)v.

(1.5)

We insert (1.4) and (1.5) into (1.3) and get the following representation of the NSE:

∂tρ+∇ · (ρv) = 0, (Continuity Equation)

F −∇p+ λ∇ · (∇ · v) + µ∆v + µ∇(∇ · v) = ρ∂tv + ρ(∇ · v)v. (Newton’s second law)

(1.6)

Given we have a homogeneous, incompressible fluid, the density is constant everywhere,
ρ ≡ const. This reduces the continuity equation to just a constraint on the velcoity field
v:

∇ · v = 0. (1.7)

Inserting (1.7) into (1.6) results in the following formulation of the NSE:

∇ · v = 0

F −∇p+ µ∆v = ρ∂tv + ρ(v · ∇)v.

We divide by ρ and reorder the terms.

∂tv − ν∆v + (v · ∇)v +∇P = F̃ ,

∇ · v = 0,
(1.8)

where ν = 1
ρ
µ is the viscosity constant, P = p

ρ
is the scaled pressure and F̃ = 1

ρ
F are

scaled inner forces.
So far we considered physical quantities with units, but to continue describing and solving
the problem from a mathematical point of view we must rescale the equations to eliminate
the units. To do so, we need the following units:

• L[m] : characteristic length,

• U [m
s

] : characteristic velocity scale,
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1 THE NAVIER-STOKES EQUATION 1.1 Derivation

• T ∗[s] : characteristic time,

and the corresponding variable transformations of the previous variables (t′, x′)[s,m]:

• x =
x′

L
,

• u =
v

U
,

• t =
t′

T ∗
.

Reformulating and simplifying (1.8) with the new variables (t, x) we get:

L

UT ∗
∂tu−

ν

UL
ν∆u+ (u · ∇)u+∇ P

U2
=

L

U2
F̃ ,

∇ · u = 0.

For simplification we normalize the characteristic time to 1s:

T ∗ =
L

U
= 1s,

and obtain:

∂tu−
1

Re
∆u+ (u · ∇)u+∇p = f

∇ · u = 0,

where:

Re =
UL

ν
, p =

P

U2
, f =

F̃L

U2
.

We now have a dimensionless representation of the Navier-Stokes equations:

NSE

{
∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

1.1.5 Initial and boundary condition

The NSE are partial differential equations of first order in time and second order in
space. Consequently we have to add an initial condition (IC) at time t = 0 and boundary
conditions (BC) at the boundary Γ = ∂Ω to the system of equations. The chosen initial
and boundary conditions should naturally satisfy a compatibility condition for t→ 0, t >
0.
A suitable IC would be a divergence free velocity field u0 such that:
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1.2 Laminar and turbulent flows 1 THE NAVIER-STOKES EQUATION

u(0, x) = u0(x) in Ω

∇ · u0 = 0.

When choosing a BC we have many alternatives. We can split the boundary Γ into smaller
disjoint segments and prescribe different boundary conditions on each of them. Naturally
they should be compatible with each other. The following are typical types of BCs:

• Dirichlet BC: fixed inflow and outflow

u(t, x) = g(t, x) in (0, T ]× Γdirichlet.

• No-slip BC: no penetration and no slip

u(t, x) = 0 in (0, T ]× Γnoslip.

• Free-slip BC: no friction

u(t, x) · n = g(t, x) in (0, T ]× Γslip.

Remark 1. When we prescribe Dirichlet BC on Γdirichlet = Γ an additional issue
arises. Because there is no constraint on the pressure at the boundary, it is only
determined up to a constant. Adding a condition to the pressure for example, an
integral mean ∫

Ω

p(t, x) dx = 0 t ∈ (0, T ],

is sufficient to resolve this issue.

2. Since the continuity equation degenerates to a simple divergence free constraint on
u, we need an additional condition on the BC:

0 =

∫
Ω

∇ · u(t, x) dx =

∫
Γ

(u · n)(t, x) dx.

This identity has to be satisfied at all times.

1.2 Laminar and turbulent flows

Osbourne Reynolds discovered through coloring experiments of a pipe flow that the occur-
rence of vortices and chaotic movements are highly dependent on the Reynolds number.
In general, we can make the following observations: for small Reynolds numbers, the flow
reaches a steady state. It circulates around obstacles and adapts to it. It’s time inde-
pendent and forms a laminar flow. Enlarging the Reynolds number results in the flow
becoming time dependent and the vortices and eddies start to form. The size of these
vortices and eddies depends positively on the Reynolds number. If the Reynolds number
gets very large, the flow becomes chaotic and irregular, a so-called turbulent flow.
Turbulent flow differs from laminar flow basically in the following points:

10



1 THE NAVIER-STOKES EQUATION 1.3 Kolmogorov’s theory and Energy cascade

• A turbulent flow is irregular, chaotic and unpredictable.

• Small perturbations are amplified greatly by the non-linear character of the NSE.

• Eddies occur. Their size range from that of the domain to very small scales. The
largest eddies hold the most energy. In terms of the mean, these large eddies trans-
fer their energy to smaller eddies until the smallest dissipates the energy as heat.
Therefore, the system consumes energy to maintain its turbulent behavior. A con-
stant inflow of energy is needed to maintain the turbulent flow, for example in the
form of a fixed inflow with a high velocity.

• The rate of diffusion, i.e., the velocity in which mass, heat and momentum propa-
gate, is significantly higher than in the laminar case.

1.3 Kolmogorov’s theory and Energy cascade

As briefly discussed in the previous section, energy is transferred in a mean sense from
large eddies to the smallest ones; this decay of energy is called energy cascade. From an
application-oriented point of view, it is important to know how large these smallest eddies
are, because if our standard discretization is too coarse we lose information. Naturally,
the discretization should be fine enough to resolve the smallest eddies. Kolmogorov’s
theory describes the magnitude of the smallest eddies in comparison to the largest ones.

Kolmogorov’s hypothesis
Let us consider a turbulent flow with a high Reynolds number,

Re =
LU

ν
.

We can interpret turbulence as an interaction between eddies of different sizes. A large
domain with a large eddy can consist of many smaller eddies. Consider the size of an
eddy l and its characteristic velocity u(l). The size of the largest eddies are of magnitude
of the characteristic length L and have characteristic velocity u(L) = U . We define a size
dependent Reynolds number Re(l)

Re(l) =
u(l) l

ν
.

In terms of the mean, the largest eddies are unstable, collapse and transfer their energy
to smaller eddies; this process goes on for as long as the eddies are unstable. At the
smallest scale the eddies become stable and dissipates their energy as heat. The energy
lost through heat dissipation only occurs in the last step, namely at the smallest eddies.
The cascade proceeds to smaller and smaller scales until the Reynolds number Re(l) is
small enough (Re(l) ≈ O(1)) for dissipation to be effective. The rate of transfer of energy
ε from the largest to the smallest eddies can be estimated. Therefore, we state that the
energy at the largest scales is 1

2
U2 with its corresponding timescale τ = L

U
. For ε it holds

ε ∼ U2

τ
=
U3

L
.
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1.3 Kolmogorov’s theory and Energy cascade 1 THE NAVIER-STOKES EQUATION

This is not enough to conclude any information about the smallest eddies. We need Kol-
mogorov’s hypothesis of local isotropy and his first similarity hypotheses.
The first hypothesis refers to the statistically isotropic behavior for the smallest eddies.
In general, the flow is anisotropic and depends on the boundary of the domain, but for the
smallest eddies, directional information is lost during the energy cascade. Kolmogorov
argued that all information about the geometry of the large eddies is also lost. As a
consequence, the statistics of the small scale motion are even, which is a different way of
saying the smallest eddies are locally isotropic. This relation only holds for large Reynolds
numbers.
Let lEL be the threshold of the eddy sizes where energy transfer dominates (l > lEL)
and where heat dissipation dominates (l < lEL). Kolmogorov’s first similarity hypothesis
states that the statistics of the small scale motion considering a sufficiently high Reynolds
number is uniquely determined by the kinematic viscosity ν and the rate of transfer of
energy ε. Let us assume ν and ε are given. We want to define a unique (up to a multi-
plicative constant) length, velocity and time scales that ensure the Reynolds number to
be 1. These new scales will be denoted with a subscript η.

We can calculate the following:

1 = Reη =
lη uη
ν

=⇒
uη =

ν

lη

lη =
ν

uη

and using τη = lη
uη

results in

ε =
u2
η

τη
=
u3
η

lη
=⇒ uη = (εlη)

1
3 .

Using these identities we can determine the desired scales:

lη =
ν

uη
=

ν

ε
1
3 l

1
3
η

=⇒ lη =

(
ν3

ε

) 1
4

length scale,

uη =
ν

lη
=

ν(
ν3

ε

) 1
4

=⇒ uη = (εν)
1
4 velocity scale,

τη =
lη
uη

=

(
ν3

ε

) 1
4

(εν)
1
4

=⇒ τη =
(ν
ε

) 1
2

time scale.

These scales are called Kolmogorov scales. Let us recall the main issue of this section.
We want to find the size of the smallest eddies. We can do so by inserting ε ≈ U3

L
in the

length scale, resulting in:

uη ∼
(
U3

L
ν

) 1
4

=

(
U4

LU
ν

) 1
4

= U Re−
1
4 =⇒ uη

U
∼ Re−

1
4

For a more in depth treating of the Kolmogorov scales and a more precise description of
the value lEL see [Pop00]
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2 THEORETICAL APPROACH TO THE NSE

2 Theoretical approach to the Navier-Stokes-Equation

The NSE are nonlinear partial differential equations. This nonlinearity in particular is
difficult and challenging to handle on a mathematical level. In this section we will briefly
state a few fundamental statements from functional analysis that are needed to show
existence and uniqueness of a solution.

2.1 Definitions

Definition (Lebesgue spaces). Let Ω ⊂ Rn then we define

Lp(Ω) =

f Lebesgue measurable :

∫
Ω

|f(x)|p dx <∞

 1 ≤ p <∞,

L∞(Ω) =

{
f Lebesgue measurable : ess sup

x∈Ω
f(x) <∞

}
p =∞.

Lebesgue spaces with exponent p.

Remark Lebesgue spaces are normed vector spaces with norm

||f ||Lp(Ω) =

∫
Ω

|f(x)|p dx

 1
p

, 1 ≤ p <∞.

Remark The Lebesgue space Lp for p = 2 is a Hilbert space with scalar product

(f, g)L2(Ω) =

∫
Ω

fg dx, (f, f)L2(Ω) = ||f ||2L2(Ω).

Definition (Space of testfunctions). Let Ω ⊂ Rn then we define

C∞c (Ω) = {ϕ smooth : supp(ϕ) ⊂ Ω} .

Definition (Weak derivative). Let the following identity hold for u, v ∈ Lp(Ω)∫
Ω

uϕ′ dx = −
∫
Ω

vϕ dx ∀ϕ ∈ C∞c (Ω)

then we say that v is the weak derivative of u. We write u′ or Du in the same way
as if we consider strong derivatives, although we mean the weak derivatives.

13



2.1 Definitions 2 THEORETICAL APPROACH TO THE NSE

Definition (Sobolev space). For k ∈ N and 1 ≤ p ≤ ∞ we define W k,p(Ω) as elements
of Lp(Ω) such that the kth weak derivative exists. The kth weak derivative should be
an element of Lp:

W k,p(Ω) = {f ∈ Lp(Ω) : ∀α multiindex, |α| = k the αth derivative vα is in Lp(Ω)} .

Remark It is Lp(Ω) = W 0,p.

Remark We denote only Hk(Ω) instead of W k,2(Ω).

Remark Sobolev spaces are normed vector spaces with norm

||f ||Wk,p(Ω) =

(
k∑
i=0

||Dif ||pLp(Ω)

) 1
p

.

Remark Analogously to the Lebesgue spaces it also holds that for p = 2 the Sobolev spaces
W k,2(Ω) are Hilbert spaces with scalar product

(f, g)Hk(Ω) =
k∑
i=0

(Dif,Dig)L2(Ω), (f, f)Hk(Ω) = ||f ||2Hk(Ω).

Remark In addition we will use the spaces Hk
0 (Ω). These are all the functions of Hk(Ω)

who vanish on the boundary of Ω.

Definition (Time dependent Sobolev spaces). Similar to the time independant case
we define the time dependant Sobolev spaces by

Ls(0, T ;W k,p(Ω)) =

v(t) ∈ W k,p(Ω) :

T∫
0

||v(t)||sWk,p(Ω) dt <∞

 ,

where v(t) is only defined for almost every t ∈ [0, T ].

Definition (Sobolev-Slobodedzki spaces). Let X be an arbitrary Sobolev space. For
1 ≤ p <∞ und 0 < σ < 1 we define the Sobolev-Slobodedzki spaces

W σ,p(0, T ;X) =
{
v ∈ Lp(0, T ;X) : |v|Wσ,p(0,T ;X) <∞

}
,

where

|v|Wσ,p(0,T ;X) =

 T∫
0

T∫
0

|s− t|−(1+σp)||v(s)− v(t)||pX ds dt


1
p

14



2 THEORETICAL APPROACH TO THE NSE 2.1 Definitions

Remark Similar to Sobolev spaces we denote W σ,2(0, T ;X) = Hσ(0, T ;X).

Definition (Seperable spaces). A topological space is called seperable, if it contains
a countably, dense subset.

Remark Lebesgue spaces Lp(Ω) for an open, bounded Ω and 1 ≤ p < ∞ are seperable.
L∞(Ω) is not seperable.

Definition (Dual pair). Let X be a normed vector space and X ′ the corresponding
dual space. We denote the acting of x′ ∈ X ′ on x ∈ X as the dual pairing

〈x′, x〉X′×X .

Definition (Reflexive space). A normed space (X, ||.||X) is called a reflexive space,
if the canonical embedding onto its bidual space is an isometrical isomorphism, that
means the mapping J : X → X ′′ with

< Jx, x′ >X′′×X′=< x′, x >X′×X

is surjective.

Remark Because of the Riesz representation theorem every Hilbert space is a reflexive
space.

Remark Lp(Ω) and W k,p(Ω) are for open domains Ω and 1 < p < ∞ reflexive. The
spaces L1(Ω) and L∞(Ω) are not reflexive.

Definition (Continuously, compactly and densely embedded). Let X,Y be normed
vector spaces with norms || · ||X , || · ||Y .

• X is continuously embedded in Y, (X ↪→ Y ) if

||x||Y ≤ C||x||X ∀x ∈ X.

• X is densely embedded in Y, (X
d
↪→ Y ), if X is continuously embedded in Y

and X is dense in Y.

• X is compactly embedded in Y, (X
c
↪→ Y ) if X is continuously embedded in

Y and the identity mapping is a compact operator, that is, for every sequence
in a bounded set of X there exists a converging subsequence in Y .

15



2.2 Inequalities 2 THEORETICAL APPROACH TO THE NSE

Definition (Gelfand triple). Let V be a real, reflexive, seperable Banach space, that
is continuously and densly embedded in a Hilbert space H. Then the following relation
is called a Gelfand triple

V ⊆ H ∼= H ′ ⊆ V ′,

where H ′, V ′ are the respective dual spaces.

Remark In the context of the NSE we will have V = H1
0 (Ω), H = L2(Ω), V ′ = H−1(Ω).

Definition (Weak and weak∗ convergence). A sequence (xk)k∈N in X converges
weakly to x ∈ X (xk ⇀ x in X), if

< x′, xk >X′×X−→< x′, x >X′×X ∀x′ ∈ X ′.

A sequence (x′k)k∈N in X ′ converges weak∗ to x′ ∈ X ′ (x′k
∗
⇀ x′ in X ′), if

< x′k, x >X′×X−→< x′, x >X′×X ∀x ∈ X.

Remark The weak limit is unique.

Remark Let H be a Hilbert space. For a bounded sequence (vk)k∈N ∈ H, there exists a
subsequence vkl converging weakly in H.

2.2 Inequalities

Theorem 2.1 (Hölder inequality). Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1
p

+ 1
q

= 1 and

p, q ∈ [1,∞), then it holds ∫
Ω

|fg| dx < ||f ||Lp(Ω) · ||g||Lq(Ω).

Theorem 2.2 (General Hölder inequality). Let fi ∈ Lpi(Ω), i = 1, ..., n with
n∑
i=1

1
pi

= 1,

then it holds ∫
Ω

∣∣∣∣∣
n∏
i=1

fi

∣∣∣∣∣ dx <
n∏
i=1

||fi||Lpi (Ω).

16



2 THEORETICAL APPROACH TO THE NSE 2.2 Inequalities

Theorem 2.3 (Young inequality). For a, b ≥ 0 and p, q > 1 with 1
p

+ 1
q

= 1 it holds

ab ≤ ap

p
+
bq

q
.

Remark We will use a scaled version of the Young inequality, namely

ab =
(
(pε)

1
pa
)(

(pε)−
1
p b
)
≤ εap + Cεb

q, Cε =
(pε)−

q
p

q
.

Theorem 2.4. Let Ω be a domain with finite measure, then all u ∈ Lr(Ω) and all
1 ≤ s ≤ r satisfy

||u||Ls(Ω) ≤ c||u||Lr(Ω),

this means that the Lp(Ω) spaces are nested

L∞(Ω) ⊂ ... ⊂ L4(Ω) ⊂ L3(Ω) ⊂ L2(Ω) ⊂ L1(Ω).

Theorem 2.5 (Minkowski inequality, triangle inequality for Lp spaces). For f, g ∈
Lp(Ω), 1 ≤ p ≤ ∞, it holds

||f + g||Lp(Ω) ≤ ||f ||Lp(Ω) + ||g||Lp(Ω).

Theorem 2.6 (Poincaré inequality). Let 1 ≤ p ≤ ∞ and Ω be a domain with finite
measure, then for all u ∈ (H1(Ω))d the inequality

||u||Lp(Ω) ≤ C(d,Ω)||∇u||Lp(Ω)

is satisfied.

Theorem 2.7 (Interpolation inequality). Let Ω be a domain, then for all u ∈ H1
0 (Ω)

the inequality

||u||L4 ≤ c||∇u||
3
4

L2 ||u||
1
4

L2

17



2.3 Preliminaries 2 THEORETICAL APPROACH TO THE NSE

holds in three dimensions.

Remark For two dimensions it holds

||u||L4 ≤ c||∇u||
1
2

L2||u||
1
2

L2 .

Lemma 2.8 (Gronwall). Let T > 0 and t0 ∈ [0, T ), a ∈ W 1,1(t0, T ) and g, λ ∈
L1(t0, T ). Starting from

a′(t) ≤ g(t) + λ(t)a(t) almost everywhere in (t0, T )

the inequality

a(t) ≤ eΛ(t)a(t0) +

t∫
t0

eΛ(t)−λ(s)g(s) ds

holds, where Λ(t) :=
t∫
t0

λ(s) ds.

Theorem 2.9 (Lions-Aubin). Let V,H,W be Banach spaces with V
c
↪→ H ↪→ W and

1 ≤ p <∞, then it holds ∀σ ∈ (0, 1)

Lp(0, T ;V ) ∩W σ,q(0, T ;W )
c
↪→ Lp(0, T ;H).

This means that for every bounded sequence in Lp(0, T ;V )∩W σ,q(0, T ;W ) there exists
a subsequence converging strongly in Lp(0, T ;H).

Remark Instead of seeking a fractional derivative we can demand a full time derivative
in Lq(0, T ;W ) and the same holds as well. Defining X to be:

X = {u ∈ Lp(0, T ;V ) : u′ ∈ Lq(0, T ;W )}

we can state another version of the Lions-Aubin theorem:

X
c
↪→ Lp(0, T ;H).

2.3 Preliminaries

This section will consider the Navier-Stokes equations in the context of functional analysis.
The needed functionals will be defined and their properties will be described. Let us recall
the NSE:
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2 THEORETICAL APPROACH TO THE NSE 2.3 Preliminaries


∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,

u = 0 in ∂Ω× (0, T ),

u(0, ·) = u0 in Ω× 0.

We will consider additional functional spaces

V = {v ∈ H1
0 (Ω)d : ∇ · v = 0},

where the divergence has to be understood in a weak sense and

H = {v ∈ L2(Ω)d : ∇ · v = 0 and v|∂Ω · n = 0},

where the divergence has to be understood in a distributional sense.

The spaces V and H are closed subspaces of H1
0 (Ω)d and L2(Ω)d, they form a Gelfand

triple V ⊂ H ∼= H ′ ⊂ V ′.

Remark It holds that V is densely embedded in H and H ′ is densely embedded in V ′.

Remark We will abbreviate the norms in V with only || · || and the norm in H with only
| · |. Since v ∈ V vanishes on the boundary the norm of V can be considered only to be
the seminorm in H1(Ω), || · || = |∇ · |.

Before we go ahead and note the weak formulation of our problem, we consider the product
of the pressure gradient with v ∈ V first.

(∇p, v)V = (p,∇ · v)V = 0.

This holds because v is divergence free, therefore the pressure term drops out of the weak
formulation.

We define

a : V × V → R, a(u, v) = ((u, v)) =

∫
Ω

∇u : ∇v dx =

∫
Ω

d∑
i,j=1

∂ui
∂xj

∂uj
∂xi

,

b : V × V × V → R, b(u, v, w) =

∫
Ω

(u · ∇)v · w dx.

Remark Properties of a and b:

• a(·, ·) is well-defined, bilinear and bounded, thus contuniuous.

• b(·, ·, ·) is well-defined, trilinear and bounded, thus continuous.
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• b(·, ·, ·) is antisymmetric in the second and third argument that means

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ V.

Weak formulation

For f ∈ L2(0, T ;V ′) and u0 ∈ H the formulation is the following, find u ∈ L2(0, T ;V )
such that:


T∫

0

< u′(t), v > ϕ(t) + ν((u(t), v))ϕ(t) + b(u(t), u(t), v)ϕ(t) dt =

T∫
0

< f(t), v > ϕ(t) dt,

u(0, ·) = u0

(2.1)

for all v ∈ V and ϕ ∈ C∞c ((0, T )).

Up till now we have stated everything necessary to proceed proving existence and unique-
ness of a solution for NSE.

2.4 Existence and uniqueness

In this section we will prove three theorems concerning existence and uniqueness. We
will start with a uniqueness theorem. If nothing else is stated we always consider three
dimensions.

2.4.1 Global existence of a weak solution

Theorem 2.10 (Global existence of a weak solution). For u0 ∈ H and f ∈
L2(0, T ;V ′) there exists a solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) for the weak for-

mulation (2.1) with u′ ∈ L 4
3 (0, T ;V ′).

Proof. We will present the proof in 4 steps:

1. existence of a local solution,

2. a-priori estimates,

3. identify a limit of the local solution,

4. check the initial condition.
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2 THEORETICAL APPROACH TO THE NSE 2.4 Existence and uniqueness

Part 1: Existence of a local solution

For the existence of a local solution we will use a Galerkin procedure. Let Vm ⊂ V be a
finite dimensional subspace of V with dimension m and let {ϕj}j=1,...m be a corresponding
Galerkin basis. For all um ∈ Vm we denote:

um(t) =
m∑
j=1

umj(t)ϕj, u′m(t) =
m∑
j=1

u′mj(t)ϕj.

The Galerkin problem can be described as:
Find um(t) ∈ Vm such that{

< u′m(t), vm > +ν((um(t), vm)) + b(um(t), um(t), vm) =< f(t), vm > ∀vm ∈ Vm,
um(0) = Pmu0,

(2.2)

where Pm is an orthogonal projection onto Vm. Recall that the pressure term drops out,
because we are testing with divergence free functions. We test with the basis function ϕj
of Vm. For each j we get

m∑
i=1

u′mi(t)(ϕi, ϕj) + ν
m∑
i=1

umi(t)((ϕi, ϕj)) + b(um(t), um(t), ϕj) =< f(t), ϕj >

⇔ MU ′m + νAUm +B(Um) = Fm,

where Mj,i = (ϕi, ϕj), Aj,i = ((ϕi, ϕj)) and Um is the coefficient vector corresponding to
um. The matrix M is invertible and therefore we can multiply with the inverse

U ′m + νM−1AUm +M−1B(Um) = M−1Fm.

The resulting equation is an ordinary differential equation. Because all matrices are
continuous operaters, we can apply Carathéodory’s theorem to obtain an absolutely con-
tinuous solution Um ∈ Vm. We found a local solution.

Part 2: A-priori estimates

To obtain the a-priori estimates we test the Galerkin Problem (2.2) with our previously
obtained solution. Before we do that, we recall the folowing identity first

1

2

d

dt
|u(t)|2 =< u′m(t), um(t) > .

We multiply with um and utilize the antisymmetry of b

< u′m(t), um(t) > +ν((um(t), um(t))) + b(um(t), um(t), um(t)) =< f(t), um(t) >

⇔ 1

2

d

dt
|u(t)|2 + ν((um(t), um(t))) =< f(t), um(t) > .
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2.4 Existence and uniqueness 2 THEORETICAL APPROACH TO THE NSE

We consider the right-hand side first and apply an inequality for the dual pairing and
Young’s inequality

< f(t), um(t) > ≤ ||f(t)||V ′ ||um(t)||

≤ 1

2ν
||f(t)||2V ′ +

ν

2
||um(t)||2.

Now we put all the previous calculations together and get

1

2

d

dt
|u(t)|2 + ν((um(t), um(t))) =< f(t), um(t) >

⇒ 1

2

d

dt
|um(t)|2 + ν||um(t)||2 ≤ 1

2ν
||f(t)||2V ′ +

ν

2
||um(t)||2

⇔ 1

2

d

dt
|um(t)|2 +

ν

2
||um(t)||2 ≤ 1

2ν
||f(t)||2V ′

⇔ d

dt
|um(t)|2 + ν||um(t)||2 ≤ 1

ν
||f(t)||2V ′ .

We integrate over (0, t)

|um(t)|2 + ν

t∫
0

||um(s)||2 ds ≤ 1

ν

t∫
0

||f(s)||2V ′ ds+ |um(0)| ≤ 1

ν
||f ||2L2(0,T ;V ′) + |u0|.

It is important to note, that the right-hand side is independent of m. Because of that
we can conclude um ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). Therefore there exists a subsequence
uml ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) and u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) such that

uml
∗
⇀ u in L∞(0, T ;H),

uml ⇀ ũ in L2(0, T ;V ).

Let us recall that the dual space of L1(0, T ;H) is L∞(0, T ;H) and the dual space of
L2(0, T ;V ) is L2(0, T ;V ′). Choosing our test space to be a subspace of the overlap of
L1(0, T ;H) and L2(0, T ;V ′), for example L2(0, T ;H) we conclude that u = ũ almost
everywhere.

Teil 3: Identify a limit of the local solution

Since we will only consider the converging subsequence we will denote uml by um. We
managed to show weak convergence so far, but this is not enough to show that the found
limit is actually the solution we are looking for. We are looking for a limit such that all
terms of (2.2) converge. It is not sufficient to control the non-linear term with only weak
convergence, strong convergence is needed. Showing strong convergence is our next step.
We initially consider v, v̄, w ∈ V

22
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∣∣∣b(v, v, w)− b(v̄, v̄, w)
∣∣∣

=
∣∣∣b(v, v, w)− b(v̄, v, w) + b(v̄, v, w)− b(v̄, v̄, w)

∣∣∣
=
∣∣∣b(v − v̄, v, w)− b(v̄, v̄ − v, w)

∣∣∣
≤
∣∣∣b(v − v̄, v, w)

∣∣∣+
∣∣∣b(v̄, v̄ − v, w)

∣∣∣
=
∣∣∣b(v − v̄, w, v)

∣∣∣+
∣∣∣b(v̄, w, v̄ − v)

∣∣∣.
We apply the general Hölder inequality p1 = p3 = 4, p2 = 2 and the interpolation inequal-
ity

≤c||v − v̄||L4||∇w||L2||v||L4 + ||v̄||L4||∇w||L2||v̄ − v||L4

≤c||w||H1||v − v̄||L4

(
||v||L4 + ||v̄||L4

)
≤c||w||H1||v − v̄||

3
4 |v − v̄|

1
4

(
||v||

3
4 |v|

1
4 + ||v̄||

3
4 |v̄|

1
4

)
.

Restating the above inequality in operators results in

||B(v)−B(v̄)||V ′ ≤ c||v − v̄||
3
4 |v − v̄|

1
4

(
||v||

3
4 |v|

1
4 + ||v̄||

3
4 |v̄|

1
4

)
. (2.3)

We choose v, v̄ ∈ V and therefore we can control all V-norms, we merely need to control
the H-norm and make sure that |v − v̄| 14 doesn’t become too large.
To motivate the next step we consider the following calculations first, consider v, v̄ ∈
L∞(0, T ;H) ∩ L2(0, T ;V ) and 1 ≤ r < 4

3

||B(v)−B(v̄)||rLr(0,T ;V ′) =

T∫
0

||B(v)−B(v̄)||rV ′ dt.

We insert (2.3):

≤
T∫

0

(
c||v − v̄||

3
4 |v − v̄|

1
4

(
||v||

3
4 |v|

1
4 + ||v̄||

3
4 |v̄|

1
4

))r
dt.

We use the fact that (a+ b)n ≤ c(an + bn) holds for a, b > 0, n ≥ 1:

≤
T∫

0

(
c||v − v̄||

3
4 |v − v̄|

1
4

(
||v||

3
4 |v|

1
4

L∞(0,T ;H) + ||v̄||
3
4 |v̄|

1
4

L∞(0,T ;H)

))r
dt

≤
T∫

0

(
c||v − v̄||

3
4 |v − v̄|

1
4

(
||v||

3
4 + ||v̄||

3
4

)(
|v|

1
4

L∞(0,T ;H) + |v̄|
1
4

L∞(0,T ;H)

))r
dt

≤c
(
|v|

r
4

L∞(0,T ;H) + |v̄|
r
4

L∞(0,T ;H)

) T∫
0

||v − v̄||
3r
4 |v − v̄|

r
4

(
||v||

3r
4 + ||v̄||

3r
4

)
dt.
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Using the Minkowski inequality for ||v − v̄|| 3r4 simplifies out expression.

≤c
(
|v|

r
4

L∞(0,T ;H) + |v̄|
r
4

L∞(0,T ;H)

) T∫
0

(
||v||

3r
4 + ||v̄||

3r
4

)
|v − v̄|

r
4

(
||v||

3r
4 + ||v̄||

3r
4

)
dt

≤c
(
|v|

r
4

L∞(0,T ;H) + |v̄|
r
4

L∞(0,T ;H)

)
︸ ︷︷ ︸

γ

T∫
0

|v − v̄|
r
4

(
||v||

3r
2 + ||v̄||

3r
2

)
dt

=cγ

T∫
0

|v − v̄|
r
4 ||v||

3r
2 dt+ cγ

T∫
0

|v − v̄|
r
4 ||v̄||

3r
2 dt.

Because u ∈ L2(0, T ;V ) we can restrain all ||.||-norms. Using Hölder’s inequality we can
enforce the exponent of the V-norms to be 2. Choosing p = 4

3r
results in 3r

2
· p = 2. For q

we get q = 4
4−3r

.

≤cγ

 T∫
0

|v − v̄|
r
4

4
4−3r dt


4−3r

4
 T∫

0

||v||2 dt


3r
4

+ cγ

 T∫
0

|v − v̄|
r
4

4
4−3r dt


4−3r

4
 T∫

0

||v̄||2 dt


3r
4

≤cγ

 T∫
0

|v − v̄|
r

4−3r dt


4−3r

4


 T∫

0

||v||2 dt


3r
4

+

 T∫
0

||v̄||2 dt


3r
4


≤c
(
|v|

r
4

L∞(0,T ;H) + |v̄|
r
4

L∞(0,T ;H)

)(
||v||

3r
2

L2(0,T ;V ) + ||v̄||
3r
2

L2(0,T ;V )

)
||v − v̄||

r
4

L
r

4−3r (0,T ;H)
.

If we can manage to achieve strong convergence in Ls(0, T ;H) for s = r
4−3r

and r ∈ [1, 4
3
),

then we get strong convergence of the non-linear term in Lr(0, T ;V ′). We will use Lion-
Aubin’s lemma to show it. We note that it is enough to show that

um ∈ L2(0, T ;V ) ∩Hσ(0, T ;H)

for σ ∈ (0, 1) to ensure compactness in L2(0, T ;H). We will show compactness for s = 2,
thus r = 8

7
.

Let us us consider |um|2Hσ(0,T ;H) now and estimate it from above independent of m.

|um|2Hσ(0,T ;H) =

T∫
0

T∫
0

|t− s|−(1+2σ)|um(t)− um(s)|2 ds dt

=

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)− um(s)) ds dt

=

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)) ds dt

−
T∫

0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(s)) ds dt
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We apply Fubini’s theorem and rename the variables

=

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)) ds dt

−
T∫

0

T∫
0

|t− s|−(1+2σ)(um(s)− um(t), um(t)) ds dt

=

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)) ds dt

+

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)) ds dt

=2

T∫
0

T∫
0

|t− s|−(1+2σ)(um(t)− um(s), um(t)) ds dt.

We used Carathéodory’s theorem to optain a solution of the Galerkin problem. Since the
solution um is absolutely continuous, it justifies our next step.

=2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(u′m(τ), um(t)) dτ ds dt

=2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(f(τ)− νAum(τ)−Bum(τ), um(t)) dτ ds dt

=2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(f(τ)), um(t)) dτ ds dt

− 2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(νAum(τ), um(t)) dτ ds dt

− 2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(Bum(τ), um(t)) dτ ds dt

=(f − term) + (A− term) + (B − term).

Considering the triple integral, we can use the substitution rule to reformulate it into a
more suitable expression:

T∫
0

T∫
0

t∫
s

dτ ds dt =

T∫
0

t∫
0

t∫
s

dτ ds dt+

T∫
0

T∫
t

t∫
s

dτ ds dt

=

T∫
0

t∫
τ=0

τ∫
s=0

ds dτ dt−
T∫

0

T∫
τ=t

T∫
s=τ

ds dτ dt.
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We use the reformulation above in all terms and estimate them from above, starting with
the B − term.

B − Term = 2

T∫
0

T∫
0

t∫
s

|t− s|−(1+2σ)(Bum(τ), um(t)) dτ ds dt

≤2

T∫
0

t∫
τ=0

τ∫
s=0

|t− s|−(1+2σ)||Bum(τ)||V ′ ||um(t)|| ds dτ dt

+ 2

T∫
0

T∫
τ=t

T∫
s=τ

|s− t|−(1+2σ)||Bum(τ)||V ′ ||um(t)|| ds dτ dt

=2

T∫
0

t∫
τ=0

||Bum(τ)||V ′ ||um(t)||

 τ∫
s=0

|t− s|−(1+2σ) ds

 dτ dt

+ 2

T∫
0

T∫
τ=t

||Bum(τ)||V ′||um(t)||

 T∫
s=τ

|s− t|−(1+2σ) ds

 dτ dt

=2

T∫
0

t∫
τ=0

||Bum(τ)||V ′ ||um(t)||
(

1

2σ

(
(t− τ)−2σ − t−2σ

))
dτ dt

+ 2

T∫
0

T∫
τ=t

||Bum(τ)||V ′||um(t)||
(

1

−2σ

(
(T − t)−2σ − (τ − t)−2σ

))
dτ dt

=
1

σ

T∫
0

t∫
τ=0

||Bum(τ)||V ′ ||um(t)||(t− τ)−2σ dτ dt− 1

σ

T∫
0

t∫
τ=0

||Bum(τ)||V ′||um(t)||t−2σ dτ dt

− 1

σ

T∫
0

T∫
τ=t

||Bum(τ)||V ′ ||um(t)||(T − t)−2σ dτ dt+
1

σ

T∫
0

T∫
τ=t

||Bum(t)||V ′ ||um(t)||(τ − t)−2σ dτ dt

=
1

σ
(A−B − C +D).

We will only consider A because the other terms can be treated analogously.

A =

T∫
0

t∫
τ=0

||Bum(τ)||V ′||um(t)||(t− τ)−2σ dτ dt.
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Using Fubini’s theorem and the Hölder inequality results in

=

T∫
0

T∫
t=τ

||Bum(τ)||V ′||um(t)||(t− τ)−2σ dt dτ

=

T∫
0

 T∫
t=τ

||um(t)||(t− τ)−2σ dt

 ||Bum(τ)||V ′ dτ

≤c
T∫

0

 T∫
τ

||um(t)||2 dt


1
2

︸ ︷︷ ︸
≤||um||L2(0,T,V )≤∞

 T∫
τ

(t− τ)−4σ dt


1
2

︸ ︷︷ ︸
<∞⇔σ< 1

4

||Bum(τ)||V ′ dτ

≤C
T∫

0

||Bum(τ)||V ′ dτ

=C

T∫
0

sup
v∈V,||v||=1

∣∣∣B(um(τ), um(τ), v
)∣∣∣ dτ = C

T∫
0

sup
v∈V,||v||=1

∣∣∣−B(um(τ), v, um(τ)
)∣∣∣ dτ

≤C
T∫

0

||um(τ)||L4 ||∇v||L2︸ ︷︷ ︸
≤1

||um(τ)||L4 dτ

≤C
T∫

0

||um(τ)||2L4 dτ ≤ C

T∫
0

|um(τ)|
1
2︸ ︷︷ ︸

≤||um||
1
2
L∞(H)

≤const

||um(τ)||
3
2 dτ

≤C||um||
3
2

L
3
2 (V )
≤ C||um||

3
2

L2(V ) ≤ const.

Analogously a similar result can be shown for B,C and D and also for the f −Term and
the A− Term. Thereby we showed

|um|2Hσ(0,T ;H) ≤ const,

holds for σ < 1
4
. From Lions-Aubin’s theorem we can conclude that

L2(0, T ;V ) ∩Hσ(0, T ;H)
c
↪→ L2(0, T ;H),

which means that in our case it holds that

Bum → Bu in L2(0, T,H).

So far we have showed everything we need to show to proove that the limit we found in
part 2 solves the weak NSE.
Let us recall our Galerkin problem: find um ∈ Vm such that
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T∫
0

< u′m(t), v > ϕ(t) + ν((um(t), v))ϕ(t) + (b(um(t), um(t), v)ϕ(t) dt =

T∫
0

< f(t), v > ϕ(t) dt

holds for all v ∈ Vm and ϕ ∈ C∞c ((0, T )). Let us consider each term seperately.

Because um
∗
⇀ u holds in L∞(0, T ;H) we conclude

T∫
0

< u′m(t), v > ϕ(t) dt = −
T∫

0

< um(t), v > ϕ′(t) dt

−→ −
T∫

0

< u(t), v > ϕ′(t) dt =

T∫
0

< u′(t), v > ϕ(t) dt.

Because um ⇀ u holds in L2(0, T ;V ) we conclude

T∫
0

ν((um(t), v))ϕ(t) dt −→
T∫

0

ν((u(t), v))ϕ(t) dt.

Because of Lions-Aubin’s theorem we get

T∫
0

(b(um(t), um(t), v)ϕ(t) dt −→
T∫

0

b(u(t), u(t), v)ϕ(t) dt.

We now know that:

T∫
0

< u′(t), v > ϕ(t) dt+

T∫
0

ν((u(t), v))ϕ(t) dt+

T∫
0

b(u(t), u(t), v)ϕ(t) dt =

T∫
0

(f, v)ϕ(t) dt,

for all v ∈ Vm,m ∈ N, ϕ(t) ∈ C∞c ((0, T )). We get the statement we want by stating the
completeness of the Galerkin approximation:

⋃
m∈N

Vm = V.

As a consequence every term converges, therefore the whole equation converges. If the
limit of u coincides with u0 for t→ 0, then we showed existence of a solution. Before we
check the initial condition we consider the time derivative first.
For the limit u ∈ L2(0, T ;V )∩L∞(0, T ;H) it holds using the interpolation inequality that
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|b(u, u, w)| = |b(u,w, u)| ≤ ||u||2L4||∇w||L2 ≤ c||∇u||
3
2

L2||u||
1
2

L2||∇w||L2 ≤ C||u||
3
2 ||∇w||L2 .

Equivalently it also holds that

||B(u)||
4
3

L
4
3 (0,T ;V ′)

≤
T∫

0

(||u(t)||
3
2 )

4
3 dt =

T∫
0

||u(t)||2 dt <∞.

Therefore we can conclude that u′ ∈ L 4
3 (0, T ;V ′) because

u′ = f − Au−Bu ∈ L
4
3 (0, T ;V ′) (2.4)

Part 4: check initial condition

As the last step, we need to show that the initial condition is satisfied by our candidate
u. We have to show that u(0) = u0 holds. Therefore we consider an arbitrary v ∈ Vm and
do the following calculation.

− (u(0), v) =
[
(u(t), v)

T − t
T

]T
t=0

=

T∫
0

d

dt

(
(u(t), v)

T − t
T

)
dt

=

T∫
0

(u′(t), v)
T − t
T

dt−
T∫

0

(u(t), v)
1

T
dt.

We insert equation (2.4) for u′(t) and add a zero in form of the discrete solution um(t)

=

T∫
0

(
(f(t), v)− ν((u(t), v))− b(u(t), u(t), v)

)T − t
T

dt−
T∫

0

(u(t), v)
1

T
dt

+

T∫
0

(
(u′m(t)− f(t), v) + ν((um(t), v)) + b(um(t), um(t), v)

)T − t
T

dt

=ν

T∫
0

(
((um(t), v))− ((u(t), v))

)T − t
T

dt+

T∫
0

(
b(um(t), um(t), v)− b(u(t), u(t), v)

)T − t
T

dt

+

T∫
0

(u′m(t), v)
T − t
T

dt−
T∫

0

(u(t), v)
1

T
dt.

Considering lim
m→∞

results in the first and second term canceling each other out and the

remaining terms yield:
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lim
m→∞

T∫
0

(u′m(t), v)
T − t
T
− (u(t), v)

1

T
dt

= lim
m→∞


[
(um(t), v)

T − t
T

]T
0

+

T∫
0

(um(t), v)
1

T
dt−

T∫
0

(u(t), v)
1

T
dt)

︸ ︷︷ ︸
−→0


= lim

m→∞
−(um(0), v) = −(u0, v).

We showed that the initial values coincide for v ∈ Vm,m ∈ N, and again with the com-
pleteness of the Galerkin approximation the above statement holds for v ∈ V . We hereby
showed that our limit u satisfies the initial condition and therefore is a weak solution of
(2.2).

Remark So far we showed that there exists a weak solution u ∈ L2(0, T ;V )∩L∞(0, T ;H)

however we only get u′ ∈ L 4
3 (0, T ;V ′). Furthermore we have no uniqueness.

2.4.2 Uniqueness of a solution

Theorem 2.11 (Uniqueness). There is no more then one solution u ∈ L∞(0, T ;H)∩
L2(0, T ;V ) such that

u ∈ L8(0, T ;L4(Ω)).

Proof. Let u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L8(0, T ;L4(Ω)). First of all we state the
following:

||Bu||2L2(0,T ;V ′) =

T∫
0

||Bu(t)||2V ′ dt

=

T∫
0

sup
v∈V,||v||=1

| (b(u(t), u(t), v) | dt =

T∫
0

sup
v∈V,||v||=1

| − (b(u(t), v, u(t)) | dt

≤ c

T∫
0

sup
v∈V,||v||=1

||u(t)||2L4(Ω) ||v|| dt = c

T∫
0

||u(t)||2L4(Ω) dt

≤ c

 T∫
0

||u(t)||8L4(Ω) dt


1
4
 T∫

0

1
3
4 , dt


4
3

= c||u||2L8(0,T ;L4) <∞.

This means that Bu ∈ L2(0, T ;V ′). Let us consider our equation again and reorder it:
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u′ = f − Au−Bu ∈ L2(0, T ;V ′) =⇒ u ∈ L2(0, T ;V ′).

Now we can start with the proof, let us consider two solutions u, ū of

< u′(t), v > +ν((u, v)) + b(u, u, v) =< f, v > ∀v ∈ V,
u(0) = u0.

We subtract both solutions from each other and utilize the linearity of ((·, ·)).

< u′(t)− ū′(t), v > +ν((u(t)− ū(t), v)) + b
(
u(t), u(t), v

)
− b
(
ū(t), ū(t), v

)
= 0

Because u(t), ū(t) ∈ V , we can use v = u(t) − ū(t) as a testfunction. For the first term
we get

< u′(t)− ū′(t), u(t)− ū(t) >=
1

2

d

dt
|u(t)− ū(t)|2

and for the second we get

((u(t)− ū(t), u(t)− ū(t))) = ||∇(u(t)− ū(t))||2L2 .

For the whole equation we get

1

2

d

dt
||u(t)− ū(t)||2 + ν||∇(u(t)− ū(t))||2L2 =b

(
ū(t), ū(t), u(t)− ū(t)

)
− b
(
u(t), u(t), u(t)− ū(t)

) (2.5)

Let us now consider the right-hand side of the equation and by adding a fitting zero we
can simplify it:

b
(
ū(t), ū(t), u(t)− ū(t)

)
− b
(
u(t), ū(t), u(t)− ū(t)

)
+ b
(
u(t), ū(t), u(t)− ū(t)

)
− b
(
u(t), u(t), u(t)− ū(t)

)
=b
(
ū(t)− u(t), ū(t), u(t)− ū(t)

)
− b
(
u(t), u(t)− ū(t), u(t)− ū(t)

)
︸ ︷︷ ︸

=0

=b
(
u(t)− ū(t), u(t)− ū(t), ū(t)

)
≤c||u(t)− ū(t)||L4 ||∇(u(t)− ū(t))||L2︸ ︷︷ ︸

=||u(t)−ū(t)||

||ū(t)||L4

≤c||u(t)− ū(t)||
1
4

L2||u(t)− ū(t)||
3
4 ||u(t)− ū(t)|| ||ū(t)||L4

≤ ||u(t)− ū(t)||
7
4︸ ︷︷ ︸

a

c||u(t)− ū(t)||
1
4

L2 ||ū(t)||L4︸ ︷︷ ︸
b
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Using the scaled Young inequality with p = 8
7
, q = 8 und ε = ν

2
reaches a more suitable

form

≤cν
2
||u(t)− ū(t)||2 + cCν |u(t)− ū(t)|2||ū(t)||8L4 .

Inserting what we calculated so far for the right-hand side into (2.5) almost finishes the
proof.

1

2

d

dt
|u(t)− ū(t)|2 + ν||∇(u(t)− ū(t))||2L2 ≤ ν

2
||u(t)− ū(t)||2

+ cCν |u(t)− ū(t)|2||ū(t)||8L4

⇒1

2

d

dt
|u(t)− ū(t)|2 +

ν

2
||u(t)− ū(t)||2︸ ︷︷ ︸

≥0

≤ cCν |u(t)− ū(t)|2||ū(t)||8L4 .

We apply Gronwalls inequality.

⇒ d

dt
|u(t)− ū(t)|2 ≤ |u(t)− ū(t)|2︸ ︷︷ ︸

a

c̃Cν ||ū(t)||8L4︸ ︷︷ ︸
λ(t)

⇒|u(t)− ū(t)|2 ≤ |u(0)− ū(0)|︸ ︷︷ ︸
=0

eΛ(t).

As a consequence of the last inequality we have shown uniqueness.

2.4.3 Existence and uniqueness for small initial data

Before we can state the theorem and prove it, we need to review a Sobolev’s embedding
theorem and another interpolation inequality.

Theorem 2.12 (Soboloev theorem). Let k1, k2 ∈ N, k2 ≤ k2, 1 ≤ p1, p2 <∞ satisfying

k1 −
d

p1

≥ k2 −
d

p2

where d is the dimension. Then it holds that:

W k1,p1 ↪→ W k2,p2

which means that ∀v ∈ W k1,p1 it holds

||v||Wk2,p2 ≤ c||v||Wk1,p1 .

Remark Later we will apply the theorem above on the spaces L6(Ω) and L3(Ω) to get the
following embeddings for three dimensions

L6 ↪→ H1, and L3 ↪→ H
1
2 .
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Theorem 2.13 (Sobolev embedding). Let Ω be a domain with Lipschitz boundary,
m ≥ 1, 1 ≤ p <∞, k ≥ 0, 0 < α < 1 satisfying

k − d

p
= k + α,

where d is the dimension. Then it holds that

W k,p(Ω) ↪→ Ck,α(Ω̄).

Remark This theorem will later be the main argument for the uniqueness.

Theorem 2.14 (Interpolation in Sobolev spaces). Let 0 ≤ s1 < s2 and θ ∈ (0, 1),
then it holds ∀ϕ ∈ Hs2 satisfying s = θs1 + (1− θ)s2

||ϕ||Hs ≤ c||ϕ||θHs1 ||ϕ||1−θHs2 .

Theorem 2.15 (Existence and uniqueness for small initial data). Let Ω be an open
and bounded domain with a C2 boundary, u0 ∈ V, f ∈ L∞(0, T ;H), then there exists
a T ∗ = T ∗(u0, f, ν) such that there exists a unique solution for (2.1) satisfying

u ∈ L∞(0, T ∗;V ) ∩ L2(0, T ∗;H2(Ω)),

u′ ∈ L2(0, T ∗;H).

Proof. The idea of this proof is based on using eigenfunctions of the Stokes operator as
testfunctions. We define

A : V → V ′, A(v) = a(v, ·) = 〈Av, ·〉 = ((v, ·)).

Now we consider the Friedrichs’ extension to the operator A

AF : D(A)→ H,

where

D(A) = {v ∈ V : Av ∈ H} = (H2(Ω))3 ∩ V.

AF can be considered as an operator acting on H, AF : H → H and is a linear, bounded
and symmetric operator. Consequently AF is selfadjoint. Using Lax-Milgram and the

fact that V
c
↪→ H we conclude that A−1

F is compact. For a more detailed analysis and the
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proved statement of the Friedrichs’ extension, refer to [Tri97], chapter 4.1.9. The Hilbert-
Schmidt theorem, see [RR04], Theorem 8.94, provides us with a set of eigenfunctions
{ϕk} ⊂ D(A) and their corresponding eigenvalues {λk} such that the eigenfunctions form
a complete set in H. Since the eigenfunctions are a Galerkin basis in V , we can define
Vm = span{ϕ1, ϕ2, · · ·ϕm}. Our Galerkin problem can be formulated in the following
way: find um(t) ∈ Vm such that

{
< u′m(t), vm > +ν((um(t), vm)) + b(um(t), um(t), vm) =< f(t), vm > ∀vm ∈ Vm,

um(0) = Pmu0

holds.
As our first step we will test the equation with vm = Aum. Before we go into detail we
will do some auxiliary calculations first.

((um(t), Aum(t))) = (Aum(t), Aum(t)) = ||Aum(t)||2L2 = |Aum(t)|2

and

< u′m(t), Aum(t) > =
1

2

d

dt
||um(t)||2.

These results are fundamental for the proof.
We use vm = Aum(t) as a testfunction and get

1

2

d

dt
||um(t)||2 + ν|Aum(t)|2 + b(um(t), um(t), Aum(t)) =< f(t), Aum(t) > .

Existence of a local solution and a-priori estimates

Local existence is again a result of Carethéodory’s theorem. For the a-priori estimates we
consider

1

2

d

dt
||um(t)||2 + ν|Aum(t)|2 ≤ |< f(t), Aum(t) >|+ |b(um(t), um(t), Aum(t))|.

≤ ||f ||V ′ |Aum(t)|+ c||um(t)||L6||∇um(t)||L3||Aum(t)||L2

Using Sobolev’s theorem we can estimate the L6 norms by the H1 Norms. The L3 norm
can be estimated by the H

1
2 norm and using the interpolation inequality with S1 = 0, s2 =

1 we can estimate the H
1
2 norm by the product of the L2 and H1 norms.

≤ ||f ||V ′ |Aum(t)|+ c||um(t)|| ||∇um(t)||
1
2

L2||∇um(t)||
1
2

H1||Aum(t)||L2

≤ ||f ||V ′ |Aum(t)|+ c||um(t)|| ||um(t)||
1
2 ||um(t)||

1
2

H2||Aum(t)||L2

= ||f ||V ′|Aum(t)|+ c||um(t)||
3
2 ||um(t)||

1
2

H2 ||Aum(t)||L2 .

Using Cattabriga’s theorem, stating that the Laplacian controls the H2 norm, that means
||um(t)||H2 ≤ c||Aum(t)||L2 , we get the following:

= ||f ||V ′|Aum(t)|+ c||um(t)||
3
2 |Aum(t)|

3
2 .
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2 THEORETICAL APPROACH TO THE NSE 2.4 Existence and uniqueness

Using Young’s inequality for the first summand with p = q = 2, ε = ν
4

und for the second
summand with p = 4

3
, q = 4, ε = ν

4

≤ 1

ν
||f ||2V ′ +

ν

4
|Aum(t)|2 +

ν

4
|Aum(t)|2 + cCε||um(t)||

3
2
·4

≤ 1

ν
||f ||2V ′ +

ν

2
|Aum(t)|2 + cCε||um(t)||6.

After absorbing |Aum(t)|2 by the left-hand side, our initial inequality becomes

d

dt
||um(t)||2 + ν|Aum(t)|2 ≤ 2

ν
||f ||2V ′ + C||um(t)||6.

Because |Aum(t)|2 is positive we can drop this term on the left-hand side and get

d

dt
||um(t)||2 ≤ 2

ν
||f ||2V ′ + C||um(t)||6. (2.6)

To get the needed a-priori estimates we define an auxiliary function

y(t) = 1 + ||um(t)||2.

Obviously it holds that y(t) ≥ 1 and y(t)3 ≥ 1. Using y(t) and defining

λ = 2 ·max
{2

ν
||f ||V ′2 , C

}
we can rewrite (2.6)

y′(t) ≤ λy3(t)

⇔ y′(t)

y3(t)
≤ λ

⇔ d

dt

(
−1

2y2(t)

)
≤ λ

Integrating over [0, t] leads to:

⇒ 1

2y2(0)
− 1

2y2(t)
≤ tλ

⇔ y(t) ≤ 2y(0)√
1− 2tλy2(0)

.

We need to garantee that 1−2tλy2(0) > 0 is always true. Choosing t ∈ (0, T ∗), T ∗ < 1
2λy2(0)

and applying the inequality ||um(0)|| ≤ c||u0|| we get:

⇒ ||um(t)||2 ≤ (1 + ||um(0)||2)2√
1− 2tλ(1 + ||um(0)||2)2

≤ (1 + c||u0||2)2√
1− 2tλ(1 + c||u0||2)2

.
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We managed to show that um(t) can be bounded in L2(0, T ∗;V ) and in L∞(0, T ∗;V ) and
Aum(t) can be bounded in L2(0, T ∗;H) and L∞(0, T ∗;H). Furthermore we get u′m(t) ∈
L2(0, T ∗;H) by rearranging the equation.
We searched for a solution in H2 ∩ V and achieved additional regularity for our found
solution um(t). Hence the following holds for our local solution.

um ∈ H1(0, T ∗;H2(Ω) ∩ V )

Going to the limit and intial condition

As we did in the global existence theorem, we need to specify out limit function and show
that it satisfies the equation in some sense. In this case this part becomes very simple.
Using Sobolev’s embedding theorem we state

H2(Ω) ∩ V ↪→ C0, 1
2 (Ω̄)

und

H1([0, T ∗]) ↪→ C0, 1
2 ([0, T ∗]).

Thus we know that our local solution is continuous up to the boundary. The transition
to the limit is done without any additional effort. We recieve a continuous solution for
the NSE.
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3 The Navier-Stokes-α Model

This section will discuss a turbulence model, namely the Navier-Stokes-α model. We will
briefly discuss why turbulence models are necessary by taking a look at direct numerical
simulations and observing their limits. After doing so, we will state the NS-α equations
and show existence and uniqueness of a solution. In the last part we will show that the
solution of the NS-α converges to a solution of NSE if α tends to zero, which is a very
important property of a model. This chapter is based on [FHT02], this paper also focuses
on estimating the dimension of the global attractor and link it with the degrees of freedom
in turbulent flows.

3.1 Direct numerical simulations

Direct numerical simulations (DNS) are a fundamental approach in solving PDEs. There
is no further modeling of turbulence necessary. A standard finite element discretization
satisfying the inf-sup-condition can be used. For rather small Reynolds numbers one gets
very good results. But once we increase the Reynolds number, we will run into problems.
Recall that we have to choose our grid width according to the Kolmogorov’s scales,

h ∼ Re−
3
4 .

We will do an example calculation relating to real life values of the Reynolds number and
only consider the efforts on storing all the data that we produce instead of the accumulated
costs.
Example: Let us consider a flow around an airplane wing during flight, then the Reynolds
numbers can easily reach magnitudes of 106 and higher. Assume we have three dimensions,
a uniform grid and a rectangular domain (Ω = 1m3).

Assuming we have Re = 106, the grid width has to be approximately 106·(− 3
4

)m = 10−
9
2m

or smaller. So in each time step we compute values on (10
9
2 )3 = 10

27
2 grid points because

of the dimension. The velocity field contains three components, one for each direction
and the pressure contains only one component, that means that on each grid point we
need to compute 4 values, this results in evaluating 4 · 10

27
2 points. Each of these points

requires at least 8 Bytes to be stored on the hard disc. So the total needed storage space
is

10
27
2 · 4 · 8 = 3.2 · 10

29
2 Bytes ≈ 3.2 · 10

5
2 Terrabytes ≈ 1Petabyte.

These immense storage costs are unbearable, because they occur every time step. We
ignored the computational time that is needed to evaluate all the data and still the
outcome is unsatisfactory.
As a conclusion, we can see that DNS can be used for relatively small Reynolds numbers
but as soon as it becomes higher DNS becomes impractical.

3.2 The NS-α equations

For the numerical application of the NSE it is not practical to use DNS to obtain solutions
with a fine resolution. A common approach of turbulence modeling is to model the
influence of the smaller scales on the larger scales. As a consequence we can compute a
solution on a coarser grid. In general additional errors occur and we have to find a balance

37



3.3 Different representations of the NS-α approach3 THE NAVIER-STOKES-α MODEL

between computational cost and precision. One ansatz out of many is the Navier-Stokes-
α approach, where the convection term (∇ × u) × u in the rotational form of NSE is
replaced by (∇×u)× ū. The variable ū is a filtered velocity field with filter (I −α2∆)−1.
In addition to filtering the velocity, we want to ensure that the filtered solution is also
divergence free, since u was divergence free, so to enforce this condition we introduce a
Lagrange function λ. The resulting system of equations is the following:

∂tu− ν∆u+ (∇× u)× ū+∇P = f

ū− α2∆ū+∇λ = u

∇ · u = ∇ · ū = 0

Initial and boundary condition.

(3.1)

In literature, the NS-α equations are often referred to as the viscous Camassa-Holm
equations. For a more detailed derivation of the equations see [CFH+98,FHT02,CH93]

3.3 Different representations of the NS-α approach

In the literature one can find several different definitions of the Navier-Stokes-α approach,
but they can be transformed into each other. Sometimes the formulation changes slightly
depending on the boundary condition. Basically, the main difference is in the non-linear
part of the NSE. As we derived in the first chapter the NSE have the following form:

∂tu− ν∆u+ (u · ∇)u+∇p =f,

∇ · u = 0.

Our first step will be to transform the standard NSE into the NSE in rotational form,
for which we use an identity connecting the cross product and the scalar product of a
velocity field u:

(u · ∇)u = (∇× u)× u+
1

2
∇u2.

Inserting the identity above in the NSE results in the rotational form of the NSE.

∂tu− ν∆u+ (u · ∇)u+∇p =f

⇔ ∂tu− ν∆u+ (∇× u)× u+∇P =f,

where P = p+ 1
2
u2 is the modified pressure. It is important for the theoretical treatment

that we have the the term (∇×u)×u. It is crucial because it has the following property:

((∇× u)× v, u) = 0.

As we saw in the previous section, the NS-α approach is basically replacing the convection
direction by a filtered version of u. The filter in this case is the inverse of the Helmholtz
operator (I − α2∆) with an additional Lagrange function λ to ensure the divergence free
constraint on the filtered solution.
In case of periodic BC the Lagrange function λ vanishes. Intuitively this makes sense,
because the divergence free constraint comes from mass conservation. Since the right-
hand side u of our auxiliary problem is divergence free, it doesn’t have any sources or
sinks, which means that there is no mass loss inside the domain. Due to the periodic BC
there is no mass loss across the boundary either, which explains why λ vanishes in that
case.
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3.4 Preliminaries

In this Chapter we will mainly follow [FHT02]. We consider the following problem on
Ω = [0, L]3 with α ≥ 0:

∂t(u− α2∆u)− ν∆(u− α2∆u) + (∇× (u− α2∆u))× u+∇P = f,

∇ · u = ∇ · (u− α2∆u) = 0,

u(0, x) = u0(x).

(3.2)

Since we have a periodic BC, the Lagrange function λ vanishes. For simplicity reasons
we assume that the right-hand side is time-independent, f(t, x) = f(x). Before we define
our spaces H and V , we will conclude useful properties of the velocity field u first. Let
us integrate equation (3.2) over the whole domain Ω and integrate by parts. We can see
that all terms besides the time derivative vanish:

d

dt

∫
Ω

(u− α2∆u) dx =

∫
Ω

f dx (3.3)

Since we have periodic BC, the Laplacian becomes spatially periodic and therefore van-
ishes in the integral mean: ∫

Ω

∆u dx = 0.

Inserting the previous equation into (3.3) results in:

d

dt

∫
Ω

u dx =

∫
Ω

f dx.

We will only consider forcing terms f that have a zero mean,
∫
Ω

f dx = 0. Therefore

the mean of the solution u is invariant. In addition we assume that our initial condition
u0 has zero mean as well, this results in a vanishing mean of u. These calculations and
assumptions motivate the definition of the spaces H and V :

H =

v ∈ (L2(Ω))3 : ∇ · v = 0,

∫
Ω

v dx = 0


and

V =

v ∈ (H1
0 (Ω))3 : ∇ · v = 0,

∫
Ω

v dx = 0

 ,

where the derivatives are meant in a weak or distributional sense respectively.

Remark It holds that V is densely embedded in H and H ′ is densely embedded in V ′.
Hence they form a Gelfand triple

V ⊂ H ∼= H ′ ⊂ V ′.
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Remark We will abbreviate the norms in V with || · || and the norms in H with | · |.

Remark The space

V =

ψ : ψ is a trigonometric function defined on Ω,∇ · ψ = 0,

∫
Ω

ψ = 0


is dense in the spaces H and V .

We define the orthogonal L2 projection:

Pσ : (L̇2(Ω))3 → H,

where

(L̇2(Ω))3 :=

v ∈ (L2(Ω))3 :

∫
Ω

v dx = 0

 .

In addition we define the Stokes operator A and its domain D(A):

A = −Pσ∆, D(A) = (H2(Ω))3 ∩ V.

Remark In case of periodic BC the restriction of A on D(A) is a selfadjoint operator
with compact inverse. We can apply the theorem of Hilbert-Schmidt and get a set of
eigenfunctions of the Stokes operator {ϕk}k∈N with its corresponding eigenvalues {λk}k∈N.
The eigenfunctions form an orthonormal basis of H and the eigenvalues are positive and
are sorted, 0 < λ1 ≤ λ2 ≤ ... ≤ λk →∞.

Next we will show a connection between the Stokes operator and the H2-norm, more
precisely they are equivalent.

|Aw| ≤ c||w||H2(Ω) holds for all w ∈ D(A) because the H2(Ω) norm has more terms.

||w||H2(Ω) ≤ C|Aw| holds for all w ∈ D(A) because of the Poincaré inequality.

With a similar argument we can conclude the equivalence of the H1(Ω) norm and the

|A 1
2 · | norm.

c
∣∣∣A 1

2w
∣∣∣ ≤ ||w||H1(Ω) ≤ C

∣∣∣A 1
2w
∣∣∣ holds for all w ∈ V.

In particular we can show that V = D(A
1
2 ) and therefore || · || = |A 1

2 · |. For a more
detailed analysis refer to [Tem87, CF89]. So far we finished everything concerning the
spaces, we need to describe some notation and some very crucial estimates before we can
start to prove existence and uniqueness.
Let u, v ∈ V , we denote B(u, v) = Pσ((u ·∇)v) and B̃(u, v) = Pσ((∇× v)×u). We notice
that (B(u, v), v) = 0 and recall the identity
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(u · ∇)v +
3∑
j=1

vj∇uj = (∇× u)× v +∇(u · v) (3.4)

and the fact that {∇p : p ∈ H1(Ω)} is orthogonal to H in L2(Ω). As a consequence the
term ∇(u · v) will vanish if we test the equation with w ∈ V . Let us focus on testing

3∑
j=1

vj∇uj with w ∈ V :

∫
Ω

(
3∑
j=1

vj∇uj

)
w dx =

∫
Ω

3∑
j=1

3∑
i=1

vj∇iujwi dx.

We use Einstein notation to loose the sums and keep the overview.

=

∫
Ω

vj∇iujwi dx =

∫
Ω

vjwi∇iuj dx

=−
∫
Ω

∇i(vjwi)uj dx

=−
∫
Ω

∇ivjwiuj dx−
∫
Ω

∇i wi︸︷︷︸
∈H1(Ω)

vjuj︸︷︷︸
∈H

dx

︸ ︷︷ ︸
=0

=−
∫
Ω

wi∇ivjuj dx

=−
∫
Ω

((w · ∇)v)u dx.

We use previous calculations and (3.4) to conclude:

(B̃(u, v), w) = (B(u, v), w)− (B(w, v), u)

and

(B̃(u, v), w) = −(B̃(w, v), u).

As a consequence (B̃(u, v), u) = 0 holds.
Our next step is going to be the discussion of two lemmata that sum up all the necessary
relations and inequalities for our theorems.

Lemma 3.1. 1. The operator A can be extended continuously on V = D(A
1
2 ) with

values in V ′ = D(A−
1
2 ) such that:

〈Au, v〉V ′×V = (A
1
2u,A

1
2v) for every u, v ∈ V.
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2. The operator A2 can be extended continuously on D(A) with values in D(A)′

such that:

〈A2u, v〉D(A)′×D(A) = (Au,Av) for every u, v ∈ D(A).

Proof. The proof can be found in [Tem87].

Lemma 3.2. 1. The operator B̃ can be extended continuously from V × V with
values in V ′ and in addition it satisfies the following inequalities for all u, v, w ∈
V : ∣∣∣(B̃(u, v), w)V ′×V

∣∣∣ ≤ c|u|
1
2 ||u||

1
2 ||v|| ||w||,∣∣∣(B̃(u, v), w)V ′×V

∣∣∣ ≤ c||u|| ||v|| |w|
1
2 ||w||

1
2 .

2. For all u ∈ H, v ∈ V,w ∈ D(A) it holds:∣∣∣(B̃(u, v), w)D(A)′×D(A)

∣∣∣ ≤ c|u| ||v|| ||w||
1
2 |Aw|

1
2 ,∣∣∣(B̃(w, v), u)V ′×V

∣∣∣ ≤ c||w||
1
2 |Aw|

1
2 ||v|| |u|.

3. For all u ∈ V, v ∈ H,w ∈ D(A) it holds:∣∣∣(B̃(u, v), w)D(A)′×D(A)

∣∣∣ ≤ c
(
|u|

1
2 ||u||

1
2 |v| |Aw|+ |v| ||u|| ||w||

1
2 |Aw|

1
2

)
,∣∣∣(B̃(w, v), u)V ′×V

∣∣∣ ≤ c
(
||w||

1
2 ||Aw||

1
2 |v| ||u||+ |Aw| |v| |u|

1
2 ||u||

1
2

)
.

Proof. All inequalities will be proven in a similar way. First we show all statements using
functions from V and then using a density argument to get the above inequalities. The
second part of each estimates will be done analogously to the first part, so only the first
part will be discussed.
Let u, v, w ∈ V .

1. We apply the general Hölder inequality to (B̃(u, v), w)V ′×V∣∣∣(B̃(u, v), w)V ′×V

∣∣∣ = |(B(u, v), w)− (B(w, v), u)|

≤ c||u||L3(Ω) ||∇v||L2(Ω) ||w||L6(Ω).

We apply the Sobolev embedding theorem and interpolate in Sobolev spaces.

≤ c|u|
1
2 ||u||

1
2 ||v|| ||w||.

Since V is dense in V we conclude the proof.
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2. Let us recall Agmon’s inequality in R3: ||u||L∞ ≤ C||u||
1
2

H1(Ω)||u||
1
2

H2(Ω). It follows
that: ∣∣∣(B̃(u, v), w)D(A)′×D(A)

∣∣∣ ≤ c|u| ||v|| ||w||L∞

≤ c|u| ||v|| ||w||
1
2 |Aw|

1
2 .

And again a densitiy argument concludes the proof.

3. We consider:∣∣∣(B̃(u, v), w)V ′×V

∣∣∣ = |(B(u, v), w)|+ |(B(w, v), u)|

≤ c||u||L3(Ω) ||∇w||L6(Ω) |v|+ c|v| ||u|| ||w||L∞

≤ c
(
|u|

1
2 ||u||

1
2 |v| |Aw|+ |v| ||u|| ||w||

1
2 |Aw|

1
2

)
.

The density of V in V concludes the proof.

Definition (Solution of (3.2)). Let f ∈ H, u0 ∈ V and T > 0. A function u ∈
C([0, T );V ) ∩ L2([0, T );D(A)) with u′ ∈ L2([0, T );H) is called solution of (3.2) if
for all w ∈ D(A) and all t0 < t ∈ [0, T )

(u(t) + α2Au(t), w)− (u(t0) + α2Au(t0), w) + ν

t∫
t0

(u(s) + α2Au(s), w) ds

+

t∫
t0

〈B̃(u(s), u(s) + α2Au(s), w〉D(A)′×D(A) ds =

t∫
t0

(f(s), w) ds

holds.

Remark A different way of writing down the above condition, is by using dual pairing:〈
d

dt
(u+ α2Au), w

〉
D(A)′×D(A)

+ ν
〈
A(u+ α2Au), w

〉
D(A)′×D(A)

+
〈
B̃(u, u+ α2Au), w

〉
D(A)′×D(A)

= (f, w),

for all w ∈ D(A) and almost every t ∈ [0, T ]. We sometimes use the operator equation
that can be formulated as: The equation

d

dt
(u+ α2Au) + νA(u+ α2Au) + B̃(u, u+ α2Au) = f

holds in L2([0, T ];D(A)).
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3.5 Existence and uniqueness

Theorem 3.3 (Global existence and uniqueness). There exists a uniquely defined
solution u of (3.2). In addition the solution u also satisfies

u ∈ L∞loc((0, T ];H3(Ω)).

Proof. The proof can be divided essentially in these parts:

1. Existence of a local solution.

2. Estimates of the H1(Ω)-, H2(Ω)- and H3(Ω)-norms of u.

3. Passing to the limit.

4. Uniqueness.

Part 1: Existence of a local solution

Similar to the previous proofs we will use a Galerkin approximation to obtain a local
description of the problem. Let {ϕk}k∈N be an orthonormal basis of H consisting of
eigenfunctions of the Stokes operator A with corresponding eigenvalues {λk}k∈N. Let
Hm = span(ϕ1, ϕ2, ..., ϕm) and Pm the orthogonal projection of H onto Hm. The resulting
Galerkin problem corresponding to (3.2) is:

d

dt
(um(t) + α2Aum(t)) + νA(um(t) + α2Aum(t))

+B̃(um(t), um(t) + α2Aum(t)) = Pmf,

um(0, x) = Pmu0(x).

(3.5)

We notice that the non-linear part is only quadratic, so we conclude with Carethéodory’s
theorem the short time existence and uniqueness of a absolutely continuous solution um
on (−τm, Tm). To extend the solution to the whole time interval we need to show that
the our solution um can be bounded for larger Tm.

Part 2: Estimates of the H1(Ω)-, the H2(Ω)- and the H3(Ω)-norms of u

H1(Ω) norm:
We multiply equation (3.5) with um(t) and integrate over Ω:〈

∂t(um(t) + α2Aum(t)), um(t)
〉

+ ν
(
A(um(t) + α2Aum(t)), um(t)

)︸ ︷︷ ︸
(um(t),Aum(t))+α2(Aum(t),Aum(t))

+
(
B̃(um(t), um(t) + α2Aum(t)), um(t)

)
︸ ︷︷ ︸

=0

= (f, um(t))

⇔1

2

d

dt

(
|um(t)|2 + α2||um(t)||2

)
+ ν

(
||um(t)||2 + α2|Aum(t)|2

)
= (Pmf, um(t)). (3.6)
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We will estimate the right-hand side from above such that all terms containing um can be
absorbed by the left-hand side. All other resulting terms should be given. We multiply
an identity in form of (A−1A) and (A−

1
2A

1
2 ) to the right-hand side and obtain through

application of Hölder’s and Young’s inequality the following estimations:

|(Pmf, um(t))| ≤

{
|A−1f | |Aum(t)|
|A−

1
2f | ||um(t)||

≤


|A−1f |2

2να2
+
ν

2
α2|Aum(t)|2,

|A− 1
2f |2

2ν
+
ν

2
||um(t)||2.

(3.7)

We define

K1 = min

(
|A−1f |2

να2
,
|A− 1

2f |2

ν

)
and use K1 in the estimates (3.7):

|(Pmf, um(t))| ≤ 1

2
K1 +

ν

2
||um(t)||2 +

ν

2
α2|Aum(t)|2.

We insert the above inequality into (3.6), absorb the last two terms and multiply by 2:

d

dt
(|um(t)|2 + α2||um(t)||2) + ν(||um(t)||2 + α2|Aum(t)|2) ≤ K1. (3.8)

We want to apply the Gronwall’s inequality to obtain an upper bound that is independent
of m. Let us consider some auxiliary calculations first:

||um(t)||2 =

∫
Ω

∇um(t) : ∇um(t) =

∫
Ω

um(t)Aum(t) dx =

∫
Ω

um(t)
m∑
i=1

ciλiϕi dx

≥ λ1

∫
Ω

um(t)
m∑
i=1

ciϕi dx = λ1

∫
Ω

um(t) · um(t) dx = λ1|um(t)|2.
(3.9)

We know that λ1 is the smallest eigenvalue. A similar calculation can be done for |Aum|2:

|Aum(t)|2 ≥ λ1||um(t)||2. (3.10)

Inserting both inequalities into (3.8) results in:

d

dt
(|um(t)|2 + α2||um(t)||2) + νλ1

(
|um(t)|2 + α2||um(t)||2

)
≤ K1

⇔ d

dt
(|um(t)|2 + α2||um(t)||2) ≤ K1 − νλ1

(
|um(t)|2 + α2||um(t)||2

)
.

We apply Gronwall’s inequality with λ(s) = −νλ1 and g = K1.

|um(t)|2 + α2||um(t)||2 ≤ e−νλ1t︸ ︷︷ ︸
≤1

(|um(0)|2 + α2||um(0)||2) +
K1

νλ1

(1− e−νλ1t)︸ ︷︷ ︸
≤1

≤ |um(0)|2 + α2||um(0)||2 +
K1

νλ1

≤ |u0|2 + α2||u0||2 +
K1

νλ1

.
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Defining k1 := |u0|2 + α2||u0||2 + K1

νλ1
, simplifies the inequality and we get:

|um(t)|2 + α2||um(t)||2 ≤ k1. (3.11)

Integrating t over [0, T ] results in the boundedness of the H1(Ω) norm.

H2(Ω)-Norm:
We consider equation (3.8) and integrate over [t, t+ τ ] to obtain a useful result first:

t+τ∫
t

d

dt
(|um(s)|2 + α2||um(s)||2) + ν(||um(s)||2 + α2|Aum(s)|2) ds ≤

t+τ∫
t

K1 ds

⇔ (|um(t+ τ)|2 + α2||um(t+ τ)||2)︸ ︷︷ ︸
≥0

−(|um(t)|2 + α2||um(t)||2)

+

t+τ∫
t

ν(||um(s)||2 + α2|Aum(s)|2) ds ≤ τK1

⇒
t+τ∫
t

ν(||um(s)||2 + α2|Aum(s)|2) ds ≤ τK1 + (|um(t)|2 + α2||um(t)||2)

⇒
t+τ∫
t

ν(||um(s)||2 + α2|Aum(s)|2) ds ≤ τK1 + k1. (3.12)

The resulting inequality (3.12) will be useful throughout this thesis. Now we consider the
Galerkin equation (3.5) and test it with Aum:〈

d

dt
(um(t) + α2Aum(t)), Aum(t)

〉
+ ν

(
A
(
um(t) + α2Aum(t)

)
, Aum(t)

)
+
(
B̃(um(t), um(t) + α2Aum(t)), Aum(t)

)
= (Pmf, Aum(t))

⇔1

2

d

dt
(||um(t)||2

+ α2|Aum(t)|2) + ν(|Aum(t)|2 + α2|A
3
2um(t)|2)

+
(
B̃(um(t), um(t) + α2Aum(t)), Aum(t)

)
= (Pmf, Aum(t).)

(3.13)

As we did before we will estimate the right-hand side such that we can absorb all non
given terms by the left-hand side. We will use a similar inequality by multiplying an
identity in form of (A−

1
2A

1
2 ) to the right-hand side and then apply Hölder’s and Young’s

inequality:

|(Pmf, Aum(t))| ≤

{
|A−

1
2f | |A

3
2um(t)|

|f | |Aum(t)|
≤


|A− 1

2f |2

να2
+
ν

4
α2|A

3
2um(t)|2,

|f |2

ν
+
ν

4
|Aum(t)|2.

(3.14)
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We define

K2 = min

(
|A− 1

2f |2

να2
,
|f |2

ν

)
.

Using K2 and (3.14) in equation (3.13) we can absorb |A 3
2um(t)|2 and |Aum(t)|2 by the

left-hand side:

1

2

d

dt
(||um(t)||2 + α2|Aum(t)|2) +

3

4
ν(|Aum(t)|2 + α2|A

3
2um(t)|2)

+
(
B̃(um(t), um(t) + α2Aum(t)), Aum(t)

)
≤ K2

⇒ 1

2

d

dt
(||um(t)||2 + α2|Aum(t)|2) +

3

4
ν(|Aum(t)|2 + α2|A

3
2um(t)|2)

≤ K2 +
∣∣∣(B̃(um(t), um(t) + α2Aum(t)), Aum(t)

)∣∣∣ .
We will now apply the estimates for B̃ from Lemma 3.2 and also consider the following
calculations:

||um(t)|| = (A2A−2um(t)︸ ︷︷ ︸
≤λ−2

1 um(t)

, Aum(t))
1
2 ≤ λ−1

1 (A2um(t), Aum(t))
1
2 = λ−1

1 |A
3
2um(t)|.

Putting these thoughts together results in:

1

2

d

dt
(||um(t)||2 + α2|Aum(t)|2) +

3

4
ν(|Aum(t)|2 + α2|A

3
2um(t)|2)

≤ K2 +
∣∣∣(B̃(um(t), um(t) + α2Aum(t)), Aum(t)

)∣∣∣
≤ K2 + ||um(t)||

 ||um(t)||︸ ︷︷ ︸
≤λ−1

1 |A
3
2 um(t)|

+α2 ||Aum(t)||︸ ︷︷ ︸
=|A

3
2 um(t)|

 |Aum(t)|
1
2 ||Aum(t)||

1
2︸ ︷︷ ︸

|A
3
2 um(t)|

1
2

≤ K2 + ||um(t)||(λ−1
1 + α2)|A

3
2um(t)|

3
2 |Aum(t)|

1
2 .

We use Young’s inequality in such ways that we can absorb |A 3
2um(t)| 32 by the left-hand

side:

≤ K2 + ||um(t)||(λ−1
1 + α2)|Aum(t)|

1
2︸ ︷︷ ︸

q=4

|A
3
2um(t)|

3
2︸ ︷︷ ︸

p= 4
3

≤ K2 +
1

36
(να2)−3||um(t)||4(λ−1

1 + α2)4|Aum(t)|2 +
να2

4
|A

3
2um(t)|2.

The whole inequality has the following form now:
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1

2

d

dt
(||um(t)||2+α2|Aum(t)|2) +

3

4
ν
(
|Aum(t)|2 + α2|A

3
2um(t)|2

)
≤ K2 +

1

36
(να2)−3||um(t)||4(λ−1

1 + α2)4|Aum(t)|2 +
να2

4
|A

3
2um(t)|2

⇔ 1

2

d

dt
(||um(t)||2+α2|Aum(t)|2) +

3

4
ν|Aum(t)|2 + ν

1

2
α2|A

3
2um(t)|2

≤ K2 +
1

36
(να2)−3||um(t)||4(λ−1

1 + α2)4|Aum(t)|2.

We decrease the left-hand side even more and multiply by 2:

d

dt
(||um(t)||2 + α2|Aum(t)|2) + ν

(
|Aum(t)|2 + α2|A

3
2um(t)|2

)
≤ 2K2 + 2c(να2)−3||um(t)||4(λ−1

1 + α2)4|Aum(t)|2.
(3.15)

Before we continue to estimate any further, let us consider equation (3.11) and (3.12) first
and draw two conclusions.

From equation (3.11) we can conclude

||um(t)||4 ≤
(
k1

α2

)2

and from equation (3.12) we get

t∫
s

|Aum(r)|2 dr ≤ (t− s)K1 + k1.

We will use these estimates in the next calculation. Let us integrate equation (3.15) over
[s, t]. For the left-hand side we get:

t∫
s

d

dr
(||um(r)||2 + α2|Aum(r)|2) + ν(|Aum(r)|2 + α2|A

3
2um(r)|2)︸ ︷︷ ︸

≥0

dr

≥ ||um(t)||2 + α2|Aum(t)|2 − (||um(s)||2 + α2|Aum(s)|2),

and for the right-hand side we get
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3 THE NAVIER-STOKES-α MODEL 3.5 Existence and uniqueness

t∫
s

2K2 + 2c(να2)−3||um(r)||4(λ−1
1 + α2)4|Aum(r)|2 dr

≤2(t− s)K2 +

t∫
s

2c(να2)−3

(
k1

α2

)2

(λ−1
1 + α2)4|Aum(r)|2 dr

≤2(t− s)K2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4

t∫
s

|Aum(r)|2 dr

≤2(t− s)K2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4 ((t− s)K1 + k1) .

Putting both calculations together results in the following inequality:

||um(t)||2 + α2|Aum(t)|2

≤ 2(t− s)K2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4 ((t− s)K1 + k1)

+ (||um(s)||2 + α2|Aum(s)|2)

 (3.16)

We now integrate s over [0,t]:

t(||um(t)||2 + α2|Aum(t)|2)

≤
t∫

0

2(t− s)K2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4 ((t− s)K1 + k1)

+ (||um(s)||2 + α2|Aum(s)|2)ds

= K2t
2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4

(
t2

2
K1 + tk1

)
+

t∫
0

(||um(s)||2 + α2|Aum(s)|2)ds

≤ K2t
2 +

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4

(
t2

2
K1 + tk1

)
+

1

ν
(tK1 + k1).

This estimate holds for t > 0 but is unbounded for large t, we need another estimate
to control larger times. If t ≥ 1

νλ1
then we can integrate equation (3.16) over [t − 1

νλ1
, t]

instead:

1

νλ1

(||um(t)||2 + α2|Aum(t)|2)

≤ K2

(
1

νλ1

)2

+

(
2ck2

1

(να2)3α4

)
(λ−1

1 + α2)4

(
1

2(νλ1)2
K1 +

1

νλ1

k1

)
+

1

ν
(

1

νλ1

K1 + k1).
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We showed that ||um(t)||2 + α2|Aum(t)|2 is finite for all t > 0 which is equivalent to the
boundedness of the H2(Ω) norm. We can say that there exists a bounded function k2(t)
that satisfies

||um(t)||2 + α2|Aum(t)|2 ≤ k2(t). (3.17)

H3(Ω)-Norm:
To obtain a constraint on the H3 norm of our velocity field u we will find an upper bound
for ||vm(t)|| that is independent of m by testing the Galerkin equation (3.5) with Avm(t),
where vm(t) = um(t) + α2Aum(t):

〈∂tvm(t), Avm(t)〉+ ν(Avm(t), Avm(t)) + (B̃(um(t), vm(t)), Avm(t)) = (f, Avm(t))

⇔ 1

2

∂

∂t
||vm(t)||2 + ν|Avm(t)|2 + (B̃(um(t), vm(t)), Avm(t)) = (f, Avm(t))

⇒ 1

2

∂

∂t
||vm(t)||2 + ν|Avm(t)|2 ≤ |(f, Avm(t))|+ |(B̃(um(t), vm(t)), Avm(t))|.

We use part 3 of Lemma 3.2 on the non-linear part and apply Hölder’s and Young’s
inequality to the forcing term:

⇒ 1

2

∂

∂t
||vm(t)||2 + ν|Avm(t)|2 ≤ 1

ν
|f |2V ′ +

ν

4
|Avm(t)|2 + |(B̃(um(t), vm(t)), Avm(t))|

⇒ 1

2

∂

∂t
||vm(t)||2 +

3ν

4
|Avm(t)|2 ≤ 1

ν
|f |2V ′ + c||um(t)||

1
2 |Aum(t)|

1
2 ||vm(t)|| |Avm(t)|.

We know that the H1 norm and the H2 norm are bounded from above and therefore the
||um(t)|| norm and the |Aum(t)| norm are bounded as well:

⇒ 1

2

∂

∂t
||vm(t)||2 +

3ν

4
|Avm(t)|2 ≤ 1

ν
|f |2V ′ + ck

1
2
1 k

1
2
2 ||vm(t)|| |Avm(t)|

⇒ 1

2

∂

∂t
||vm(t)||2 +

3ν

4
|Avm(t)|2 ≤ 1

ν
|f |2V ′ + Ck

1
2
1 k

1
2
2

1

ν
||vm(t)||2 +

ν

4
|Avm(t)|2

⇒ ∂

∂t
||vm(t)||2 + ν|Avm(t)|2 ≤ 2

ν
|f |2V ′ + Ck

1
2
1 k

1
2
2

1

ν
||vm(t)||2

⇒ ∂

∂t
||vm(t)||2 ≤ 2

ν
|f |2V ′ + Ck

1
2
1 k

1
2
2

1

ν
||vm(t)||2.

Applying the Gronwall lemma will result in an upper bound of ||vm(t)|| that only depends
on the initial condition and the forcing term but not on m.

So far we showed that the Galerkin equations have a unique solution. Before we continue
to show that they converge nicely let us gather what estimates we have. Considering
equations (3.11), (3.12) and (3.17) we can conclude the following upper bounds that are
independent of m:

||um||2L∞([0,T ];V ) ≤
k1

α2
, ||vm||2L∞([0,T ];V ′) ≤ k1,

||um||2L2([0,T ];D(A)) ≤
TK1 + k1

να2
, ||vm||2L2([0,T ];H) ≤

TK1 + k1

ν
,

||um||2L∞([0,T ];D(A)) ≤
k2

α2
, ||vm||2L∞([0,T ];H) ≤ k2.
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We only considered the solution um(t) so far but we need to consider the first time
derivative as well. This is our next step and we will achieve that by estimating the
L2([0, T ];D(A)′) norm of Avm and B̃(um, vm):

||Avm||2L2([0,T ];D(A)′) =

T∫
0

||Avm||2D(A)′dt = sup
w∈D(A)

T∫
0

〈
A(um + α2Aum), w

〉2
dt

= sup
w∈D(A)

T∫
0

〈um + α2Aum, Aw︸︷︷︸
∈H

〉2dt

≤ sup
µ∈H

T∫
0

〈
um + α2Aum, µ

〉2
dt

= ||vm||L2([0,T ];H′) = ||vm||L2([0,T ];H)

≤ TK1 + k2

ν

Using the inequality of Lemma 3.2 we can estimate B̃(um, vm) in a similar way:

||B̃(um, vm)||2L2([0,T ];D(A)′) =

T∫
0

||B̃(um, vm)||2D(A)′dt

= sup
w∈D(A), ||w||=1

T∫
0

∣∣∣∣〈B̃(um, vm), w
〉
D(A)′×D(A)

∣∣∣∣2 dt
≤ sup

w∈D(A), ||w||=1

T∫
0

(
c||um||

1
2 |Aum|

1
2 ||vm|| |w|

)2

dt.

We estimate |w| ≤ (λ1)−
1
2 ||w|| = (λ1)−

1
2 and ||vm||2L∞([0,T ];V ′) ≤ k1.

≤ ck2
1(λ1)−1

T∫
0

||um|| |Aum| dt

≤ ck2
1(λ1)−1

T∫
0

C||um||2 + α2|Aum|2 dt

≤ c
k2

1(TK1 + k2)

νλ1α2
.

Now we can estimate the first time derivative by reordering the terms in the operator
equation.

dvm
dt

= f − Avm − B̃(um, vm).
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We take the L2([0, T ];D(A)′) norm of the whole equation and insert the previous estimates
for all the terms of the right-hand side. As a consequence there exists a constant k̃
depending only on ν, λ1, f, α and T such that the time derivative can be estimated by it.

∣∣∣∣∣∣∣∣dvmdt
∣∣∣∣∣∣∣∣2
L2([0,T ];D(A)′)

≤ k̃

and in particular ∣∣∣∣∣∣∣∣dumdt
∣∣∣∣∣∣∣∣2
L2([0,T ];H)

≤ k̃

α2
.

Part 3: Passing to the limit

We will use Lion-Aubin’s compactness theorem (Theorem 2.9) to obtain our candidate
for the limit. We conclude that there exists a subsequence umk of um satisfying

umk −→ u weakly in L2([0, T ];D(A)),

umk −→ u strongly in L2([0, T ];V ),

umk −→ u in C([0, T ];H),

and equivalently

vmk −→ v weakly in L2([0, T ];H),

vmk −→ v strongly in L2([0, T ];V ′),

vmk −→ v in C([0, T ];D(A)′).

From here on we will always consider the converging subsequence umk and label it with
um and accordingly vmk with vm. We insert the converging subsequence into the Galerkin
equation (3.5) and observe what happens when we pass to the limit. We want the whole
equation to converge to an equation of u instead of an equation of um, so we need to make
sure that all terms converge properly.
For t0, t ∈ [0, T ] and w ∈ D(A) it holds

t∫
t0

(
dvm(s)

ds
, w

)
ds+ ν

t∫
t0

(Avm(s), w) ds

+

t∫
t0

(B̃(um, vm), Pmw) ds =

t∫
t0

(Pmf, w) ds

⇔(vm(t), w) ds+ ν

t∫
t0

(Avm(s), w) ds

+

t∫
t0

(B̃(um, vm), Pmw) ds = (Pmf, w)(t− t0) ds+ (v(t0), w).
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We will consider each term by itself and show convergence.

Because vm converges weakly in L2([0, T ];H) we conclude

(vm(t), w) −→ (v(t), w).

Because vm converges in C([0, T ];D(A)′) we conclude

ν

t∫
t0

(Avm(s), w) ds = ν

t∫
t0

(vm(s), Aw) ds −→ ν

t∫
t0

(v(s), Aw) ds = ν

t∫
t0

(Av(s), w) ds.

It is obvious that the orthogonal projection Pm also converges without any troubles.

(Pmf, w) −→ (f, w).

The only term left is the non-linear term. We subtract what we want from what we have
and try to show that the difference tends to zero with increasing m:∣∣∣∣∣∣

t∫
t0

(B̃(um(s), vm(s)), Pmw) ds−
t∫

t0

〈
B̃(u(s), v(s)), w

〉
ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

t0

(B̃(um(s), vm(s)), Pmw)−
〈
B̃(um(s), vm(s)), w

〉
ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

t0

〈
B̃(um(s), vm(s)), w

〉
−
〈
B̃(u(s), vm(s)), w

〉
ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

t0

〈
B̃(u(s), vm(s)), w

〉
−
〈
B̃(u(s), v(s)), w

〉
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

t0

〈
B̃(um(s), vm(s)), Pmw − w

〉
ds

∣∣∣∣∣∣+

∣∣∣∣∣∣
t∫

t0

〈
B̃(um(s)− u(s), vm(s)), w

〉
ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

t0

〈
B̃(u(s), vm(s)− v(s)), w

〉
ds

∣∣∣∣∣∣
=I1 + I2 + I3.

We will consider each term separately and show that it vanishes. For I1 we will use
Lemma 3.2 and (3.10), namely the inequality λ1||w||2 ≤ |Aw|2, ∀w ∈ D(A):
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I1 ≤

∣∣∣∣∣∣∣∣
t∫

t0

c|um(s)| ||vm(s)|| ||Pmw − w||
1
2︸ ︷︷ ︸

≤λ
− 1

4
1 A(Pmw−w)|

1
2

|A(Pmw − w)|
1
2 ds

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

t0

c

λ
1
4
1

|um(s)| ||vm(s)|| |A(Pmw − w)| ds

∣∣∣∣∣∣
=

c

λ
1
4
1

|A(Pmw − w)|

∣∣∣∣∣∣
t∫

t0

|um(s)| ||vm(s)|| ds

∣∣∣∣∣∣ .
Applying the Cauchy-Schwarz inequality and increasing the integration range results in:

≤ c

λ
1
4
1

|A(Pmw − w)|

 t∫
t0

|um(s)|2 ds


1
2
 t∫
t0

||vm(s)||2 ds


1
2

≤ c

λ
1
4
1

|A(Pmw − w)|︸ ︷︷ ︸
−→0

 T∫
0

|um(s)|2 ds


1
2
 T∫

0

||vm(s)||2 ds


1
2

︸ ︷︷ ︸
bounded

−→ 0.

The Terms I2 and I3 can be done in a similar fashion. As a consequence of our calculations
we conclude that the non-linear term converges too. We found a regular solution of the
equations.

Uniqueness

The last part of the proof is showing uniqueness and we will do it by assuming there
are two solutions u1, u2, with initial values u10, u20. We denote v1 = (u1 + α2Au1), v2 =
(u2 +α2Au2) and the differences ∆u = u1− u2,∆v = v1− v2. The solutions u1, u2 satisfy

d

dt
v1 + νAv1 + B̃(u1, v1) = f,

d

dt
v2 + νAv2 + B̃(u2, v2) = f.

Subtracting one from the other yields:

0 =
d

dt
∆v + νA∆v + B̃(u1, v1)− B̃(u2, v2),

⇔ 0 =
d

dt
∆v + νA∆v + B̃(u1, v1)− B̃(u2, v1) + B̃(u2, v1)− B̃(u2, v2),

⇔ 0 =
d

dt
∆v + νA∆v + B̃(∆u, v1) + B̃(u2,∆v) (3.18)
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Our next step is to test above equation with ∆u, but first we calculate:〈
d

dt
∆v(t),∆u(t)

〉
=

〈
d

dt

(
∆u(t) + α2A∆u(t)

)
,∆u(t)

〉
=

1

2

d

dt

(
|∆u(t)|2 + α2||∆u(t)||2

)
ν 〈A∆v(t),∆u(t)〉 = ν

(
||∆u(t)||2 + α2|A∆u(t)|2

)
,〈

B̃(∆u(t), v1(t)),∆u(t)
〉

= 0.

After testing with ∆u and simplifying equation (3.18), we get:

1

2

d

dt
(|∆u(t)|2 + α2||∆u(t)||2)

+ ν(||∆u(t)||2 + α2|A∆u(t)|2)

+
〈
B̃(u2(t),∆v(t)),∆u(t)

〉
= 0

⇒ 1

2

d

dt
(|∆u(t)|2 + α2||∆u(t)||2)

+ ν(||∆u(t)||2 + α2|A∆u(t)|2) ≤
∣∣∣〈B̃(u2(t),∆v(t)),∆u(t)

〉∣∣∣ .
Our next step is to estimate the right-hand side from above such that we get the initial
condition and some terms that can be absorbed by the left-hand side. Therefore we use
part 3 of Lemma 3.2 for the non-linear term:

1

2

d

dt
(|∆u(t)|2 + α2||∆u(t)||2) + ν(||∆u(t)||2 + α2|A∆u(t)|2)

≤ c
(
||u2(t)||

1
2 |Au2(t)|

1
2 |∆v(t)| ||∆u(t)||+ |Au2(t)| |∆v(t)| |∆u(t)|

1
2 ||∆u(t)||

1
2

)
= c|∆v(t)|

(
||u2(t)||

1
2 |Au2(t)|

1
2 ||∆u(t)||+ |Au2(t)| |∆u(t)|

1
2 ||∆u(t)||

1
2

)
.

We will use the scaled Young’s inequality to seperate the product with p = q = 2, ε = ν
2η

,

where η = (2α2 + 1
λ1

):

≤ cCε

(
||u2(t)||

1
2 |Au2(t)|

1
2 ||∆u(t)||+ |Au2(t)| |∆u(t)|

1
2 ||∆u(t)||

1
2

)2

+
ν

2η
|∆v(t)|2.

(3.19)

Let us consider only the term ν
2η
|∆v(t)|2 first:

ν

2η
|∆v(t)|2 =

ν

2η

∣∣∣∆u(t) + α2A∆u(t)
∣∣∣2

=
ν

2η

(
|∆u(t)|2︸ ︷︷ ︸
≤ 1
λ1
||∆u(t)||2

+α4|A∆u(t)|2 + 2α2 (∆u(t), A∆u(t))︸ ︷︷ ︸
=||∆u(t)||2

)

≤ ν

2η

(
1

λ1

||∆u(t)||2 + α4|A∆u(t)|2 + 2α2||∆u(t)||2
)

≤ ν

2η

((
2α2 +

1

λ1

)
||∆u(t)||2 + α4|A∆u(t)|2

)
.
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We can estimate α4 ≤ α2 (2α2) ≤ α2
(

2α2 + 1
λ1

)
and simplify further:

≤ ν

2

(
||∆u(t)||+ α2|A∆u(t)|2

)
.

Inserting this calculation into (3.19) will result in:

1

2

d

dt
(|∆u(t)|2 + α2||∆u(t)||2) + ν(||∆u(t)||2 + α2|A∆u(t)|2)

≤ cCε

(
||u2(t)||

1
2 |Au2(t)|

1
2 ||∆u(t)||+ |Au2(t)| |∆u(t)|

1
2 ||∆u(t)||

1
2

)2

+
ν

2

(
||∆u(t)||+ α2|A∆u(t)|2

)
.

We will absorb ν
2

(||∆u||+ α2|A∆u|2) by the left-hand side. Since ν
2

(||∆u||+ α2|A∆u|2)
is positive, we can decrease the left-hand side by dropping this term. Recall that all ui
are bounded in the H1(Ω)- and H2(Ω)-norms. We multiply by two and get:

d

dt
(|∆u(t)|2 + α2||∆u(t)||2)

≤ 2cCε

(
||u2(t)||

1
2 |Au2(t)|

1
2 ||∆u(t)||+ |Au2(t)| |∆u(t)|

1
2 ||∆u(t)||

1
2

)2

≤ 2cCε

(
||u2(t)|| |Au2(t)|︸ ︷︷ ︸

≤const

||∆u(t)||2 + |Au2(t)|2︸ ︷︷ ︸
≤const

|∆u(t)|︸ ︷︷ ︸
≤λ−1||∆u(t)||

||∆u(t)||
)
.

We apply (3.9) and add |∆u(t)|2 to the right-hand side and since it is positive, the
inequality still holds.

≤ 2CCελ
−1
1 α−2||α2∆u(t)||2

≤ 2CCελ
−1
1 α−2

(
|∆u(t)|2 + α2||∆u(t)||2

)
.

The last step is to apply Gronwall’s lemma and estimate |∆u(t)|2 + α2||∆u(t)||2 by the
initial values and assuming the initial values for u1 and u2 coincide, we get uniqueness.

3.6 Convergence of the NS-α solution to a solution of NSE

Up till now we showed that there always exists a unique solution for the NS-α equations.
Since we modeled turbulence to achieve an approximation of the true solution, we are
interested in how good this approximation is and of course if it is converging at all. In
this section we will study the limit of α going to zero and show that our sequence of NS-α
solutions converges to a solution of the NSE.

Theorem 3.4. Let f ∈ H, u0 ∈ V and let uα be the solution of the NS-α problem for
an arbitrary α ≥ 0. We abbreviate vα = uα + α2Auα. Then there exist subsequences
uαj , vαj and a function u such that the following statements hold for α→ 0+:
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1. uαj → u, strongly in L2
Loc([0,∞);H),

2. uαj → u, weakly in L2
Loc([0,∞);V ),

3. vαj → u, strongly in L2
Loc([0,∞);H),

4. vαj → u, strongly in L2
Loc([0,∞);V ′),

5. For every T ∈ (0,∞) and every w ∈ H : (uαj , w)→ (u,w) uniformly on [0, T ].

This means u is a weak solution of the NSE.

Proof. Let T ≥ 0 arbitrary but fixed. Since (3.11) and (3.12) are also true for uα and vα
we conclude that there are subsequences uαj , vαj and u, v such that:

uαj → u weakly in L2((0, T ];V ),

vαj → v weakly in L2((0, T ];H).

Our next step will be to show the boundedness of the time derivative. Before we go
further, let us do some auxiliary calculations first. We know that for an eigenpair (λ, ϕ)
of an operator A it holds:

A−1ϕ = λ−1ϕ.

In our case all eigenvalues λi of A are positive and therefore the eigenvalues of (I + αA)
are larger than one, which means that the eigenvalues of (I +αA)−1 are smaller than one
and it holds for arbitrary w ∈ H:

∣∣(I + αA)−1w
∣∣ =

∣∣∣∣∣∑
i

ci(I + αλi)
−1ϕi

∣∣∣∣∣ ≤
∣∣∣∣∣∑

i

ciϕi

∣∣∣∣∣ = |w|.

Let us consider the NS-α equation now and find an upper bound for the time derivative:

dvα
dt

+ νAvα + B̃(uα, vα) = f

⇔ duα
dt

+ νAuα + (I + α2A)−1B̃(uα, vα) = (I + α2A)−1f

⇔ A−1duα
dt

+ νuα + A−1(I + α2A)−1B̃(uα, vα) = A−1(I + α2A)−1f

⇒
∣∣∣∣∣∣∣∣A−1duα

dt

∣∣∣∣∣∣∣∣
L2((0,T ],H′)

≤
∣∣∣∣A−1(I + α2A)−1f

∣∣∣∣
L2((0,T ],H′)

+ ν ||uα||L2((0,T ],H′)

+
∣∣∣A−1(I + α2A)−1B̃(uα, vα)

∣∣∣
L2((0,T ],H′)

⇒
∣∣∣∣∣∣∣∣A−1duα

dt

∣∣∣∣∣∣∣∣
L2((0,T ],H′)

≤
∣∣∣∣A−1f

∣∣∣∣
L2((0,T ],H′)

+ ν ||uα||L2((0,T ],H

+
∣∣∣∣∣∣A−1B̃(uα, vα)

∣∣∣∣∣∣
L2((0,T ],H′)

.
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Since the nonlinear part is the only term that is not bounded yet we will focus on it.

Applying Lemma 3.2 and the inequality |uα|
1
2 = (|uα|2)

1
4 ≤ ( 1

λ1
||uα||2)

1
4 =

(
1
λ1

) 1
4 ||uα||

1
2 :

∣∣∣A−1B̃(uα(t), vα(t))
∣∣∣ = sup

w∈H,|w|=1

∣∣∣(A−1B̃(uα(t), vα(t)), w)
∣∣∣

= sup
w∈H,|w|=1

∣∣∣(B̃(uα(t), vα(t)), A−1w)
∣∣∣

≤ c sup
w∈H,|w|=1

(
|uα(t)|

1
2 ||uα(t)||

1
2 |vα(t)| |AA−1w|︸ ︷︷ ︸

=1

+ |vα(t)| ||uα(t)|| ||A−1w||
1
2︸ ︷︷ ︸

≤λ−
1
4 |w|

1
2

)
≤ 2cλ−

1
4 |vα(t)| ||uα(t)||

≤ 2cλ−
1
4

|uα(t)| ||uα(t)||+ α2|Auα(t)| ||uα(t)||︸ ︷︷ ︸
≥0

 .

We square the whole inequality and use the inequality: (a+ b)2 ≤ 2(a2 + b2):

∣∣∣A−1B̃(uα(t), vα(t))
∣∣∣2 ≤ 4c2λ−

1
2

(
|uα(t)| ||uα(t)||+ α2|Auα(t)| ||uα(t)||

)2

≤ 4c2λ−
1
2

(
|uα(t)|2 ||uα(t)||2 + α2|Auα(t)|2α2||uα(t)||2

)
.

We apply (3.11):

≤ 4c2λ−
1
2k1

(
||uα(t)||2 + α2|Auα(t)|2

)
.

We integrate over [0, T ] and use inequality (3.12):

T∫
0

∣∣∣A−1B̃(uα(t), vα(t))
∣∣∣2 dx ≤ T∫

0

4c2λ−
1
2k1

(
||uα(t)||2 + α2|Auα(t)|2

)
dx

≤ 4c2λ−
1
2k1

1

ν
(TK1 + k1).

Using previous calculations we conclude a bound for the time-derivative:

58



3 THE NAVIER-STOKES-α MODEL 3.6 Convergence of the NS-α to NSE

T∫
0

∣∣∣∣∣∣∣∣duα(t)

dt

∣∣∣∣∣∣∣∣2
D(A)′

dt =

T∫
0

sup
w∈D(A)

〈
duα(t)

dt
, w

〉
D(A)′×D(A)

dt

=

T∫
0

sup
w̃∈H

〈
duα(t)

dt
, A−1w̃

〉
D(A)′×D(A)

dt

=

T∫
0

sup
w̃∈H

〈
A−1duα(t)

dt
, w̃

〉
H×H

dt

=

T∫
0

∣∣∣∣A−1duα(t)

dt

∣∣∣∣2 dt <∞.
Finally we found an upper bound for the time derivative in the L2((0, T ],D(A)′) norm.

We have shown the following upper bounds so far:

• uα in L2((0, T ], V ),

• vα in L2((0, T ], H),

• duα(t)

dt
in L2((0, T ],D(A)′) .

These bounds are sufficient to apply Aubin’s compactness theorem and obtain a subse-
quence that we will also denote by {uαj}j that converges to u strongly in L2((0, T ], H).
Furthermore we have:

T∫
0

∣∣∣A− 1
2 (vαj(t)− uαj(t))

∣∣∣2 dt =

T∫
0

∣∣∣A− 1
2 (uαj(t) + α2

jAuαj(t)− uαj(t))
∣∣∣2 dt

=

T∫
0

∣∣∣α2
jA

1
2uαj(t)

∣∣∣2 dt
= α2

j ||uα||2L2((0,T ],V )

≤ α2
j (TK1 + k1).

This means that vαj converges to uαj strongly in L2((0, T ], V ′) and that v(t) = u(t) almost
everywhere in [0, T ].

We now managed to find a limit u of the subsequence uαj , we need to briefly argue that
the limit satisfies the NSE. Since we have strong convergence in L2((0, T ], V ′) all the terms
in NS-α equations converge nicely.
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4 Numerical analysis

In the previous section, we showed the existence of a solution by verifying the convergence
of a sequence of solutions in a continuously growing space Hm. This result does not
contain any information about the convergence speed of these solutions, which is relevant
for numerical computations. In this section, we will deal with this question and deduce
an upper bound for the error in terms of the best approximation in the chosen FEM space
under the assumption of no-slip and periodic BC.

4.1 Preliminaries

The NS-α problem states:



∂u

∂t
− ν∆u+ (∇× u)× ū+∇P = f,

ū− α2∆ū+∇λ = u,

∇ · u = ∇ · ū = 0,

Initial and boundary condition.

(4.1)

Let us define our spaces and the corresponding discrete spaces. Let Ω ⊂ R3 be a bounded
domain then we define:

X ≡ H1
0 (Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
,

Q ≡ L2
0(Ω) =

q ∈ L2(Ω) :

∫
Ω

q dx = 0

 ,

V =

v ∈ X :

∫
Ω

q∇ · v dx = 0, ∀q ∈ Q

 .

Remark Analogously to the previous chapter, we will abbreviate the L2 norm by | · | and
the H1 seminorm by || · ||, every other seminorm in Hk(Ω) will be denoted as | · |k.

For the discrete spaces, we will assume conforming finite element spaces Xh ⊂ X, Vh ⊂
V,Qh ⊂ Q, satisfying the discrete uniform Ladyschenskaja-Babuška-Brezzi condition, also
known as the discrete inf-sup condition. The condition reads: there exists β > 0 such
that for all mesh sizes h > 0

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
||qh|| ||∇vh||

≥ β > 0

holds. Now we define the finite element discretisation of (4.1):
For f ∈ L2(0, T ;X ′(Ω)), find uh, uh ∈ Xh and ph, λh ∈ Qh satisfying
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

〈
∂uh
∂t

, vh

〉
+ ν(∇uh,∇vh) + ((∇× uh)× uh, vh) + (∇ph, vh) = (f, vh) ∀vh ∈ Xh,

(uh, vh) + α2(∇uh,∇vh) + (∇λh, vh) = (uh, vh) ∀vh ∈ Xh,

(∇ · uh, qh) = (∇ · uh, qh) = 0 ∀qh ∈ Qh.

(4.2)

An equivalent problem is formulated over discretely divergence free functions Vh:
For f ∈ L2(0, T ;X ′(Ω)) find uh, uh ∈ Vh satisfying



〈
∂uh
∂t

, vh

〉
+ ν(∇uh,∇vh) + ((∇× uh)× uh, vh) = (f, vh) ∀vh ∈ Vh,

(uh, vh) + α2(∇uh,∇vh) = (uh, vh) ∀vh ∈ Vh,

(∇ · uh, qh) = (∇ · uh, qh) = 0 ∀qh ∈ Qh.

(4.3)

Definition (Discrete differential filter). Let ψ ∈ L2(Ω) and α > 0. Then, he filtered

version of ψ is denoted by ψ
h ∈ Vh and is the unique solution of

(ψ, vh) = (ψ
h
, vh) + α2(∇ψh,∇vh) ∀vh ∈ Vh. (4.4)

Definition (Discrete Laplacian). Let Ψ ∈ X then the discrete Laplacian ∆h : X → Vh
is defined by

∆hΨ = Ξh,

where Ξh is the unique solution of

(Ξh, vh) = −(∇Ψ,∇vh) ∀vh ∈ Vh. (4.5)

Using these definitions we can draw some useful conclusions. For ψh ∈ Vh we use (4.4)

with vh = ψh
h

to get:

(ψh, ψh
h
) = |ψh

h|2 + α2|∇ψh
h|2. (4.6)

Additionally, we can reorder (4.4) and since ∆hψh
h ∈ Vh we can test with vh = ψh −

(ψh
h − α2∆hψh

h
) to get:
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∣∣∣ψh − (ψh
h − α2∆hψh

h
)
∣∣∣2 = 0

and therefore

ψh = ψh
h − α2∆hψh

h
(4.7)

holds almost everywhere. Since we assumed ψh, ψh
h ∈ Vh, we can apply the gradient to

ψh which results in the following identity:

(∇ψh,∇vh) = (∇ψh
h
,∇vh)− α2(∇∆hψh

h
,∇vh) ∀vh ∈ Vh.

Choosing v = ψh
h

and applying (4.5) results in:

⇒ (∇ψh,∇ψh
h
) = (∇ψh

h
,∇ψh

h
)− α2(∇∆hψh

h
,∇ψh

h
)

⇔ (∇ψh,∇ψh
h
) = |∇ψh

h|2 + α2|∆hψh
h|2. (4.8)

These are important identities that will be used throughout this chapter.

4.2 Stability and convergence

Theorem 4.1 (Stability). Let uh ∈ Vh satisfy (4.3) and assume the FEM space Xh

has no-slip or periodic BC. Then ∃M(Ω) > 0, independent of α, g, ν such that if

0 < α ≤Mhν
1
4 is true, uh satisfies:

|uh(t)
h
|2 + α2|∇uh(t)

h
|2 + ν

T∫
0

|∇uh(t)
h
|2 + α2|∆uh(t)

h
|2 dt ≤ K,

|uh(t)|2 + ν

T∫
0

|∇uh(t)|2 dt ≤ K.

Proof. Since uh is a solution of (4.3) we can use the test function vh = uh
h:

(
∂uh(t)

∂t
, uh(t)

h
)

︸ ︷︷ ︸
= 1

2
∂
∂t

(
|uh(t)

h|2+α2|∇uh(t)
h|2
)

+ν (∇uh(t),∇uh(t)
h
)︸ ︷︷ ︸

= |∇uh(t)
h|2+α2|∆uh(t)

h|2

+ ((∇× uh(t))× uh(t), uh(t)
h
)︸ ︷︷ ︸

=0

= (f, uh(t)
h
)

⇔ 1

2

∂

∂t

(
|uh(t)

h
|2 + α2|∇uh(t)

h
|2
)

+ ν
(
|∇uh(t)

h
|2 + α2|∆uh(t)

h
|2
)

= (f, uh(t)
h
).
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Considering only the right-hand side we apply Hölder’s and Young’s inequality to manip-
ulate uh

h such that it can be absorbed by the left-hand side.

(f, uh(t)
h
) ≤ ||f ||X′ |∇uh(t)

h
| ≤ 1

2ν
||f ||2X′ +

ν

2
|∇uh(t)

h
|2

This results in:

∂

∂t

(
|uh(t)

h
|2 + α2|∇uh(t)

h
|2
)

+ ν
(
|∇uh(t)

h
|2 + α2|∆uh(t)

h
|2
)
≤ 1

ν
ν||f ||2X′

and after integration over [0, T ] we get:

|uh(T )
h
|2 + α2|∇uh(T )

h
|2 + ν

T∫
0

(
|∇uh(t)

h
|2 + α2|∆uh(t)

h
|2
)
dt

≤ 1

ν

T∫
0

||f ||2X′ dt+ |uh(0)
h
|2 + α2|∇uh(0)

h
|2

︸ ︷︷ ︸
constant

.

This proves the first part. For the second part we recall the inverse inequality for no-slip
or periodic BC:

|∇ψh| ≤
C

h
|ψh| ∀ψh ∈ Xh. (4.9)

Assuming 0 < α ≤ Mhν
1
4 = Ch < ∞ we can apply the inverse inequality on (4.6) and

(4.8) to obtain:

c(ψh, ψh
h
) ≤ |ψh|2 ≤ C(ψh, ψh

h
) (4.10)

and

c(∇ψh,∇ψh
h
) ≤ |∇ψh|2 ≤ C(∇ψh,∇ψh

h
). (4.11)

This is sufficient to show the second part.

Theorem 4.2 (Existence of a solution). Consider (4.3) then the mapping

uh : [0, T ]→ Vh

exists. In particular every solution uh satisfies:

uh ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
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Proof. This proof is straight-forward and analog to the existence of the local solution
proofs from the last sections. We select a basis of Vh expand (4.3) in terms of these basis
functions, consequently this results in a system of ordinary differential equations and its
solvability is shown by using Carathéodory’s theorem and the stability estimates.

Theorem 4.3 (FEM approximations). The following FEM estimates hold for k = 0, 1:

|u− uh| ≤ c
(
αhk + hk+1

)
|u|k+1,

|∇(u− u)| ≤ c|∇u|,

and as a consequence:

|∇(u− uh)| ≤ C
(
|∇u|+ hk|u|k+1

)
.

Proof. These estimates can be proven by using standard FEM approximation inequalities.
For a more detailed analysis see [LMNR08] Chapter two.
The third inequality results from the triangle inequality and the inverse inequality:

|∇(u− uh)| ≤ |∇(u− u)|+ |∇(u− uh)|︸ ︷︷ ︸
≤ c
h
|u−uh|

≤ c|∇u|+ c

h
|u− uh|

≤ c|∇u|+ c

h

(
αhk + hk+1

)︸ ︷︷ ︸
=Chk+1, because α=Ch

|u|k+1

≤ C
(
|∇u|+ hk|u|k+1

)
.

Remark If we assume α ≤Mhν
1
4 then:

|(u− uh)| ≤ |u− u|+ |u− uh|
≤ α2|∆u|+ |u− uh|
≤ α2|∆u|+ c

(
αhk + hk+1

)
|u|k+1

≤ α2|∆u|+ c
(
Mν

1
4hk+1 + hk+1

)
|u|k+1

≤ α2|∆u|+ c(1 + ν
1
4 )hk+1|u|k+1.

So we get the following estimate that we are going to use during the proof:

|u− uh| ≤ c(1 + ν
1
4 )(α2|∆u|+ hk+1|u|k+1). (4.12)
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Definition (Strong solution of NSE). A solution u of NSE is called a strong solution
if for u0 ∈ V and

u ∈ C([0, T );V ) ∩ L2([0, T );H2(Ω)) and
∂

∂t
u(t, ·) ∈ L2([0, T ];H)

is satisfied.

Theorem 4.4 (Convergence). Let Xh ⊂ X be a conforming FEM space satisfying
the inverse inequality and therefore is equipped with no-slip or periodic BC. Assume
u(t, ·) ∈ V is a strong solution of NSE, satisfying

∇× u ∈ L2(0, T ;L∞(Ω)), ∇u ∈ L4(0, T ;L2(Ω)) (4.13)

and the filtered solution u satisfies:

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) (4.14)

independent of α. Let 0 < α < 1, then there exists a constant M > 0 such that if for
some fixed M̃ > 0

0 < M̃h ≤ α ≤Mhν
1
4 (4.15)

the solution uh ∈ Vh of (4.3) satisfies:

sup
0≤t≤T

|u(t)− uh(t)|2 +

T∫
0

|u(s)− uh(s)|2 ds

≤ sup
0≤t≤T

inf
ũ(t)∈Vh

|u(t)− ũ(t)|2 + |u(0)− ũ(0)|2 + inf
ũ(t)∈Vh

T∫
0

|u(s))− ũ(s)|2 ds

+ C inf
ũ(t)∈Vh

T∫
0

(
α4|∆u(s)|2 + h2k+2|u(s)|2k+1

)
ds

+ C inf
ũ(t)∈Vh

T∫
0

∣∣∣∣ ∂∂s (u(s))− ũ(s))

∣∣∣∣2 ds
+ C inf

ũ(t)∈Vh

 T∫
0

|∇(u(s))− ũ(s))|4 ds


1
2

+ C inf
ũ(t)∈Vh

T∫
0

|P − qh|2 ds

Proof. To derive the error bound, we will divide the proof into different parts to help us
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keep the overview. It will have the following structure:

1. Obtain the error equation,

2. Split the error term into u− uh = η + φh,

3. Estimating the trilinear term,

3.1 Estimating ((∇× η)× u, φh
h
),

3.2 Estimating ((∇× φh)× u, φh
h
),

3.3 Estimating ((∇× uh)× (uh
h − uh), φh

h
),

4. Continue to estimate the inequality from part 2, using results from part 3,

5. Putting everything together.

We will sometimes drop the explicit time dependency for the sake of notation. In general
u, uh and all their filtered versions are time dependent but all test functions vh ∈ Vh are
not.

Part 1: Obtain the error equation
We subtract (4.3) from the weak formulation of (4.1) and add a zero in form of (−qh,∇·vh),
for arbitrary qh ∈ Qh. Then for all vh ∈ Vh it holds:(

∂

∂t
(u− uh), vh

)
+ ν(∇(u− uh),∇vh) = (P − qh,∇ · vh) + ((∇× uh)× uhh, vh)

− ((∇× u)× u, vh)

The above equation is called error equation.

Part 2: Split the error
For arbitrary ũ ∈ Vh we can split the error:

u(t)− uh(t) = u(t)− ũ︸ ︷︷ ︸
=η(t)

+ ũ− uh(t)︸ ︷︷ ︸
=φh(t)

= η(t) + φh(t).

We insert it in the error equation and rearrange the terms such that only terms containing
φh are on the left-hand side:

(
∂

∂t
φh, vh

)
+ ν(∇φh,∇vh) =(P − qh,∇ · vh) + ((∇× uh)× uhh, vh)

− ((∇× u)× u, vh)−
(
∂

∂t
η, vh

)
− ν(∇η, vh).

(4.16)

We will test (4.16) with vh = φh
h

and apply (4.6) and (4.8).
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1

2

∂

∂t

(
|φh

h|2 + α2|∇φh
h|2
)

+ ν
(
|∇φh

h|2 + α2|∆hφh
h|2
)

= (P − qh,∇ · φh
h
) + ((∇× uh)× uhh, φh

h
)− ((∇× u)× u, φh

h
)

−
(
∂

∂t
η, φh

h
)
− ν(∇η,∇φh

h
)

≤ |P − qh|
∣∣∣∇ · φhh∣∣∣+

∣∣∣∣ ∂∂tη
∣∣∣∣ ∣∣∣φhh∣∣∣+ ν |∇η|

∣∣∣∇φhh∣∣∣
+ ((∇× uh)× uhh, φh

h
)− ((∇× u)× u, φh

h
).

Part 3: Estimating the trilinear term
We will only consider the trilinear part of the estimate and show upper bounds in terms
of η and expressions we can absorb by the left-hand side. Firstly we will add a zero:

∇× u = ∇× uh −∇× (uh − u)

and insert it into the second part of the trilinear term:

((∇× uh)× uhh, φh
h
)− ((∇× u)× u, φh

h
)

= ((∇× uh)× uhh, φh
h
)− ((∇× uh)× u, φh

h
) + ((∇× (uh − u))× u, φh

h
).

We simplify and split uh − u = −(u− uh) = −η − φh.

= ((∇× uh)× (uh
h − u), φh

h
) + ((∇× (uh − u))× u, φh

h
)

= ((∇× uh)× (uh
h − u), φh

h
)− ((∇× η)× u, φh

h
)− ((∇× φh)× u, φh

h
).

Before we start showing an upper bound for all three terms let us consider some auxiliary
calculations regarding the constant Cε in Young’s inequality, since we are going to use
Young’s inequality multiple times in one calculation. The following statement hold for
Cε:

Cε =
(p ε)−

q
p

p
= Cε−

q
p .

Part 3.1: Estimating ((∇× η)× u, φh
h
)

We will apply the general Hölder inequality and Young’s inequality twice, once with
p = 4, q = 4

3
and once with p = 3

2
, q = 3:

((∇× η)× u, φh
h
) ≤ C|∇η| |∇u| |φh

h|
1
2 |∇φh

h|
1
2

≤ Cν−
1
3 |∇η|

4
3 |∇u|

4
3 |φh

h|
2
3 +

ν

24
|∇φh

h|2

≤ 2

3
(Cν−

1
3 )

3
2 |∇η|2 +

1

3
|∇u|4 |φh

h|2 +
ν

24
|∇φh

h|2

≤ Cν−
1
2 |∇η|2 + |∇u|4 |φh

h|2 +
ν

24
|∇φh

h|2. (4.17)
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Part 3.2: Estimating ((∇× φh)× u, φh
h
)

We will use identity (4.7) and Hölder’s inequality:

(
(∇× φh)× u, φh

h
)

=
((
∇× (φh

h −∆hφh
h
)
)
× u, φh

h
)

=
(

(∇× φh
h
)× u, φh

h
)
− α2

(
(∇×∆hφh

h
)× u, φh

h
)

≤ C
(
|∇φh

h| |∇u| |φh
h|

1
2 |∇φh

h|
1
2

+α2|∇∆hφh
h| |∇u| |φh

h|
1
2 |∇φh

h|
1
2

)
≤ C

(
|∇φh

h|
3
2 |φh

h|
1
2 |∇u|+ α2|∇∆hφh

h| |∇u| |φh
h|

1
2 |∇φh

h|
1
2

)
.

Since we can absorb |∇φh
h|2 terms with the left-hand side, we will use Young’s inequality

to get the right exponent, we also force the constant to be ν
48

. For the first term we will
use p = 4

3
and for the second term p = 4.

≤ ν

48
|∇φh

h|2 + Cν−3|φh
h|2 |∇u|4

+
ν

48
|∇φh

h|2 + α
8
3Cν−

1
3 |∇∆hφh

h|
4
3 |∇u|

4
3 |φh

h|
2
3

≤ ν

24
|∇φh

h|2 + Cν−3|φh
h|2 |∇u|4

+ α
8
3Cν−

1
3 |∇∆hφh

h|
4
3 |∇u|

4
3 |φh

h|
2
3 .

We use Young’s inequality with p = 3, q = 3
2

and force the constant to be c µ
ν2

where µ is
a variable, that will be chosen later.

≤ ν

24
|∇φh

h|2 + Cν−3|φh
h|2 |∇u|4

+
1

4
α4Cν

1
2µ−

1
2 |∇∆hφh

h|2 + C
µ

ν2
|∇u|4 |φh

h|2

≤ ν

24
|∇φh

h|2 + C
(
ν−3 + µν−2

)
|φh

h|2 |∇u|4

+
1

4
α4Cν

1
2µ−

1
2 |∇∆hφh

h|2

Every term on the right-hand side besides |∇∆hφh
h|2 can be either absorbed or controlled.

We use the inverse inequality (4.9) and the existence of the given constant M to obtain

an upper bound for |∇∆hφh
h|2 that can be absorbed by the left-hand side:

α2|∇∆hφh
h|2 ≤ α2 C̃

h2
|∆hφh

h|2 ≤ C̃M2ν
1
2 |∆hφh

h|2.

Let us insert this in the above inequality and choose µ = (CC̃M2)2:

((∇× φh)× u, φh
h
) ≤ ν

24
|∇φh

h|2 + C
(
ν−3 + µν−2

)
|φh

h|2 |∇u|4 +
ν

4
α2|∆hφh

h|2. (4.18)
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Part 3.3: Estimating ((∇× uh)× (uh
h − u), φh

h
)

For the last term of the trilinear part, we split u−uhh and use the linearity of the discrete
filtering operation:

u− uhh = (u− uh) + (uh − uhh)

= (u− uh) + (u− ũ)
h

+ (ũ− uh)
h

= (u− uh) + ηh + φh
h
.

Inserting this identity into ((∇× uh)× (uh
h − uh), φh

h
) results in:

((∇× uh)× (uh
h − u), φh

h
) = ((∇× uh)× (uh − u), φh

h
)− ((∇× uh)× ηh, φh

h
)

− ((∇× uh)× φh
h
, φh

h
)︸ ︷︷ ︸

=0

.

We rewrite uh = u− (u− uh) in the first term and use u− uh = η + φh.

= ((∇× u)× (uh − u), φh
h
)− ((∇× (u− uh))× (uh − u), φh

h
)

− ((∇× uh)× ηh, φh
h
)

= ((∇× u)× (uh − u), φh
h
)− ((∇× η)× (uh − u), φh

h
)

− ((∇× φh)× (uh − u), φh
h
)− ((∇× uh)× ηh, φh

h
)

= I − II − III − IV.

We have to bound all the terms on the right-hand side. For term I we will use (4.12), (4.13)
and Theorem 4.3.

I = ((∇× u)× (uh − u), φh
h
) ≤ C||∇ × u||L∞(Ω)|u− uh| |φh

h|

≤ C||∇ × u||2L∞(Ω)|φh
h|2 +

1

2
|u− uh|2

≤ C||∇ × u||2L∞(Ω)|φh
h|2 + C(1 + ν

1
4 )2
(
α4|∆u|2 + h2k+2|u|2k+1

)
The index k can be 0 or 1.
For term II we use Young’s inequality with p = 4 and a second time with p = 3

2
in

addition to Theorem 4.3:

II = ((∇× η)× (uh − u), φh
h
) ≤ C|∇η| |∇(uh − u)| |φh

h|
1
2 |∇φh

h|
1
2

≤ ν

24
|∇φh

h|2 + Cν−
1
3

(
|∇η|

4
3 |∇(uh − u)|

4
3 |φh

h|
3
2

)
≤ ν

24
|∇φh

h|2 + Cν−
1
3

(
|∇η|2 + |∇(uh − u)|4 |φh

h|2
)

≤ ν

24
|∇φh

h|2 + Cν−
1
3

(
|∇η|2 + (|∇u|+ hk|u|k+1)4 |φh

h|2
)
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Because (4.14) holds, we can choose k = 1.

≤ ν

24
|∇φh

h|2 + Cν−
1
3

(
|∇η|2 +

(
|∇u|4 + h4|∇u|4

)
|φh

h|2
)

In order to bound term III, we rewrite φh = φh
h−α2∆hφh

h
and use Young’s inequality.

III = ((∇× φh)× (uh − u), φh
h
)

= ((∇× φh
h
)× (uh − u), φh

h
)− ((∇× α2∆hφh

h
)× (uh − u), φh

h
)

≤ C|∇φh
h| |∇(uh − u)| |φh

h|
1
2 |∇φh

h|
1
2 + α2C|∇∆hφh

h| |∇(uh − u)| |φh
h|

1
2 |∇φh

h|
1
2

= C|∇φh
h|

3
2 |∇(uh − u)| |φh

h|
1
2 + α2C|∇∆hφh

h| |∇(uh − u)| |φh
h|

1
2 |∇φh

h|
1
2

≤ ν

48
|∇φh

h|2 + Cν−3 |∇(uh − u)|4︸ ︷︷ ︸
≤(|∇u|4+h4|∇u|4)

|φh
h|2 +

ν

48
|∇φh

h|2

+ α
8
3Cν−

1
3 |∇∆hφh

h|
4
3 |∇(uh − u)|

4
3 |φh

h|
2
3

Analogously to part 3.2 we insert a new variable µ to loose all the constants in front of
the descrete Laplacian.

≤ ν

24
|∇φh

h|2 + Cν−3(|∇u|4 + h4|∇u|4)|φh
h|2 +

1

4
α4Cν

1
2µ−

1
2 |∇∆hφh

h|2

+ C
µ

ν2
|∇(uh − u)|4︸ ︷︷ ︸
≤(|∇u|4+h4|∇u|4)

|φh
h|2

≤ ν

24
|∇φh

h|2 + C(ν−3 + ν−2)(|∇u|4 + h4|∇u|4)|φh
h|2 +

ν

4
α4|∆hφh

h|2.

There is one more term to bound to finish bounding the trilinear term. To obtain an
upper bound for term IV, we will use the following identity:

(∇× a)× b = a× (∇× b) + a · ∇b+ b · ∇a−∇(a · b). (4.19)

Furthermore we will use integration by parts and the fact that we have periodic or no-slip
BC:

(ηh · ∇uh, φh
h
) = −(ηh · ∇φh

h
, uh)− (∇ · ηh, uh · φh

h
) (4.20)

and

(∇(ηh · uh), φh
h
) = −(ηh · uh,∇ · φh

h
). (4.21)

We insert (4.19),(4.20) and (4.21) into IV:

IV = ((∇× uh)× ηh, φh
h
)

= (uh × (∇× ηh), φh
h
) + (uh · ∇ηh, φh

h
) + (ηh · ∇uh, φh

h
)− (∇(uh · ηh), φh

h
)

= (uh × (∇× ηh), φh
h
) + (uh · ∇ηh, φh

h
)− (ηh · ∇φh

h
, uh)− (∇ · ηh, uh · φh

h
)

+ (ηh · uh,∇ · φh
h
).
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All terms can be estimated in the same way.

≤ C|uh|
1
2 |∇uh|

1
2 |∇ηh| |∇φh

h|

≤ Cν−1|uh| |∇uh| |∇ηh|2 +
ν

24
|∇φh

h|2.

Summary of triliniar term
Let us gather what we have shown so far for the non-linear term

((∇× uh)× uhh, φh
h
)− ((∇× u)× u, φh

h
)

≤ Cν−
1
2 |∇η|2 + |∇u|4 |φh

h|2 +
ν

24
|∇φh

h|2 Part 3.1

+
ν

24
|∇φh

h|2 + C
(
ν−3 + µν−2

)
|φh

h|2 |∇u|4 +
ν

4
α2|∆hφh

h|2 Part 3.2

+ C||∇ × u||2L∞(Ω)|φh
h|2 + C(1 + ν

1
4 )2
(
α4|∆u|2 + h2k+2|u|2k+1

)
Part 3.3 I

+
ν

24
|∇φh

h|2 + Cν−
1
3

(
|∇η|2 +

(
|∇u|4 + h4|∇u|4

)
|φh

h|2
)

Part 3.3 II

+
ν

24
|∇φh

h|2 + C(ν−3 + ν−2)(|∇u|4 + h4|∇u|4)|φh
h|2 +

ν

4
α4|∆hφh

h|2 Part 3.3 III

+ Cν−1|uh| |∇uh| |∇ηh|2 +
ν

3
|∇φh

h|2 Part 3.3 IV

≤ 5ν

24
|∇φh

h|2 +
ν

2
α4|∆hφh

h|2 + C max
(
ν−

1
2 , ν−

1
3 , ν−1

)
(1 + |uh| |∇uh|)|∇η|2

+ C max
(

1, ν−
1
3 , ν−3, ν−2

) (
|∇u|4 + ||∇ × u||2L∞(Ω)

)
|φh

h|2

+ C(1 + ν
1
4 )2
(
α4|∆u|2 + h2k+2|u|2k+1

)
.

We can shorten the expression slightly by stating:

max
(
ν−

1
2 , ν−

1
3 , ν−1

)
= max

(
ν−

1
3 , ν−1

)
,

max
(

1, ν−
1
3 , ν−3, ν−2

)
= max

(
1, ν−3

)
.

This concludes the final estimate for the trilinear part.

((∇× uh)× uhh, φh
h
)− ((∇× u)× u, φh

h
)

≤ 5ν

24
|∇φh

h|2 +
ν

2
α2|∆hφh

h|2 + C max
(
ν−

1
3 , ν−1

)
(1 + |uh| |∇uh|)|∇η|2

+ C max
(
1, ν−3

) (
|∇u|4 + ||∇ × u||2L∞(Ω)

)
|φh

h|2

+ C(1 + ν
1
4 )2
(
α4|∆u|2 + h2k+2|u|2k+1

)
.

(4.22)

Part 4: Continue to estimate the inequality from part 2
We consider the inequality of part 2 and apply (4.22), in addition we apply Young’s
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inequality to all the terms besides the trilinear part, to be able to partly absorb it by
left-hand side.

1

2

∂

∂t

(
|φh

h|2 + α2|∇φh
h|2
)

+ ν
(
|∇φh

h|2 + α2|∆hφh
h|2
)

≤ |P − qh|
∣∣∣∇ · φhh∣∣∣− ∣∣∣∣ ∂∂tη

∣∣∣∣ ∣∣∣φhh∣∣∣− ν |∇η| ∣∣∣∇φhh∣∣∣+ ((∇× uh)× uhh, φh
h
)

− ((∇× u)× u, φh
h
)

≤ Cν−1 |P − qh|2 +
3ν

24

∣∣∣∇φhh∣∣∣2 + C

∣∣∣∣ ∂∂tη
∣∣∣∣2 + C

∣∣∣φhh∣∣∣2 + Cν|∇η|2

+
4ν

24

∣∣∣∇φhh∣∣∣+
5ν

24
|∇φh

h|2

+ C max
(
ν−

1
3 , ν−1

)
(1 + |uh| |∇uh|)|∇η|2

+ C max
(
1, ν−3

) (
|∇u|4 + ||∇ × u||2L∞(Ω)

)
|φh

h|2

+
ν

2
α2|∆hφh

h|2 + C(1 + ν
1
4 )
(
α4|∆u|2 + h2k+2|u|2k+1

)
≤ Cν−1 |P − qh|2 + C

∣∣∣∣ ∂∂tη
∣∣∣∣2 +

ν

2
|∇φh

h|2 +
ν

2
α4|∆hφh

h|2

+ C max
(
ν, ν−1

)
(1 + |uh| |∇uh|)|∇η|2

+ C max
(
1, ν−3

) (
1 + |∇u|4 + ||∇ × u||2L∞(Ω)

)
|φh

h|2

+ C(1 + ν
1
4 )
(
α4|∆u|2 + h2k+2|u|2k+1

)
We absorb ν

2
(|∇φh

h|2 + α2|∆hφh
h|2) by the left-hand side and multiply through by 2:

∂

∂t

(
|φh

h|2 + α2|∇φh
h|2
)

+ ν
(
|∇φh

h|2 + α2|∆hφh
h|2
)

≤ Cν−1 |P − qh|2 + C

∣∣∣∣ ∂∂tη
∣∣∣∣2 + C(1 + ν

1
4 )
(
α4|∆u|2 + h2k+2|u|2k+1

)
+ C max

(
ν, ν−1

)
(1 + |uh| |∇uh|)|∇η|2

+ C max
(
1, ν−3

) (
1 + |∇u|4 + ||∇ × u||2L∞(Ω)

)
|φh

h|2.

(4.23)

Before we integrate above inequality we consider an auxiliary calculation for |∇η|2:

t∫
0

|uh| |∇uh| |∇η|2 ds ≤ ||uh||L∞([0,t])

t∫
0

|∇uh| |∇η|2 ds

≤ ||uh||L∞([0,t])

 t∫
0

|∇uh|2 ds


1
2

︸ ︷︷ ︸
≤C because uh∈L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω))

 t∫
0

|∇η|4 ds


1
2

≤ C

 t∫
0

|∇η|4 ds


1
2
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and for |∇u|4:

|∇u|4 ≤ C|u|4 ≤ const,

because u ∈ C(0, T ;V ). Now we integrate (4.23) over [0, t]:

(
|φh(t)

h
|2 + α2|∇φh(t)

h
|2
)
−
(
|φh(0)

h
|2 + α2|∇φh(0)

h
|2
)

+ ν

t∫
0

(
|∇φh(s)

h
|2 + α2|∆hφh(s)

h
|2
)
ds

≤ Cν−1

t∫
0

|P − qh|2 ds+ C

t∫
0

∣∣∣∣ ∂∂tη(s)

∣∣∣∣2 ds
+ C(1 + ν

1
4 )2

t∫
0

(
α4|∆u(s)|2 + h2k+2|u(s)|2k+1

)
ds

+ C max
(
ν, ν−1

) t∫
0

|∇η|4 ds


1
2

+ C max
(
1, ν−3

) t∫
0

(
1 + |∇u(s)|4 + ||∇ × u(s)||2L∞(Ω)

)︸ ︷︷ ︸
≤const

|φh(s)
h
|2 ds.

Our next step is to apply a version of Gronwall’s lemma, the Gronwall’s inequality in
integral form: If

w(θ) ≤ a(θ) +

θ∫
0

b(ζ)w(ζ)dζ (4.24)

holds, then

w(θ) ≤ a(θ) +

θ∫
0

a(ζ)b(ζ)e

(
θ∫
ζ

b(ξ)dξ

)
dζ (4.25)

is true.
Before we use Gronwall’s inequality, we have to extend the right-hand side, such that

all terms on the left-hand side appear on the right-hand side. Since α2|∇φh(s)
h
|2 +

ν
s∫

0

(
|∇φh(r)

h
|2 + α2|∆hφh(r)

h
|2
)
dr is positive we can add this term to the right-hand

side and the inequality is still valid:
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w(t)︷ ︸︸ ︷(
|φh(t)

h
|2 + α2|∇φh(t)

h
|2
)

+ ν

t∫
0

(
|∇φh(s)

h
|2 + α2|∆hφh(s)

h
|2
)
ds

≤ Cν−1

t∫
0

|P − qh|2 ds+ C

t∫
0

∣∣∣∣ ∂∂tη(s)

∣∣∣∣2 ds
+ C(1 + ν

1
4 )2

t∫
0

(
α4|∆u(s)|2 + h2k+2|u(s)|2k+1

)
ds

+ C max
(
ν, ν−1

) t∫
0

|∇η|4 ds


1
2

+
(
|φh(0)

h
|2 + α2|∇φh

h
(0)|2

)



a(t)

+ C max
(
1, ν−3

)︸ ︷︷ ︸
b

t∫
0

|φh(s)
h
|2 + α2|∇φh(s)

h
|2 + ν

s∫
0

(
|∇φh(r)

h
|2 + α2|∆hφh(r)

h
|2
)
dr

︸ ︷︷ ︸
≥0︸ ︷︷ ︸

w(s)

ds.

We notice that a(t) is an increasing function and b(t) ≡ b. Let us also denote C̃ =
1 + max(ν, ν−1) as the largest constant used in the above equation. For the sake of
notation we will briefly adopt the notation used in (4.24) since we will use Gronwall’s
lemma right away:

w(t) ≤ a(t) + C̃eC̃t
t∫

0

a(s)ds

≤ a(t) + C̃eC̃t
t∫

0

a(t)ds

≤ (1 + tC̃eC̃t)︸ ︷︷ ︸
≤(1+TC̃eC̃T )=C

a(t) ≤ Ca(t).

Going back to our usual notation will give us:
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(
|φh(t)

h
|2 + α2|∇φh(t)

h
|2
)

+ ν

t∫
0

(
|∇φh(s)

h
|2 + α2|∆hφh(s)

h
|2
)
ds

≤ C

t∫
0

|P − qh|2 ds+ C

t∫
0

∣∣∣∣ ∂∂tη(s)

∣∣∣∣2 ds
+ C

t∫
0

(
α4|∆u(s)|2 + h2k+2|u(s)|2k+1

)
ds

+ C

 t∫
0

|∇η|4 ds


1
2

+
(
|φh(0)

h
|2 + α2|∇φh

h
(0)|2

)
.



(4.26)

Part 5: Putting everything together
To receive the final bound, we start from the beginning and take a look at the error
|u− uh| and apply (4.10) and (4.26):

|u(t)− uh(t)|2 +

t∫
0

|u(s)− uh(s)|2 ds

≤ |η(t)|2 + |φh(t)|2 +

t∫
0

|η(s)|2 ds+

t∫
0

|φh(s)|2 ds

≤ |η(t)|2 +

t∫
0

|η(s)|2 ds+ |φh(t)
h
|2 + α2|∇φh(t)

h
|2 + ν

t∫
0

(
|∇φh(s)

h
|2 + α2|∆hφh(s)

h
|2
)
ds

≤ |η(t)|2 +

t∫
0

|η(s)|2 ds+ C

t∫
0

|P − qh|2 ds+ C

t∫
0

∣∣∣∣ ∂∂tη(s)

∣∣∣∣2 ds
+ C

t∫
0

(
α4|∆u(s)|2 + h2k+2|u(s)|2k+1

)
ds

+ C

 t∫
0

|∇η|4 ds


1
2

+
(
|φh(0)

h
|2 + α2|∇φh

h
(0)|2

)
︸ ︷︷ ︸
≤|φh(0)|2≤|η(0)|2+|φh(0)|2︸ ︷︷ ︸

=0

=|η(0)|2

.

As a final step, we take the supremum over t ∈ [0, T ] and the infimum over ũ ∈ Vh, qh ∈ Qh

and insert the definition of η(t).

After proving convergence we ask ourselves what we can expect from actual computation,
therefore we consider Taylor-Hood FE basis functions, where we know that they converge
with optimal rate, i.e., quadratic in terms of the gridsize h, see [QV08]. This motivates
the next theorem as a final result for this chapter.
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Theorem 4.5 (Order of convergence with Taylor-Hood finite elements). Let (Xh, Qh)
be finite elements spaces corresponding to Taylor-Hoof elements α = h for each mesh.
Assuming u(t, ·) is a solution for NSE then the corresponding NS-α approximations
converge at a rate of O(h2).

Proof. Every term on the right-hand side of Theorem 4.4 can be estimated by O(h4) from
above using the optimality estimate of Taylor-Hood elements. Therefore this estimate
holds:

sup
t∈[0,T ]

|u(t)− uh(t)|2 +

T∫
0

|u(s)− uh(s)|2 ds ≤ O(h4)

⇒ ||u− uh||C(0,T ) + ||u− uh||L2(0,T ;H) ≤ O(h2)
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5 Numerical simulations

In our simulations, we consider the flow though a channel using an anisotropic grid in
the direction perpendicular to the walls. The simulations were performed on two grids,
a coarse and a finer one. The filter width parameter α should be proportional to the
meshsize h, α = Ch, where C is the filter width constant that we can choose arbitrary.
In our numerical experiments we will vary the filter width constant on the same grid and
compare the results. Note that unlike in the numerical analysis, α is not constant on
the grid, as the grid is anisotropic. As there are different ways of measuring the width
of a mesh cell, we performed our experiments for three different measures, namely the
geometric mean, the diameter of the cell and the shortest edge of the cell.

5.1 Channel flow

We consider the flow through a rectangular duct Ω. The bottom wall is at y = 0, the top
wall is at y = 2H and the center line is at y = H, z = 0. This makes Domain Ω to be:

Ω = (−2π, 2π)× (0, 2H)× (−2

3
π,

2

3
π).

The mean flow is predominantly in the x-direction, the velocity varies mainly in the
y-direction. Assuming the height in z-direction is large compared to 2H, allows us to
assume that the flow is statistically independent of z, except of course at and near the
walls. We use homogeneous Dirichlet BC for the top and bottom walls (y = 0, y = 2H)
and periodic BC in x-direction. This choice of BCs makes the channel infinitely long
and infinitely wide, so we do not have to deal with walls and the hereby arising issues.
The x-, y- and z-direction are called stream wise, cross stream and span wise direction
respectively. As a consequence of an infinitely long duct, the statistics no longer vary in
the stream wise direction, making the flow statistics only dependent on the cross stream
direction, resulting in a statistically symmetric flow around the y = H. For more details
see [Pop00] and [JR07].

5.2 The discretization

The NS-α model is discretized in time by a Crank-Nicolson method. It is well known to
be an accurate and efficient temporal discretization of the incompressible NSE.

The Crank-Nicolson scheme for (3.1) is the following:

un+1 +
1

2
∆tn

(
− ν∆un+1 + (un+1 · ∇)un+1 +∇Pn+1

)
= un +

1

2
∆tn

(
− ν∆un + (un · ∇)un +∇Pn

)
+

1

2
∆tn(fn+1 + fn),

∇ · un+1 = ∇ · un+1 = 0,

un+1 = un+1 − α2∆un+1 +∇λ.


(5.1)

This is transformed into variational form and discretized by a finite element method
using the Q2/P

disc
1 finite elements. We also replace (∇u,∇v) by 2(D(u),D(v)), where

D(u) = 1
2
(∇u+∇uT ) is the deformation tensor or the symmetric gradient.
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(un+1, v) +
1

2
∆tn

(
2ν(D(un+1),D(v)) + (un+1 · ∇)un+1, v) + (Pn+1,∇ · v)

)
= (un, v) +

1

2
∆tn

(
2ν(D(un),D(v)) + (un · ∇)un, v) + (Pn,∇ · v)

)
+

1

2
∆tn(fn+1 + fn, v),

(∇ · un+1, q) = (∇ · un+1, q) = 0,

(un+1, v) = (un+1 − α2∆un+1, v) + (λ,∇ · v).


(5.2)

We will solve (5.2) for every timestep by linearizing the equation to obtain an Oseen

system, that we can solve by a fixed point iteration. We hereby replace (un+1
(k+1)·∇)u

(k+1)
n+1

by (un+1
(k) · ∇)u

(k+1)
n+1 , where k is the iterate in this timestep. As a result we get the final

numerical scheme:

(u
(k+1)
n+1 , v) +

1

2
∆tn

(
2ν(D(u

(k+1)
n+1 ),D(v)) + ((un+1

(k) · ∇)u
(k+1)
n+1 , v) + (P

(k+1)
n+1 ,∇ · v)

)
= (un, v) +

1

2
∆tn

(
2ν(D(u),D(v)) + ((un · ∇)un, v), v) + (Pn,∇ · v)

)
+

1

2
∆tn(fn+1 + fn, v),

(∇ · u(k+1)
n+1 , q) = (∇ · un+1

(k+1), q) = 0,

(u
(k+1)
n+1 , v) = (un+1

(k+1) − α2∆un+1
(k+1), v) + (λ,∇ · v).

The Crank-Nicolson scheme was applied with an equidistant time step of ∆tn = 0.002.
In the x- and z-direction we used a uniform grid, but it is an isotropic because of the
y-direction, where the spacing between the nodes becomes finer and finer the closer we
approach the wall. The nodes yi are given by:

yi = 1− cos( iπ
Ny

), i = 1, · · ·Ny,

where Ny is the number of nodes in the y-direction.

5.3 Statistics of interests

We want to compare the results of our computational experiments for NS-α with the sta-
tistical results of direct numerical simulations for NSE. For that purpose we will introduce
some statistics and mean values we are interested in.

Let uh(t, x, y, z) = (U(t, x, y, z), V (t, x, y, z),W (t, x, y, z)) be the solution computed with
the scheme above and let Nx, Ny, Nz denote the number of gridpoints in each x-, y-, z-
direction respectively. In the context of the NSE we always consider mean values, let 〈·〉s
be the average in space, then we can define the spatial mean velocity at time tn in the
plane y = const as:

〈
uh(tn, x, y, z)

〉
s

=
1

NxNz

Nx∑
i=1

Nz∑
j=1

uh(tn, xi, y, zj).
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This will be done for all planes y = const. If we average these spatial means in time,
recall ∆tn = 0.002 for all times, we get the mean velocity profile.

Definition (Mean velocity profile).

uhmean(y) =
1

Nt + 1

Nt∑
n=0

〈
uh(tn, x, y, z)

〉
s
.

We will present results for the first component of uh, namely U .

The simulated friction velocity uhτ is defined as the average of the computed friction
velocities at both walls, where the friction velocity at each wall is approximated by a
one-sided difference:

uhτ =
1

2

(
uhmean(y+

min)

y+
min

− uhmean(2− y+
min)

2− y+
min

)
,

where y+
min is the minimum height of a cell. This will be used later to normalize the

secondary statistics.
Second order statistics in turbulent channel flows are the off-diagonal Reynolds stresses
and the root mean square turbulence intensities. Since the definition of the Reynolds
stresses aren’t unique in the literature we will define them again, to specify what we are
referring to. The Reynolds stresses can be defined by:

Ri,j =
〈
〈uiuj〉s

〉
t
−
〈
〈ui〉s

〉
t

〈
〈uj〉s

〉
t
. (5.3)

The discrete Reynolds stresses are defined analogously. We can interpret the Reynolds
Stress Tensor as the force that determines how the average 〈ui〉 develops. The diagonal
entries of the stress tensor are called normal stresses, the off-diagonal stresses are called
shear stresses. Obviously the normal and shear stresses depend on the choice of the coor-
dinate system, therefore distinguishing between isotropic and anisotropic stresses instead
is more useful. Since the trace of a tensor is invariant under coordinate transformation,
we define isotropic stress as the scaled trace, namely 1

3

∑3
i=1 Rii. Therefore the deviation

from isotropy can be expressed by Rij − 1
3

∑3
i=1 Rii. Finally we can define the second

order statistics we are interested in.

Since we want to compare our results to reference data coming from DNS, we will have to
compare the statistics of uDNS to the statistics of u. Let us define the discrete normalized
off-diagonal Reynolds stresses by:

Rh,∗
i,j =

RNSα
i,j

(uhτ )
2
.

This leads to the following definition:
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Definition (Root mean square turbulence intensities). The root mean square turbu-
lence intensities are computed by:

uhrms =
(
Rh,∗

1,1

) 1
2

=
1

uhτ

(
RNSα

1,1 −
1

3

3∑
i=1

RNSα
i,i

) 1
2

.

5.4 Results

Recall that the filter width α is proportional to the cell width hK , where K is a cell. The
cell size varies in wall normal direction so does the filter width. We will perform com-
putational tests with different values for the filter width constant, namely 0.2, 0.3, ..., 0.9,
1.0, 1.2, 1.5, 2.0. Additionally we will test three different rules to compute hK , denote the
length of the edges of a cell K by hx, hy and hz. We used the following three rules:

• Geometric mean: geom(K) = 3
√
hxhyhz.

• Diameter : diam(K) =
√
h2
x + h2

y + h2
z.

• Shortest edge: edge(K) = min{hx, hy, hz}

In the first stage of our experiments we will present results for values of C in the range of
C = 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 2, 3, ..., 1.0, 1.025, 1.05, 1.2, 1.5, 2.0. They were com-
puted for each type of measuring the gridsize. The Results are presented in figures 1,2
and 3. We classify the results by first comparing the mean profile and select acceptable
values of C. Out of these values we choose the one that has the best results in terms of
the secondary statistics.

For the geometric measure (Figure 1), the value C = 0.025 was by far the best value. It was
the closest to the reference mean velocity profile from DNS calculation. The computed
root mean square intensities (rmsu) have the correct form, but highly overpredict the
reference values. The overprediction is smallest for the value C = 0.025. The results for
Ruv aren’t good in particular, since they show the same overprediction as for the rmsu.
The form of the curve is similar to the reference values C = 0.025 and C = 0.05, but
the oscillations near the wall are quite pronounced. These are both effects that will be
lessened considerably on the finer grid. In conclusion C = 0.025 seems to be the best
value here.
For the diameter measure (Figure 2) the acceptable values for the filter width constant
were larger then in the first case. Values C = 0.05,C = 0.1 and C = 0.125 produce
acceptable results when considering the mean. The root mean square intensities are still
being overpredicted for all values, but C = 0.1 and C = 0.125 seem to work best for rmsu
and Ruv. We observe that for values smaller then C = 0.1 our results tend to move away
from the reference values.
For the shortest edge measure we can see that every value for C is somehow decent.
Considering the rmsu and Ruv results we observe that the form of our tests coincide with
the reference, but for C = 0.05 we can see a tendency to move further away from the
reference.
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Mean and difference mean

rms and Ruv

Figure 1: h = geom(K)
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Mean and difference mean

rms and Ruv

Figure 2: h = diam(K)
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Mean and difference mean

rms and Ruv

Figure 3: h = edge(K)
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In hindsight, our calculations show, that there is no best value for the filter width con-
stant and the measurement of h. No value for C satisfies all statics well enough to be
considered the best fitting value. In terms of the first order statistics, namely the mean
value comparison, C = 0.025 for the geometric measure and C = 0.1 and C = 0.125
for the diameter and shortest edge measure gives good results. Considering second order
statistics these values don’t come close to the reference. All in all, the dependence on α
can be seen very clearly.
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6 Summary and Outlook

In [FHT02] it is shown that the dimension of the global attractor is decreasing, this
theoretical statements suggests that the NS-α model of turbulence is easier to compute.
Our own numerical experiments did not provide us with a good value for the filter width
constant. More testing might have been necessary for that. It might be interesting to
consider the question of what would be a good result.
A comparison of NS-α and NS-ω is done in [LMNR10]. In Chapter 5 an interesting idea
emerges: NS-α and NS-ω perform well in different flow regions. This would lead to a
combination of both models which is a very interesting perspective for further research.
It is also interesting to improve the numerical approximation schemes to improve numeri-
cal results. In [MNOR11] it was possible to drastically improve the results by introducing
a combination of a stabilization of grad-div type and an adapted approximate deconvo-
lution of the filtering operation.
It is needless to say that the potential of NS-α has not been exhausted yet.

Nevertheless, more numerical experiments using the NS-α model and studies that com-
pare the results of experiments using the NS-α model to the results obtained by other
turbulence models are needed.
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