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1 Introduction

“Mathematics is the queen of

sciences.”

Carl Friedrich Gauß

One fundamental equation of fluid dynamics is the Convection-Diffusion-Reaction equation

given by

−ε∆u+ b · ∇u+ cu = f,

in a bounded domain Ω ⊂ Rd. Such equations appear in a lot of physical processes such

as the Oseen equations [Ose11], water pollution problems [REI+07], simulation of oil ex-

traction from underground reservoirs [Ewi83], and convective heat transport [JK49]. These

equations can also be found in semiconductor applications where the continuity equation

for electrons in steady-state scaled models of a semiconductor is a convection-diffusion equa-

tions (see [PCSM87]). Their application can also be seen in biology as they model chemotaxis

(movement of an organism in response to chemical stimulus) observed in bacteria [KS71],

population migration [AS02], and the study of VEGFC (Vascular endothelial growth factor

C) patterning in the context of lymphangiogenesis [WR17].

These equations are referred to as singular perturbation problems as they depend on a small

positive parameter ε and whose solution (or derivatives) approaches a discontinuous limit as

ε tends to zero. In this work, we are interested in the case when the convection (b) dominates

diffusion (ε), i.e., ‖b‖L∞(Ω) � ε, the reason being this case gives rise to layers in the interior

and boundary. The terminology boundary layer was first introduced by Ludwig Prandtl at

the 3rd International Congress of Mathematicians in Heidelberg, 1904. Layers can be defined

as narrow regions where the solution has a steep gradient.

The numerical solution of such problems also depends on the singular perturbation parameter

ε. If standard numerical approximations such as central finite difference method (FDM) or

the Galerkin finite element method (FEM) are used, then for a critical value of ε, i.e., ε� 1,

the numerical solution cannot be used in practice. The reason for such behavior is that the

layers are so narrow that they cannot be properly resolved on the grid. Hence, one would

prefer techniques that are robust with respect to ε. Since the analytic solution depends on

ε, also the numerical solution might depend on this parameter. By robustness we mean that

1



1 Introduction

the numerical solution does not blow up if ε → 0. . Along with robustness, we would also

like the numerical solution to be physically consistent, i.e., it possesses the same property as

that of the analytical solution. For Convection-Diffusion-Reaction equations this translates

to the satisfaction of maximum principles or for numerical solution, the discrete analogue, the

discrete maximum principles (DMP). The starting point of numerical algorithms satisfying

the DMP was presented in the work of Peter Lax, in [Lax54]. The Lax-Friedrichs scheme is

based on his work on the finite difference algorithm for one-dimensional fluid flow problem.

It guarantees the boundedness of the solution in terms of initial values. Robustness of the

method and satisfaction of DMP leads to the research area of stabilized discretizations of

Convection-Diffusion-Reaction equations. In this work we will concentrate on stabilized finite

element methods.

Many of the stabilized schemes follow the idea of upwind methods or Petrov-Galerkin meth-

ods (see [RST08]). The most known stabilized scheme in the context of FEM is the Streamline

Upwind Petrov-Galerkin (SUPG) scheme introduced by Hughes and Brooks in [HB79, BH82],

which is a linear scheme. The basic idea is to use different tests and trial space for the problem

and introduce certain stabilization parameters known as the SUPG parameters. The SUPG

scheme can be applied to different shapes of elements and different orders of polynomials.

They compute the layers sharply but the solution possesses oscillations of a considerable

order of magnitude near the layer.

Another approach is to use a nonlinear stabilized method instead of a linear method. One of

the early works in this direction is the Mizukami-Hughes method introduced in [MH85] for

linear triangular elements. It belongs to a very small class of stabilized methods which satisfy

the DMP. Results relating to the existence, uniqueness, and convergence of the solution are

not available. Also, because of the nonlinear nature of the problem it’s difficult to solve

the arising nonlinear system of equations. Hence, one asks, “What is an ideal stabilized

technique?”. In our opinion some of the important features of a stabilized FEM are:

1. Computation of accurate and sharp layers,

2. Satisfaction of discrete maximum principle,

3. Easy solvability of the arising system of equations.

1.1 Motivation

The origins of the algebraic flux correction schemes dates back to the work of Lax [Lax54]. Ac-

cording to the Godunov theorem [God59], linear bound preserving schemes of Lax-Freidrich

kinds can be at most first order accurate. Consequently, more accurate constrained solutions

can only be produced by nonlinear algorithms. To work around Godunov’s order constraint
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1.1 Motivation

Figure 1.1: Ludiwg Prandtl (1875-1953) and Peter Lax (1926-).1

with the aim of achieving sharp and non-oscillatory resolution of shock waves, Boris and Book

in [BB97] applied nonlinear conservative anti-diffusive corrections to a low order predictor.

This is the main idea of the flux corrected transport (FCT) algorithm and many other nonlin-

ear high resolution schemes. A fully multi-dimensional version of FCT was given in [Zal79]

and was combined with finite element discretization given by [PC86]. A general framework

for the design of bound-preserving finite element approximation was introduced by Kuzmin

in [Kuz07] and was named algebraic flux correction schemes (AFC). AFC schemes are an

approach for the stabilization of the Convection-Diffusion-Reaction equations which work on

an algebraic level rather than on a variational level.

The main ideology of satisfaction of DMP by AFC schemes is the use of the M-matrix

property. In the past few decades, a lot of research has been done in the implementation

and modification of these methods. We refer to following literature for an overview [Kuz06,

Kuz07, Kuz09, Kuz12, LKSM17, Loh]. The analysis of these schemes was developed recently

in [BJK16, BJK17]. The first results regarding convergence and solvability were presented

in [BJK16]. In [BJK17] a new limiter was proposed that made the AFC schemes linearity

preserving, i.e., the modification vanishes whenever we have a linear solution. The study

is also supported by the work in [BBK17] where a link between the nonlinear edge-based

diffusion and the AFC schemes is presented. A review of the analysis can be found in

[BJKR18].

One of the major drawbacks of the AFC schemes is their nonlinear nature. Even if one works

with linear PDEs, after applying the AFC schemes, one gets a system of nonlinear equations.

A brief overview on this topic was given in [BJKR18]. This thesis presents a comprehensive

study towards the solving of these nonlinear equations. In this work we investigate different

iterative schemes along with certain algorithmic components.

Another approach while solving singularly pertubed problems is the use of adaptive methods

controlled by a posteriori error estimation. The first step towards solving a posteriori error

estimation problem was done by Babuška and Rheinboldt, in [BR78]. And after that from

1978−1983, several results for explicit error estimator techniques were obtained, see [BR81].

1Images from: Ludwig Prandtl A Personal Biography Drawn from Memories and Correspondence and
Oberwolfach Photo Collection , https://opc.mfo.de/detail? photoID= 2458
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1 Introduction

Figure 1.2: Ivo Babuška and Werner Rheinboldt.2

By the early 1990s basic techniques of a posteriori error estimation were established and

then the focus shifted to its real-life applications problems, see [Ver94, Ver98]. In the review

[Sty05], the author predicts the success of adaptive methods over other methods for solving

Convection-Diffusion-Reaction equations. In this thesis, we combine the idea of algebraic

stabilization with adaptive refinements.

In many stabilization techniques one assumes certain assumptions on the grids, such as

Delaunay triangulation or weakly acute triangulations, see [XZ99, Kno06, BJK16]. While

using adaptive refinements one has to close the grids using conforming closures. This leads

to the subsequent grids losing the initial grid properties. One way around this is the use of

hanging nodes. Also, in three dimensions after the refinement process, the conforming closure

of the grid leads to problematic or non-admissible elements such as prisms and pyramids. In

this thesis we study the interplay of hanging nodes and AFC schemes.

1.2 Outline

The workflow of the thesis is as follows:

2Images from: https://users.oden.utexas.edu/ babuska/ and
https://www.professoren.tum.de/en/honorary-professors/r/rheinboldt-werner
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1.2 Outline

Chapter- 1

Chapter- 2

Chapter- 3

Chapter- 4

Chapter- 5

Chapter- 6

Chapter- 7

Figure 1.3: Workflow of the thesis

The first three chapters of the thesis contain introductory material. Chapter 2 formally

introduces and derive the steady-state and the evolutionary Convection-Diffusion-Reaction

equations. It is shown here that the analytic solution satisfies the maximum principles (both

the weak and the strong form). The chapter closes with the study of the existence and

uniqueness of the weak solution of these equations.

In Chapter 3 we introduce the idea of stabilized finite element methods. The formal definition

of the discrete maximum principle (DMP) is given along with the necessary and sufficient

conditions for the satisfaction of DMP. A brief overview of some of the standard discretiza-

tions and stabilization methods such as the Galerkin and the SUPG methods are given with

certain analytic results. Then, the main topic of this thesis, the algebraic flux correction

(AFC) schemes are discussed. A brief introduction alongside with the definition of different

limiters and a review of the analytical results are presented.

The main work of the thesis starts from Chapter 4. Here, different iterative solvers for the

steady-state Convection-Diffusion-Reaction equations are presented along with certain algo-

rithmic components such as dynamic damping [JK08], Anderson acceleration, [WN11] etc.

Finally, numerical simulations validating the results are presented in two and three dimen-

sions. The different techniques are compared on the basis of the number of nonlinear steps

and their solving time. It was found out that the most efficient approach, from computing

time, is a simple fixed point approach, because the solvers can exploit the properties of the

iteration matrix. This part of the thesis has already been published in [JJ20, JJ19].

Chapter 5 and Chapter 6 present the study of a posteriori error estimation for AFC schemes.

5



1 Introduction

In Chapter 5, we introduce some standard definitions, refinement techniques, and auxiliary

results that are used in the literature of a posteriori estimation. Then two different propos-

als are introduced for the global upper bound in the energy norm of the error, one using

a residual-based approach while the other uses the SUPG solution along with the SUPG

estimators presented in [JN13]. Numerical studies are done for examples in two dimensions

where the performance of the estimator is compared on the effectivity index, adaptive grid

refinement, and the individual terms of the estimators. It turns out that the residual-based

approach gave better results with adaptive grid refinements whereas the SUPG approach

gave better results with respect to the effectivity index. This chapter has been submitted

for publication and a pre-print version is available [Jha20].

Chapter 6 studies the error estimators presented in the previous chapter on grids with hanging

nodes. A preliminary including definitions and auxiliary results are presented. This chap-

ter also presents certain results for Lagrange elements on grids with hanging nodes. First,

we extend the idea of hanging nodes from lower order Lagrange elements to higher-order

elements. Then, we study the hanging nodes in the context of AFC schemes and present

examples of how certain limiters fail to satisfy DMP and while what modifications are re-

quired for others. Numerical simulations are presented in two dimensions which validate the

theoretical findings. It turns out that the grids with hanging nodes do not perform better

than the grids with conforming closure and hence should not be used with AFC schemes.

Finally, Chapter 7 summarizes all the results that have been presented in this thesis and

provides an outlook for the future work.

This thesis also includes two appendices. Appendix A gives the flowchart diagram of the

algorithms that are used in Chapter 4. Appendix B gives the numerical values for the

effectivity index for the example studied in Chapter 5.

1.3 Function Spaces

In this section we present a brief overview of the function spaces that will be used throughout

this thesis. We define the spaces over a bounded domain Ω ⊂ Rd, d ∈ {2, 3}. For a detailed

review on functional analysis, we refer to [Ada75].

Definition 1.1. (Space of Lebesgue p−integrable functions, Lp(Ω)) The Lebesgue

spaces are defined by

Lp(Ω) :=

{
f : Ω→ Rd :

∫
Ω

|f(x)|pdx <∞
}
, p ∈ [1,∞),

where the integral is to be understood in the sense of Lebesgue. The space L∞(Ω) is the

6



1.3 Function Spaces

space of all functions that are bounded for almost all x ∈ Ω, i.e.,

L∞(Ω) :=
{
f : Ω→ Rd : |f(x)| <∞ for almost all x ∈ Ω

}
.

Remark 1.2. The space Lp(Ω) is a Banach space with norm

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|pdx
)1/p

, p ∈ [1,∞)

and L∞(Ω) is a Banach space with the norm

‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)|,

where ess supx∈Ω is the essential supremum.

Remark 1.3. For p = 2, the space L2(Ω) is a Hilbert space with inner product defined as

(f, g)L2(Ω) :=

∫
Ω

f(x)g(x)dx

and the induced norm

‖f‖L2(Ω) := (f, f)
1/2

L2(Ω) .

Definition 1.4. (Multi-index) A multi-index α is a vector α = (α1, . . . , αn) with αi ∈
N ∪ {0}, i = 1, . . . , n. Derivatives are denoted by

Dα =
∂|α|

∂xα1
1 . . . ∂xαn

n

with |α| =
n∑
i=1

αi.

Definition 1.5. (Sobolev spaces, W k,p(Ω)) Let k ∈ N and p ∈ [1,∞]. The Sobolev space

W k,p(Ω) consists of all integrable functions f : Ω→ R such that for each multi-index α with

|α| ≤ k, the derivative Dαf exists in the weak sense and it belongs to Lp(Ω).

Remark 1.6. A norm is defined on the space W k,p(Ω), as

‖f‖k,p,Ω :=

∑
|α|≤k

‖Dαf‖pLp(Ω)

1/p

, p ∈ [1,∞)

and for p =∞ the norm is defined by

‖f‖k,∞,Ω :=
∑
|α|≤k

ess supx∈Ω|Dαf |.

Sobolev spaces equipped with these norms are Banach Spaces (see [Eva10]).

7
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We define a semi-norm on W k,p(Ω) as

|f |k,p,Ω :=

∑
|α|=k

‖Dαf‖pLp(Ω)

1/p

, p ∈ [1,∞)

and for p =∞ the semi-norm is defined by

|f |k,∞,Ω :=
∑
|α|=k

ess supx∈Ω|Dαf |.

Remark 1.7. For p = 2, the Sobolev spaces are Hilbert spaces. They are often denoted by

Hk(Ω), i.e., W k,2(Ω) = Hk(Ω) and they are equipped with the inner product

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω) .

We define the norm and semin-norm in the same way as for W k,p(Ω) and denote them by

‖ · ‖k,Ω, | · |k,Ω respectively.

Definition 1.8. (Sobolev Spaces, Hk
0 (Ω)) The Sobolev spaces Hk

0 (Ω) are defined as the

closure of C∞0 (Ω) with respect to the norm of Hk(Ω).

Remark 1.9. The space H−1(Ω) is the dual space of H1
0 (Ω) and not H1(Ω). Also, the

definition of Sobolev spaces can be extended to k ∈ R (see [Ada75]).

Remark 1.10. Throughout this work, if not mentioned otherwise a mathematical symbol

with an underline, like u, denotes a vector in RN .

8



2 Convection-Diffusion-Reaction-
Equations

Imagine an industry having a big chimney on its top emitting smoke. How does the pattern

of the smoke behave? One observes three things: first the smoke moves in the direction of

wind flow, second the smoke diffuses and goes from a region of high concentration to low

concentration, and finally, the smoke reacts with the air (Fig.2.1). The physical processes

corresponding to the above three phenomena are known as convection, diffusion, and reaction,

respectively. The same phenomena can be observed when we add some color to a flowing river.

The partial differential equations (PDEs) that models such process is called Convection-

Diffusion-Reaction equations. This chapter introduces the Convection-Diffusion-Reaction

equations and discusses their properties.

The contents of the chapter are as follows: the equations is derived in Sec. 2.1 using principle

of superposition. Next, results are presented in Sec. 2.2 regarding the physical properties

that are satisfied by the equations namely the maximum principles. Sec. 2.3 gives results on

the existence and uniqueness of the weak solution using Lax-Milgram lemma. Lastly, Sec. 2.4

summarizes the content of the chapter.

2.1 Derivation

The Convection-Diffusion-Reaction equations can be derived using the principle of superpo-

sition, i.e., convection and diffusion can be added together if they are linearly independent. It

is known that these processes are independent because the only way they can be dependent is

if one process feeds back to the other, which is not true in our case. It is known that diffusion

is a random process due to molecular motion. Due to diffusion, each molecule moves with

the same probability in an arbitrary direction and due to convection, each molecule will also

move in the flow direction. These processes are clearly additive and independent; because

the presence of flow does not affect the probability that the molecule will take a diffusive

step in an arbitrary direction, it just adds something.

Let Ω ⊆ Rd, d ∈ {1, 2, 3}, be a bounded domain with a regular boundary Γ with outward

9



2 Convection-Diffusion-Reaction-Equations

Figure 2.1: Smoke from an industry depicting convection, diffusion, and reaction.

pointing unit normal n. Let u = u(t, x) [mol/md] be the concentration of the reactant.

Using the conservation of mass, we have

d

dt

∫
Ω

udV = −
∫

Γ

f
flux
· nds+

∫
Ω

f̂dV,

where, f
flux

:= total flux and f̂ := f̂(u(t, x)) [mol/(mds)] is the source term.

Since all functions and Γ are assumed to be sufficiently smooth, we can simplify the above

equations by using the divergence theorem and changing differentiation with respect to time

and integration with respect to space which leads to∫
Ω

du

dt
dV = −

∫
Ω

∇ · f
flux
dV +

∫
Ω

f̂dV.

As Ω was an arbitrary volume it follows

du

dt
+∇ · f

flux
= f̂ . (2.1)

Now, as we have already noted that our convection and diffusion are independent events, we

can write our flux as the sum of convection and diffusion, i.e.,

f
flux

:= f conv

flux
+ fdiff

flux
.

10



2.1 Derivation

Now, using Fick’s law1 for fdiff

flux
and using convective transport for f conv

flux
we have,

fdiff

flux
= −ε∇u,

f conv

flux
= bu, (2.2)

where, ε := diffusion coefficient[m2/s] and b := convective velocity [m/s].

Substituting (2.2) into (2.1) and simplifying the equation we get

∂u

∂t
− ε∆u− u∇ · ε+∇ · (bu) = f̂ . (2.3)

If we have the case of incompressible flow and constant diffusion, then we can further simplify

our equation. For incompressible flow, our mass equation reduces to the continuity equation

as,

∇ · b = 0.

And for constant diffusion we have ∇ · ε = 0. So, our equation reduces to

∂u

∂t
− ε∆u+ b · ∇u = f̂ . (2.4)

Separating the reaction term (c(t, x)) with the source/sink term (f) and introducing ap-

propriate boundary and initial conditions, our Evolutionary Convection-Diffusion-Reaction

equations are
∂u

∂t
− ε∆u+ b · ∇u+ cu = f in (0, T ]× Ω,

u = ub on (0, T ]× ΓD,

−ε∇u · n = g on (0, T ]× ΓN,

u(0, x) = u0(x) in Ω,

(2.5)

where [0, T ] := time interval, ΓD := Dirichlet boundary, ΓN := Neumann boundary, Γ =

ΓD ∪ ΓN, and ΓD ∩ ΓN = ∅.

1

Definition 2.1. Fick’s first law of diffusion is as follows,

N = −D∇c,

where, N = the flux [mol/md−1s], D = the diffusion coefficient m2/s and c = the concentration mol/md.

11



2 Convection-Diffusion-Reaction-Equations

In case of steady-state concentration field our equations reduces to:

−ε∆u+ b · ∇u+ cu = f in Ω,

u = ub on ΓD,

−ε∇u · n = g on ΓN .

(2.6)

This chapter focuses on the steady state Convection-Diffusion-Reaction equations. Maximum

principles and weak solution theory also exist for the Evolutionary Convection-Diffusion-

Reaction equations (see [Eva10, Chapter 7, Sec. 7.1]).

2.2 Maximum Principles

As we have already noted that PDEs model physical processes, hence we expect them to

satisfy their physical properties as well. For Convection-Diffusion-Reaction equations, the

physical property that we are interested in are the maximum principles. In this section, we

will first introduce some definitions and then prove the weak maximum principle (see [Eva10,

Sec. 6.4.1]) for Convection-Diffusion-Reaction equations followed by the strong maximum

principle (see [Eva10, Sec. 6.4.2]).

Definition 2.2. Let Ω ⊂ Rd be an open connected set with boundary Γ. Let L be the

second order differential operator defined by,

L := −ε∆ + b · ∇+ c

= −
N∑

i,j=1

εij(x)Dij +
N∑
i=1

bi(x)Di + c(x), (2.7)

with εij(x) ∈ L∞loc(Ω), bi, c ∈ L∞(Ω), Di = ∂
∂xi

, and Dij = ∂2

∂xi∂xj
. Without loss of generality

we also assume the symmetric condition, εij = εji.

1. We say that the operator L is elliptic on Ω if for every x ∈ Ω there is Celliptic > 0 such

that
N∑

i,j=1

εij(x)zizj ≥ Celliptic‖z‖2
l2 ∀ z ∈ Rd.

2. We say that the operator L is strictly elliptic on Ω if there is Celliptic > 0 such that

N∑
i,j=1

εij(x)zizj ≥ Celliptic‖z‖2
l2 ∀ z ∈ Rd,

12



2.2 Maximum Principles

where ‖ · ‖l2 is the Euclidean norm.

Lemma 2.3. Let L be an elliptic operator of the form of (2.7), such that c ≥ 0. If u ∈ C2(Ω)

and Lu < 0 in Ω, then u cannot attain a non-negative maximum in Ω.

Proof. We will prove this using contradiction. Let u has a non-negative maximum in Ω, i.e.,

∃ x0 ∈ Ω such that u(x0) ≥ 0. As u(x) has a maximum at x0, therefore Di(x0) = 0 ∀i ∈
{1, . . . , n}. Then

N∑
i=1

bi(x)Diu(x0) + c(x)u(x0) ≥ 0.

As we assumed ε = {εij}Ni,j=1 to be symmetrical, we can diagonalize it. Hence, TεT T = D

where T T is the transpose of T and D is the diagonal matrix. Note, as L is elliptic, we have

dii ≥ Celliptic(x0) > 0.

Using the substitution y = Tx and U(y) = u(x), with the help of chain rule we get

N∑
i,j=1

εij(x0)Diju(x0) =
N∑

i,j=1

εij(x0)
N∑
l=1

Tli

N∑
k=1

Tkj

(
∂2U

∂xi∂xj

)
(Tx0)

=
N∑
i=1

dii
∂2U

∂y2
i

(Tx0) .

Since U has a maximum at Tx0 we have ∂2U
∂y2i

(Tx0) ≤ 0 ∀ i ∈ {1, . . . , N}, implying

−
N∑
i=1

dii
∂2U

∂y2
i

(Tx0) ≥ 0.

Hence, Lu(x0) ≥ 0 which is a contradiction.

Theorem 2.4. (Weak maximum principle) ([Eva10, Theorem 2, Sec. 6.4.1]) Suppose that

Ω is a bounded domain and L is a strictly elliptic operator with c ≥ 0. If u ∈ C2(Ω) ∩ C(Ω)

and Lu ≤ 0 in Ω, then a non-negative maximum is obtained at the boundary.

Proof. Suppose that Ω ⊂ {x = (x1, . . . , xd) : |x1| < C3} for some C3 > 0. Consider

w(x) = u(x) + C1e
C2x1 with C1, C2 > 0. Then by using strictly elliptic property of L, we

have

Lw = Lu+ C1

(
−C2

2ε11(x) + C2b1(x) + c(x)
)
eC2x1

≤ C1

(
−C2

2Celliptic + C2‖b‖∞ + ‖c‖∞
)
eC2x1 .

13



2 Convection-Diffusion-Reaction-Equations

We can choose C2 large enough so that Lw < 0. By Lemma 2.3 w cannot have a non-negative

maximum in Ω. Hence using the properties of supremum and boundedness of Ω, we have

sup
Ω

u ≤ sup
Ω

w ≤ sup
Ω

w+ = sup
Γ

w+ ≤ sup
Γ

u+ + C1e
C2C3 ,

where w+ = max{w, 0}.

For C1 → 0 we get the result.

Lemma 2.5. (Hopf’s lemma) Assume u ∈ C2(Ω)∩C1(Ω) and c ≥ 0 in Ω. Suppose further

Lu ≤ 0 in Ω, and ∃ x0 ∈ Γ such that u(x0) ≥ 0. Finally assume that Ω satisfies the interior

ball condition at x0 ( i.e. ∃ an open ball B ⊂ Ω with x0 ∈ ∂B). Then

∂u

∂nB
(x0) > 0, (2.8)

where nB is the outer normal to B at x0.

Proof. Refer to [Eva10, Sec. 6.4.2].

Theorem 2.6. (Strong maximum principle) ([Eva10, Theorem 3, Sec. 6.4.2]) Assume

u ∈ C2(Ω) ∩ C(Ω) and c ≥ 0 in Ω. Also assume Ω is an open, connected and bounded

domain. If Lu ≤ 0 in Ω and u attains its maximum over Ω at an interior point, then u is

constant within Ω.

Proof. We will use method of contradiction to prove the theorem.

Let maxΩ u = M and C = {x ∈ Ω : u(x) = M}. Suppose u is not constant, i.e., u 6≡ M ,

and set V = {x ∈ Ω : u(x) < M}.

Choose y ∈ V such that dist(y, C) < dist(y,Γ) and let B denote the largest ball with center

y whose interior lies in V . Then ∃ x0 ∈ C with x0 ∈ ∂B (See Fig. 2.2). Hence V satisfies

the interior ball condition at x0, so by Hopf’s lemma,

∂u(x0)

∂nB
> 0.

Since x0 ∈ Ω is maximum of u, therefore Du(x0) = 0 which is a contradiction.

Remark 2.7. (Minimum principles) One can also obtain the corresponding weak and strong

minimum principles by replacing u with −u in the above statements.

Example 2.8. (Standard 1d example) Let us take a simple example for (2.6) i.e. d = 1,

b = 1, c = 0, and f = 1 with homogeneous Dirichlet boundary conditions. Then our
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x0

Γ

y
V B

C

Figure 2.2: Proof of strong maximum principle.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

ε = 1.000
ε = 0.100
ε = 0.001

Figure 2.3: Solution of Example 2.8 for different values of ε.

equations reduce to

−εu′′ + u′ = 1, u(0) = u(1) = 0,

which has the solution

u(x) = x−
exp

(
x−1
ε

)
− exp

(−1
ε

)
1− exp

(−1
ε

) .

We see from the Fig. 2.3 that the solution satisfies the minimum principle for different values

of ε. We also note that the solution becomes steep close to the right boundary as ε becomes

small.
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2 Convection-Diffusion-Reaction-Equations

2.3 Weak Solution Theory

The existence and uniqueness of the solution for a PDE is quite a big research area. While

proving the existence of a classical solution of a PDE requires all coefficients to be sufficiently

smooth. In higher dimensions also the domain has to satisfy certain regularity conditions.

Such smoothness (or regularity) conditions are in practice often not satisfied and hence, in

general, one cannot expect the PDE to possess a classical solution. Nevertheless, the process

that is modeled with PDE occurs and hence a different notation of solution is required.

However, this solution will not possess the smoothness properties of the classical solution.

In this section, we present the notion of weak solution for Convection-Diffusion-Reaction

equations and show its existence and uniqueness.

Remark 2.9. Multiply (2.6) with an appropriate function v(x) with v = 0 on Γ and then

integrate the resulting equation on Ω. Integration by parts leads to∫
Ω

(−ε∆u+ b · ∇u+ cu) vdx =

∫
Γ

−ε (∇u · n) (s)vds+

∫
Ω

(
ε∇u · ∇v + (b · ∇u) v

+cuv
)
ds

=

∫
Ω

(ε∇u · ∇v + (b · ∇u) v + cuv) ds.

The integral on the boundary vanishes because of the boundary conditions on v. Denoting

the L2(Ω) inner product by (·, ·), we can write the above equation in compact form.

Definition 2.10. (Weak or Variational formulation) Let b, c ∈ L∞(Ω) and f ∈ H−1(Ω)

with u = 0 on Γ. The weak or variational formulation of a Convection-Diffusion-Reaction

problem is given by: Find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),

ε (∇u,∇v) + (b · ∇u+ cu, v) = 〈f, v〉 (2.9)

where 〈·, ·〉 denote the duality pairing between V (= H1
0 (Ω)) and its dual V ′(= H−1(Ω)). A

solution of (2.9) is called weak solution. The space in which the solution is searched is called

solution or ansatz space. The function v(x) is called test function and the space from which

it comes is the test space. Note, H−1(Ω) is dual of H1
0 (Ω) and not H1(Ω).

Remark 2.11. Boundary conditions

1. Essential boundary condition: Consider inhomogeneous Dirichlet boundary conditions

u(x) = ub(x) on Γ.

Such boundary conditions are included into the definition of the ansatz space,

Vub = {v ∈ H1(Ω) : v|Γ = ub},
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2.3 Weak Solution Theory

where the restriction to the boundary is understood in the sense of traces. As they are

required for the definition of the space they are called as essential boundary condition.

The test space is still V = H1
0 (Ω). Then the weak formulation reads as follows: Find

u ∈ Vub such that

ε (∇u,∇v) + (b · ∇u+ cu, v) = 〈f, v〉 ∀v ∈ V.

A different way of writing the variational problem uses an extension uub ∈ H1(Ω) of

ub(x) to Ω. The existence of such extension follows from the trace theorem. Then one

seeks u ∈ H1(Ω) such that ũ = u− uub ∈ V and

ε (∇ũ,∇v) + (b · ∇ũ+ cũ, v) = 〈f, v〉
+ε (∇uub ,∇v) + (b · ∇uub + cuub , v) ∀v ∈ V.

In this formulation, one has the same ansatz and test space.

2. Natural boundary conditions: Neumann boundary conditions appear in a straightfor-

ward way in the variational formulation. Since the integral on Neumann boundaries

appears in the integration by parts they are called natural boundary conditions. For

simplicity assume u(x) = 0 ∀x ∈ ΓD. Let VD = {v ∈ H1(Ω) : v|ΓD
= 0}, then the

variational formulation has the form. Find u ∈ VD such that

ε (∇u,∇v) + (b · ∇u+ cu, v) = 〈f, v〉+

∫
ΓN

ε (∇u · n) (s)v(s)ds ∀ v ∈ VD.

Definition 2.12. (Properties of bilinear form) Let (V, ‖ · ‖V ) be a Banach space. A

map a : V × V → R is called

1. bilinear, if a(·, ·) is linear in both arguments,

2. symmetric, if a(u, v) = a(v, u) for all u, v ∈ V ,

3. positive, if a(u, u) ≥ 0 for all u ∈ V ,

4. coercive or V -elliptic or positive definite, if there is a Celliptic > 0 such that a(u, u) ≥
Celliptic‖u‖2

V for all u ∈ V .

5. bounded if there is a Cbound > 0 such that

|a(u, v)| ≤ Cbound‖u‖V ‖v‖V

for all u, v ∈ V .

Theorem 2.13. (Lax-Milgram lemma) ([Eva10, Theorem 1, Sec. 6.2.1]) Let a(·, ·) :

V × V → R be a bounded and coercive bilinear form on the Hilbert space V. Then, for each

17



2 Convection-Diffusion-Reaction-Equations

bounded linear functional f ∈ V ′ there is exactly one u ∈ V with

a(u, v) = 〈f, v〉 ∀v ∈ V. (2.10)

Proof. Since, for u ∈ V the mapping v 7→ a(u, v) is a bounded linear functional on V , by

Riesz representation theorem2 we know that there exists an unique element w ∈ V such that

a(u, v) = (w, v) ∀ v ∈ V.

Let us denote w by Au whenever the above equation holds; so that

a(u, v) = (Au, v) ∀ v ∈ V.

We claim that A : V → V is a bounded linear operator. Let C1, C2 ∈ R and u1, u2 ∈ V , then

for each v ∈ V

(A(C1u1 + C2u2), v) = a(C1u1 + C2u2, v)

= C1a(u1, v) + C2a(u2, v)

= C1(Au1, v) + C2(Au2, v)

= (C1Au1 + C2Au2, v).

As the equality holds for all v ∈ V , and so we get that A is linear. Furthermore,

‖Au‖2 = (Au,Au) = a(u,Au) ≤ Cbound‖u‖‖Au‖.

Consequently ‖Au‖ ≤ Cbound‖u‖ for all u ∈ V , and so A is bounded and which implies

continuity as well.

Next we claim that A is injective, and R(A), the range of A is closed in V . To show this, we

compute

Celliptic‖u‖2 ≤ a(u, u) = (Au, u) ≤ ‖Au‖‖u‖.

Hence, Celliptic‖u‖ ≤ ‖Au‖ ∀ u ∈ V . We will use this to show that A is injective, and R(A)

is closed in V .

Let u1, u2 ∈ V such that Au1 = Au2, then by linearity of A we have Celliptic‖u1 − u2‖ ≤
‖Au1 − Au2‖ = 0, hence u1 = u2. For closeness, let {Aun}∞n=1 be a convergent sequence in

2

Theorem 2.14. (Riesz Representation Theorem) ([Eva10, Theorem 2, Appendix D]) Let H be a real
Hilbert space, with inner product (·, ·), and H ′ denote it’s dual space. Then, for each u′ ∈ H ′ there exists a
unique element u ∈ H such that

〈u′, v〉 = (u, v) ∀ v ∈ H.

The mapping u′ 7→ u is a linear isomorphism of H ′ onto H.
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2.3 Weak Solution Theory

R(A). We want to show its limit, say Au, belongs to V . Since, Aun is a convergent sequence

we have it is a Cauchy sequence as well. Now,

‖un − um‖ ≤
‖Aun − Aum‖

Celliptic

so, we have {un}∞n=1 is a Cauchy sequence and as V is complete we have {un}∞n=1 is convergent

as well. Now, A is a continuous operator and hence Aun → Au. By uniqueness of the limit

we have the limit of {Aun}∞n=1 belongs in R(A).

Finally, we claim that R(A) = V . Suppose not, then ∃ u( 6= 0) ∈ R(A)⊥ (orthogonal

complement of R(A)) but its a contradiction as Celliptic‖u‖2 = a(u, u) = (Au, u) = 0 implies

u = 0.

By Riesz representation theorem for f ∈ V ′ we have some w ∈ V such that

〈f, v〉 = (w, v) ∀ v ∈ V.

Hence, our problem reduces to finding a solution u ∈ V such that Au = w. Now, as A

is bijective we have the existence of the inverse and so there exist a unique solution to the

above problem.

Corollary 2.15. (Existence and uniqueness of a solution of (2.9)) Let V = H1
0 (Ω)

and assume f ∈ V ′, b, ∇b, c ∈ L∞(Ω), and(
c− 1

2
∇ · b

)
(x) ≥ σ0 > 0 ∀x ∈ Ω (2.11)

(as almost everywhere on Ω). Then, (2.9) has an unique solution.

Proof. Let us define,

a(u, v) :=

∫
Ω

(ε∇u(x) · ∇v(x) + b · ∇u(x)v(x) + c(x)u(x)v(x)) dx (2.12)

then it is a bilinear form in the space V = H1
0 (Ω) with ‖v‖V = ‖∇v‖L2(Ω) for v ∈ V . This

follows directly from the linearity of integration and differentiation.

Now, if we show this bilinear form is coercive and bounded then we have existence and

uniqueness of the solution to (2.9) by the Lax-Milgram lemma.

1. Coercitivity of a(·, ·). Using integration by parts and the product rule, one obtains

1

2

∫
Ω

(b(x) · ∇v(x)) v(x)dx = −1

2

∫
Ω

∇ · (b(x)v(x)) v(x)dx
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2 Convection-Diffusion-Reaction-Equations

= −1

2

∫
Ω

(∇ · b(x)) v(x)v(x)dx

−1

2

∫
Ω

(b(x) · ∇v(x)) v(x)dx.

Inserting the above expression in (2.12) with u(x) = v(x) and using (2.11) one has,

a(v, v) ≥
∫

Ω

ε(∇v(x))2dx = ε‖∇v‖2
L2(Ω) = ε‖v‖2

V .

Hence, a(·, ·) is coercive.

2. Boundedness of a(·, ·). Using the Cauchy-Schwarz inequality, Hölder’s inequality, and

the Poincaré-Friedreichs inequality3 we get,

|a(u, v)| ≤ ε‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖b‖L∞(Ω)‖∇u‖L2(Ω)‖v‖L2(Ω)

+‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ ε‖∇u‖L2(Ω)‖∇v‖L2(Ω) + CPF‖b‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω)

+C2
PF‖c‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω)

= C‖∇u‖L2(Ω)‖∇v‖L2(Ω),

where CPF is the constant appearing in Poincaré-Friedreichs inequality. Hence, the

bilinear form is bounded and (2.9) has a unique solution.

2.4 Summary

This chapter introduced the Convection-Diffusion-Reaction equations. An evolutionary and

its steady-state counterpart were derived. Sec. 2.2 and Sec. 2.3 concentrated on the max-

imum principles and the weak solution for the steady-state Convection-Diffusion-Reaction

equations, respectively. We noted that for the steady-state equation an important property

is that it satisfies the strong and weak maximum principles. While solving the equation

numerically we want our numerical solutions to obey these properties as well. Chapter 3 is

3

Theorem 2.16. (Poincaré-Friedreichs inequality) [BS08, Proposition 5.3.5] Let f ∈W 1,p
0 (Ω), then

‖f‖Lp(Ω) ≤
(
|Ω|
ωd

)1/d

‖∇f‖Lp(Ω) = CPF‖∇f‖Lp(Ω), p ∈ [1,∞),

where ωd is the volume of the unit ball in Rd.
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dedicated to the study of such numerical methods.

Lastly, we discussed the weak solution theory for the equations and noted that we have

existence and uniqueness of a weak solution.
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3 Stabilized Finite Element Methods

Numerical solutions that we get sometimes do not behave in the way we want them to behave.

The solution might be polluted with oscillations or in some cases might not approximate our

solution correctly. To illustrate this let us take a 1d example of (2.6).

Remark 3.1. (Example of two-point boundary value problem) Let b = 1, c = 0, and

f = 0 in (2.6) then we get an ordinary differential equation

−εu′′ + u′ = 0 in (0, 1) , u(0) = 0 , u(1) = 1. (3.1)

The analytical solution of the above problem is given by,

u(x) =
exp

(
x−1
ε

)
− exp

(−1
ε

)
1− exp

(−1
ε

) .

By applying the central finite difference scheme on the above equation we get our numerical

solution as

ui =
ri − 1

rN − 1
i = {0, . . . , N} with r =

2ε+ h

2ε− h
,

where h is the mesh width.

If h � 2ε, then r ≈ −1 and hence we have ui ≈ (−1)i−1
(−1)N−1

, then for even value of N we get

oscillatory solutions which is not correct. Fig. 3.1 depicts this for ε = 10−6 and N = 32.

If h < 2ε then we have useful approximation which can be seen in Fig. 3.1 for ε = 10−3 and

N = 128.

But in applications ε ≈ 10−6, so for useful approximations, we need small mesh width which

is not affordable, especially for higher dimension cases. Hence, we note that some kind

of modification is required. In numerical analysis terminology, this kind of modification is

referred to as stabilization. The simplest stabilization technique for finite difference method

is the upwind method in which the finite difference approximation of the convective term is

computed with values from upwind direction (For a detailed explanation refer to [RST08,

Sec. 2.1.2]).

Finite Element Methods (FEM) are a different method of solving PDEs. It has its advantages

over the simple finite difference methods like it can be applied to more variety of problems
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Figure 3.1: Numerical solution for Eq. (3.1) Left: ε = 10−6, N = 32, Right: ε = 10−3, N =
128.

with complicated domains, it requires less regularity conditions, and incorporates Neumann

boundary conditions better. We will focus our attention to the most commonly used FEM

scheme, the Galerkin approximation (For an overview refer to [GT17]). It is observed that the

standard Galerkin method behaves in the same way as the standard finite difference method,

i.e., it gives inaccurate solutions when the convection dominates the diffusion [RST08]. This

chapter deals with the stabilization techniques for the FEM when applied to (2.6).

The contents of the chapter are as follows: Sec. 3.1 introduces the discrete counterpart of

the maximum principles introduced in Chapter 2 namely the Discrete Maximum Principle

(DMP). Sec. 3.2 gives a brief overview of the Galerkin method and states the reason why the

method fails to give accurate solutions. Sec. 3.3 gives an introduction and some results for one

of the commonly used stabilization method namely the Streamline-Upwind Petrov-Galerkin

Method (SUPG). It also mentions the drawbacks of the scheme and some improvement so as

to get slightly better schemes known as Spurious Oscillations at Layers Diminishing Methods

(SOLD). Sec. 3.4 introduces the main topic of the thesis, the Algebraic Flux Correction

schemes (AFC), it mentions the different limiters that are used for simulations and gives a

summary of the theoretical results for the existence and uniqueness of the solution.

3.1 Discrete Maximum Principle

Remark 3.2. Discretization of a PDE should provide a numerical solution that is not only

a good approximation of the analytical solution but is also physically consistent, i.e., it

possesses the same physical properties as that of the solution of the continuous problem.

One of the important properties for Convection-Diffusion-Reaction equations is that the

numerical solution should be in the range of admissible physical values. From a mathematical

viewpoint, this requirement can be formulated as the Discrete Maximum Principle (DMP)
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3.1 Discrete Maximum Principle

which is analogous to the maximum principle introduced in Sec. 2.2.

Definition 3.3. (Discrete maximum principle) Let Vh be a finite dimensional subset of

the function space V with dimension N . Let us assume that the last N −M of any v ∈ Vh
corresponds to the nodes on boundary. We say that an operator Lh satisfies the (global)

DMP if and only if for any v ∈ Vh with

(Lhv)i ≤ 0, 1 ≤ i ≤M,

it holds that

max
i=1,...,M

vi ≤ max

{
0, max

j=M+1,...,N
vj

}
.

In other words, the following relation is valid for i = 1, . . . ,M

(Lhv)i ≤ 0 =⇒
(

if vi ≥ 0, then vi ≤ max
j=M+1,...,N

vj

)
.

Definition 3.4. (Monotone matrix) A square matrix A is called monotone or inverse-

monotone matrix if A is non-singular and A−1 ≥ 0.

Remark 3.5. The notation A ≥ 0 (or A > 0) means for a matrix A = (aij) ∈ RN×N that

aij ≥ 0 (or aij > 0 ∀i, j = 1, . . . , N).

Theorem 3.6. (Sufficient and necessary condition for the satisfaction of the DMP)

([Cia70, Theorem 1]) Let A be the matrix representation of the operator Lh, then A satisfies

DMP if and only if the following conditions are satisfied:

1. A is monotone,

2. −(Ai)
−1Ab1N−M ≤ 1M i.e., the row sums of −(Ai)−1Ab are smaller than 1,

where

A =

[
Ai Ab

0 I

]
,

and 1M is a vector consisting of only 1.

Proof. See [Cia70, Theorem 1].

Remark 3.7. The conditions in Theorem 3.6 are based on the inverse of Ai, which is not

available in practice. From implementation point of view, sufficient conditions are required

which can be used to check easily whether a discretizations satisfies the DMP or not.
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3 Stabilized Finite Element Methods

Theorem 3.8. (Sufficient condition for the satisfaction of the DMP) ([Cia70, The-

orem 2]) Let A be a monotone matrix and let

N∑
j=1

aij ≥ 0, 1 ≤ i ≤M (3.2)

then the operator Lh that corresponds to the matrix A satisfies the DMP.

Proof. Let v = 1, then from (3.2) we get

0 ≤
N∑
j=1

aij = Aivi + Abvb.

As A is monotone, we have Ai is invertible and non-negative. Applying the inverse (Ai)−1

from left, we get

vi + (Ai)−1Abvb ≥ 0 =⇒ 1 + (Ai)−1Ab ≥ 0

which is the second condition for Theorem 3.6. Hence, Lh satisfies the DMP.

Remark 3.9. The converse of the above theorem fails. Consider the operator Lh whose matrix

is given by

A =

 −1 2 0

2 −3 0

0 0 1


(Ref. [Cia70]). Obviously (3.2) fails to hold. But

A−1 =

 3 2 0

2 1 0

0 0 1

 ≥ 0,

i.e., it is monotone. And −(Ai)−1Ab = 0 ≤ 1. Hence, Theorem 3.6 is satisfied and so it gives

that Lh satisfies the DMP.

Now, we are going to discuss the so-called M-matrix and its relation with the DMP. From a

numerical analysis point of view for the Convection-Diffusion-Reaction equations, M-matrices

play an important role. They are a subset of Monotone matrices who are in some sense

diagonally dominant.

Definition 3.10. (M-matrix, [Ost37]) A matrix A = (aij)
N
i,j=1 is an M-matrix if:

1. aii ≥ 0, i = 1, . . . , N.

2. aij ≤ 0, i, j = 1, . . . , N, i 6= j.
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3.2 Galerkin Approximation

3. All principal minors of A are non-negative.

4. det(A)> 0.

There are a variety of equivalent definitions for M-matrix [Ple77], but the one that is most

used in the literature for Convection-Diffusion-Reaction equations is,

Definition 3.11. (M-matrix) A matrix A = (aij)
N
i,j=1 is an M-matrix if:

1. aij ≤ 0, i, j = 1, . . . , N, i 6= j.

2. det(A)> 0.

3. A−1 ≥ 0.

From the above definition it is clear that the set of M-matrices form a subset of monotone

matrices. The following result gives a relation between an M-matrix and the DMP.

Theorem 3.12. (M-matrices and the DMP) A discretization leading to an M-matrix

that has the additional property

N∑
j=1

aij ≥ 0, 1 ≤ i ≤M,

gives a discrete solution that satisfies the DMP.

Proof. The statement follows from Theorem 3.8 and the fact that the set of M-matrices form

a subset of the set of monotone matrices.

3.2 Galerkin Approximation

The standard Galerkin method applied to (2.6) with homogeneous boundary conditions,

replaces the infinite-dimensional space V by a finite-dimensional space Vh and then states :

Find uh ∈ Vh, such that for all vh ∈ Vh

ε(∇uh,∇vh) + (b · ∇uh + cuh, vh) = 〈f, vh〉. (3.3)

Using appropriate regularity assumptions and under the condition(
c (x)− 1

2
∇ · b (x)

)
≥ σ0 > 0,

27



3 Stabilized Finite Element Methods

we have by Lemma of Céa1 the error estimate as

‖u− uh‖V ≤ C
max{‖b‖∞, ‖c‖∞}

ε
inf
vh∈Vh

‖u− vh‖V , C ∈ R.

In the convection-dominated case, i.e., ε � ‖b‖∞, the first factor of this estimate becomes

very large and hence for the error estimate to be accurate we need the second factor, which

is the best approximation error, to be small. On uniform grids, this best approximation

error becomes very small only if the dimension of Vh is very large. The reason why the

Galerkin method fails is that the solution possesses important scales that cannot be resolved

by the grids. For convection-dominated problems such scales are layers that are present

in the interior as well as the boundary and interior layers are of more importance from an

application point of view. Hence, for solutions with sharp layers, the residue becomes very

large. Many methods have been proposed for the stabilization of these discretizations, so as

to get accurate results at the layers. The idea is to modify the Galerkin method by adding

some sort of artificial diffusion to make it more stable and get improved results.

3.2.0.1 Conditions for M-matrix

Let us denote the matrix formulation of (3.3) by Ax = b where A is the stiffness matrix. We

want our solution to respect the DMP and for which according to Theorem 3.12 the sufficient

condition is that the matrix A should correspond to an M-matrix. The Poisson problem is

a special case for (2.6) when we only have the presence of diffusion. In [XZ99] geometrical

conditions on the grid were introduced so as to make the stiffness matrix for the Poisson

problem an M-Matrix.

For writing the necessary and sufficient conditions for the M-matrix property, let us introduce

some geometrical notations for the triangulation K (see Fig. 3.2). Let K be a simplex with

n number of vertices. Let us denote by,

• Vj : The vertices of K,

1Lemma of Céa: Let Vh ⊂ V and assume the conditions of Lax-Milgram Theorem are satisfied. Then
there is a unique solution of the problem to find uh ∈ Vh such that

a (uh, vh) = 〈f, vh〉 ∀ vh ∈ Vh

and it holds the error estimate

‖u− uh‖V ≤
M

m
inf

vh∈Vh

‖u− vh‖V ,

where u is the unique solution of the continuous problem, m is the coercitivity constant, and M is the continuity
constant of a (·, ·).

Proof. See [GT17, Lemma 2.1].
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3.2 Galerkin Approximation

Vj

Vi

Fj

Fi
κE

θE

Figure 3.2: Geometric notations for a simplex K.

• E : The edge connecting two vertices,

• Fj : The (n− 1) dimensional simplex opposite vertex Vj,

• κKE : Fi ∩ Fj, the (n− 2)-dimensional simplex opposite to the edge E,

• θKE : The angle between faces Fi and Fj.

[XZ99, Lemma 2.1] gives the necessary and sufficient condition for the stiffness matrix of the

Poisson problem to be an M-matrix.

Lemma 3.13. ([XZ99, Lemma 2.1]) The stiffness matrix for the Poisson equation is an

M-matrix if and only if for any fixed face edge E the following inequality holds:

ωE ≡
1

n(n− 1)

∑
E⊂K

|κKE | cot θKE ≥ 0, (3.4)

where
∑

E⊂K means summation over all simplices K containing E.

Remark 3.14. For n = 2, the condition (3.4) means that the sum of the angles opposite to

any edge is less than or equal to π, i.e., if K1∩K2 = {E} then θK1
E +θK2

E ≤ π. This condition

implies that the triangulation is a so-called Delaunay triangulation. It follows therefore that

in R2 the stiffness matrix for the Poisson equation is an M-matrix if the triangulation is a

Delaunay triangulation.

Example 3.15. Let us look at an example of (2.6) with b = (2, 1), c = 0 and homogeneous

Dirichlet boundary condition on Ω = (0, 1)2. Then our problem reduces to

−ε∆u+ 2ux + uy = f in Ω = (0, 1)2, u = 0 on Γ.
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3 Stabilized Finite Element Methods

Using piece-wise linear elements on a uniform square mesh of Friedrichs-Keller type (i.e., the

grid consists of three set of parallel lines) and denoting the mesh width by h after scaling,

we get the difference stencil as

ε

h2

 0 −1 0

−1 4 −1

0 −1 0

+
1

2h

 0 0 1

−1 0 1

−1 0 0

 .
We see presence of positive off-diagonal matrix elements, so the sufficient condition of The-

orem 3.12 in not satisfied and hence Galerkin method doesn’t satisfy DMP.

3.3 Streamline-Upwind Petrov-Galerkin Method (SUPG)

Petrov-Galerkin methods are a subclass of Galerkin methods where the ansatz space (trial

space) and the test space are not the same [Joh87]. Let Ah be the ansatz space and Th be the

test space with dim(Ah)=dim(Th) then we have Petrov-Galerkin method as: Find uh ∈ Ah
such that

a(uh, vh) = 〈f, vh〉 ∀vh ∈ Th.

The Streamline-Upwind Petrov-Galerkin Method (SUPG) or Streamline-Diffusion FEM (SD-

FEM) is one of the most commonly used methods for stabilization. Introduced in [BH82,

HB79], the main idea of the SUPG is to add artificial diffusion in the streamline direction.

This leads to a system of linear equations which can be easily solved.

A brief overview of the method is: Find uh ∈ Vh, such that

ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh (3.5)

where

ah(v, w) := a(v, w)

+
∑
K∈Th

∫
K

δK (−ε∆v(x) + b(x) · ∇v(x) + c(x)v(x)) (b(x) · ∇w(x)) dx,

〈fh, w〉 := 〈f, w〉+
∑
K∈Th

∫
K

δKf(x) (b(x) · ∇w(x)) dx. (3.6)

Here, {δK} are user-chosen weights, which are called stabilization parameters or SUPG

parameters and a(v, w) is the LHS of (3.3).

The method is called as SUPG because it can be considered as a Petrov-Galerkin method
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3.3 Streamline-Upwind Petrov-Galerkin Method (SUPG)

where the test space is given by

span

{
w(x) +

∑
K∈Th

δKb(x) · ∇w(x)

}
.

Lemma 3.16. ([RST08, Sec. 3.2.1]) The SUPG method (3.5)-(3.6) is consistent.

Proof. Let u(x) be a sufficiently smooth solution of (2.6) then it satisfies the strong form

of the equation point wise. Inserting this solution in (3.5)-(3.6) leads to vanishing of the

stabilization term and hence our equations reduce to

a(u, vh) = 〈f, vh〉 ∀ vh ∈ Vh,

which holds true by any weak solution as we have conforming finite elements (i.e. Vh ⊂ V ).

Hence, we get

ah(u, vh) = 〈fh, vh〉 ∀ vh ∈ Vh.

For showing the existence and uniqueness of the solution we first define the SUPG norm.

Definition 3.17. (SUPG norm) Let for almost all x ∈ Ω the following condition hold(
c(x)− 1

2
∇ · b(x)

)
≥ σ0 > 0. (3.7)

For vh ∈ Vh, the SUPG norm is defined by

‖vh‖SUPG :=

(
ε|vh|2H1(Ω) + σ0‖vh‖2

L2(Ω) +
∑
K∈Th

‖δ1/2
K (b · ∇vh)‖2

L2(K)

)1/2

. (3.8)

Theorem 3.18. (Coercitivity of the SUPG bilinear form) ([RST08, Lemma 3.25])

Assume that b ∈ W 1,∞(Ω), c ∈ L∞(Ω), (3.7), and let

0 < δK ≤
1

2
min

{
h2
k

εC2
inv

,
σ0

‖c‖2
L∞(K)

}
, (3.9)

where Cinv is the constant in the inverse estimate (5.11). Then, the SUPG bilinear form is

coercive with respect to the SUPG norm, i.e.,

ah(vh, vh) ≥
1

2
‖vh‖2

SUPG ∀ vh ∈ Vh.
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3 Stabilized Finite Element Methods

Proof. By using integration by parts and the product rule we have,∫
Ω

b (x) · ∇v (x) v (x) dx = −
∫

Ω

∇ · (b (x) v (x)) v (x) dx

= −
∫

Ω

(∇ · b (x)) v (x) v (x) dx

−
∫

Ω

b (x) · ∇v (x) v (x) dx.

Using the above equality we have

(b · ∇vh + cvh, vh) =

((
−1

2
∇ · b+ c

)
vh, vh

)
∀ vh ∈ Vh.

With the definition of σ0, we have

ah (vh, vh)

= ε|vh|21 +

∫
Ω

(
c (x)− 1

2
∇ · b(x)

)
︸ ︷︷ ︸

≥σ0>0

(vh)
2 (x) dx+

∑
K∈Th

‖δ1/2
k (b · ∇vh) ‖2

L2(K)

+
∑
K∈Th

∫
K

δK (−ε∆vh(x) + c(x)vh (x)) (b (x) · ∇vh(x)) dx

≥ ‖vh‖2
SUPG −

∣∣∣∣∣ ∑
K∈Th

∫
K

δK (−ε∆vh(x) + c(x)vh (x)) (b (x) · ∇vh(x)) dx

∣∣∣∣∣.

Now if we are able to approximate the last term from above then we get our result. Here we

will use Cauchy-Schwarz inequality, the inverse estimate, Young’s inequality, and condition

(3.9) on the SUPG parameter, to get our result. For each K ∈ Th∣∣∣∣∣
∫
K

δK (−ε∆vh(x) + c(x)vh (x)) (b (x) · ∇vh(x)) dx

∣∣∣∣∣
≤

∫
K

(
δ

1/2
K ε|∆vh(x)|

)(
δ

1/2
K |b · ∇vh(x)|

)
dx

+

∫
K

(
δ

1/2
K |c(x)|

∣∣vh(x)
∣∣) (δ1/2

K |b · ∇vh(x)
)
dx

≤
(
δ

1/2
K ε‖∆vh‖L2(K) + δ

1/2
K ‖c‖L∞(K)‖vh‖L2(K)

)∥∥∥δ1/2
K (b · ∇vh)

∥∥∥
L2(K)

≤
(
δ

1/2
K

εCinv

hK
‖∇vh‖L2(K) + δ

1/2
K ‖c‖L∞(K)‖vh‖L2(K)

)∥∥∥δ1/2
K (b · ∇vh)

∥∥∥
L2(K)
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3.3 Streamline-Upwind Petrov-Galerkin Method (SUPG)

≤

(
hk√

2εCinv

εCinv

hK
‖∇vh‖L2(K) +

√
σ0√

2‖c‖L∞(K)

‖c‖L∞(K)‖vh‖L2(K)

)
×
∥∥∥δ1/2

K (b · ∇vh)
∥∥∥
L2(K)

=

(√
ε

2
‖∇vh‖L2(K) +

√
σ0

2
‖vh‖L2(K)

)
‖
∥∥∥δ1/2

K (b · ∇vh)
∥∥∥
L2(K)

≤ ε

2
‖∇vh‖2

L2(K) +
1

4

∥∥∥δ1/2
K (b · ∇vh)

∥∥∥2

L2(K)
+
σ0

2
‖vh‖2

L2(K)

+
1

4

∥∥∥δ1/2
K (b · ∇vh)

∥∥∥
L2(K)

=
1

2
‖vh‖SUPG,K .

Now, after summing over all the mesh cells and then subtracting the last estimate from the

first estimate we get our result.

Corollary 3.19. (Existence and Uniqueness of the solution of SUPG method) Let

the assumptions of Theorem 3.18 be valid. Then, the SUPG finite element method (3.5)-(3.6)

has a unique solution.

Proof. The corollary is proved using the Lax-Milgram theorem. We already have the coerci-

tivity of bilinear form by Theorem 3.18 and hence we only have to show the boundedness

of the bilinear form which can be shown in a similar way as the coercitivity of the SUPG

method.

Finally, we will mention the theorem which states the convergence of the SUPG method.

Theorem 3.20. (Convergence of the SUPG method) ([RST08, Theorem 3.27]) Let the

solution of (2.6) satisfy u ∈ Hk+1(Ω), k ≥ 1, let b ∈ W 1,∞(Ω), c ∈ L∞(Ω), let the assump-

tions of Theorem 3.18 be satisfied, and consider the SUPG method for Pk finite elements.

Let the SUPG parameter be given as follows

δK =

{
C0

h2K
ε

for ‖b‖L∞(Ω)hK ≤ ε,

C0hk for ‖b‖L∞(Ω)hK > ε,
(3.10)

where the constant C0 > 0 is sufficiently small such that (3.9) is satisfied for k ≥ 2. Then,

the solution uh ∈ Pk of the SUPG method (3.5) satisfies the following error estimate

‖u− uh‖SUPG ≤ C
(
ε1/2hk + hk+1/2

)
|u|Hk+1(Ω),

where the constant C is independent of h and ε.
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Proof. See [RST08, Theorem 3.27].

Remark 3.21. Concerning the error estimate

• In the convection dominated regime ε � h, the order of error reduction in the SUPG

norm is k + 1/2 and in the diffusion-dominated case it is of order k.

• A fundamental problem in the application of the SUPG method is the choice of constant

C0 in the definition of the parameter (3.10). If C0 is too large, then the layer is smeared,

for an appropriate value of C0 one obtains a solution which is almost exact in the nodes,

and if C0 is too small, then one can observe spurious (non-physical) oscillations in the

layer. Hence, we obtain physically inconsistent results.

Remark 3.22. Let us look at the SUPG stabilization for the example presented in Exam-

ple 3.15. With SUPG stabilization for convection-dominated problem our stiffness matrix

stencil becomes,

ε

h2

 0 −1 0

−1 4 −1

0 −1 0

+
1

2h

 0 0 1

−1 0 1

−1 0 0

+
C0

h

 0 1 −2

−2 6 −2

−2 1 0

 ,
for δK = C0h.

We note that for small values of C0 we have presence of positive off diagonal elements and

hence sufficient condition for Theorem 3.12 is not satisfied and the method fails to satisfy

the DMP.

To end this section we are going to briefly mention an improvement to the existing SUPG

method.

3.3.1 Spurious Oscillations at Layers Diminishing Methods (SOLD)

One of the other used methods are Spurious Oscillations at Layers Diminishing Methods

(SOLD). Because of the presence of oscillatory solutions, SUPG cannot be used to model

physical systems. The idea of the SOLD scheme is to extend the SUPG method by introduc-

ing some numerical diffusion orthogonal to the streamline direction. To achieve higher-order

methods the numerical diffusion has to depend on the finite element solution. Hence, we

get a nonlinear term which leads to a nonlinear system of equations. The Mizukami-Hughes

method introduced in [MH85] falls under the SOLD schemes. Results on the existence and

uniqueness of the SOLD schemes can be found in [JK07a, JK08]. Most SOLD schemes reduce

the oscillations but still the oscillations are considerably large and hence these methods also

fail to give desired results.
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3.4 Algebraic Flux Correction Schemes

3.4 Algebraic Flux Correction Schemes

After seeing some stabilization methods in the previous section we note that the ideal stabi-

lization for convection dominated problems should possess the following properties:

• Satisfy the discrete maximum principle and hence, should have physically consistent

results, i.e., no spurious oscillations.

• Gives accurate and sharp solutions near the layers.

• Provides an efficient solution for the system of equations obtained after the discretiza-

tion.

We believe that the first property is of significance as it gives solutions that are accepted

in practice. Algebraic Flux Correction (AFC) scheme proposed in [Kuz07] satisfies the first

two properties. The idea of the AFC schemes is to add artificial diffusion to the algebraic

system of equations and then limit that diffusion by using solution-dependent limiters. This

method directly works on the system of equations rather on the variational formulation.

3.4.1 Derivation

Consider a linear boundary value problem for which the maximum principle holds. We

can discretize the problem using a conforming finite element method. Then the discrete

solution can be represented by a vector u ∈ RN of its coefficients with respect to a basis

of the respective finite element space. Let us assume that the last N −M components of

u (0 < M < N) correspond to nodes where Dirichlet boundary conditions are prescribed,

whereas the first M components of u are computed using the finite element discretization of

the underlying partial differential equation. Using the Galerkin finite element discretizaion

u ≡ (u1, u2, . . . , uN) satisfies a system of linear equations of the form

N∑
j=1

aijuj = gi, i = 1, . . . ,M, (3.11)

ui = ubi , i = M + 1, . . . , N, (3.12)

where, ubi are the Dirichlet boundary conditions.

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

M∑
i,j=1

viaijvj > 0 ∀(v1, . . . , vM) ∈ RM \ {0}. (3.13)
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3 Stabilized Finite Element Methods

The starting point of the AFC schemes consists of modifying system (3.11) equivalently such

that one gets formally a system with a different matrix A = (aij)
N
i,j=1. One idea is to simply

use the finite element matrix corresponding to the above discretization in the case when

homogeneous boundary conditions are used instead of Dirichlet conditions.

Using the matrix A = (aij)
N
i,j=1, we introduce a symmetric artificial diffusion matrix D =

(dij)
N
i,j=1, having the entries

dij = dji = −max{aij, 0, aji} ∀i 6= j, dii = −
∑
i 6=j

dij. (3.14)

This definition ensures that the matrix Ã := A + D has positive diagonal entries and non-

positive off diagonal entries. If, in addition

N∑
j=1

aij ≥ 0, i = 1, . . . ,M, (3.15)

then the matrix Ã satisfies sufficient conditions to preserve the discrete maximum principle.

The property (3.15) is usually satisfied by finite element discretizations of elliptic equations

arising in applications.

Going back to the solution of (3.11), this system is equivalent to

(Ãu)i = gi + (Du)i, i = 1, . . . ,M. (3.16)

Since the row sums of the matrix D vanish, it follows that

(Du)i =
∑
i 6=j

fij, i = 1, . . . , N,

where fij = dij(uj − ui). Clearly it is fij = −fji for all i, j = 1, . . . , N .

Now, the idea of the AFC schemes is to limit those anti-diffusive fluxes fij that would

otherwise cause spurious oscillations. To this end, system (3.11) (or, equivalently (3.16)) is

replaced by

(Ãu)i = gi +
∑
j 6=i

αijfij, i = 1, . . . ,M, (3.17)

where αij ∈ [0, 1] are solution-dependent limiters. For αij = 1, we move back to system

(3.11). Hence, intuitively the coefficients αij should be as close to 1 as possible to limit the

modification of the original discrete problem. They can be chosen in multiple ways but the

idea is always based on using the fluxes fij.

For the scheme to be conservative and to show the existence of a solution, we require that
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the coefficients {αij} are symmetric, i.e.

αij = αji, i, j = 1, . . . ,M. (3.18)

Rewriting equation (3.17) using the definition of Ã, we obtain the following nonlinear system

of equations

N∑
j=1

aijuj +
N∑
j=1

(1− αij)dij(uj − ui) = gi, i = 1, . . . ,M, (3.19)

ui = ubi , i = M + 1. . . . , N, (3.20)

where αij = αij(u1, . . . , uN) ∈ [0, 1], i = 1, . . . ,M, j = 1, . . . , N satisfy (3.18). A more

detailed review of the AFC schemes can be found in [BJKR18].

Here, for the choice of limiters, we will present three different proposals but only two of them

will be used for simulations.

3.4.2 Limiters

3.4.2.1 The Kuzmin Limiter

The first limiter we are going to consider is the Kuzmin limiter proposed in [Kuz06]. The

idea of this limiter originates from [Zal79]. It starts by computing

P+
i =

N∑
j=1

aji≤aij

f+
ij , P

−
i =

N∑
j=1

aji≤aij

f−ij , Q
+
i = −

N∑
j=1

f−ij , Q
−
i = −

N∑
j=1

f+
ij , (3.21)

i = 1, . . . , N , where f+
ij = max{0, fij} and f−ij = min{0, fij}. Next, one calculates

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M. (3.22)

If P+
i or P−i is zero, we set R+

i = 1 or R−i = 1, respectively. At Dirichlet nodes, we set

R+
i = 1, R−i = 1, i = M + 1, . . . , N. (3.23)
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Finally, for any i, j ∈ {1, . . . , N} such that aji ≤ aij, the limiter is defined by

αij =


R+
i if fij > 0

1 if fij = 0

R−i if fij < 0

, αji = αij. (3.24)

The Kuzmin limiter can be applied to P1 and Q1 finite elements, see [BJK16] for some details

of its implementation. For P1 finite elements, the satisfaction of the DMP for the solution of

(3.19) is proved in [BJK16] with some restrictions on the grid. The uniqueness of the solution,

as well as the extension of the analysis to mixed boundary conditions, are open problems.

We like to note that for the Galerkin method with P1 finite elements and diffusion-reaction

equations, one can find an analysis of the DMP in the case of mixed boundary conditions in

[KK05].

3.4.2.2 The BJK Limiter

The second limiter we are going to study is the so-called BJK limiter proposed in [BJK17] for

P1 finite elements. This limiter makes the method linearity preserving, i.e. the modification

added to the formulation (3.11) vanishes if the solution is a polynomial of degree 1. As first

step, one defines for i = 1, . . . , N

umax
i = max

j∈Si∪{i}
uj, umin

i = min
j∈Si∪{i}

uj, qi = γi
∑
j∈Si

dij, (3.25)

where γi is a positive constant computed according to Remark 3.23 and the index set Si was

to be chosen as the set of all degrees of freedom j 6= i for which there is an entry in the

sparsity pattern of A, i.e., Si is the set of all direct neighbor degrees of freedom of i, i.e,

{j ∈ {1, . . . , N} \ {i} : aij 6= 0 or aji > 0} ⊂ Si ⊂ {1, . . . , N}.

As next step, one computes for i = 1, . . . ,M

P+
i =

∑
j∈Si

f+
ij , P

−
i =

∑
j∈Si

f−ij , Q
+
i = qi(ui − umax

i ), Q−i = qi(ui − umin
i ), (3.26)

and then, one sets

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M.

If P+
i or P−i vanishes, one sets R+

i = 1 or R−i = 1, respectively. Then, (3.23) is applied for
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the Dirichlet nodes and the quantities

ᾱij =


R+
i if fij > 0

1 if fij = 0

R−i if fij < 0

, i = 1, . . . ,M, j = 1, . . . , N, (3.27)

are calculated. Finally, one sets

αij = min{ᾱij, ᾱji}, i, j = 1, . . . ,M, (3.28)

αij = ᾱij, i = 1, . . . ,M, j = M + 1, . . . , N. (3.29)

It is proved in [BJK17] that the corresponding solution of the AFC method (3.19) satisfies

the DMP and it is linearity preserving on arbitrary simplicial grids. The uniqueness of the

solution and the study of mixed boundary conditions are open questions.

Remark 3.23. (Computation of γi) Let ∆i = supp ϕi for any interior vertex xi and let ∆conv
i

be its convex hull. Define

γi =

max
xj∈∂∆i

|xi − xj|

dist(xi, ∂∆conv
i )

, i = 1, . . . ,M,

then we have linearity preservation for our AFC scheme [BJK17, Theorem 6.1]. We note

that we require the geometrical information of the grid and that’s why we can’t regard the

BJK limiter as a purely algebraic approach.

3.4.2.3 The BBK Limiter

The next limiter we are going to present is the BBK limiter introduced in [BBK17]. This

is also referred to as smoothness-based viscosity and had its origin in the finite volume

literature. The first difference from other limiters is in the definition of dij. Here, dij = γ0h
d−1
ij

where γ0 is a fixed parameter depending on data of (2.6). The limiters αE, for E ∈ Eh are

given by the following algorithm: for vh ∈ Vh, one defines ξvh as the unique element in Vh
whose nodal values are given by

ξvh(xi) :=


|
∑

j∈Si
(vh(xi)−vh(xj))|∑

j∈Si
|vh(xi)−vh(xj)| , if

∑
j∈Si

|vh(xi)− vh(xj)| 6= 0,

0, otherwise.
(3.30)

Then, on each edge E ∈ Eh, αE are defined by

αE(vh) := 1−max
x∈E

[ξvh(x)]p , p ∈ [1,+∞). (3.31)
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The value of p determines the rate of decay of the numerical diffusion with the distance to

the critical point. For p closer to 1, it adds more diffusion in the far field, while a larger

value makes the diffusion vanish faster, but on the other hand, larger value of p makes the

nonlinear system difficult to solve.

Remark 3.24. Results with respect to the BBK limiter are not presented in this thesis.

Analytical results with respect to this limiter can be found in [BBK17]. For a detailed

comparison of the limiters, we refer to [BJKR18].

Remark 3.25. There is one more limiter in the literature which is of upwind type proposed

in [Kno19]. It is a linearity preserving limiter which satisfies the DMP on arbitrary meshes.

It combines the advantage of the Kuzmin limiter and the BJK limiter. Results with this

limiter will not be presented in this thesis.

3.4.3 Review of Analytical Results

In this section, we will mention some results on the existence and uniqueness of the solution

of nonlinear problem (3.19) and (3.20). We will also mention results which show that the

AFC schemes satisfy the discrete maximum principle (DMP).

First, a lemma for the continuity of Φij(u) := αij(u)(uj − ui) is stated. The sufficient

condition for the continuity of Φij is given by,

Lemma 3.26. ([BJK16, Lemma 6, Sec. 3]) Consider any i, j ∈ {1, · · · , N}, and let αij
: RN → [0, 1] satisfy

αij(u) =
Aij(u)

|uj − ui|+Bij(u)
∀ u ≡ (u1, · · · , uN) ∈ RN , ui 6= uj, (3.32)

where Aij, Bij : RN → [0,∞) are non negative functions that are continuous at any point

u ∈ RN with ui 6= uj. Then Φij(u) := αij(u)(uj−ui) is a continuous function of u1, . . . , uN on

RN . Moreover, if the functions Aij, Bij are Lipschitz-continuous with the constant CL in the

sets {u ∈ RN ;ui < uj} and {u ∈ RN ;ui > uj}, then the functions Φij is Lipschitz-continuous

on RN , with the constant 2CL +
√

2.

Proof. First we will show the continuity of the functions Φij(u). Let ũ ≡ (ũ1, . . . , ũN) ∈ RN .

If ũi 6= ũj then ∃ a neighborhood Vũ of ũ such that the denominator (3.32) does not vanish

in Vũ and as Aij, Bij are continuous we get αij is continuous at ũ.

If ũi = ũj then as αij ∈ [0, 1] we get,

|αij(u)(uj − ui)| ≤ |uj − ui|
≤ |uj − ũj|+ |ui − ũi|
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≤
√

2‖u− ũ‖l2

for any u ≡ (u1, . . . , uN) ∈ RN and ‖ · ‖l2 defines the Euclidean norm in RN . Therefore, αij
(uj − ui) is continuous at u.

For Lipschitz-continuity of Φij, let u, ũ ∈ RN . Set v = uj − ui and ṽ = ũj − ũi.
If vṽ ≤ 0 then

|Φij(u)− Φij(ũ)| = |αij(u)(uj − ui)− αij(ũ)(ũj − ũi)|
≤ |v|+ |ṽ|,

and

(|v|+ |ṽ|)2 = |v|2 + |ṽ|2 + 2|v||ṽ|
= v2 + ṽ2 − 2vṽ

= |v − ṽ|2.

Hence,

|Φij(u)− Φij(ũ)| ≤ |v − ṽ|.

If vṽ > 0, then

Φij(u)− Φij(ũ) =
Aij(u)v

|v|+Bij(u)
− Aij(ũ)ṽ

|ṽ|+Bij(ũ)
+

Aij(u)ṽ

|ṽ|+Bij(ũ)
− Aij(u)ṽ

|ṽ|+Bij(ũ)

= (Aij(u)− Aij(ũ))
ṽ

|ṽ|+Bij(ũ)
+ Aij(u)

[
v

|v|+Bij(u)
− ṽ

|ṽ|+Bij(ũ)

]
= (Aij(u)− Aij(ũ))

ṽ

|ṽ|+Bij(ũ)
+

Aij(u)

|v|+Bij(u)

[
v − ṽ (|v|+Bij(u))

|ṽ|+Bij(ũ)

]
= (Aij(u)− Aij(ũ))

ṽ

|ṽ|+Bij(ũ)

+
αij(u)

|ṽ|+Bij(ũ)
[(Bij(ũ)−Bij(u)) ṽ + (v − ṽ)Bij(ũ)] .

Therefore, we get

|Φij(u)− Φij(ũ) ≤ |Aij(u)− Aij(ũ)|+ |Bij(u)−Bij(ũ)|+ |v − ṽ|
≤ (2CL +

√
2)‖u− ũ‖l2 .

Hence Φij(u) is Lipschitz-continuous.

Using this lemma we can state the existence result for the system (3.19), (3.20).
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Theorem 3.27. ([BJK16, Theorem 3, Sec. 3]) Let (3.15) hold. For any i, j ∈ {1, . . . , N},
let αij : RN → [0, 1] be such that αij (u1, . . . , uN)(uj − ui) is a continuous function of

u1, . . . , uN . Finally, let the functions αij satisfy (3.18). Then there exists a solution of the

nonlinear problem (3.19), (3.20).

Proof. Let us denote by ṽ ≡ (v1, . . . , vM) as an element of RM , and vi = ubi if i ∈ {M +

1, . . . , N}.

For ṽ ∈ RM we set v := (v1, . . . , vN) and G = (g1, . . . , gM).

Let CM = inf
‖ṽ‖l2=1

∑M
i,j=1 viaijvj > 0 which holds by (3.13). Then we can write

M∑
i,j=1

viaijvj ≥ CM‖ṽ‖2
l2 ∀ ṽ ∈ RM . (3.33)

Let us define the operator T : RM → RM by

(T ṽ)i =
N∑
j=1

aijvj +
N∑
j=1

[1− αij(v)] dij(vj − vi)− gi, i = 1, . . . ,M.

Then u is a solution of (3.19), (3.20) if and only if T ũ = 0. The operator T is continuous

and we get

(T ṽ, ṽ) =
M∑
i,j=1

viaijvj +
M∑
i=1

N∑
j=M+1

viaiju
b
i +

M∑
i=1

M∑
j=1

vi [1− αij(v)] dij(vj − vi)

−(G, ṽ) +
M∑
i=1

N∑
j=M+1

vi [1− αij(v)] dij(u
b
j − vi).

Using (3.33), Hölder’s inequality and Lemma A 2 we get

(T ṽ, ṽ) ≥ CM‖ṽ‖2
l2 − 0− C1‖ṽ‖l2 − C0

≥ CM
2
‖ṽ‖2

l2 − C2,

where the last inequality comes from Young’s inequality, and C0, C1, and C2 are positive

2Lemma A: Consider any µij = µji ≤ 0, i, j = 1, . . . , N. Then

N∑
i,j=1

viµij(vj − vi) = −
N∑

i,j=1
i<j

µij(vi − vj)2 ≥ 0 ∀v1, . . . , vN ∈ R.

Proof. See Lemma 1 in [BJK16].
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constants independent of ṽ. Then for any ṽ ∈ RM satisfying ‖ṽ‖l2 = (3C2/CM)1/2, we have

(T ṽ, ṽ) > 0 and hence by Lemma B3 ∃ ũ ∈ RM such that T ũ = 0.

The following corollary gives the uniqueness of the linearized problem,

Corollary 3.28. Let (3.15) hold. Consider any fixed αij ∈ [0, 1], i, j = 1, . . . , N , satisfying

(3.18). Then the system (3.19), (3.20) has a unique solution for any g1, . . . , gM ∈ R and

ubM+1, . . . , u
b
N ∈ R.

Proof. According to Theorem 3.27, for any values of g1, . . . , gM and ubM+1, . . . , u
b
N , there

exists a solution of the considered linear system. Consequently, the solutions have to be

unique.

Lemma 7 from [BJK16] and Lemma 4.2 from [BJK17] shows that the Kuzmin limiter and the

BJK limiter satisfy Lemma 3.26 and hence we get the existence of solution for the nonlinear

problem. If we linearize the problem then we have the uniqueness of the solution as well.

Finally, we want our discrete solution to satisfy the DMP, which is stated as,

Theorem 3.29. Consider any i ∈ {1, . . . ,M}. Then

gi ≤ 0⇒ ui ≤ max
j 6=i, aij 6=0

uj for ui ≥ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

u+
j , (3.34)

gi ≥ 0⇒ ui ≥ min
j 6=i, aij 6=0

uj for ui ≤ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

u−j . (3.35)

Proof. See Corollary 11 in Ref. [BJK16] for Kuzmin limiter.

With some more restrictions on Theorem 3.29, we get that the solution obtained with the

BJK limiter also satisfies the DMP ([BJK17, Theorem 3.1]).

Finally, we mention the error analysis of the AFC schemes proved in [BJK16].

Theorem 3.30. ([BJK16, Corollary 17]) Let u ∈ H2(Ω) be a solution of (2.6), and let

uh ∈ Wh be a solution of the discrete problem

ah(uh, vh) + dh(uh;uh, vh) = 〈f, vh〉 ∀vh ∈ Vh, (3.36)

3Lemma B: Let X be a finite-dimensional Hilbert space with inner product (·, ·)X and norm ‖ · ‖X . Let
T : X → X be a continuous mapping, and let K > 0 be a real number such that (Tx, x)X > 0 for any x ∈ X
with ‖x‖X = K. Then there exists x ∈ X such that ‖x‖X < K and Tx = 0.

Proof. See Lemma 1.4, p.164 in [Tem77].
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where ah(·, ·) is the approximate bilinear form of a(·, ·), the bilinear form of convection-

diffusion equations, Wh ⊂ C(Ω) ∩H1(Ω), Vh := Wh ∩H1
0 (Ω), and

dh(uh;uh, vh) =
N∑

i,j=1

(1− αij(uh))dij(uj − ui)vi.

Then if σ0 > 0, there exists a constant C > 0 independent of h and the data of (2.6) such

that

‖u− uh‖AFC ≤ C
(
εσ−1

0

{
‖b‖2

0,∞,Ω + ‖c‖2
0,∞,Ω

}
+ σ0h

2
)1/2

h‖u‖2,Ω

+C (ε+ ‖b‖0,∞,Ωh)1/2 |ihu|1,Ω, (3.37)

where ‖ · ‖AFC is the natural norm on Vh corresponding to the left-hand side of (3.36) and

ihu is the Lagrange interpolation operator.

Proof. See [BJK16, Lemma 13, 15, 16].

Remark 3.31. The error estimate in Theorem 3.30 shows that the order of convergence

depends on the relation of ε and ‖b‖0,∞,Ωh and on the geometrical properties of the trian-

gulations. For a convection dominated regime, i.e., ε < ‖b‖0,∞,Ωh we have O(h1/2) for any

choice of limiters. From [BJK16, Remark 18] one also gets improved order if the triangulation

contains all acute triangles (all angles < π/2). But if the triangulation is not of Delaunay

type, i.e., it contains some obtuse triangles (i.e., an angle > π/2), then we lose convergence

of the method for the Kuzmin limiter.

But this method also has its drawbacks. Because of the presence of αij we get a system of

nonlinear equations even for linear PDEs, hence they are difficult to solve. But this problem

is not of significance as the PDEs that we encounter are in general nonlinear. The second

drawback of the AFC schemes is that they have been developed only for lowest order finite

elements, which limits the accuracy of the numerical solutions. It should be noted that

an extension to P2 elements has been developed in [Kuz08], but it was mentioned that the

extension gave rise to many new challenging open problems.

3.5 Summary

This chapter introduced the notion of stabilization for finite element methods. A discrete

analog of the maximum principle was introduced. Necessary and sufficient conditions were

given for the stabilization methods to satisfy DMP using the notion of an M-matrix. The

most commonly used FEM, namely the Galerkin method was studied and it was found that
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the method fails to give solutions that satisfy the DMP because of the presence of positive

off-diagonal entries in the stiffness matrix A.

Results regarding improvement over the Galerkin method were presented. The most com-

monly used finite element stabilization method namely the SUPG method was studied. The

existence and uniqueness of the solution were proved under the assumption (3.7). With

appropriate choice of the parameters {δK}, it’s shown that we get satisfactory results. But

the choice of {δK} was not easy. The section ended with mentioning the drawbacks of the

scheme and an improvement over it namely the SOLD schemes were defined.

Hence, we noted that an ideal stabilization of FEM must satisfy the DMP and compute steep

layers. Lastly, the Algebraic Flux Correction scheme was introduced. The construction of

the AFC scheme allowed it to satisfy the DMP and approximate the solution near the layers

properly. Three different definitions of the limiters were stated out of which the BJK limiter

makes the scheme linearity preserving. Under the assumption of [XZ99], results for the

existence of the solution and the satisfaction of the DMP were proved. As the AFC solutions

do not possess spurious oscillations we prefer this method over other methods. But the

nonlinearity nature of the scheme produces new challenges, namely the efficient solvers for

the scheme. Chapter 4 deals with different solvers for the AFC scheme and some optimization

tools to reduce the number of iterations.
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4 Iterative Solvers for Steady-State
Convection-Diffusion-Reaction
Equation

In Chapter 3 we introduced stabilized finite element methods and it was noted that one of

the issues for stabilization techniques is the efficient solution of the system of equations. This

issue is prominent for nonlinear schemes such as Algebraic Flux Correction and Mizukami-

Hughes method [MH85]. It was also noted in [BJKR18] and [JK07a] that non-efficient

solution of the system of equations is one of the drawbacks of these methods. This chapter

will discuss this issue and present a comprehensive study for the solution of the nonlinear

problem of the AFC schemes.

The contents of the chapter are as follows: Sec. 4.1 introduces the various iterative schemes

that will be considered. Sec. 4.2 will introduce some tools such as Anderson acceleration,

dynamic damping, etc, which could be beneficial while solving the system. Numerical studies

are presented in Sec. 4.3 with various examples from 2d as well as 3d. And lastly, all the

results are summarized in Sec. 4.4.

4.1 Iterative Schemes

Definition 4.1. Let S be a non-empty closed subset of RN and f : S(⊂ RN) → RN be a

continuous function defined on S. We need to find a ζ ∈ S such that f(ζ) = 0. We try

to transform the above problem into an equivalent problem of the form gite(x) = x, where

gite : RN → RN is a continuous function. More in general, we choose

gite(x) = x− h(x)f(x),

where h(x) 6= 0 is a damping parameter.

We compute the next iterate by replacing gite(x
(ν)) with x(ν+1) and hence, we get

x(ν+1) = x(ν) − h(x(ν))f(x(ν)).
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Depending on how we choose h(x(ν)) we get different iteration schemes.

Remark 4.2. The iterative schemes that we are going to discuss relies on the same ideology

of finding a fixed point and then solving the system. The methods considered here have

already been outlined in [BJKR18, Sec. 5].

Remark 4.3. As, we are dealing with system of equations, we know that f
(
x(ν)
)

will be of

the form M−1
ite f̃(x(ν)), where Mite ∈ RN×N is an invertible matrix. Hence, our iteration can

be written as

x(ν+1) = x(ν) − ω(ν)M−1
ite f̃(x(ν)). (4.1)

Consider the nonlinear problem (3.19), (3.20) in the form

F (u) = 0 with (4.2)

Fi(u) =
N∑
j=1

aijuj +
N∑
j=1

(1− αij(u))dij(uj − ui)− fi = 0, i = 1, . . . ,M,

Fi(u) = ui − ubi = 0, i = M + 1, . . . , N.

Then, a damped iteration for solving (4.2) is given by

u(ν+1) = u(ν) − ω(ν)M−1
ite F

(
u(ν)
)
, ν = 0, 1, . . . , (4.3)

whereMite ∈ RN×N is a non-singular matrix. A vector u is a solution of the nonlinear problem

(3.20) if and only if it is a fixed point of (4.3). The choice of the damping parameter ω(ν) is

briefly discussed in Sec. 4.2.1.

4.1.1 The Mixed Fixed Point Iteration

Utilizing some kind of simple fixed point iteration is a natural starting point for the construc-

tion of solvers for the nonlinear problem (4.2). A straightforward idea consists in using for

the construction of the left-hand side of (4.2) the currently available values for the limiter,

leading in the iteration step (ν + 1) to a linear system of equations of the form

N∑
j=1

aiju
(ν+1)
j +

N∑
j=1

(
1− α(ν)

ij

)
dij

(
u

(ν+1)
j − u(ν+1)

i

)
= fi, i = 1, . . . ,M,

u
(ν+1)
i = ubi , i = M + 1, . . . , N,

(4.4)

with α
(ν)
ij = αij

(
u(ν)
)
. This method is called fixed point matrix . From Corollary 3.28,

Chapter 3, it is shown that in the case of Dirichlet boundary conditions, the linear system

(4.4) has a unique solution for both the Kuzmin and the BJK limiter.

48



4.1 Iterative Schemes

Another simple fixed point iteration can be derived by using that the row sums of the matrix

D vanish, such that

N∑
j=1

(
1− α(ν)

ij

)
dij

(
u

(ν+1)
j − u(ν+1)

i

)
=

N∑
j=1

diju
(ν+1)
j −

N∑
j=1

α
(ν)
ij dij

(
u

(ν+1)
j − u(ν+1)

i

)
.

Then, a fixed point iteration is given by

N∑
j=1

(aij + dij)u
(ν+1)
j = fi +

N∑
j=1

α
(ν)
ij f

(ν)
ij , i = 1, . . . ,M,

u
(ν+1)
i = ubi , i = M + 1, . . . , N,

(4.5)

where f
(ν)
ij is the flux computed with the limiter α

(ν)
ij . We refer to this method as fixed point

rhs . A distinct feature of fixed point rhs is that the matrix A + D = Ã does not depend on

the iterate and thus, in each iteration step, the matrix of the linear system of equations to

be solved is the same. Hence, applying a sparse direct solver, the whole iteration requires

just one matrix factorization in the first iteration step and in all subsequent iterations, only

two triangular systems have to be solved.

The numerical studies in Sec. 4.3 also consider examples in three dimensions. In this situa-

tion, the sparse factorization of a sparse matrix is much more involved than in two dimensions,

such that the use of iterative solvers for the arising linear systems of equations becomes nec-

essary. For iterative solvers, it is a priori not of advantage for fixed point rhs that there is

the same matrix in each iteration step. However, the matrices of fixed point rhs and fixed

point matrix are different and iterative methods might behave differently.

Our expectation before performing the numerical studies was that the method fixed point

matrix might need in general fewer iterations than fixed point rhs , because fixed point matrix

is a less explicit method since it uses the current iterate for assembling the matrix and not

only for assembling the right-hand side. In addition to methods (4.4) and (4.5), we define

the mixed fixed point iteration

N∑
j=1

(aij + dij)u
(ν+1)
j − ωfp

N∑
j=1

α
(ν)
ij dij

(
u

(ν+1)
j − u(ν+1)

i

)
= fi + (1− ωfp)

N∑
j=1

α
(ν)
ij f

(ν)
ij , i = 1, . . . ,M,

u
(ν+1)
i = ubi , i = M + 1, . . . , N,

(4.6)

with the mixing parameter ωfp ∈ [0, 1]. For ωfp = 0, one gets fixed point rhs and for ωfp = 1,

the method fixed point matrix is obtained. With respect to the fixed point iteration (4.3),
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method (4.6) uses the matrix Mite with

Mite

(
u(ν)
)
ij

=


aij + dij − ωfpα

(ν)
ij dij if i 6= j,

aii + dii + ωfp

N∑
j=1,j 6=i

α
(ν)
ij dij if i = j,

for i = 1, . . . ,M, j = 1, . . . , N . The last N − M rows have just the diagonal entry 1.

Comprehensive numerical studies with the method mixed fixed point(ωfp) from (4.6) are

presented in Sec. 4.3, Examples 4.3.1.7, 4.3.2.1, and 4.3.2.4.

4.1.2 A Formal Newton Method

This section presents a formal Newton method for solving (4.2). We call this method for-

mal because, as it will be discussed below, there are situations where the differentiability

requirements for Newton’s method are not satisfied.

4.1.2.1 Derivation

For Newton’s method, the matrix Mite in (4.3) is the Jacobian of F . Considering (4.2) for

i = 1, . . . ,M , one can compute the Jacobian formally, using standard calculus, as

DFi(u)[v] =
N∑
j=1

aijvj +
N∑
j=1

(1− αij(u))dij(vj − vi)

−
N∑
j=1

(
M∑
k=1

∂αij
∂uk

(u)vk

)
dij(uj − ui)

=
N∑
j=1

aijvj +
N∑
j=1

(1− αij(u))dijvj −

(
N∑
j=1

(1− αij(u))dij

)
vi

−
N∑
j=1

(
M∑
k=1

∂αij
∂uk

(u)vk

)
dij(uj − ui).

Hence, the entries of the matrix that has to be inverted in (4.3) are given by

Mite

(
u(ν)
)
ij

= DF
(
u(ν)
)
ij
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=


aij + dij − α(ν)

ij dij −
N∑
k=1

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
if i 6= j,

aii + dii +
N∑

k=1,k 6=i

α
(ν)
ik dik −

N∑
k=1

∂α
(ν)
ik

∂ui
dik

(
u

(ν)
k − u

(ν)
i

)
if i = j,

(4.7)

for i = 1, . . . ,M, j = 1, . . . , N . The last N −M rows have just the diagonal entry 1.

One can see that in the Jacobian the partial derivatives of the limiter with respect to the

solution vector are contained. The application of Newton’s method requires smoothness of

the limiter such that all terms in (4.7) are well defined. This property is not given, neither

for the Kuzmin limiter nor for the BJK limiter.

For the presentation of one approach below, it is of advantage to start with a different

representation of the Jacobian. Let β
(ν)
ik = α

(ν)
ik dik

(
u

(ν)
k − u

(ν)
i

)
. Then, it is

∂β
(ν)
ik

∂uj
=

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
+ α

(ν)
ik

∂
(
dik

(
u

(ν)
k − u

(ν)
i

))
∂uj

=
∂α

(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
+ α

(ν)
ik dik


1 if k = j 6= i,

−1 if i = j 6= k,

0 else.

Now, the entries (4.7) of the Jacobian are given as follows

Mite

(
u(ν)
)
ij

= DF
(
u(ν)
)
ij

= aij + dij −
N∑
k=1

∂β
(ν)
ik

∂uj
(4.8)

for i = 1, . . . ,M, j = 1, . . . , N . The last N −M rows have only an entry on the diagonal

that is 1.

4.1.2.2 Kuzmin Limiter

The non-smoothness of the Kuzmin limiter is introduced by computing minima and maxima

of two values. For this limiter, we pursued two approaches. In the first one, the non-smooth

situations are treated separately. The second approach uses a regularization.

4.1.2.2.1 Approach with separate treatment of the non-smooth points This approach

uses the representation (4.7) of the Jacobian. In the minima and maxima contained in the

Kuzmin limiter, one value is always constant. Thus, there is a one-sided derivative that
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vanishes. In this approach, the derivative that appears in the Jacobian is set to be zero in

these situations.

Consider first the case aki ≤ aik. Then, the entry of the Jacobian is set to be zero if

(fik > 0) ∧ R+
i = 1, fik = 0, or (fik < 0) ∧ R−i = 1. Note that the situations P+

i = 0 and

P−i = 0 are included in these cases.

In all other situations, the limiter is differentiable. With the product rule, one gets for the

case (fik > 0) ∧R+
i < 1

∂αik
∂uj

=

∂Q+
i

∂uj
P+
i −Q+

i
∂P+

i

∂uj(
P+
i

)2 ,

and for the case (fik < 0) ∧R−i < 1

∂αik
∂uj

=

∂Q−i
∂uj

P−i −Q−i
∂P−i
∂uj(

P−i
)2 .

Hence, one has to compute the derivatives of P+
i , P

−
i , Q

+
i , Q

−
i with respect to uj. Using

(3.21) and the definition of fik, one obtains, e.g.,

∂Q+
i

∂uj
= − ∂

∂uj

N∑
l=1

f−il = − ∂

∂uj

N∑
l=1

min {0, dil(ul − ui)} ,

=


0 if fij ≥ 0, i 6= j,

−dij if fij < 0, i 6= j,
N∑

l=1,fil<0

dil if i = j,

(4.9)

and

∂P+
i

∂uj
=



0 if fij ≤ 0, i 6= j,

dij if fij > 0, i 6= j, aji ≤ aij,

0 if fij > 0, i 6= j, aji > aij,

−
N∑

l=1,fil>0
ali≤ail

dil if i = j.

In a similar way, the other derivatives can be calculated.

In the case aki > aik, it is αik = αki, compare (3.24). Now, one can proceed in the same way

as for the other case and one derives the same type of formulas: only the index i has to be

replaced by the index k.
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4.1.2.2.2 Approach with regularization of the non-smooth points For the approxi-

mation of the maximum, a proposal is used that can be found, e.g., in [BB17]

maxσ(x, y) =
1

2

(
x+ y +

√
(x− y)2 + σ

)
(4.10)

with some small value σ > 0. Consequently, one has

minσ(x, y) = −maxσ(−x,−y) =
1

2

(
x+ y −

√
(x− y)2 + σ

)
.

In this approach, the formulation (4.8) of the Jacobian is utilized. In the case aki ≤ aik, the

starting point is the representation

βik = R+
i f

+
ik +R−i f

−
ik ,

where the superscript ν is neglected to simplify the notation. Regularizations of functions

will be denoted with a tilde. Then, the following regularization is considered

β̃ik = minσ

(
Q̃+
i

P̃+
i

, 1

)
maxσ(fik, 0) + minσ

(
Q̃−i
P̃−i

, 1

)
minσ(fik, 0). (4.11)

A straightforward calculation, using the definitions of the regularized maximum and mini-

mum, yields

∂β̃ik
∂uj

=
1

2

1− Q̃+
i /P̃

+
i − 1√(

Q̃+
i /P̃

+
i − 1

)2

+ σ

 ∂

∂uj

(
Q̃+
i

P̃+
i

)
1

2

(
fik +

√
f 2
ik + σ

)

+
1

2

(
Q̃+
i

P̃+
i

+ 1−
√(

Q̃+
i /P̃

+
i − 1

)2

+ σ

)
1

2

(
1 +

fik√
f 2
ik + σ

)
∂fik
∂uj

+
1

2

1− Q̃−i /P̃
−
i − 1√(

Q̃−i /P̃
−
i − 1

)2

+ σ

 ∂

∂uj

(
Q̃−i
P̃−i

)
1

2

(
fik −

√
f 2
ik + σ

)

+
1

2

(
Q̃−i
P̃−i

+ 1−
√(

Q̃−i /P̃
−
i − 1

)2

+ σ

)
1

2

(
1− fik√

f 2
ik + σ

)
∂fik
∂uj

. (4.12)
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Note that the first part of each term does not depend on the summation index k. It holds

∂fik
∂uj

=


−djk = −dik if j = i 6= k,

dij if j = k 6= i,

0 else,

and

∂

∂uj

(
Q̃+
i

P̃+
i

)
=

∂Q̃+
i

∂uj
P̃+
i − Q̃+

i
∂P̃+

i

∂uj(
P̃+
i

)2 ,
∂

∂uj

(
Q̃−i
P̃−i

)
=

∂Q̃−i
∂uj

P̃−i − Q̃−i
∂P̃−i
∂uj(

P̃−i

)2 . (4.13)

It is f̃+
ik = maxσ(fik, 0) > 0 and hence P̃+

i > 0 because P̃+
i is a sum of f̃+

ik and at least f̃+
ii

appears in this sum. With the same argument, one finds that P̃−i < 0. One gets

∂Q̃+
i

∂uj
= −

N∑
l=1

∂minσ(fil, 0)

∂uj
= −1

2

N∑
l=1

(
1− fil√

f 2
il + σ

)
dil
∂(ul − ui)

∂uj

=


−1

2

1− fij√
f 2
ij + σ

 dij if i 6= j,

1

2

n∑
l=1,l 6=i

(
1− fil√

f 2
il + σ

)
dil if i = j.

(4.14)

This expression is compared with the corresponding expression (4.9) for the approach without

regularization. Consider the case i 6= j. If fij > 0 is sufficiently large, then the expression

in the parentheses in (4.14) is very close to zero, which holds also for the value of (4.14). If

fij < 0 is sufficiently small, then the expression in the parentheses is close to two and the

value of (4.14) is close to −dij. In both cases, the values of (4.9) and (4.14) are practically

the same. In the situation fij = 0, the value of (4.14) is −dij/2, which is different to the

value 0 of (4.9) if dij 6= 0.

Again, the other derivatives can be computed in the same way.

If aki > aik, one gets with (3.24) that βik = R+
k f

+
ik + R−k f

−
ik . Now, one can proceed as in the

other case for deriving formulas for the entries of the Jacobian.

The value of the regularization parameter was chosen similarly as in [BB17] by σ = 10−8 ·h4,

where h is the maximal diameter of the mesh cells of the current triangulation. In [BB17],

also the limiter itself (shock detector) is regularized if the regularized Newton method is

applied. Thus, strictly speaking, the discretization depends on the solution method. In our

opinion, this situation is unusual and we decided not to use this approach but to apply the

regularized Newton method to the standard Kuzmin limiter.
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4.1.2.3 BJK Limiter

For the BJK limiter, the numerical studies are done only for a formal Newton method with

separate treatment of the non-smooth points. A regularization of the BJK limiter is presented

here but it should be noted here that the method fails to give results numerically.

4.1.2.3.1 Approach with separate treatment of the non-smooth points The principal

idea of this approach is the same as for the Kuzmin limiter. It is based on the representation

(4.7) of the Jacobian. Again, several entries of this matrix are set to be zero in non-smooth

points. This step is performed in the following cases, compare the definition of the αik:

(fik > 0) ∧R+
i = 1, fik = 0, and (fik < 0) ∧R−i = 1.

Consider now the situation (fik > 0) ∧ R+
i < 1. Since fki < 0, one gets αik = min{R+

i , R
−
k }.

For R+
i ≤ R−k , it follows that

∂αik
∂uj

=
∂R+

i

∂uj
=
P+
i
∂Q+

i

∂uj
−Q+

i
∂P+

i

∂uj

(P+
i )2

,

and for R−k < R+
i that

∂αik
∂uj

=
∂R−k
∂uj

=
P−k

∂Q−k
∂uj
−Q−k

∂P−k
∂uj

(P−k )2
.

Using (3.26) for the definition of Q+
i , one has

∂Q+
i

∂uj
=

∂

∂uj
qi(ui − umax

i ) =



{
−qi if umax

i = uj,

0 if umax
i 6= uj,

if i 6= j,{
0 if umax

i = uj,

qi if umax
i 6= uj,

if i = j.

In the same way, one gets the derivative of Q−k . The derivative of P+
i and P−i is obtained in

the same way as for the Kuzmin limiter.

The second case that gives contribution to the Jacobian is (fik < 0)∧R−i < 1. This case can

be treated analogously to the first one.

4.1.2.3.2 Approach with regularization of non-smooth points The regularization of

BJK limiter is somewhat involved. The issues that one faces arises in definition of limiter

αij (3.28) and the regularization of Q+
i , Q−i .
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For the regualrization of αik, we first note that,

βik = αikfik

= min{R+
i , R

−
k }f

+
ik + min{R−i , R+

k }f
−
ik .

Now, we can regularize these functions using (4.10) and proceed in same way as (4.12) to

compute the derivative as,

∂β̃ik
∂uj

=

[
∂R̃+

i

∂uj
h(R̃−k , R̃

+
i ) +

∂R̃−k
∂uj

h(R̃+
i , R̃

−
k )

]
f̃+
ik + minσ{R̃+

i , R̃
−
k }
∂fik
∂uj

h(fik, 0)

+

[
∂R̃−i
∂uj

h(R̃+
k , R̃

−
i ) +

∂R̃+
k

∂uj
h(R̃−i , R̃

+
k )

]
f̃−ik + minσ{R̃−i , R̃+

k }
∂fik
∂uj

h(0, fik),

(4.15)

where

h(x, y) = 1 +
x− y√

(x− y)2 + σ
.

We can find the intermediate derivatives of R̃+
i , R̃

−
i similarly to the previous case of the

Kuzmin limiter.

For computing the quantities Q+
i and Q−i of the BJK limiter, one has to take the maximum of

a set of numbers whose cardinality is larger than two, compare (3.25), (3.28). This operation

has to be regularized. A straightforward idea consists in extending the regularization (4.10)

to more than two arguments by using

max {x, y, z} = max {x,max {y, z}}

and replacing the maximum by its regularized version. However, it is in general

maxσ(x,maxσ(y, z)) 6= maxσ(maxσ(x, y), z) 6= maxσ(y,maxσ(x, z)). (4.16)

Thus, this approach leads to a regularization whose value depends on the sequence of the

arguments. This situation is not desirable since it would not be possible for somebody else

to reproduce the simulations unless the sequence of arguments is specified for each call of the

regularization. This issue can be resolved by computing all three possible values of (4.16)

and taking the arithmetic mean. This idea can be extended to more than three arguments.

However, the number of possible sequences of arguments as well as the number of calls to

maxσ increases considerably such that this approach is inefficient.
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Another regularization of the maximum can be derived from the following relation

max {u1, . . . , uq} = lim
p→∞

(
q∑
i=1

upi

)1/p

,

where {ui}qi=1 are assumed to be non-negative. If all arguments are even positive, the pth root

is differentiable at the arguments. For the BJK limiter, one has to compute the maximum

of values from a finite element function that is an approximation of the discrete solution at

some intermediate iteration. The values of this function cannot be assumed to be positive.

However, usually, one can choose a lower bound κlow such that all expected finite element

values are larger than κlow, e.g., by using the approximation from the previous iteration.

We do not see the necessity that κlow is in some sense a tight strict lower bound. Then, a

regularization can be derived in the following way:

max {u1, . . . , uq} = max {u1 − κlow, . . . , uq − κlow}+ κlow

= lim
p→∞

(
q∑
i=1

(ui − κlow)p

)1/p

+ κlow

≈

(
q∑
i=1

(ui − κlow)p0

)1/p0

+ κlow (4.17)

for some sufficiently value p0. Since by construction ui − κlow > 0, this regularization is

differentiable. In the same way, one derives

min {u1, . . . , uq} = −max {−u1, . . . ,−uq} ≈ −

(
q∑
i=1

(−ui + κupp)p0

)1/p0

− κupp,

where κupp is chosen such that κupp > ui for all expected values of approximations of the

finite element solution. Besides κlow and κupp, this approach requires to choose the power p0.

Now, proceeding in same way as for the Kuzmin limiter, leads to the formulas (4.11), (4.12),

and (4.13). In (4.13), a division by zero cannot occur since P̃+
i > 0 and P̃−i < 0 because the

set Si is not empty.

One of the issues with this regularization is the choice of p0. This issue is twofold:

1. We were not able to find in the literature the appropriate choice of p0 which has to be

used as a power in (4.17). We performed simulations with different values of p0 and

were not able to find an appropriate choice of p0.

2. The second issue comes in taking the pth
0 root in (4.17). The system we worked on was

not able to properly approximate for higher values of p0, say p0 > 10.

For completeness we are providing the details on how would the derivatives look after the
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computation but, no numerical results would be provided here.

For the derivatives in (4.13), one obtains with direct calculations

∂Q̃+
i

∂uj
≈ ∂

∂uj

qi
ui −

 ∑
j∈Si∪{i}

(uj − κlow)p0

1/p0



≈ qi



−

 ∑
j∈Si∪{i}

(uj − κlow)p0

1/p0−1

(uj − κlow)p0−1 if j ∈ Si,

1−

 ∑
j∈Si∪{i}

(uj − κlow)p0

1/p0−1

(ui − κlow)p0−1 if i = j,

0 else.

The other derivatives can be computed in the same way.

4.1.2.4 The General Iteration, Starting Newton’s Method, Damping the Newton
Contribution

A formal Newton method with damping is given by the following matrix in iteration (4.3)

Mite

(
u(ν)
)
ij

=


aij + dij − ωfpα

(ν)
ij dij − ωNewt

N∑
k=1

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
if i 6= j,

aii + dii + ωfp

N∑
k=1,k 6=i

α
(ν)
ik dik − ωNewt

n∑
k=1

∂α
(ν)
ik

∂ui
dik

(
u

(ν)
k − u

(ν)
i

)
if i = j,

(4.18)

with ωfp being the damping parameter already introduced for the mixed fixed point iteration

(4.6) and ωNewt ∈ [0, 1] being a second damping parameter. The last N −M rows have just

the diagonal entry 1.

Remark 4.4. Because of the conditions for achieving symmetry of the limiters, usually terms

occur in the sums containing the derivatives of the limiters in (4.18) that do not fit into the

sparsity pattern of the matrix A. This situation happens if α
(ν)
ik is defined actually by α

(ν)
ki

and if there are nodes that are neighbors of the node k but not of the node i. All terms in

the sums that do not fit into the sparsity pattern of A were neglected in our simulations.

Remark 4.5. It is expected that the convergence radius of Newton-type methods is in general

smaller than of simple fixed point iterations. Thus, it is advisable to start the solution

process for the nonlinear problem (4.2) with a simple fixed point iteration and then switch
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to a Newton-type method. This approach is studied for Example 4.3.1.1. It was found that

a good criterion was to switch when the Euclidean norm of the residual vector was below

10−5. Sometimes, one could observe that the norm of the residual vector increased after

having switched to the formal Newton method. To avoid divergence, it was helpful to switch

back to the simple fixed point iteration whenever the Euclidean norm of the residual vector

was larger than 10−3. Exactly this approach was used in the numerical studies presented in

Sec. 4.3.

In performing preliminary simulations for the examples considered in Sec. 4.3, we observed

that the formal Newton method with parameters ωfp = 1 and ωNewt = 1, for simple academic

test problems in two dimensions did often not worked (Example 4.3.1.1). For this reason,

we introduced the parameter ωNewt. However, we found it sometimes complicated to fix an

appropriate value for this parameter. For this reason, an initial value was chosen and

• ωNewt was increased by the factor 1.001 after an iteration, if the Euclidean norm of the

residual vector decreased at least by the factor 0.99,

• otherwise, ωNewt was decreased by the factor 0.999.

Thus, in our adaptive formal Newton method, the parameter ωfp is fixed (but usually not

equal to 1) and ωNewt changes accordingly to the progress of the iteration. Algorithm A.3 in

Appendix A gives an overview of the above method.

Concerning the calculation of the entries of the formal Jacobian, we like to note that comput-

ing the sum after the factor ωNewt in (4.18) is considerably more costly than evaluating the

other terms in (4.18), because of the many cases that have to be distinguished for computing

the derivatives of α
(ν)
ik .

4.2 Algorithmic Components

4.2.1 Adaptive Choice of Damping Parameter

It is our experience that an appropriate choice of the damping parameters {ω(ν)} in (4.3) is

often essential for the convergence of the iterative process and the number of iterations.

Choosing an appropriate damping parameter depends on a number of factors, like the prob-

lem and its data, the scheme used for discretizing the problem, the iterative scheme used to

solve the system of equations, the grid, and the initial iterate. An a priori knowledge of all

these information is in general not available. For this reason, an algorithm is desirable that

chooses the damping parameter adaptively, e.g., based on the current behavior of the itera-

tive scheme. Such an algorithm was proposed in [JK08], which includes also the rejection of

59



4 Iterative Solvers for Steady-State Convection-Diffusion-Reaction Equation

iterates. In the numerical studies presented in the current paper, exactly this algorithm was

used. The algorithm is presented in Appendix A, Algorithm A.1.

4.2.2 Anderson Acceleration

Anderson acceleration is a process that tries to extract from the history of a linear fixed

point iteration second order information. To this end, a parameter κ ≥ 1 is chosen, which

will be called here the number of Anderson vectors. The last κ iterates are stored and then,

the new iterate is computed as a linear combination of the function values corresponding to

these iterates, where the weights are computed by solving a least-squares problem.

The simulations presented in this paper utilized Algorithm AA from [WN11]. In the first κ

steps, the linear fixed point iteration was performed and only after this, Anderson acceleration

was started. The least-squares problem was solved with the LAPACK routine dgglse. The

crucial parameter of this approach is the number of Anderson vectors. As already noted

in [WN11], if κ is too small, then there might not be enough information to speed up the

convergence sufficiently. But if κ is too large, the least-squares problem might be badly

conditioned. The numerical studies in [WN11] used values in the range κ ∈ [3, 50].

Anderson acceleration was already used for the solution of the nonlinear problem in AFC

methods, e.g., in [ACF+11, BJKR18]. In these papers, method (4.5) was applied and a

constant damping parameter was used. Whereas in [ACF+11], a certain improvement com-

pared with using method (4.5) with adaptive damping parameter is reported, the results in

[BJKR18] show only small differences concerning the number of iterations. Note that in none

of these papers, it was exploited that only one matrix factorization for the whole iteration

is necessary for method (4.5). In the simulations presented here, Anderson acceleration was

used in combination with the adaptive damping strategy from [JK08], but without rejection

of steps.

In addition to Algorithm AA from [WN11], we implemented also the Anderson accelera-

tion with the new iterate [WN11, (2.1)]. However, the results obtained with this approach

were unsatisfactory, usually much worse than with Algorithm AA. For the sake of brevity,

the corresponding results are not shown here. The algorithm is presented in Appendix A,

Algorithm A.2.

4.2.3 Projection to Admissible Values

In the literature, the nonlinear problems from AFC discretizations are solved very accurately.

The motivation for this approach is that the favorable properties, in particular the satisfaction

of the DMP, hold only for the solution of the nonlinear problem.
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In [BB17], it is proposed, for a time-dependent transport equation, to project each iterate

to a space of admissible values. These values are given by a lower and an upper bound for

the function values of the discrete solution. We like to note that such values are not always

available in practice. For instance, in precipitation processes, particles grow by using the

supersaturation of some species that are dissolved in a fluid. In this case, an upper bound for

the concentration of the dissolution is not known, see [JMR+09] for a concrete example.

In the examples presented here, lower and upper admissible values of the solution are known.

Therefore, the idea from [BB17] can be applied and we utilized exactly the same approach

as in this paper: for each iterate, all values outside the admissible range are truncated to the

closest border of this range before performing the next iteration step.

It has to be noted that the projection to admissible values only makes sense if it is clear a

priori that the numerical solution satisfies the DMP. We like to recall that this property can

be proved for the Kuzmin limiter only under restrictions on the mesh, see [BJK16]. This

aspect will be discussed for Examples 4.3.1.7, 4.3.2.1, and 4.3.2.4 in Sec. 4.3.

4.2.4 Choosing the Initial Condition

In Sec. 4.3, Example 4.3.1.4, studies concerning the impact of the initial iterate on the number

of iterations are performed. Four choices were investigated: choosing zero for all degrees of

freedom, the solution of the Galerkin finite element method, the solution of the upwind finite

element method from [RST08], and the solution of the SUPG (Streamline-Upwind Petrov–

Galerkin) finite element method from Chapter 3. It was observed that there was only a

minor impact. In general, the solution of the SUPG finite element method with the choice

of the stabilization parameter as given in [JK07b] was a good choice and it was used in all

simulations presented below.

4.3 Numerical Studies

The numerical studies consider examples that model the transport of energy (temperature)

in a flow field, a process which occurs in many applications. In all examples, the size of

the convection field is of order O(1). Different convection fields are considered, a mildly

convection-dominated case, ε = 10−3 or ε = 10−4, and a more strongly convection-dominated

case, ε = 10−6. In these studies, the following methods were involved:

• mixed fixed point(ωfp): mixed fixed point iteration (4.6) with the parameter ωfp. Note

that mixed fixed point(0) corresponds to the method fixed point rhs , see also (4.5), and

mixed fixed point(1) to the method fixed point matrix , compare (4.4).
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Figure 4.1: Grid 1, 2 and 3, level 0.

• mixed fixed point with Anderson acceleration(ωfp, κ): mixed fixed point(ωfp) with An-

derson acceleration and κ Anderson vectors, see Sec. 4.2.2.

• formal Newton (ωfp = 1, ωNewt = 1) with separate treatment of the non-smooth points

and fixed ωfp and ωNewt.

• formal Newton (ωfp, ωNewt) with separate treatment of the non-smooth points and adap-

tive change of ωNewt, see Secs. 4.1.2.2 and 4.1.2.3,

• formal Newton (ωfp, ωNewt) with regularization and adaptive change of ωNewt (only for

the Kuzmin limiter), see Sec. 4.1.2.2.

For all formal Newton methods apply the approaches discussed in Remarks 4.4 and 4.5.

Stopping criteria for solving the nonlinear equations were as follows:

• The Euclidean norm of the residual vector was smaller than
√

# dof · tol, where # dof

is the number of degrees of freedom (including Dirichlet nodes) and tol = 10−10.

• A maximal number of 25000 accepted iterations was performed.

Below, the sum of accepted and rejected iterations is given since a rejected step has a similar

computational cost as an accepted step. For simplicity of presentation, it is not distin-

guished in the pictures between simulations that did not converge within the prescribed

maximal number of steps and simulations that diverged (with inf or nan); both are indi-

cated by markers at 25000 or above. Diverged simulations are mentioned in the captions

of the corresponding figures. The initial damping parameter was always set to be ω(0) = 1.

All simulations were performed with the code ParMooN [GJM+16, WBA+16] at compute

servers HP BL460c Gen9 2xXeon, Fourteen-Core 2600MHz.
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4.3.1 Examples in Two Dimensions

4.3.1.1 Example with a Smooth Solution

In this example, the prescribed solution is

u(x, y) = 100x2(1− x)y(1− 2y)(1− y),

the convection field is b = (3, 2)T , and the reaction coefficient c = 1. The domain is Ω =

(0, 1)2. Homogeneous Dirichlet boundary conditions are applied on the whole boundary.

Results will be presented for two values of the diffusion coefficient: the moderately small

value ε = 10−3 and the much smaller value ε = 10−6. This example serves for obtaining

first impressions on the behavior of the iterative schemes. Various meshes were used in the

simulations, whose coarsest level (level 0) are shown in Fig. 4.1. Simulations were performed

on Grid 1 and Grid 2 from Fig. 4.1. Note that Grid 2 is not a Delaunay triangulation. For

the initial iterate, all values were set to be zero.

This example studies the basic iteration schemes fixed point rhs , fixed point matrix and formal

Newton (ωNewt = 1 and ωfp = 1). Studies related to switch from fixed point iteration to

Newton method, as discussed in Remark 4.5 is also considered here.

4.3.1.2 Fixed Point Iterations

In a first study, only the fixed point iterations fixed point rhs and fixed point matrix were

considered. For ε = 10−3, the numbers of iteration steps are presented in Fig. 4.2. One

can already observe that the behavior of the methods is somewhat different for the different

limiters. For the Kuzmin limiter, the method fixed point rhs had no difficulties to solve the

nonlinear problems and the number of iterations decreased with refinement of the grids. A

similar behavior can be observed for fixed point matrix , often with a similar number of iter-

ations. For the BJK limiter, in contrast, the method fixed point matrix needed consistently

much fewer iterations than fixed point rhs , apart of the coarsest uniform grid. Altogether,

the nonlinear problems in the case of a moderately small value of the diffusion could be

solved without real difficulties.

Results for ε = 10−6 are shown in Figs. 4.3 and 4.4. Fig. 4.3 presents the reduction of the

error ‖∇(u− uh)‖L2 . On the uniform grid, the order of error convergence is similar for both

limiters, with the solution of the Kuzmin limiter being somewhat more accurate. For the

unstructured grid, it can be observed that the BJK limiter worked well on this grid with an

order of convergence of about 1. In contrast, the application of the Kuzmin limiter led to a

clear reduction of this order. The behavior of the iterative methods is presented in Fig. 4.4.

Now, there are fundamental differences considering both limiters. For the Kuzmin limiter,
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Figure 4.2: 2d smooth solution. Number of iterations and rejections for ε = 10−3, left:
uniform grid, right: unstructured grid.
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Figure 4.3: 2d smooth solution. Errors of the computed solutions.

fixed point rhs worked satisfactory, all problems were solved within the prescribed maximal

number of iterations. But even on the uniform grid, fixed point matrix failed to converge on

fine grids. In case of the BJK limiter, fixed point rhs did not converge on many grids, but

fixed point matrix performed usually quite well.

Since the application of the Kuzmin limiter on the unstructured grid led to quite inaccurate

numerical solutions, this limiter should not be used on this grid. This combination will not

be considered in the further studies.
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Figure 4.4: 2d smooth solution. Number of iterations and rejections for ε = 10−6, left:
uniform grid, right: unstructured grid.

4.3.1.3 Formal Newton Methods (ωfp = 1, ωNewt = 1)

Next, the formal Newton method will be included in the studies. It is well known that

Newton-type methods possess in general a smaller domain of convergence than simpler fixed

point iterations. We could observe this behavior also here: applying formal Newton from

the first step of the iteration led usually to unsatisfactory results concerning the number of

steps. For brevity, those results are not presented here.

The first approach for involving the formal Newton method was quite simple. In the first

part of the iteration, a fixed point method was applied until the Euclidean norm of the

residual vector was below a switching tolerance tolsw. Then, formal Newton was performed

without any possibility of switching back. The current damping parameter ω was used in

the first step of the formal Newton method. For the first part, we applied as well fixed point

rhs as fixed point matrix . From the results obtained with these methods, Fig. 4.4, it can be

expected that fixed point rhs is a better choice for the Kuzmin limiter and fixed point matrix

for the BJK limiter. In fact, the numerical results confirmed these expectations. Thus, for

brevity, only the corresponding results are presented in Figs. 4.5 and 4.6.

For the Kuzmin limiter, Fig. 4.5, it can be seen that formal Newton worked well only on

coarse grids. On finer grids, it did not converge even for small switching tolerances tolsw.

The observations for the BJK limiter are different. On some levels, formal Newton worked

well, at least for sufficiently small tolsw, but on other levels, this method failed to converge.

Examining the non-convergent simulations more closely, we found that often the Euclidean

norm of the residual increased within a few steps after having switched to the formal Newton

method, sometimes it increased considerably. A straightforward idea to mitigate this behav-
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Figure 4.5: 2d smooth solution. Number of iterations and rejections for ε = 10−6, Kuzmin
limiter and formal Newton method with fixed point rhs in the first part, different
values for the parameter tolsw.
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Figure 4.6: 2d smooth solution. Number of iterations and rejections for ε = 10−6, BJK
limiter and formal Newton method with fixed point matrix in the first part,
different values for the parameter tolsw, left: Grid 1, right: Grid 2.

ior consists in switching back to the fixed point iteration that was used in the first part after

the norm of the residual exceeds a certain limit. This approach was implemented in the form

that the back switch to the method from the first part took place always if the Euclidean

norm of the residual became larger than 100·tolsw. While switching between the methods,

the current damping parameter ω was not changed. However, the behavior of the formal

Newton method in general did not improve. The only exception is presented in Fig. 4.7,

where it can be seen that the choice tolsw = 10−5 led to a convergent method for the BJK

limiter on all levels of the unstructured grid.
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Figure 4.7: 2d smooth solution. Number of iterations and rejections for ε = 10−6, BJK
limiter and formal Newton method with fixed point matrix in the first part and
switching back to fixed point matrix if the norm of the residual became too large,
different values for the parameter tolsw, Grid 2.

Already for an example with a smooth solution, there were only few of the considered methods

that converged in the convection-dominated case on every refinement level. On the uniform

grid, for the Kuzmin limiter only fixed point rhs worked well and for the BJK limiter only

fixed point matrix . There were two satisfactory performing approaches for the BJK limiter

on the unstructured grid: fixed point matrix and formal Newton with tolsw = 10−5, where

fixed point matrix was used as starting method and it was switched back to fixed point matrix

if the norm of the residual became too large.

4.3.1.4 Example with Interior and Boundary Layers

This example, proposed in [HMM86], is a standard academic example for numerical studies

of steady-state convection-diffusion equation. It is given in Ω = (0, 1)2 with b = (cos(−π/3),

sin(−π/3)), c = f = 0 and the Dirichlet boundary condition

u =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.7),

0 else.

Again, the strongly convection-dominated case ε = 10−6 is considered. Then, the solution

exhibits an internal layer in the direction of the convection starting from the jump of the

boundary condition at the left boundary and two exponential layers at the right and the lower

boundary, see Fig. 4.8. This example studies the impact of initial iterate on the iterative

schemes as discussed in Sec. 4.2.4.
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Figure 4.8: 2d Interior and boundary layer example. Solution (computed with the BJK
limiter, Grid 3, level 9).

4.3.1.5 Impact of Initial Iterate

In this example, a study of the impact on choosing the initial iterate in different ways will

be presented. For the initial iterate, we considered the following options:

• setting all non-Dirichlet degrees of freedom to zero (zero),

• using the solution of the upwind finite element method from [RST08] (upwind),

• using the solution of the SUPG method from [HB79, BH82] (SUPG),

• using the solution of the Galerkin method (Galerkin).

Starting with the zero initial iterate is a usual approach if no information about the expected

solution are available. With the upwind method as initial iterate, the positions of the layers

are known from the beginning, but the layers are strongly smeared. The positions of the

layers are also known with the SUPG method, the layers are sharp, but there are considerable

spurious oscillations in a vicinity of the layers. The incorporation of the Galerkin finite

element method in this study is just for completeness.

4.3.1.6 Fixed Point Iterations

First, again the behavior of the fixed point iterations was studied, see Fig. 4.9, left picture.

All simulations presented in this figure were started with the SUPG solution as initial iterate.

In this example, fixed point rhs converged for both limiters on all grids, whereas fixed point

matrix did not converge for both limiters on fine grids. For the Kuzmin limiter, the fixed
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Figure 4.9: 2d Interior and boundary layer example. Number of iterations and rejections.

point rhs method needed considerably less iterations. Representative results for the formal

Newton method, with fixed point rhs as scheme that was used if the norm of the residual

was too large and tolsw = 10−5, are displayed in Fig. 4.9, right picture. On coarser grids,

this approach needed less iterations than fixed point rhs , but on finer grids, it even failed in

two cases.

The dependency of the number of iterations and rejections on the initial iterate is illustrated

in Fig. 4.10. Generally, there are only minor differences between the four initial iterates.

Often, using the SUPG solution proved to be a good choice.

Remark 4.6. After performing simulations for simple academic examples in two dimensions,

we have an idea of how the basic methods behave. Now, in the further examples we will look

at mixed fixed point iterations and the algorithmic components defined in Sec. 4.2.

4.3.1.7 The 2d Hemker Problem

This example, defined in [Hem96], is a standard benchmark problem for steady-state convection-

diffusion equation. It is given by Ω = {(−3, 9) × (−3, 3)} \ {(x, y) : x2 + y2 ≤ 1}, and

b = (1, 0)T in (2.6). Dirichlet boundary conditions are set at x = −3, with ub = 0, and at the

circular boundary with ub = 1. On all other boundaries, homogeneous Neumann conditions

are prescribed. Reference values for the solution are available for ε = 10−4. It was reported

in [BJKR18] that in this case, the solutions obtained with the BJK limiter are more accurate

than with the Kuzmin limiter, in particular the interior layers are sharper. The solution for

ε = 10−6 is illustrated in Fig. 4.11. Simulations were performed on a triangular grid and a

quadrilateral grid, see Fig. 4.12 for the coarsest grids (level 0) and Table 4.1 for information

on the number of degrees of freedom.
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Figure 4.10: 2d Interior and boundary layer example. Number of iterations and rejections
depending on the initial iterate, top: fixed point rhs , bottom: formal Newton.

Figure 4.11: 2d Hemker problem. Solution for ε = 10−6, computed with the BJK limiter, P1,
level 6.

Concerning the satisfaction of the DMP, both grids from Fig. 4.12 are not covered by the

available analysis for the Kuzmin limiter. However, we could observe in preliminary simula-
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Figure 4.12: 2d Hemker problem. Triangular grid and quadrilateral grid (level 0).

Table 4.1: 2d Hemker problem. Number of degrees of freedom, including Dirichlet nodes.

Level P1 Q1

0 151 219
1 561 806
2 2158 3084
3 8460 12056
4 33496 47664
5 133296 189536
6 531808 755904

tions that the computed solutions with the Kuzmin limiter take values in [0, 1]. Here the first

comprehensive study for mixed fixed point in 2d is presented. This example also presents the

impact of Anderson acceleration Sec. 4.2.2 and the projection to admissible values Sec. 4.2.3.

Finally, results regarding the efficiency of the methods in 2d are presented here.

4.3.1.8 Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). First, the behavior of mixed fixed point(ωfp) for ωfp ∈
{0, 0.05, . . . , 0.95, 1} is illustrated in Fig. 4.13. The simulations were performed with and

without the projection to admissible values as described in Sec. 4.2.3. One can see that there

are only small differences with respect to the behavior of this method in both cases. A good

value for the mixing parameter is ωfp = 0.85.

We already like to note here that the impact of the projection on the behavior of the iterative

scheme was not always negligible. Usually, we performed simulations with and without

projection. In cases where the impact of the projection is negligible, only the results with

projection are presented for this example.

Studies for mixed fixed point(ωfp) with Anderson acceleration. For the best mixing parameter

ωfp = 0.85, the impact of using Anderson acceleration with different numbers of Anderson

vectors is presented in Fig. 4.14. For the moderately convection-dominated case, the use of
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Figure 4.13: 2d Hemker problem. Results for the method mixed fixed point(ωfp), top: without
projection to admissible values, bottom: with projection to admissible values.

20 or 50 Anderson vectors reduces the needed number of iterations on all levels. However,

each iteration requires the solution of an eigenvalue problem whose dimension equals the

number of Anderson vectors. For ε = 10−6, a reduction of the number of iterations can be

seen only on coarse levels if sufficiently many Anderson vectors are used.

Studies for formal Newton methods. Representative results for several types of formal Newton

methods are displayed in Fig. 4.15. It can be seen that the approach with fixed damping

parameters reduces the number of iterations+rejections considerably on coarse grids, but

it fails to converge on fine grids. The formal Newton with adaptive parameter ωNewt and

separate treatment of the non-smooth points needed somewhat fewer iterations+rejections

than mixed fixed point(0.85). Using instead the regularized formal Newton method, requires

somewhat more iterations+rejections. We could observe that the behavior of the formal

Newton methods is quite sensitive to the choice of ωNewt. For instance, using ωNewt = 0.1

increases the number of iterations+rejections such that it is on the two finest grids higher

than for mixed fixed point(0.85). For the sake of brevity, we do not like to present a detailed

study of this topic here. Altogether, one has to conclude that the application of the formal
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Figure 4.14: 2d Hemker problem. Results for mixed fixed point with Anderson accelera-
tion(0.85, κ), where κ is the number in the legends, with projection to admissible
values.
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Figure 4.15: 2d Hemker problem. Results for the formal Newton methods, with projection
to admissible values. The adaptive methods were used with ωfp = 0.85 and
ωNewt = 0.0625.

Newton methods does not significantly reduce the number of iterations+rejections.

4.3.1.9 Kuzmin Limiter with Q1 Finite Elements

The observations in this case are similar as for the Kuzmin limiter with P1 finite elements.

Some representative results are shown in Figs. 4.16 and 4.17, which should be compared with

Figs. 4.13 and 4.15, respectively.
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Figure 4.16: 2d Hemker problem. Results for the method mixed fixed point(ωfp), with pro-
jection to admissible values.
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Figure 4.17: 2d Hemker problem. Results for the formal Newton methods, with projection
to admissible values. The adaptive methods were used with ωfp = 0.85 and
ωNewt = 0.0625.

4.3.1.10 BJK Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results for this method are presented in Fig. 4.18. In

the moderately convection-dominated regime, it can be observed that choosing ωfp = 0.95

leads always to a comparatively small number of iterations, whereas the method does not

converge for ωfp = 1. To achieve convergence in the strongly convection-dominated case

is much harder. In fact, on level 5, mixed fixed point(ωfp) does not converge for all used

parameters. In case of convergence, an appropriate parameter is again ωfp = 0.95.

Studies for mixed fixed point(ωfp) with Anderson acceleration. The application of the Ander-

son acceleration worsens the convergence for all simulations with the BJK limiter, compare
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Figure 4.18: 2d Hemker problem. Results for the method mixed fixed point(ωfp), with pro-
jection to admissible values.
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Figure 4.19: 2d Hemker problem. Results for mixed fixed point with Anderson accelera-
tion(0.95, κ), where κ is the number in the legends, with projection to admissible
values.

Fig. 4.19.

Studies for formal Newton methods. Results obtained for formal Newton methods are pre-

sented in Figs. 4.20 and 4.21. For ε = 10−4, it can be seen that formal Newton with an adap-

tive choice of the damping parameter ωNewt needs fewer iterations on all levels than mixed

fixed point(0.95) if the projection to admissible values is not used. With this projection, the

method does not converge on fine grids. The method formal Newton with fixed parameters

converges quite well, apart on the finest level. For the mildly convection-dominated case,

we observed that also a formal Newton method with ωfp = 1, ωNewt = 1, starting from the

first iteration (Newton wo damp. in Fig. 4.21) works quite well, at least on the coarse grids.

In the strongly convection-dominated regime, some formal Newton methods needed fewer

iterations than mixed fixed point(0.95) on coarse grids. Again, some methods behaved rather
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Figure 4.20: 2d Hemker problem. Results for the formal Newton methods, with and without
projection to admissible values. The adaptive methods were used with ωfp =
0.95 and ωNewt = 0.0625.
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Figure 4.21: 2d Hemker problem. Results for the formal Newton methods, without projection
to admissible values.

differently with and without projection to admissible values.

4.3.1.11 Efficiency

As final part of the 2d example, a study with respect to the efficiency, in terms of computing

times, of the methods is presented. To this end, approaches for each type of method with a

small number of iterations+rejections are taken and compared. The arising linear systems

of equations were solved with the sparse direct solver UMFPACK [Dav04]. All simulations

were performed five times, then the fastest and slowest times were neglected and the average

of the remaining three times is shown in Fig. 4.22.
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Figure 4.22: 2d Hemker problem. Efficiency of several methods.

Fig. 4.22 shows some representative results. For both limiters, fixed point rhs (= mixed fixed

point(0)) is the most efficient method. The advantage of needing just one matrix factorization

for the whole iteration results in a gain of one order of magnitude concerning the simulation

times compared with most of the other methods. Only Newton’s method without damping

for the BJK limiter is similarly efficient on coarse grids. Note that this method needs much

fewer iteration steps than fixed point rhs for solving the nonlinear problem, e.g., on the grid

with around 33000 degrees of freedom 260 iterations vs. 4199 iterations.

4.3.2 Examples in Three Dimensions

4.3.2.1 The 3d Hemker Problem

The 3d Hemker problem is a natural extension of the 2d Hemker problem, which was proposed

in [WBA+16]. The domain is defined by

Ω =
{
{(−3, 9)× (−3, 3)} \

{
(x, y) : x2 + y2 ≤ 1

}}
× (0, 6)

and the convection vector in (2.6) is given by b = (1, 0, 0)T . Homogeneous Dirichlet boundary

conditions ub = 0 are prescribed at the inlet plane x = −3 and at the cylinder, the Dirichlet

boundary condition is ub = 1. At all other boundaries, homogeneous Neumann conditions

are imposed. An illustration of the solution is provided in Fig. 4.23. This example presents

studies with respect to Anderson acceleration Sec. 4.2.2 and projection to admissible values

Sec. 4.2.3. Comprehensive studies for mixed fixed point is also presented.

Simulations were performed for P1 and Q1 (only Kuzmin limiter) finite elements, see Fig. 4.23

for the coarsest tetrahedral grid and Table 4.2 for information on the number of degrees

of freedom. It turned out that the solutions computed with the Kuzmin limiter on the
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Figure 4.23: 3d Hemker problem. Solution for ε = 10−6, computed with the Kuzmin limiter,
P1, level 4, and sketch of the coarsest grid (level 0).

Table 4.2: 3d Hemker problem. Number of degrees of freedom, including Dirichlet nodes.

Level P1

0 490
1 3172
2 22600
3 170128
4 1319200

tetrahedral grids showed small negative values. For example, on level 1, these values are

−2 · 10−6 (ε = 10−4) and −8 · 10−9 (ε = 10−6) and on level 3 they are −7 · 10−6 (ε = 10−4)

and −8 · 10−8 (ε = 10−6). Although negative oscillations of this size might be still tolerable

in applications, they do not allow to use the projection of the iterates to the admissible

interval [0, 1] since the Euclidean norm of the residual vector stalled at some value larger

than the stopping tolerance. The values of the results obtained with the Kuzmin limiter on

the hexahedral grids and the BJK limiter on the tetrahedral grids were always in [0, 1]. In

these cases, both approaches, with and without projection to admissible values, led usually

to a similar number of iterations. Since in the approach without projection to admissible

values, the results found for Q1 finite elements are also in this example qualitatively the same

as for P1 finite elements, only the investigations for P1 finite elements are presented below,

for the sake of brevity.

4.3.2.2 Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results of these studies are displayed in Fig. 4.24. It

can be seen that mixed fixed point(ωfp) converged only for sufficiently small mixing parameters
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Figure 4.24: 3d Hemker problem. Results for the method mixed fixed point(ωfp), without
projection to admissible values. Diverged iterations: ε = 10−4: level 2 with
ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}; ε = 10−6: level 1 with
ωfp = 1, level 2 with ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}.
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Figure 4.25: 3d Hemker problem. Results for the method mixed fixed point(ωfp), without
projection to admissible values, with accurate solution of the linear problems.
Diverged iterations: ε = 10−4: level 2 with ωfp = 1, level 3 with ωfp = 1, level 4
with ωfp ∈ {0.95, 1}; ε = 10−6: level 2 with ωfp = 1, level 3 with ωfp = 1, level 4
with ωfp ∈ {0.95, 1}.

ωfp. An appropriate mixing parameter for both regimes is ωfp = 0.7.

If not mentioned otherwise, an iterative solver was used for the arising linear systems of

equations in three dimensions and an inexact solve of these systems was performed, see

Sec. 4.3.2.7 for details. Usually, we could not observe a qualitative difference with respect to

the number of iterations+rejections concerning an accurate and an inexact solution of the

linear systems. An example is given in Fig. 4.25. One can see by comparing with Fig. 4.24

that the number of iterations is in all situations almost the same.
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Figure 4.26: 3d Hemker problem. Results for mixed fixed point with Anderson accelera-
tion(0.7, κ), where κ is the number in the legends, without projection to ad-
missible values.
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Figure 4.27: 3d Hemker problem. Results for the formal Newton methods, without projection
to admissible values. The adaptive methods were used with ωfp = 0.7 and
ωNewt = 0.1.

Studies for mixed fixed point(ωfp) with Anderson acceleration. The impact of using Anderson

acceleration is demonstrated in Fig. 4.26. For both convection-dominated regimes, the ap-

plication of the Anderson acceleration reduces the needed number of iterations + rejections

on all levels if the number of Anderson vectors is chosen to be κ ∈ {10, 20, 50}. For these

values, only little differences are observable.

Studies for formal Newton methods. Results for the formal Newton methods, in comparison

with mixed fixed point(0.7), are presented in Fig. 4.27. As can be seen, the formal New-

ton method without regularization sometimes reduces the number of iterations+rejections

slightly, but in general do not lead to a notable improvement.
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Figure 4.28: 3d Hemker problem. Results for the method mixed fixed point(ωfp), with pro-
jection to admissible values. Diverged iterations: ε = 10−4: level 2 with ωfp = 1,
level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}; ε = 10−6: level 1 with ωfp = 1,
level 2 with ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}.

4.3.2.3 BJK Limiter with P1 Finite Elements

Utilizing the method mixed fixed point(ωfp) for the BJK limiter, one finds that also in this case

the method converges only if the mixing parameter is sufficiently small, compare Fig. 4.28.

However, there are situations where the maximal number of 25000 iteration steps is not

sufficient for the convergence of mixed fixed point(ωfp) with any of the considered parameters:

level 3 for both regimes and the finest grid for the strongly convection-dominated regime.

Without presenting detailed results, we like to note that, similar as for the 2d Hemker

problem, the application of Anderson acceleration does not benefit for mixed fixed point(ωfp)

and the BJK limiter. The formal Newton method for this limiter will be discussed briefly in

the next example.

4.3.2.4 A 3d Problem with Non-Constant Convection

This example was proposed in [BJKR18]. The domain is given by Ω = Ω1 \ Ω2 with Ω1 =

(0, 5) × (0, 2) × (0, 2) and Ω2 = (0.5, 0.8) × (0.8, 1.2) × (0.8, 1.2) and the convection field

by b = (1, l(x), l(x))T with l(x) = (0.19x3 − 1.42x2 + 2.38x)/4. At the interior cube, the

Dirichlet boundary condition ub = 0 is imposed, at the outlet x = 5 homogeneous Neumann

boundary conditions are set, and at all other boundaries ub = 1 is prescribed. An illustration

of the solution is given in Fig. 4.29. All simulations were performed for P1 finite elements on

unstructured tetrahedral grids, whose coarsest grid was obtained with the mesh generator

Gmsh [GR09], see Fig. 4.29. Information concerning the degrees of freedom are provided in

Table 4.3. This example presents the efficiency of different methods in 3d.
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Figure 4.29: 3d problem with non-constant convection. Solution for ε = 10−6, isosurface for
u = 0.05, computed with the Kuzmin limiter, P1, level 5, and sketch of the
coarsest grid (level 0).

Table 4.3: 3d problem with non-constant convection. Number of degrees of freedom, includ-
ing Dirichlet nodes.

Level P1

0 86
1 476
2 3078
3 21898
4 164626
5 1275426

On the used grids, the BJK limiter computed solutions with values in [0, 1] whereas the

Kuzmin limiter showed small overshoots on levels 3, 4, and 5. In all situations where the

numerical solution had values in [0, 1], it turned out that the simulations without and with

projecting to admissible values as described in Sec. 4.2.3 behaved in general similarly. For

the sake of brevity, only results without projection are presented below.

4.3.2.5 Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results of these studies are displayed in Fig. 4.30.

As for the 3d Hemker example, it can be seen that mixed fixed point(ωfp) converges if ωfp

is sufficiently small. The finer the grid, the smaller is the interval for which the method

converges. An appropriate parameter for both regimes and for all levels is ωfp = 0.6.

Studies for mixed fixed point(ωfp) with Anderson acceleration. Fig. 4.31 shows the effect of

using Anderson acceleration. For sufficiently many Anderson vectors, κ ∈ {10, 20, 50}, there

is in general a notable reduction of the number of iterations+rejections compared with mixed

fixed point(0.6).
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Figure 4.30: 3d problem with non-constant convection. Results for the method mixed fixed
point(ωfp), without projection to admissible values. Diverged iterations: ε =
10−4: level 4 with ωfp = 1, level 5 with ωfp = 1; ε = 10−6: level 3 with ωfp = 1,
level 4 with ωfp = 1, level 5 with ωfp ∈ {0.95, 1}.
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Figure 4.31: 3d problem with non-constant convection. Results for mixed fixed point with
Anderson acceleration(0.6, κ), where κ is the number in the legends, without
projection to admissible values.

Studies for formal Newton methods. The results for this approach, displayed in Fig. 4.32,

are similar as for the 3d Hemker problem, Fig. 4.27. Also here, the formal Newton methods

usually do not show a notably better behavior than the mixed fixed point(0.6) method.

4.3.2.6 BJK Limiter with P1 Finite Elements

For the BJK limiter, results for the method mixed fixed point(ωfp) are presented in Fig. 4.33.

On the one hand, there is a similar behavior as for the Kuzmin limiter, because the method
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Figure 4.32: 3d problem with non-constant convection. Results for the formal Newton meth-
ods, without projection to admissible values. The adaptive methods were used
with ωfp = 0.6 and ωNewt = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
ωfp

1000

2000

5000

10000

25000

#
 i
te

ra
ti

o
n
s 
+

 r
e
je

ct
io

n
s

ε=10−4 , Kuzmin limiter, P1

level 1

level 2

level 3

level 4

level 5

0.0 0.2 0.4 0.6 0.8 1.0
ωfp

1000

2000

5000

10000

25000

#
 i
te

ra
ti

o
n
s 
+

 r
e
je

ct
io

n
s

ε=10−6 , Kuzmin limiter, P1

level 1

level 2

level 3

level 4

level 5

Figure 4.33: 3d problem with non-constant convection. Results for the method mixed fixed
point(ωfp), without projection to admissible values. Diverged iterations: ε =
10−6: level 1 with ωfp = 1; ε = 10−4 and ε = 10−6: level 2 with ωfp = 1, level 3
with ωfp = 1, level 4 with ωfp = 1, level 5 with ωfp ∈ {0.95, 1}.

converges if the mixing parameter ωfp is sufficiently small. On the other hand, much more

iterations are needed than for the Kuzmin limiter.

For this example, the behavior of the formal Newton method without damping, which be-

haved quite well for the 2d Hemker problem, is discussed. First of all, we noticed that the used

iterative solver did not work for this method, such that a sparse direct solver was utilized.

With this solver, it was only possible to perform simulations on coarse grids. Concerning

the number of iterations+rejections, the results are again quite good, e.g., in the strongly

convection-dominated case, these numbers are for levels 1–3: 171, 401, 598 in comparison

with the best numbers from Fig. 4.33: 706, 1574, 2298. Thus, on levels 2 and 3 there is a
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Figure 4.34: 3d problem with non-constant convection. Efficiency for several methods.

considerable reduction of these numbers.

4.3.2.7 Efficiency

Again, we selected a method from each approach with a small number of iterations + re-

jections for comparison. Usually, the arising linear systems of equations were solved with

an iterative solver. To this end, GMRES [SS86] was used with right preconditioner. The

preconditioner was SSOR with relaxation parameter 1.0. In our experience, it is in general

not necessary to solve the linear systems of equations very accurately. Accordingly, the GM-

RES iteration was stopped if the Euclidean norm of the residual vector was reduced by the

factor 100 or after 50 iterations. A comparison with the use of a much stronger stopping

criterion has been already provided in Sec. 4.3.2.2. For fixed point rhs , also the sparse direct

solver UMFPACK was utilized for solving the linear system of equations, because for this

method, only one factorization is necessary. The determination of the computing times was

performed in the same way as described for the 2d Hemker problem in Sec. 4.3.1.11.

Results are displayed in Fig. 4.34. Like in the 2d case, fixed point rhs (= mixed fixed point(0))

is the most efficient approach. On coarse grids, both the iterative or the direct solver can

be used, but on finer grids, one has to apply the iterative solver. Compared with mixed

fixed point(0.6) and mixed fixed point with Anderson acceleration(0.6, 10), the computing

times of fixed point rhs are about half an order of magnitude smaller, even if the number

of iterations+rejections is usually notably larger, e.g., for the strongly convection-dominated

case on the finest grid 538 vs. 387 for mixed fixed point(0.6) and 308 for mixed fixed point

with Anderson acceleration(0.6, 10). The reason is that the used iterative solver performed

for the matrix from fixed point rhs , which is just Ã = A + D, much more efficient than for

the matrices from the other methods.
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4.4 Summary

This chapter presented comprehensive numerical studies for solving the nonlinear problems

arising in AFC discretizations of steady-state convection-diffusion-reaction equation.

Taking the simplest fixed point method fixed point rhs , or equivalently mixed fixed point(0), as

a reference method, the numerical studies showed that it is sometimes possible to reduce with

advanced methods the number of iterations+rejections considerably, e.g., see the numbers

given in Secs. 4.3.1.11 and 4.3.2.6. The method fixed point rhs has, however, the structural

advantage of having the same matrix in each iteration step. In two dimensions, due to the

high efficiency of sparse direct solvers in 2d, it clearly outperforms all other approaches with

respect to computing times, of course only in the case that fixed point rhs converges. A

sparse direct solver can be applied in 3d only on very coarse grids. Usually, an iterative

solver has to be utilized. However, also in 3d, the method fixed point rhs was most efficient,

since the iterative solver worked much better than for other methods because of the favorable

properties of the iteration matrix.

It was usually much easier to solve the problems for the Kuzmin limiter than for the BJK

limiter. Especially in the strongly convection-dominated regime and on fine grids, the con-

sidered methods often did not converge for the BJK limiter within the prescribed maximal

number of steps.

Whether or not the projection to admissible values as described in Sec. 4.2.3 should be

performed depends on the example. If the numerical solution does not possess undershoots

or overshoots, often only a minor impact on the behavior of the solver mixed fixed point(ωfp)

for the nonlinear problem could be observed. For all methods, the choice of the initial iterate

did in general not possess a big impact on the number of iterations. Usually, using the SUPG

solution was an appropriate choice.

In summary, the simplest fixed point iteration is the most efficient approach in terms of

computing times, although it often needs considerably more iterations than other approaches.

The gain of either needing only one matrix factorization in 2d or of the high efficiency of the

iterative solver in 3d compensates this drawback more than enough.
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In Chapter 3 it was noted that the solution of Convection-Diffusion-Reaction equations

changes abruptly in the layers and hence some kind of stabilization was required. An ap-

proach to approximate the layers properly and reduce the number of unknowns is the use of

highly non-equidistant meshes instead of equidistant (or uniform) meshes. Now, one can use

a priori non-equidistant meshes based on the knowledge of the exact solution (e.g. graded

meshes [Bah69], Shishkin meshes [MOS96, FHM+00]), or one may begin with some uniform

mesh, compute a numerical solution on it, and then use information from this to adapt

the grid in an a posteriori way, thereby obtaining a grid more suited to the problem. This

technique is referred as adaptive methods based on a posteriori error estimation. Interest in

a posteriori error estimation for FEMs for two point boundary value problems began with

the pioneering work of Babuška and Rheinboldt [BR78]. In the review [Sty05] the author

prophesizes that adaptive methods will triumph over other methods to solve Convection-

Diffusion-Reaction equations.

From the past three decades, a posteriori error estimation for Convection-Diffusion-Reaction

equations has received a lot of attention. A review of all the estimators proposed for these

equations is beyond the scope of this work, but some examples of estimators obtained using

different techniques can be found in [Ver98, APS05, San08, JN13]. One of the initial studies

for the comparison of different estimators using the SUPG solution of Convection-Diffusion-

Reaction equations was done in [Joh00] and it was shown that none of the estimators was

robust with respect to the diffusion coefficient, ε. By robustness, we mean that the equiv-

alence constants between the estimator and the error should be independent of how much

convection-dominated the problem is. Work towards deriving a robust estimator was pro-

posed in [Ver05] where the analysis from [Ver98] was extended by adding a dual norm of the

convective derivative to the energy norm, but the additional term in the norm can only be

approximated. A generalization of the robust estimators was considered in [TV15], where

the analysis was applied to linear stabilized schemes. Robust a posteriori error estimators for

L1(Ω) and L2(Ω) norm of the error can be found in [HDF+06, HFD08, HDF11]. In [JN13] a

robust estimator is proposed in the same norm in which the a priori analysis is performed for

the SUPG method, namely the SUPG norm. Here the analysis relied on certain hypotheses

including an interpolation of the solution.
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One of the drawbacks of all the above-mentioned estimators is the presence of certain con-

stants which can only be approximated. Results related to find a fully computable upper

bound for the error of convection-diffusion equations have gained attention recently and can

be found in [AABR13, ESV10]. For the algebraic flux correction schemes (AFC), a fully

computable estimator was proposed in [ABR17] with respect to the energy norm. To the

best of our knowledge, this was the first work, where an a posteriori error estimator has

been derived for the AFC schemes. It is shown that the estimator is not robust with respect

to ε and also the local efficiency of the scheme relied on certain assumptions including the

Lipschitz continuity of the nonlinear term and the linearity preservation of the scheme.

In this chapter, our focus will be on the study of adaptive methods in the context of AFC

schemes with respect to the energy norm. The contents of the chapters are as follows:

Sec. 5.1 introduces certain notations and definitions used in a posteriori analysis, namely

the properties of the triangulation, refinement techniques, and certain auxiliary results. In

Sec. 5.2 a global upper bound and a local lower bound are derived for the error in the energy

norm. Here, we also present another strategy for deriving an upper bound using the SUPG

solution. Lastly, numerical simulations validating the results are presented in Sec. 5.3.

5.1 Preliminaries

Let us recall the Algebraic Flux Correction (AFC) scheme introduced in Sec. 3.4, Chapter 3.

The AFC scheme for (2.6) reads as (see [BJK16]): Find uh ∈ Wh(⊆ C(Ω) ∩ H1
D(Ω)) such

that

aAFC(uh;uh, vh) = 〈f, vh〉+ 〈g, vh〉ΓN
∀vh ∈ Vh(⊆ C(Ω) ∩H1

0 (Ω)), (5.1)

with aAFC(·, ·) : H1
D(Ω)×H1

0 (Ω)→ R such that

aAFC(uh;uh, vh) := a(uh, vh) + dh(uh, uh, vh),

where

dh(w;u, v) =
N∑

i,j=1

(1− αij(w))dij(u(xj)− u(xi))v(xi) ∀u, v, w ∈ C(Ω), (5.2)

a(uh, vh) is given by (2.12), and H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= ub}. For our analysis we will

be assuming homogeneous Dirichlet conditions, i.e., ub = 0.

In [BJKR18] a different representation of dh(·; ·, ·) is given for conforming piecewise linear

finite element functions u and v, which reads as

dh(w;u, v) =
∑
E∈Eh

(1− αE(w))|dE|hE(∇u · tE, ∇v · tE)E, (5.3)
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where Eh is the set of all edges and tE is the tangential unit vector on edge E.

For u, v, w, u1, u2 ∈ C(Ω) we have the following properties of dh(·; ·, ·) (see [BJK16]),

1. Non-negativity : 0 ≤ dh(w; v, v).

2. Linearity :
dh(w;u1 + u2, v) = dh(w;u1, v) + dh(w;u2, v),

dh(w; v, u1 + u2) = dh(w; v, u1) + dh(w; v, u2).
(5.4)

3. Semi-Norm property, Cauchy-Schwarz inequality :

dh(w;u, v) ≤ d
1/2
h (w;u, u)d

1/2
h (w; v, v). (5.5)

We will present our result with respect to the energy norm given by

‖v‖2
a = ε|v|21,Ω + σ0‖v‖2

0.Ω ∀v ∈ H1(Ω). (5.6)

We would also like to mention the induced AFC norm of the system which is used for its a

priori analysis ([BJK16, BJK17]) and which is the starting point of our a posteriori analysis,

‖v‖2
AFC = ‖v‖2

a + dh(vh, v, v) ∀v ∈ H1(Ω). (5.7)

5.1.1 Definitions and Notations

For d > 1, the domain Ω ⊂ Rd is decomposed into (simple) subdomains for which local

polynomials are defined. These decompositions are referred as grids or meshes. A simplicial

decomposition, i.e., a decomposition consisting only of triangles or tetrahedron is called a

triangulation.

Definition 5.1. (Grid or Mesh) ([DW11, Definition 4.11]) Let Ω ⊂ Rd, d ∈ {2, 3}, denote

a domain and S be a finite system of closed connected sets of subdomains of Ω. A subset

T ⊂ S is called conformal if for all K1, K2 ∈ T with K1 ∩ K2 ∈ T also K1 = K2 holds.

Let T = {K ∈ S : int(K) 6= ∅} denotes the set of all elements. S is called a grid or mesh

whenever the following property holds:

1. T covers Ω, i.e., Ω = ∪
K∈T

K,

2. T is conformal,

3. S ∪ ∂Ω is closed under intersection of sets, i.e., K1, K2 ∈ S ∪ ∂Ω⇒ K1 ∩K2 ∈ S.
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If for F ∈ S there exist exactly two K1, K2 ∈ T with F = K1 ∩ K2, then F is called

a face. We denote by Fh the set of all faces which are m−dimensional linear manifolds,

0 ≤ m ≤ d− 1. For d = 3 an element E ∈ S is called an edge of some K ∈ T if exactly two

F1, F2 ∈ Fh, F1, F2 ⊂ K exist so that E = F1 ∩ F2. We denote by Eh the set of all edges.

Finally, Nh = {E1 ∩ E2 : E1, E2 ∈ Eh, E1 6= E2} is the set of vertices. A grid is conformal if

Eh and Fh are conformal. Note that Fh = Fh,Ω ∪ Fh,D ∪ Fh,N , where Fh,Ω, Fh,D, and Fh,N
denote the interior, Dirichlet, and Neumann faces respectively. In 2d, it holds that Eh = Fh.
The set of mesh cells having a common face F is denoted by ωF = ∪F⊂∂K′K ′ and ωK denotes

the patch of mesh cells that have a joint face with K.

Let P (T ) define a finite element space on our triangulation, then the functionals that define

our finite element space are referred as nodal functionals. We denote by NF (T ) the set of

nodal functionals.

Remark 5.2. As we are concentrating on Lagrange elements each nodal functional can be

determined by a point on the simplex, i.e., there is a one-to-one map between the functionals

and the nodes on a simplex. By abuse of notations, we are denoting them by the same

notation. If we need to make a distinction between the two, it will be explicitly stated.

Remark 5.3. A finite element space can have different number of nodes and vertices, for, e.g.,

P2 Lagrange elements on simplices.

Definition 5.4. (Conforming triangulation) A triangulation T of Ω is called conforming

if for K1, K2 ∈ T with K1 6= K2 the intersection K1 ∩K2 is either empty, a vertex, an edge,

or a 2− face of K1 and K2.

Definition 5.5. (Refinement) ([Grä11, Definition 3.3]) Let T1 and T2 be triangulations of

Ω. Then T2 is called a refinement of T1 if for all K ∈ T1 the set

{K ′ ∈ T2 : K ′ ∩K 6= ∅}

is a triangulation of K.

Definition 5.6. (Grid hierarchy) ([Grä11, Definition 3.4]) A family {Ti}ji=0 is called a

grid hierarchy on Ω if T0 is a conforming triangulation of Ω, and if each Ti, i = 1, · · · , j,
is a refinement of Ti−1. If the grid Ti is conforming we call it conforming grid refinement

otherwise non-conforming grid refinement.

Remark 5.7. An interesting property of the grid hierarchy is the embedding of the set of

vertices Nhi ⊂ Nh(i+1).

Definition 5.8. (Shape regularity) Let T be a triangulation of Ω into simplices. We say

it is shape regular, if there exists a constant Cshrg > 0 such that for each mesh cell K ∈ T ,

it holds

ρK ≥ CshrghK , (5.8)

where hK and ρK denote the diameter of K and the diameter of the largest ball inside K,

respectively.
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Remark 5.9. The characteristic parameter of the triangulation is given by h = maxK∈ThhK .

We use |K| as symbol for the volume of a mesh cell K.

Remark 5.10 (Consequences of the shape regularity assumption (5.8)). The 2d and 3d case

will be discussed separately.

2d case. Denote the edges of an arbitrary triangle K by E1, E2, and E3, the angle opposite

the edge Ei by θi, and the length of Ei by hEi
, i = 1, 2, 3. Then, the diameter of the largest

ball inside K can be computed by

ρK =
2|K|

hE1 + hE2 + hE3

.

Hence, for a given triangulation, one can compute ρK/hK for each mesh cell, such that on

gets information on the constant Cshrg. Likewise, it is

ρK =
hE1

cot θ2
2

+ cot θ3
2

and similarly for the other edges. Since θ2 > 0, θ3 > 0, and θ2 + θ3 < π, one can check that

the denominator is larger than 2 such that ρK < hE1 and similarly for the two other edges:

hEi
> ρK , hEi

≥ CshrghK , i = 1, 2, 3. (5.9)

In 2d, the shape regularity condition (5.8) is equivalent with the minimal angle condition,

i.e., there is a minimal angle θ0 > 0 for all triangles and all triangulations from the family of

triangulations (see [Cia78, Pg. 130, 3.1.3]). The minimal angle condition implies a maximal

angle condition. Altogether, there is a positive constant Ccos < 1 such that for all Th and all

K ∈ Th
cos(θi) ≤ Ccos i = 1, 2, 3. (5.10)

For a given triangulation, Ccos can be computed.

3d case. In [BKK08] it is shown that for 3d, shape regularity implies a minimum angle

condition and hence (5.10) holds in 3d as well with θi replaced by θij, the dihedral angle

between the faces Fi, Fj. Also ρK < hE, because the projection of the ball onto the surface

of the tetrahedron gives the result.

Now we will discuss some strategies for grid refinement. After the application of an a poste-

riori error estimator we have some marked cells that need to be refined. The marking of the

cells is done using marking strategies which will be described later in Sec. 5.3. One of the

popular ways of refining a triangle is by dividing its edges.

Definition 5.11. (Bisection method) The simplest method introduced by Rivara in 1984

[Riv84] is the decomposition of a cell into two neighboring cells by bisecting an edge of the

marked cell and joining it to its opposing vertex. In order to maintain shape regularity, the
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(a) 2d bisection

(b) 3d bisection

Figure 5.1: Bisection in 2d and 3d.

longest edge is usually selected for bisection. To close the grid, refinement is continued as

long as we don’t have hanging vertices. In general, the refinement process terminates before

the mesh has been uniformly refined. If a hanging vertex is situated on the longest edge, then

the further bisection does not guarantee a new node. Otherwise, a new hanging vertex is

generated on a long edge. Hence, the continuation of the refinement can only affect elements

with longer edges than the currently considered longest edge. Fig. 5.1 shows the method in

2d as well as 3d.

Definition 5.12. (Red-Green refinement) A more complicated method dates back to

Bank et.al [BSW83] who have introduced some red-green refinement strategy in their adaptive

finite element package.

Red refinement: In this kind of refinement the elements are subdivided into 2d smaller

simplicies, where exactly the midpoint of all edges are introduced as new vertices. In 2d

this yields an unique decomposition of a triangle into four similar smaller triangles. As the

interiors do not change, the shape regularity is preserved.

In 3d, things become complex geometrically: first one gets four tetrahedron at the vertices

of the original tetrahedron as well as an octahedron in the center. By selecting one of

the diagonals as common new edge the octahedron may be decomposed into four further

tetrahedron, which, however are not similar to the original tetrahedron. The selection of the

diagonal is important so as to preserve shape regularity. As a rule the shortest diagonal is

selected. In order to preserve conformity of the grid or to close the grid, elements neighboring

already subdivided elements must be subdivided. This strategy is not useful as this will refine

the whole grid uniformly. One remedy is to red refine locally only if (in 2d) at least two

edges of a triangle are marked.

Green refinement: We now assume (in 2d) that in a local triangle one edge has a hanging

vertex and the grid needs to be closed. In this case we introduce a new so-called green edge

and subdivide the neighboring triangle into two triangles. In this way the refinement is not
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(a) 2d red refinement (b) 3d red refinement

Figure 5.2: Red refinement in 2d and 3d.

Figure 5.3: Green completion not preserving shape regularity.

continued further which is why the green edges are called green completion. One drawback of

green refinement is that the interior angles deteriorate from the original triangle. Hence by

continuing green refinement the shape regularity may suffer, see Fig. 5.3. In order to preserve

shape regularity for subsequent refinements the green refinements are removed before the next

refinement process and then performing green completion once the red refinement has been

performed, see Fig. 5.4. In 3d, the process runs in a similar way, but requires three different

type of green completion depending on whether one, two, or three edges are marked.

Definition 5.13. (Blue refinement) Introduced in [KR89] blue refinement (in 2d) is per-

formed by bisecting exactly two edges. To avoid too acute or obtuse triangles, the longest

one of the refinement edges is bisected first. Fig. 5.5 shows blue refinement in 2d.

Figure 5.5: Blue refinement.
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(a) Initial green refinement

(b) Green refinement leading to bad angles

(c) Substituted red refinement

Figure 5.4: Substituted red refinement before green completion.

Remark 5.14. The preservation of shape regularity by red refinement of simplices by arbitrary

space dimension in finitely many similar classes was proven in 1942 by H. Freundenthal [Fre42]

for the adaptive mesh in 3d, however rediscovered only 50 years later [Bey95, Ong89]. The

stability for selecting the shortest diagonal has been shown in [KP08, Zha95].

Lastly, we would like to define bubble functions on our finite element space as they play an

important role while finding local lower bounds.

Definition 5.15. (Bubble functions) ([AO00, Sec. 2.3.1]) Let the triangular reference

element be chosen as

K̂{(x̂, ŷ) : 0 ≤ x̂ ≤ 1; 0 ≤ ŷ ≤ 1− x̂}

94



5.1 Preliminaries

and introduce the barycentric coordinates on the reference elements defined by

ϕ̂1 = x̂; ϕ̂2 = ŷ, ϕ̂3 = 1− x̂− ŷ.

The interior bubble function ψ̂K̂ is defined by

ψ̂K̂ = 27ϕ̂1ϕ̂2ϕ̂3

and the three edge bubble functions are given by

ψ̂F̂1 = 4ϕ̂2ϕ̂3; ψ̂F̂2 = 4ϕ̂1ϕ̂3; ψ̂F̂3 = 4ϕ̂1ϕ̂2.

For each element K ∈ T let FK : K̂ → K be the affine mapping [BS08, Sec. 3.4], then define

the bubble functions on element K by

ψK = ψ̂K̂ ◦ F
−1
K ; ψF = ψ̂F̂ ◦ F

−1
K .

The concept of bubble functions can be extended to quadrilaterals (see [AO00, Sec. 2.3.1])

and higher-dimensional simplices and cubes (see [Ver13, Sec. 3.6]).

5.1.2 Auxiliary Results

In this subsection we would mention certain standard results used for a posteriori error

estimation. We would also give some concrete choices of constants in certain trace results.

We will assume that the triangulations are regular.

Lemma 5.16. (Cauchy-Schwarz inequality) Let (·, ·)V be an inner product on V and

‖ · ‖V be the induced norm on V, then for u, v ∈ V

(u, v)V ≤ ‖u‖V ‖v‖V .

Lemma 5.17. (Generalized Young’s inequality) Let a, b ∈ R+ ∪ {0} and p, q > 1 such

that 1/p+ 1/q = 1. Then

ab ≤ ap

CY p
+
CY b

q

q
,

where CY > 0.

Lemma 5.18. (Inverse estimate) ([BS08, Lemma 4.5.3]) Let ρh ≤ hK ≤ h, where 0 <

h ≤ 1, and Vh be a finite-dimensional subspace of Hm(K). Then for 0 ≤ l ≤ m there exists

a constant Cinv such that for all v ∈ Vh and K ∈ Th, we have

‖vh‖m,K ≤ Cinvh
l−m
K ‖vh‖l,K . (5.11)

Theorem 5.19. (Interpolation estimate) ([Cia78, Theorem 3.1.6]) Let q ∈ [1,∞], s ∈
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{0, 1} and s ≤ t. Let, Ih : W t,q(Ω) → Vh denote a bounded linear interpolation operator.

Then, it satisfies ∀v ∈ W t,q(Ω) and all mesh cells K ∈ Th

|v − Ihv|s,q,K ≤ CIh
t−s
K |v|t,q,K . (5.12)

Remark 5.20. For s = t in (5.12), one gets with uh = Ihuh

‖u− Ihu‖s,q,K ≤ ‖u− uh‖s,q,K + ‖Ihu− Ihuh‖s,q,K
≤ ‖u− uh‖s,q,K + CI‖u− uh‖s,q,K
= (1 + CI)‖u− uh‖s,q,K . (5.13)

Remark 5.21. We assume a stable quasi-interpolation (similar to [JN13, Eq. (6)]) which is

identity on the finite element space, i.e.,

Ihuh = uh ∀ uh ∈ Vh.

A trace inequality which relates the L2(F ) norm on a face of a mesh cell K to norms defined

on K was proved in [Ver98].

Lemma 5.22. ([Ver98, Lemma 3.1]) Let v ∈ H1(K) and F ⊂ ∂K, then it holds

‖v‖L2(F ) ≤ C
(
h
−1/2
F ‖v‖L2(K) + ‖v‖1/2

L2(K)‖∇v‖
1/2

L2(K)

)
. (5.14)

Lemma 5.23. Let E be an edge with length hE and v be a linear function on E, then

‖∇v · tE‖2
0,E ≤ ‖∇v‖2

0,E, (5.15)

where tE is the tangent unit vector to E.

Proof. From orthogonal decomposition one has

∇v = (∇v · tE)tE + (∇v · nE)nE

where nE is the normal unit vector to E. Now, one knows nE · tE = 0.

So,

∇v · ∇v = (∇v · tE)2 + (∇v · nE)2 + 2(∇v · tE)(∇v · nE)nE · tE.

Integrating on both sides along the edge E,

‖∇v‖2
0,E = ‖∇v · tE‖2

0,E + ‖∇v · nE‖2
0,E.

Hence, (5.15) follows.
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Lemma 5.24 (Estimate of the trace on an edge by the norm on the mesh cell). Let K ∈ T
be a mesh cell, Eh(K) the set of all edges of K and ϕh ∈ P1(K). Then, it holds∑

E∈Eh(K)

‖∇ϕh · tE‖2
L2(E) ≤ Cedgeh

1−d
K ‖∇ϕh‖

2
L2(K), (5.16)

with Cedge independent of K.

Proof. The principal way for proving the statement of the lemma is the same for two and

three dimensions. It uses the mapping to the reference cell. First, the proof for d = 2 will

be presented.

Relating the norms on E and Ê. This step is just a one-dimensional consideration for an

edge. Thus, one has to do the same calculations in 2d and 3d. For brevity, the presentation

below is performed for the 2d case.

Let K̂ be the reference triangle with the vertices V̂0 = (0, 0), V̂1 = (1, 0), and V̂2 = (0, 1).

Since a additive constant does not play any role, it will be assumed that ϕ̂h(V̂0) = 0, ϕ̂h(V̂1) =

α, and ϕ̂h(V̂2) = β with α, β ∈ R. Consequently, it is ∇ϕ̂h = (α, β)T . One obtains for

Ê = V̂0V̂1 and hÊ = |Ê| = 1∫ V̂1

V̂0

(∇ϕ̂h · tÊ)2 ds =

(
(ϕ̂h(V̂1)− ϕ̂h(V̂0))2

h2
Ê

)
hÊ = α2. (5.17)

Analogously, one finds∫ V̂2

V̂0

(∇ϕ̂h · tÊ)2 ds = β2,

∫ V̂2

V̂0

(∇ϕ̂h · tÊ)2 ds =
1√
2

(α− β)2. (5.18)

Let the reference map FK : K̂ → K map V̂0 to V0 and V̂1 to V1, where V0 and V1 are vertices

of K. Then it holds that ϕ̂h(V̂0) = ϕh(V0) and ϕ̂h(V̂1) = ϕh(V1). Denote E = V0V1, then it is∫ V1

V0

(∇ϕh · tE)2 ds =

(
(ϕh(V0)− ϕh(V1))2

h2
E

)
hE.

The value of this integral has to be equal to (5.17), from what follows that

‖∇ϕh · tE‖2
L2(E) =

hÊ
hE
‖∇ϕ̂h · tÊ‖

2
L2(Ê)

.

Performing the same considerations for the other two edges, one obtains with (5.18)

‖∇ϕh · tE‖2
L2(E) ≤

√
2

hE
‖∇ϕ̂h · tÊ‖

2
L2(Ê)

. (5.19)
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2d: Estimate on the reference cell. Using (5.17), (5.18) and Young’s inequality yields∑
Ê⊂∂K̂

‖∇ϕ̂h · tÊ‖
2
L2(Ê)

= α2 + β2 +
1√
2

(α− β)2

≤
(

1 +
√

2
)

(α2 + β2).

Since ∫
K̂

(∇ϕ̂h · ∇ϕ̂h) dx =
1

2
(α2 + β2), (5.20)

one obtains ∑
Ê⊂∂K̂

‖∇ϕ̂h · tÊ‖
2
L2(Ê)

≤ 2
(

1 +
√

2
)
‖∇ϕ̂h‖2

L2(K̂)
. (5.21)

3d: estimate on the reference cell. The reference cell is given by the vertices V̂0 = (0, 0, 0),

V̂1 = (1, 0, 0), V̂2 = (0, 1, 0), and V̂2 = (0, 0, 1). A linear function ϕ̂h is considered with

ϕ̂h(V̂0) = 0, ϕ̂h(V̂1) = α, ϕ̂h(V̂2) = β, and ϕ̂h(V̂3) = γ. Performing very similar calculations

as in the 2d case leads to the estimate∑
Ê⊂∂K̂

‖∇ϕ̂h · tÊ‖
2
L2(Ê)

≤ 6
(

1 +
√

2
)
‖∇ϕ̂h‖2

L2(K̂)
. (5.22)

Relating the norms on K̂ and K. From the standard numerical analysis it is known that

there is a constant C which is independent of K, such that

‖∇ϕ̂h‖2
L2(K̂)

≤ Ch2−d
K ‖∇ϕh‖

2
L2(K). (5.23)

Estimate (5.16) is now obtained by combining (5.19), (5.21) or (5.22), and (5.23), and using

the shape regularity of the mesh cell (5.9).

Remark 5.25 (More detailed estimate in 2d). Let ϕh be a linear function on K with ϕh(V0) =

0, ϕh(V1) = α, and ϕh(V2) = β, and (x0, y0), (x1, y1), and (x2, y2) be the coordinates of V0, V1,

and V2 respectively. Then the standard Hessian form of the plane on K is given by

ϕh = −
(
a4 +

a1x

a3

+
a2y

a3

)
,

where a1 = (y1 − y0)β − (y2 − y0)α, a2 = (x2 − y0)α− (x1 − x0)β, a3 = (x1 − x0)(y2 − y0)−
(x2−x0)(y1−y0), and a4 is a constant which can be computed by a point on the plane. Now

∇ϕh = − 1

a3

(
a1

a2

)
= − 1

2|K|

(
a1

a2

)
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A direct calculation gives that

∇ϕh · ∇ϕh =
1

4|K|2
(
α2h2

E2
+ β2h2

E1
− 2αβhE1hE2 cos(θ0)

)
,

where E1 and E2 are the edges joining (x0, y0) with (x1, y1) and (x2, y2), respectively and θ0

is the angle between the two edges.

Using the condition (5.10) on the maximal cosine, Young’s inequality, the shape regularity

(5.9), and (5.20) yields

‖∇ϕh‖2
L2(K) ≥

1

4|K|
(
α2h2

E2
+ β2h2

E1
− 2Ccos|α||β|hE1hE2

)
≥ 1

4|K|
(
α2h2

E2
(1− Ccos) + β2h2

E1
(1− Ccos)

)
≥ 1− Ccos

4|K|
ρ2
K

(
α2 + β2

)
=

1− Ccos

2|K|
ρ2
K‖∇ϕ̂h‖2

L2(K̂)
.

Combining this estimate with (5.19), (5.9), and (5.21) leads to

∑
E∈Eh(K)

‖∇ϕh · tE‖2
L2(E) ≤

√
2

ρK

∑
Ê⊂∂K̂

‖∇ϕ̂h · tÊ‖
2
L2(Ê)

≤
2
√

2
(
1 +
√

2
)

ρK
‖∇ϕ̂h‖2

L2(K̂)

≤
4
√

2
(
1 +
√

2
)
|K|

(1− Ccos)ρ3
K

‖∇ϕh‖2
L2(K).

The first factor on the right-hand side scales like h−1
K since ρK ∼ hK and |K| ∼ h2

K . For a

given triangulation, it is computable.

Remark 5.26. (More detailed estimate in 3d). Let ϕh be a linear function on K with ϕh(V0) =

0, ϕh(V1) = α, ϕh(V2) = β, and ϕh(V3) = γ. For linear simplical elements on K we have

(∇vi)>∇vj = −|Fi||Fj|
(3|K|)2

cos(θij), if i 6= j, (5.24)

where vi are basis functions and θij is the dihedral angle between two faces Fi and Fj (see

[KQ95]). For the case i = j we can follow the same steps as for 2d, i.e., use the standard

Hessian form to get the value as

(∇vi)>∇vi =
|Fi|2

(3|K|)2
.

99



5 A Posteriori Error Estimation for AFC Schemes

Using (5.24) a direct calculation gives

∇ϕh · ∇ϕh =
1

9|K|2
[α2|F1|2 + β2|F2|2 + γ2|F3|2

− 2αβ|F1||F2| cos(θ12)− 2αγ|F1||F3| cos(θ13)

− 2γβ|F2||F3| cos(θ23)].

Using Young’s inequality, the shape regularity (5.9), and
∫
K̂

(∇ϕ̂h ·∇ϕ̂h)dx = 1
6
(α2 +β2 +γ2)

yields

‖∇ϕh‖2
L2(K) ≥

6

9|K|
ρ4
K(1− 2C0)‖∇ϕ̂h‖2

L2(K̂)
,

where

C0 = max
1≤i≤j≤3

cos(θij).

Combining this estimate with (5.19), (5.9), (5.22), and assuming C0 < 1/2 leads to

∑
E∈Eh(K)

‖∇ϕh · tE‖2
L2(E) ≤

9
√

2(1 +
√

2)|K|
(1− 2C0)ρ5

K

‖∇ϕh‖2
L2(K). (5.25)

The first factor scales as h−2
K as |K| ∼ h3

K and ρK ∼ hK .

Remark 5.27. In Remark 5.26 we assumed that C0 < 1/2. This condition is not a consequence

of the shape regularity but an essential argument arising in the proof. Another reformulation

of this condition is that all the dihedral angles in a tetrahedron are greater than π/3. In

general this condition is not satisfied, for e.g., for reference unit tetrahedron we have dihedral

angles less than π/3. One example where this condition is satisfied is a regular tetrahedron

with edges of equal length where the dihedral angle is 0.3918π.

5.2 A Posteriori Error Estimators

In this section, we propose a new residual-based a posteriori error estimator for the AFC

schemes in the energy norm. To the best of our knowledge only one work has been done

in the context of a posteriori error estimation and the AFC schemes (see [ABR17]). A

fully computable upper bound has been derived under certain assumptions on the nonlinear

stabilization term. In this work ideas from [AABR13] have been extended to the AFC

schemes. The design of the estimator relies on introducing certain first-order consistent

equilibrated fluxes and then solving a local Neumann problem to get explicit bounds. To show

the local efficiency of the estimator two assumptions are made on the nonlinear stabilization

(dh(·; ·, ·)) namely the local Lipschitz continuity and the linearity preservation. Because of

the last assumption, this estimator is not applicable to the Kuzmin limiter (see [BJK16]).
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The derivation of an estimator presented in this section follows the standard residual-based

approach. We start with the variational formulation and use standard interpolation estimates

to bound the terms. We also propose an estimator later in this section which uses the SUPG

solution for bounding the error.

5.2.1 Residual-Based Estimator

5.2.1.1 Global Upper Bound

In this section we will present a global upper bound for the AFC scheme in the energy

norm (5.6).

Let u ∈ H1
D(Ω) be a continuous solution of (2.12) and uh ∈ Wh be a solution for (5.1), then

for vh ∈ Vh one obtains with (2.12) and (5.1)

aAFC(uh;u− uh, vh) = a(u− uh, vh) + dh(uh;u− uh, vh)
= 〈f, vh〉+ 〈g, vh〉ΓN

− 〈f, vh〉 − 〈g, vh〉ΓN
+ dh(uh;u, vh)

= dh(uh;u, vh). (5.26)

For any v ∈ H1
0 (Ω), the application of (5.1), (5.2), and (5.26) yields

aAFC(uh;u− uh, v)

= aAFC(uh;u− uh, v − Ihv) + aAFC(uh;u− uh, Ihv)

= a(u− uh, v − Ihv) + dh(uh;u− uh, v − Ihv) + dh(uh;u, Ihv)

= 〈f, v − Ihv〉+ 〈g, v − Ihv〉ΓN
+ dh(uh;u− uh, v − Ihv)

+dh(uh;u, Ihv)− a(uh, v − Ihv).

Taking v = u− uh in this equation, using uh = Ihuh, and applying integration by parts, one

gets

‖u− uh‖2
AFC

= ‖u− uh‖2
a + dh(uh;u− uh, u− uh)

= aAFC(uh;u− uh, u− uh)
= 〈f, u− Ihu〉+ 〈g, u− Ihu〉ΓN

+ dh(uh;u− uh, u− uh − Ih(u− uh))
+dh(uh;u, Ihu− Ihuh)− a(uh, u− Ihu) (5.27)

=
∑
K∈Th

(RK(uh), u− Ihu)K +
∑
F∈Fh

〈RF (uh), u− Ihu〉F

+dh(uh;u, Ihu− uh) + dh(uh;u− uh, u− uh − Ih(u− uh))
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with
RK(uh) := f + ε∆uh − b · ∇uh − cuh|K ,

RF (uh) :=


−ε[|∇uh · nF |]F if F ∈ Fh,Ω,
g − ε(∇uh · nF ) if F ∈ Fh,N ,
0 if F ∈ Fh,D.

The terms on the right-hand side of (5.27) have to be bounded.

For the first term in (5.27), using the Cauchy–Schwarz inequality, uh = Ihuh, the interpolation

estimate (5.12) with s = 0, t = 0, and the generalized Young’s inequality gives∑
K∈Th

(RK(uh), u− Ihu)K ≤
∑
K∈Th

‖RK(uh)‖L2(K)‖u− Ihu‖L2(K)

=
∑
K∈Th

‖RK(uh)‖L2(K)‖(u− uh)− Ih(u− uh)‖L2(K)

≤
∑
K∈Th

‖RK(uh)‖L2(K)CI‖u− uh‖L2(K) (5.28)

≤ CYC
2
I

2σ0

∑
K∈Th

‖RK(uh)‖2
L2(K) +

σ0

2CY
‖u− uh‖2

L2(Ω),

where CY is the Young’s inequality constant.

One can also approximate the interpolation error with (5.12) and s = 0, t = 1, leading to∑
K∈Th

(RK(uh), u− Ihu)K ≤
∑
K∈Th

‖RK(uh)‖L2(K)‖u− Ihu‖L2(K)

≤
∑
K∈Th

‖RK(uh)‖L2(K)CIhK |u− uh|H1(K) (5.29)

≤ CYC
2
Ih

2
K

2ε

∑
K∈Th

‖RK(uh)‖2
L2(K)

+
ε

2CY
|u− uh|2H1(Ω).

Hence, combining (5.28) and (5.29) gives∑
K∈Th

(RK(uh), u− Ihu)K

≤ CY
2

∑
K∈Th

min

{
C2
I

σ0

,
C2
Ih

2
K

ε

}
‖RK(uh)‖2

L2(K) +
1

2CY
‖u− uh‖2

a. (5.30)

The estimate of the second term in (5.27) starts also with the Cauchy–Schwarz inequality
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and using uh = Ihuh∑
F∈Fh

〈RF (uh), u− Ihu〉F ≤
∑
F∈Fh

‖RF (uh)‖L2(F )‖u− Ihu‖L2(F )

=
∑
F∈Fh

‖RF (uh)‖L2(F )‖(u− uh)− Ih(u− uh)‖L2(F ).

Now, the local trace estimate (5.14) is applied to the second factor on the right-hand side.

After this, one proceeds essentially as for the mesh cell residual by using the interpolation

estimate (5.12), considering the cases s = t = 0 and s = 0, t = 1 for the interpolation error in

L2(K), performing some straightforward calculations, compare [JN13], and using the shape

regularity of the mesh cell, to find

‖(u− uh)− Ih(u− uh)‖L2(F ) ≤ CF min

{
h

1/2
F

ε1/2
,

1

σ
1/4
0 ε1/4

}
‖u− uh‖a,

where the constant CF depends on the constant from (5.14) and the interpolation constant.

Applying now the generalized Young’s inequality, one gets for the face residuals∑
F∈Fh

〈RF (uh), u− Ihu〉F

≤ CY
2

∑
F∈Fh

min

{
C2
FhF
ε

,
C2
F

σ
1/2
0 ε1/2

}
‖RF (uh)‖2

L2(F ) +
1

2CY
‖u− uh‖2

a. (5.31)

As intermediate result, one obtains from (5.27), (5.30), and (5.31)

‖u− uh‖2
a +

CY
CY − 1

dh(uh;u− uh, u− uh)

≤ C2
Y

2(CY − 1)

∑
K∈Th

min

{
C2
I

σ0

,
C2
Ih

2
K

ε

}
‖RK(uh)‖2

L2(K)

+
C2
Y

2(CY − 1)

∑
F∈Fh

min

{
C2
FhF
ε

,
C2
F

σ
1/2
0 ε1/2

}
‖RF (uh)‖2

L2(F )

+
CY

CY − 1
dh(uh;u, Ihu− uh) +

CY
CY − 1

dh(uh;u− uh, u− uh − Ih(u− uh)). (5.32)

We estimate the last two term in (5.32), by using (5.4) and Remark 5.21, leading to

dh(uh;u− uh, u− uh − Ih(u− uh)) + dh(uh;u, Ih(u− uh))
= dh(uh;u− uh, u− uh)− dh(uh;u, Ih(u− uh))

+dh(uh;uh, Ih(u− uh)) + dh(uh;u, Ih(u− uh))
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= dh(uh;u− uh, u− uh) + dh(uh;uh, Ih(u− uh)). (5.33)

Inserting this relation in (5.32) reveals that the stabilization term on the left-hand side

cancels with the first term on the right-hand side of (5.33). Consequently, only the energy

norm is left to be estimated.

Since Ihu − uh is linear on each edge, the second term on the right-hand side of (5.33) can

be rewritten as integral over the edges, see (5.3), and estimated with the Cauchy–Schwarz

inequality and the generalized Young’s inequality

dh(uh;uh, Ihu− uh)
=

∑
E∈Eh

(1− αE)|dE|hE(∇uh · tE,∇(Ihu− uh) · tE)E

≤
∑
E∈Eh

(1− αE)|dE|hE‖∇uh · tE‖L2(E)‖∇(Ihu− uh) · tE‖L2(E)

≤ 1

2CY κ1

∑
E∈Eh

εhd−1
E ‖∇(Ihu− uh) · tE‖2

L2(E)

+
CY κ1

2

∑
E∈Eh

ε−1(1− αE)2|dE|2h3−d
E ‖∇uh · tE‖

2
L2(E). (5.34)

The parameter κ1 will be defined later. The second term is computable.

Consider the first term in (5.34). Denoting

Cedge,max = max
K∈Th

Cedge,

using hE ≤ hK , d− 1 > 0, (5.16), the triangle inequality, and (5.13) yields

1

κ1

∑
E∈Eh

εhd−1
E ‖∇(Ihu− uh) · tE‖2

L2(E)

≤ ε

κ1

∑
K∈Th

(∑
E∈∂K

hd−1
E ‖∇(Ihu− uh) · tE‖2

L2(E)

)
≤ ε

κ1

∑
K∈Th

Cedge‖∇(Ihu− uh)‖2
L2(K)

≤ 2εCedge,max

κ1

∑
K∈Th

(
‖∇(u− uh)‖2

L2(K) + ‖∇(u− Ihu)‖2
L2(K)

)
≤ 2Cedge,max(1 + (1 + CI)

2)

κ1

‖u− uh‖2
a. (5.35)

Choosing

κ1 = Cedge,max(1 + (1 + CI)
2), (5.36)
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then this term multiplied with (2CY )−1 can be absorbed in the left-hand side of (5.32).

An alternative estimate proceeds similarly to (5.34)

dh(uh;uh, Ihu− uh) ≤
1

2CY κ2

∑
E∈Eh

σ0h
d+1
E ‖∇(Ihu− uh) · tE‖2

L2(E)

+
CY κ2

2

∑
E∈Eh

σ−1
0 (1− αE)2|dE|2h1−d

E ‖∇uh · tE‖
2
L2(E). (5.37)

Continuing similarly to (5.35) and using in addition the inverse inequality (5.11) leads to

1

κ2

∑
E∈Eh

σ0h
d+1
E ‖∇(Ihu− uh) · tE‖2

L2(E)

≤ σ0

κ2

∑
K∈Th

CedgeC
2
inv‖Ihu− uh‖2

L2(K)

≤ 2C2
invCedge,max(1 + (1 + CI)

2)

κ2

‖u− uh‖2
a. (5.38)

Choosing

κ2 = C2
invCedge,max(1 + (1 + CI)

2) (5.39)

enables again to absorb this term multiplied with (2CY )−1 in the left-hand side of (5.32).

Inserting (5.33) – (5.39) in (5.32) one gets

‖u− uh‖2
a

≤ C2
Y

2(CY − 2)

∑
K∈Th

min

{
C2
I

σ0

,
C2
Ih

2
K

ε

}
‖RK(uh)‖2

L2(K)

+
C2
Y

2(CY − 2)

∑
F∈Fh

min

{
C2
FhF
ε

,
C2
F

σ
1/2
0 ε1/2

}
‖RF (uh)‖2

L2(F )

+
C2
Y

2(CY − 2)

∑
E∈Eh

min

{
κ1h

2
E

ε
,
κ2

σ0

}
(1− αE)2|dE|2h1−d

E ‖∇uh · tE‖
2
L2(E). (5.40)

Using standard calculus arguments one gets an optimal value of CY = 4.

The estimates are summarized in the following theorem.

Theorem 5.28 (Global a posteriori error estimate). A global a posteriori error estimate for

the energy norm is given by

‖u− uh‖2
a ≤ η2

1 + η2
2 + η2

3, (5.41)
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where

η2
1 =

∑
K∈Th

min

{
4C2

I

σ0

,
4C2

Ih
2
K

ε

}
‖RK(uh)‖2

L2(K),

η2
2 =

∑
F∈Fh

min

{
4C2

FhF
ε

,
4C2

F

σ
1/2
0 ε1/2

}
‖RF (uh)‖2

L2(F ),

η2
3 =

∑
E∈Eh

min

{
4κ1h

2
E

ε
,
4κ2

σ0

}
(1− αE)2|dE|2h1−d

E ‖∇uh · tE‖
2
L2(E),

with κ1 and κ2 defined in (5.36) and (5.39), respectively.

Proof. The proof follows by inserting CY = 4 in (5.40).

5.2.1.2 Local Lower Bound

The posteriori estimator implied by the equation (5.41)

‖u− uh‖2
a ≤ C

∑
K∈T

η2
K ,

provides a global upper bound on the discretization error up to the constant C. For using

this estimator as the basis of an adaptive refinement algorithm, one wants the estimator to

be efficient in the sense that C is independent of the mesh size such that

η2
K ≤ C‖u− uh‖2

a,ωK
,

where ωK is some neighborhood of K. This type of bound is important as in conjunction

with (5.41) it confirms that the rate of change of estimator as the mesh size is reduced

matches the behavior of the actual error. If no such estimate is available, the performance

of the estimator is not optimal, and its use in the applications may result in poorly designed

meshes.

To derive such a lower bound we will use the standard bubble functions argument. The idea

was introduced by Verfürth in [Ver94]. Let ψK be the interior bubble function associated

with the mesh cell K which vanish on ∂K, and let ψF be the face bubble function associated

to the face F which vanishes on the boundary of ωF = K ∪ K ′, where K and K ′ are two

mesh cells sharing the face F .

Theorem 5.29. ([AO00, Theorem 2.2]) There exists a constant CK such that for all v ∈ Vh

C−1
K ‖v‖

2
0,K ≤ (v, vψK)0,K ≤ CK‖v‖2

0,K , (5.42)
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and

C−1
K ‖v‖0,K ≤ ‖vψK‖0,K + hK‖∇(vψK)‖0,K ≤ CK‖v‖0,K . (5.43)

One can find similar estimates for the face bubble function.

Theorem 5.30. ([AO00, Theorem 2.4]) Let F ⊂ ∂K be a face and let ψF be the correspond-

ing face bubble function. Let Vh(F ) be the finite-dimensional space of functions defined on F

obtained by mapping Vh(F̂ ) ⊂ H1(F̂ ). Then there exists a constant CFB such that

C−1
FB‖v‖

2
0,F ≤ (v, vψF )0,F ≤ CFB‖v‖2

0,F , (5.44)

h
−1/2
K ‖vψF‖0,K + h

1/2
K ‖∇(vψF )‖0,K ≤ CFB‖v‖0,F , (5.45)

where the constant CFB is independent of v and hK.

Consider a mesh cell K. Now the local estimator for mesh cell K is defined as

η2
K = η2

Int,K +
∑

F∈Fh(K)

η2
Face,F +

∑
E∈Eh(K)

η2
dh,E

(5.46)

with

η2
Int,K = min

{
4C2

I

σ0

,
4C2

Ih
2
K

ε

}
‖RK,h(uh)‖2

L2(K),

η2
Face,F =

1

NF

min

{
4C2

FhF
ε

,
4C2

F

σ
1/2
0 ε1/2

}
‖RF (uh)‖2

L2(F ),

η2
dh,E

= min

{
4κ1h

2
E

ε
,
4κ2

σ0

}
(1− αE)2|dE|2h1−d

E ‖∇uh · tE‖
2
L2(E),

(5.47)

where Fh(K) is the set of all facets of K, E ∈ Eh(K) the set of all edges belonging to K,

and NF the number of mesh cells where the face F belongs to. Each inner facet belongs to

two mesh cells, that’s why NF = 2 for faces that do not lie on the boundary of the domain.

We bound each term individually.

Interior Residual: In (5.46) define

RK,h(uh) = fh + ε∆uh − bh · ∇uh − chuh

as a polynomial approximation of the mesh cell residual, with suitable polynomial approxi-

mations bh, ch, and fh of the coeffecients (2.6).

Let v = RK,h(uh)ψK , then this function is a polynomial on K, that vanishes on the boundary
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of K and it can be extended by zero to the whole domain Ω. This function belongs to H1
0 (Ω),

thus in particular to H1
D(Ω) and hence, it can be used as test function in (3.3). Let e = u−uh,

then one obtains with integration by parts of the diffusion term, (3.3), and the definition of

RK,h(uh)

a(e, RK,h(uh)ψK) = (RK,h(uh), RK,h(uh)ψK)K + (RK(uh)−RK,h(uh), RK,h(uh)ψK)K . (5.48)

Using (5.42), (5.48), Hölder’s inequality, (5.43), and ‖ψK‖L∞(K) = 1 yields

‖RK,h(uh)‖2
L2(K) ≤ CK(RK,h(uh), RK,h(uh)ψK)K

−CKa(e, RK,h(uh)ψK)K − CK(RK(uh)−RK,h(uh), RK,h(uh)ψK)K

≤ CK

[
ε‖∇e‖L2(K)‖∇(RK,h(uh)ψK)‖L2(K)

+‖b‖L∞(K)‖∇e‖L2(K)‖RK,h(uh)ψK‖L2(K)

+‖c‖L∞(K)‖e‖L2(K)‖RK,h(uh)ψK‖L2(K)

]
+CK‖RK(uh)−RK,h(uh)‖L2(K)‖RK,h(uh)‖L2(K)

≤ CK
[
CKh

−1
K ε‖∇e‖L2(K) + ‖b‖L∞(K)‖∇e‖L2(K) + ‖c‖L∞(K)‖e‖L2(K)

]
×‖RK,h(uh)‖L2(K) + CK‖RK(uh)−RK,h(uh)‖L2(K)‖RK,h(uh)‖L2(K).

Hence, one obtains

‖RK,h(uh)‖2
L2(K) ≤ C1ε

1/2‖∇e‖L2(K) + C2σ
1/2
0 ‖e‖L2(K) + CK‖RK(uh)−RK,h(uh)‖L2(K)

≤ max{C1, C2}(ε1/2‖∇e‖L2(K) + σ
1/2
0 ‖e‖L2(K))

+CK‖RK(uh)−RK,h(uh)‖L2(K)

≤ 2max{C1, C2}
(
ε‖∇e‖2

L2(K) + σ0‖e‖2
L2(K)

)1/2

+CK‖RK(uh)−RK,h(uh)‖L2(K)

= 2max{C1, C2}‖e‖a,K + CK‖RK(uh)−RK,h(uh)‖L2(K), (5.49)

with

C1 =
C2
Kε

1/2

hK
+
CK‖b‖L∞(K)

ε1/2
, C2 =

CK‖c‖L∞(K)

σ2
0

.

Let 1/σ0 > h2
K/ε, then one gets with (5.49)

ηInt,K = C
hK
ε1/2
‖RK,h(uh)‖L2(K)

≤ Cmax

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CKhK

ε1/2σ
1/2
0

‖c‖L∞(K)

}
‖u− uh‖a,K

+
hK
ε1/2

CK‖RK(uh)−RK,h(uh)‖L2(K)
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≤ Cmax

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,K

+
hK
ε1/2

CK‖RK(uh)−RK,h(uh)‖L2(K).

If 1/σ0 ≤ h2
K/ε, then one obtains in the same way

ηInt,K =
C

σ
1/2
0

‖RK,h(uh)‖L2(K)

≤ Cmax

{
C2
Kε

1/2

σ
1/2
0 hK

+
CK

ε1/2σ
1/2
0

‖b‖L∞(K),
CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,K

+
C

σ
1/2
0

CK‖RK(uh)−RK,h(uh)‖L2(K)

≤ Cmax

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,K

+
ChK
ε1/2

CK‖RK(uh)−RK,h(uh)‖L2(K).

Hence, this leads to

ηInt,K ≤ C

(
max

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,K (5.50)

+
hK
ε1/2

CK

(
‖f − fh‖0,K + ‖(b− bh) · ∇uh‖0,K + ‖(c− ch)uh‖0,K

))
.

Face Residuals: The analysis of the face residuals follows the same idea as that of the

interior residuals. Let RF,h(uh) be an approximation to the face residual from a suitable

finite-dimensional space and ψF be the face bubble function that vanishes on the boundary

of ωF = K ∪K ′, where K and K ′ are two mesh cells sharing the face F . Then one obtains

with (5.44)

‖RF,h(uh)‖2
0,F ≤ CFB(RF,h(uh), RF,h(uh)ψF )F . (5.51)

The function v = RF,h(uh)ψF , which vanishes on all the nodes, belongs to H1
D(Ω). Hence,

using this as test function in (3.3) and using the same arguments as that for the interior

residual, shows that

a(e, RF,h(uh)ψF ) =
∑
K∈ωF

(RK(uh), RF,h(uh)ψF )K
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+(RF,h(uh), RF,h(uh)ψF )F + (g − gh, RF,h(uh)ψF )F . (5.52)

Using (5.44) and (5.52) leads to

‖RF,h(uh)‖2
L2(F ) ≤ CFB(RF,h(uh), RF,h(uh)ψF )F

= CFBa(e, RF,h(uh)ψF )− CFB
∑
K∈ωF

(RK(uh), RF,h(uh)ψF )K

−CFB(g − gh, RF,h(uh)ψF )F . (5.53)

The first term is estimated similarly to the cell residual, using (5.45) and Young’s inequality

a(e, RF,h(uh)ψF ) ≤
√

2

(∑
K∈ωF

max{C1,K , C2,K}‖e‖a,K

)
‖RF,h(uh)‖L2(F )

≤ 2
√

2 max{C1,ωF
, C2,ωF

}‖e‖a,ωF
‖RF,h(uh)‖L2(F ),

with

C1,K =
CFBε

1/2

h
1/2
F

+
CFBh

1/2
F ‖b‖L∞(K)

ε1/2
, C2,K =

CFBh
1/2
F ‖c‖L∞(K)

σ
1/2
0

and C1,ωF
, C2,ωF

defined similarly with the norms on K replaced with the norms on ωF .

Applying the Cauchy-Schwarz inequality and (5.45) yields

∑
K∈ωF

(RK(uh), RF,h(uh)ψF )K ≤ CFBh
1/2
F

(∑
K∈ωF

‖RK(uh)‖L2(K)

)
‖RF,h(uh)‖L2(F )‖.

The term with the data approximation error of the Neumann data appears of course only if

F ∈ Fh,N . Then, one obtains with the Cauchy-Schwarz inequality and ‖ψF‖L∞(F ) = 1

(g − gh, RF,h(uh)ψF )F ≤ δF,Fh,N
‖g − gh‖L2(F )‖RF,h(uh)‖L2(F ),

with

δF,Fh,N
=

{
1 if F ∈ Fh,N
0 else.

Inserting the last three bounds in (5.53) leads to

‖RF,h(uh)‖L2(F ) ≤ 2
√

2 CFB max{C1,ωF
, C2,ωF

}‖e‖a,ωF

+C2
FBh

1/2
F

(∑
K∈ωF

‖RK,h(uh)‖L2(K)

)
+C2

FBh
1/2
F

( ∑
K∈ωF

‖RK(uh)−RK,h(uh)‖L2(K)

)
+CFBδF,Fh,N

‖g − gh‖L2(F ).
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The second term was already estimated by the error in the energy norm in (5.50).

If hF/ε
1/2 ≤ 1/σ

1/2
0 , one obtains with hF ≤ hK

ηFace,F ≤ C
h

1/2
F

ε1/2
‖RF,h(uh)‖L2(F )

≤ Cmax

{
CFB +

CFBhF‖b‖L∞(ωF )

ε
,
CFBhF‖c‖L∞(ωF )

ε1/2σ
1/2
0

}
‖u− uh‖a,ωF

+C
∑
K∈ωF

max

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,K

+C
∑
k∈ωF

hK
ε1/2
‖RK(uh)−RK,h(uh)‖L2(K)

+CδF,Fh,N

h
1/2
F

ε1/2
‖g − gh‖L2(F ).

With a straightforward calculation, one can derive the same bound also in the case hF/ε
1/2

> 1/σ
1/2
0 .

Hence, this leads to

ηFace,F ≤ C

(
max

{
CFB +

CFBhF‖b‖L∞(ωF )

ε
,
CFBhF‖c‖L∞(ωF )

ε1/2σ
1/2
0

}
‖u− uh‖a,ωF

+δF∈Fh,N

h
1/2
F

ε1/2
‖g − gh‖L2(F )

+
∑
K∈ωF

[
ηInt,K +

hK
ε1/2

(
‖f − fh‖0,K

+‖(b− bh) · ∇uh‖0,K + ‖(c− ch)uh‖0,K

)])
. (5.54)

Edge Residuals: The final term one wants to bound in ηK is the AFC contribution. A

similar term can be observed in [ABR17, Theorem 2]. Based on certain assumptions on the

nonlinear stabilization namely the Lipschitz continuity and linearity preservation that term

is bounded there. We will not use such assumptions as they do not encompass the limiters

presented in Sec. 3.4 namely the Kuzmin limiter.

From the proof of [BJKR18, Lemma 2] we have

|dE| ≤ C
(
ε+ ‖b‖L∞(Ω)h+ ‖c‖L∞(Ω)h

2
)
hd−2
E . (5.55)
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We have

ηdh,E ≤ C
∑
E∈Eh

(1− αE)|dE|h(1−d)/2
E min

{
hE
ε1/2

,
1

σ
1/2
0

}
‖∇uh · tE‖L2(E).

Hence, we get from (5.55)

ηdh,E ≤ C
∑
E∈Eh

(1− αE)
(
ε+ ‖b‖L∞(Ω)h+ ‖c‖L∞(Ω)h

2
) h(3−d)/2

E

ε1/2
‖∇uh · tE‖L2(E)

= C
∑
E∈Eh

(1− αE)

(
ε1/2 +

‖b‖L∞(Ω)h

ε1/2
+
‖c‖L∞(Ω)h

2

ε1/2

)
×h(3−d)/2

E ‖∇uh · tE‖L2(E). (5.56)

For a fixed ε, we consider the convection-dominated regime, i.e., ε ≤ h, then we get

ηdh,E = O(h)

in 2d, and

ηdh,E = O(h1/2)

in 3d, whereas, for diffusion-dominated case we get O(h1/2) in 2d. This term is not exactly

an oscillation. It is noted in [BJK16] that the average rate of decay for the first factor in

parentheses is one but no concrete analysis has been provided. Altogether this term has

to be studied numerically. Also for shock-capturing methods a priori estimates usually give

O(h1/2) convergence (see [BJK16, Corollary 17]), then we can expect the last term to behave

as an oscillation (see [ABR17, Remark 5]).

Remark 5.31. To simplify the notation we will denote ηdh,E by ηdh whenever we don’t have

ambiguity for E. Numerical examples will be presented in Sec. 5.3 to show the behavior of

ηdh .

Theorem 5.32. There exists a constant C > 0, independent of the size of elements of T ,

such that, for every K ∈ T , the following local lower bound holds

ηInt,K +
∑

K∈Fh(K)

ηFace,F +
∑

E∈Eh(K)

ηdh,E

≤ max

{
C2
K +

CKhK
ε
‖b‖L∞(K),

CK
σ0

‖c‖L∞(K)

}
‖u− uh‖a,ωK

+C
∑
K∈ωK

hK
ε1/2

(
‖f − fh‖0,K + ‖(b− bh) · ∇uh‖0,K + ‖(c− ch)uh‖0,K

)
+C

∑
F∈Fh(K)

δF∈Fh,N

h
1/2
F

ε1/2
‖g − gh‖L2(F )
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+
∑

E∈Eh(K)

h1−d/2h
1/2

ε1/2

(
ε+ ‖b‖L∞(Ωh+ ‖c‖L∞(Ωh

2
)
‖∇uh · tE‖L2(E). (5.57)

Proof. This estimate can be obtained by combining (5.50), (5.54), and (5.56).

Remark 5.33. We note that the estimator is not robust with respect to ε. However, this is

the usual case for a posteriori error estimators for the error measured in the energy norm.

In [TV15] residual-based a posteriori estimators for the error were proved to be robust with

respect to a norm that includes a dual norm of the convective term. However, all the

methods considered in [TV15] were linear and application of those techniques to nonlinear

discretizations such as AFC does not seem to be feasible.

5.2.2 AFC-SUPG Estimator

An alternative way of finding a global upper bound for the error in the energy norm for the

AFC scheme is to use the estimator proposed in [JN13]. An upper bound which is robust

with respect to the diffusion coefficient, ε, was derived for the error in the SUPG norm [JN13,

Eq. (11)] for the SUPG scheme. It has been noted in Chapter 4 that choosing the initial

solution as the SUPG solution for the nonlinear system of equations was most appropriate.

We exploit this fact to bound our error.

Let uAFC, uSUPG denote the AFC and SUPG solution, respectively. Then by the triangle

inequality
‖u− uAFC‖2

a ≤ 2
(
‖u− uSUPG‖2

a + ‖uSUPG − uAFC‖2
a

)
≤ 2

(
‖u− uSUPG‖2

SUPG + ‖uSUPG − uAFC‖2
a

)
.

The first term can be bounded by [JN13, Theorem 2.1] and the second term is computable.

Let

‖u− uSUPG‖2
SUPG ≤ η2

SUPG,

where η2
SUPG is given by [JN13, Eq. (36)] and

ηAFC−SUPG := ‖uAFC − uSUPG‖a,

then

‖u− uAFC‖2
a ≤ η2,

where

η2 = 2
(
η2

SUPG + η2
AFC−SUPG

)
.

Numerical simulations depicting the behavior of ηSUPG, ηAFC−SUPG along with the adaptive

refinement of grids will be presented in Sec. 5.3.
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5.3 Numerical Studies

The standard strategy for numerically solving a partial differential equation on adaptively

refined grids using an a posteriori error estimator is

SOLVE→ ESTIMATE→MARK→ REFINE.

We note that to refine a grid adaptively, two important things are required:

• Marking strategy, that decides which mesh cells should be refined,

• Refinement rules, which determines the actual subdivision of a mesh cell.

We have already discussed the refinement rules in Sec. 5.1. There are two marking strate-

gies that are widely used in a posteriori packages, namely the maximum marking strategy

and the equilibration marking strategy (see [Ver13]). It is noted in [Ver13] that both the

strategies produce comparable results but it is computationally cheaper to implement the

maximum marking strategy and hence it is used in our simulations. Algorithm 1 details the

aforementioned strategy.

Algorithm 1 (Maximum Strategy) [Ver13, Algorithm 2.1]

Given: partition T , error indicators (ηK)K∈T , threshold θ ∈ (0, 1).

Find: subset T̃ of marked elements that should be refined.
1: T ← ∅
2: ηT ,max ← max

K∈T
ηK

3: for K ∈ T do
4: if ηK ≥ θηT ,max then
5: T̃ ← T̃ ∪ {K}
6: end if
7: end for

Remark 5.34. An issue that arises while marking of cells for convection-dominated problems

is that only a few mesh cells with high error are marked, which deteriorates the performance

of the algorithm. To ensure that enough cells are marked, we follow the strategy prescribed

in [Joh00, Sec. 4]. Flowchart 5.6 describes this strategy.

The quality of an estimator is usually judged by its global effectivity index that is given by,

ηeff =
η

‖u− uh‖a
.

This index can be used to measure the quality of an estimator when the exact or a good

approximation is known to the solution.
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θ := 0.5
min marked:=0.05 × n cells

Apply Algortihm 1.

Compute number

of marked cells,

say (#marked)

#marked <
min marked

Done

θ = 0.8 × θ

No Yes

Figure 5.6: Adaptive choice of θ in Algorithm 1

We note that we have the presence of certain constants in our estimators. We chose the value

of these constants to be unity.

Remark 5.35. We have discussed two different strategies for finding a global upper bound

for the AFC error in the energy norm. Further in this section we will refer to the idea from

Sec. 5.2.1.1 as AFC-energy technique and from Sec. 5.2.2 as AFC-SUPG-energy technique.

Numerical studies presented further in this section will comprehend the results for the two

different techniques on the following conditions:

1. Compare the AFC-energy and AFC-SUPG-energy techniques:

a) with respect to the effectivity index in the energy norm

b) with respect to adaptive grid refinement.

2. Study the behavior of ηdh defined in (5.56), on uniformly and adaptively refined grids.

3. Study the behavior of ηSUPG and ηAFC−SUPG for the AFC-SUPG-energy technique.

The matrices were assembled exactly and the linear systems were solved using the direct

solver UMFPACK [Dav04]. The method fixed point right-hand side was used for solving

the nonlinear problems with the damping parameters as described in Chapter 4. The stopping

criteria for the adaptive algorithm was either #dof & 106 or η < 10−3. All the simulations

were performed with the in-house code ParMooN [WBA+16].
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Figure 5.7: 2d Boundary layer example. Solution (computed with the BJK limiter, level 7).

5.3.1 A Known 2d Solution with a Boundary Layer

This example was proposed in [ABR17, Example 1]. Consider ε = 10−3, b = (2, 1)T , c = 1,

g = 0, ub = 0, and the right-hand side f such that the exact solution is given by

u(x, y) = y(1− y)

(
x− e(x−1)/ε − e−1/ε

1− e−1/ε

)
,

on the domain Ω = (0, 1)2 (see Fig. 5.7). An initial grid was defined with two triangles by

joining the points (0, 0) and (1, 1). The simulations were started with a level 2 grid (i.e.,

#dof = 25), initially uniform refinement was performed till level 4 (i.e., #dof = 289). After

that adaptive refinement was performed.

First, we compare the behavior of effectivity indices for the AFC-energy and AFC-SUPG-

energy techniques. For the AFC-energy technique, we note that as the adaptive refinement

starts the effectivity index is high and as the grid becomes refined the value decreases (see

left Fig. 5.8). For the Kuzmin limiter on grids with fine adaptive regions ηeff ≈ 232 and for

the BJK limiter ηeff ≈ 12. For the AFC-SUPG-energy technique the values of the effectivity

index are better than for the AFC-energy technique (see right Fig. 5.8). One interesting

observation to make is that the limiter does not play an important role in this technique. The

values of effectivity indices are comparable for both the limiters. If the adaptive refinement

is sufficiently fine, then for the Kuzmin limiter ηeff ≈ 2 and for the BJK limiter ηeff ≈ 5.

Next, we look at the individual behavior of ηSUPG and ηAFC−SUPG. It can be seen in Fig. 5.9

that the dominating term is ηSUPG and hence, the AFC contribution, ηAFC−SUPG, does not

play a pivotal role in the effectivity index and the refinement of the grid.

Lastly, we study the behavior of the error in the energy norm, its relation to the a posteriori

error estimates, and the behavior of the part ηdh of the error estimators in some detail. One

can observe that the error as well as ηdh and η for the AFC-energy technique decay optimally

on adaptive grids for the BJK limiter (see Fig. 5.10). For the Kuzmin limiter one observes

that as the grid becomes fine the optimal rate is not obtained for the error as well as for ηdh
and η. It has been noted in [BJK16, Remark 18] that if the grid is non-Delaunay and the

problem becomes diffusion-dominated then the AFC method with the Kuzmin limiter fails

to converge. With successive refinement of the grid, the problem becomes locally diffusion-
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Figure 5.8: Example 5.3.1: Effectivity index in the energy norm with AFC-energy tech-
nique defined in Sec. 5.2.1.1 (left) and AFC-SUPG-energy technique defined in
Sec. 5.2.2 (right).
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Figure 5.9: Example 5.3.1: Comparison of ηSUPG and ηAFC−SUPG for AFC-SUPG-energy tech-
nique. Kuzmin limiter (left) and BJK limiter (right).

dominated (in the sense of a small grid Peclet number) and one has to expect, because of

the conforming closure and the resulting obtuse angles, that there is no convergence. The

error estimator with the AFC-energy technique predicts this irregular behavior of the error.

This reduction of the rate of convergence is not observed while using BJK limiter.

For the AFC-SUPG-energy technique the error and η values are shown in Fig. 5.10 (right).

For the Kuzmin limiter, similar observation to the AFC-energy technique can be made. One

issue to note is that the estimator(η) with AFC-SUPG-energy technique does not predict

this irregular behavior as it has already been mentioned that the AFC contribution does not
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Figure 5.10: Example 5.3.1: Error in energy norm with AFC-energy technique defined in
Sec. 5.2.1.1 (left) and AFC-SUPG-energy technique defined in Sec. 5.2.2 (right).
The line corresponding to η (Kuzmin) is below ηdh (Kuzmin) in the left figure.

Figure 5.11: Example 5.3.1: 14th adaptively refined grid with AFC-energy technique.
Kuzmin limiter (#dof = 22962) (left) and BJK limiter (#dof = 23572)(right)

play an important role here.

Fig. 5.11 shows the 14th adaptively refined grid with AFC-energy technique. One can observe

obtuse angles in the adaptive grids. In Fig. 5.10 (left) for the Kuzmin limiter, we also note

that ηdh is comparable with η and hence is the leading term in the adaptive refinement of

the grid. For the BJK limiter, as the grid becomes finer, ηdh is small as compared to η.
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5.3 Numerical Studies

Figure 5.12: Example 5.3.2. Solution (computed with the BJK limiter, level 9).

5.3.2 Example with Interior and Boundary Layers

Let us recall this example. It is given in Ω = (0, 1)2 with b = (cos(−π/3), sin(−π/3)),

c = f = 0 and the Dirichlet boundary condition

uD =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.7),

0 else.

Here, ε = 10−4 is considered. It is known that the solution exhibits an internal layer in

the direction of the convection starting from the jump of the boundary condition at the left

boundary and two exponential layers at the right and the lower boundary (see Fig. 5.12). A

known solution to this problem is not available but we know that u ∈ [0, 1]. This example

serves for studying the adaptive grid refinement in the presence of different kinds of layers.

An initial mesh was defined similar to the previous example, i.e., with two triangles by joining

the points (0, 0) and (1, 1). The simulations were started with a level 2 grid (i.e., #dof = 25),

uniform refinement was performed till level 4 (i.e., #dof = 289) and then the adaptive grid

refinement was started. For this example, we do not have the presence of regions where the

problem becomes locally diffusion-dominated because the refinement does not make the grid

sufficiently fine for the considered diffusion parameter.

The 14th adaptively refined grids with conforming closure and AFC-energy technique are

shown in Fig. 5.13 for the Kuzmin limiter (left) and the BJK limiter (right), respectively.

Here we see that we have the presence of non-Delaunay triangulation but we could note that

the DMP was satisfied for both the limiters. This result shows that using the Kuzmin limiter

might lead to solutions that satisfy he DMP even if an essential assumption of the analysis

(Delaunay triangluation [BJK16, Remark 14]) is not satisfied. Comparing the refinement
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5 A Posteriori Error Estimation for AFC Schemes

Figure 5.13: Example 5.3.2: 14th adaptively refined grid with AFC-energy technique and
with conforming closure.
Kuzmin limiter (14th grid: #dof = 28548 (left) and BJK limiter (14th grid:
#dof = 28120) (right).

for both the limiters, we observe that the number of mesh cells is comparable for both the

limiters (see Fig. 5.13 for #dof).

Next, we study the adaptive grid refinement for the AFC-SUPG-energy technique. The 14th

adaptively refine grids with conforming closure are shown in Fig. 5.14 for the Kuzmin limiter

(left) and the BJK limiter (right), respectively. Here we observe that the mesh cells near the

internal layer are not refined that much as compared to the AFC-energy technique. Also, we

see that the limiters do not play an important role in the adaptive refinement. To be precise,

the #dof are comparable for both the limiters and the meshes look much more similar than

in Fig. 5.13.

To check the thickness of the interior layer we follow the idea described in [JK07a, Eq. (48)].

We define

smearint = x2 − x1, (5.58)

where x1 is the x−coordinate of the first point on the cut line (x, 0.25) with uh(x1, 0.25) ≥ 0.1

and x2 is the x−coordinate of the first point with uh(x1, 0.25) ≥ 0.9. We note that in

Fig. 5.15, the layers are most properly resolved for AFC-energy technique as compared to

the AFC-SUPG-energy technique irrespective of the choice of limiters. Overall, for adaptive

grid refinement, the AFC-energy technique does a much better job since all layers are refined

properly, not only the strongest layer.
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Figure 5.14: Example 5.3.2: 14th adaptively refined grid with AFC-SUPG-energy technique
and with conforming closure.
Kuzmin limiter (14th grid: #dof = 100620 (left) and BJK limiter (14th grid:
#dof = 100538) (right).
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Figure 5.15: Example 5.3.2: Thickness of interior layer. Kuzmin limiter (left), BJK limiter
(right)

5.4 Summary

This chapter presented a posteriori error estimators for the AFC scheme in the energy norm.

Different refinement techniques and conforming closure for triangular elements have been

discussed. Certain results regarding the relationship between the gradient and tangential

component of the gradient on the edges and the mesh cell have been derived. A concrete

value of constant has also been given for the aforementioned result.
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The following conclusions can be made from the numerical simulations.

1. The effectivity index of the error estimator with AFC-energy was not robust with

respect to ε. For a strongly convection-dominated case, the effectivity index was quite

large which eventually decreased as the mesh became finer.

2. For the AFC-SUPG-energy technique, the effectivity index was better as compared

with the AFC-energy technique.

3. The choice of limiter did not play an important role in AFC-SUPG-energy technique

as the dominating term was ηSUPG. Because of this dominating nature, one gets very

similar refined grids and effectivity indices for both the limiters.

4. For the Kuzmin limiter and the AFC-energy technique, a reduced order of convergence

can be observed with conforming closure using red-green refinements as adaptive re-

finement leads to locally diffusion-dominated problems. This kind of reduction of order

of convergence is not observed with the BJK limiter.

5. The AFC contribution ηdh is the dominating term in the estimator η for the Kuzmin

limiter whereas for the BJK limiter in the convection-dominated situation it is the

dominating term but if the layer becomes to be resolved, then no longer.

6. With adaptive grid refinement, the problem could become locally diffusion-dominated

then one has to use the BJK limiter because, with the Kuzmin limiter, the finite element

solution does not converge. This situation might only happen if the diffusion coefficient

is comparably large with respect to the mesh size.

7. For a small diffusion coefficient, one does not run into the issues of the previous point

and one has to use the Kuzmin limiter because of the difficulties encountered while

solving the nonlinear problems with the BJK limiter, see Chapter 4.

8. For adaptive grid refinement and problems with different kinds of layers, the AFC-

energy technique refines the grid much better as compared to the AFC-SUPG-energy

technique.

In summary, the AFC-SUPG-energy technique gave better results as compared to the AFC-

energy technique with respect to the effectivity index, whereas the AFC-energy technique

gave better results with adaptive grid refinement. For convection-dominated problems, the

BJK limiter gave a better effectivity index as compared to the Kuzmin limiter but for a small

diffusion, difficulties arise in solving the nonlinear problem associated with the BJK limiter.

Future work of the research relates to the development of robust estimators and extending

the analysis for the local lower bound.
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Schemes

If adaptively refined grids based on a posteriori error estimators should be used, then one

has to define the actual grid refinement. One would prefer the subsequent grids to hold the

same geometrical properties as that of the initial grid, e.g., preservation of angles. We saw

certain grid refinement techniques in Chapter 5. The first step of the refinement of a grid,

i.e., the refinement of the marked cells, leads to the formation of hanging vertices which

can be described as the non-trivial linear combination of the endpoints of the edge to which

they belongs. In the framework of discontinuous finite elements, the handling of grids with

a hanging vertex is rather easy to understand (see [AR10]). We would like to explicitly

point that in existing literature, what we have mentioned as the hanging vertex is referred

to as a hanging node (see [CH09]). The distinction between the two will be made clear in

this chapter. For continuous finite elements, the framework becomes a little involved. We

saw one easy way around this is to use conforming closure or red-green refinements but this

leads to the deterioration of angles. Also, while using hexahedral mesh cells in 3d, the green

completion leads to formation of pyramids or prisms, which are not easy to handle by the

finite element code and hence one would like to work with hanging vertices.

Apart from AFC schemes, there are certain finite element discretizations that rely on the

geometrical properties of the grid such as angle preservation (see [MH85, XZ99]). Hence,

one would like to study a continuous finite element in the framework of grids with hanging

nodes. Angle preservation is also an important property for a certain class of stabilization

methods for Convection-Diffusion-Reaction equations as they provide a sufficient condition

for the satisfaction of discrete maximum principle (DMP) (see Chapter 3). To the best of our

knowledge, no work has been done in the context of hanging nodes and nonlinear stabilization

such as algebraic flux correction schemes (AFC). Some work in the area of hanging nodes

can be found in [Grä11] where results have been provided for the lowest order Lagrange

elements in the framework of multigrid methods and [CH09] where a unified error analysis

for a posteriori error estimation has been provided.

In this chapter, we present the first work regarding the interplay of AFC schemes and grids

with hanging nodes. The chapter is divided as follows: In Sec. 6.1 we extend the results from

[Grä11] to higher-order Lagrange elements. Next, in Sec. 6.2 we present results concerning
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6 Hanging Nodes in Context of AFC Schemes

Figure 6.1: Hanging nodes and vertices for P1, P2, and P3 Lagrange elements. Hanging nodes
in white and hanging vertices in red.

Figure 6.2: Hanging nodes and vertices for Q1, Q2, and Q3 Lagrange elements. Hanging
nodes in white and hanging vertices in red.

the behavior of AFC schemes concerning grids with hanging nodes. Finally, numerical simu-

lations illustrating the results provided in the previous section will be presented in Sec. 6.3.

6.1 Hanging Nodes in Theory of Lagrange Finite
Elements

In this subsection we extend the results from [Grä11] for hanging nodes from P1/Q1 elements

to Pk/Qk elements. First we present some definitions that are used in the terminology of

hanging nodes.

Definition 6.1. (Hanging vertex) ([Grä11, Definition 3.6]) Let T be a triangulation of Ω.

Then a vertex p ∈ Nh(T ) of T is called a hanging vertex if there is an element K ∈ T with

p ∈ ∂K but p is not a vertex of K.

Definition 6.2. (Hanging node) Let T be a triangulation of Ω and P (T ) be a Lagrange

finite element space defined on T . Then a node p ∈ NF (T ) of T is called a hanging node if

there is an element K ∈ T , such that, p ∈ K ∩K ′ and p ∈ NF (K) but p /∈ NF (K ′) where

K ′ is a neighbor of K. The set of all hanging nodes is denoted by H(T ).

Remark 6.3. Note that for P1 and Q1 elements the concepts of hanging vertex and hanging

node match. But for Pk or Qk elements, k > 1, they don’t match see Fig. 6.1 and Fig. 6.2,

where hanging nodes are shown with white color and hanging vertices by red.

Definition 6.4. (k-irregular triangulation) ([CH09, Definition 2.4]) If an edge E ∈ Eh
contains at most k hanging nodes in its inside, we call T a k-irregular triangulation.

Remark 6.5. In Sec. 6.3 we will work with 1-irregular triangulations.
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6.1 Hanging Nodes in Theory of Lagrange Finite Elements

(a) 2-irregular triangulation (b) Red refinement of neighboring cell

Figure 6.3: Refinement rule for avoiding 2-irregular triangulation.

Remark 6.6. To avoid k-irregular triangulations for k > 1, the neighboring element is first

red refined before the formation of the new hanging node. Fig. 6.3 shows the process in 2d.

Let T be a conforming triangulation of Ω. For such a triangulation the kth order Lagrangian

finite element functions are continuous functions on Ω such that the restrictions to all ele-

ments K ∈ T are polynomials with degree at most k. It is known that these function spaces

are conforming subspaces with respect to H1(Ω). However, the same definition also leads to

conforming spaces if it is used on non-conforming triangulations.

Definition 6.7. (kth order conforming space) Let T be a triangulation of Ω. The kth

order conforming finite element space is defined as

S(T ) := {v ∈ C(Ω) : v|K ∈ Pk(K) ∀K ∈ T } ⊂ H1(Ω).

For conforming triangulations a basis of S(T ) is given by the well-known nodal basis func-

tions. To deal with conforming finite element spaces in non-conforming triangulation we first

introduce the non-conforming nodal basis functions.

Definition 6.8. (Non-conforming nodal basis functions) Let T be a triangulation of

Ω. Then the non-conforming nodal basis function ϕnc
p ∈ L2(Ω) associated with p ∈ NF (T )

is defined as follows: For all K ∈ T there is a representative ϕnc
p |K = µp,K ∈ C(K) with

µp,K = δpq for all nodes q of K.

For a conforming triangulation T this reduces to ϕnc
p ∈ S(T ) and

ϕnc
p (q) = δpq ∀p, q ∈ NF (T ),

i.e., the set {ϕnc
p }p∈NF (T ) is the conforming nodal basis of S(T ). For a conforming triangu-

lation, S(T ) is in general only a subspace of the non-conforming finite element space,

Snc(T ) := span{ϕnc
p : p ∈ NF (T )}.
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However, for a non-conforming triangulation it is possible to construct a basis of S(T ) from

the non-conforming nodal basis Snc(T ) that resembles the usual nodal basis functions when

T is conforming.

Lemma 6.9. Let T be a non-conforming triangulation of Ω, i.e., T has hanging nodes.

Then, if v ∈ S(T ), then ∀q ∈ H(T ) there are coefficients aqp with p ∈ NF (T ) \H(T ) such

that,

v(q) =
∑

p∈NF (T )\H(T )

aqpv(p).

Proof. Let q ∈ H(T ). Suppose there does not exist any aqp such that

v(q) =
∑

p∈NF (T )\H(T )

aqpv(p).

As q ∈ H(T ), therefore there exists K,K ′ ∈ T such that q ∈ K ∩K ′ and q ∈ NF (K) but

q /∈ NF (K ′).

Now,

v|K′(x) =
∑

p0∈NF (K′)

v(p0)ϕnc
p0

(x),

as q ∈ K ′
⇒ v|K′(q) =

∑
p0∈NF (K′)

v(p0)ϕnc
p0

(q).

Also, as q ∈ K and q ∈ NF (K),

⇒ v|K(q) = v(q).

By continuity of v we have

v|K(q) = v|K′(q)⇒ v(q) =
∑

p0∈NF (K′)

v(p0)ϕnc
p0

(q),

which is a contradiction and hence the result holds.

Remark 6.10. The proof of the Lemma 6.9 gives a concrete choice for the definition of aqp.

Namely aqp = ϕnc
p (q) where p ∈ NF (K ′) if q ∈ NF (K) and q ∈ K ∩K ′.

Remark 6.11. If one would like the solution to be in S(T ), then one notes from Lemma 6.9

that the hanging nodes are not free but are dependent.

Theorem 6.12. ([Grä11, Theorem 3.1]) Let (T0, · · · , Tj) be a grid hierarchy on Ω with T0

being conforming. Let us denote T = Tj, i.e., the final refinement level. Then a basis of

S(T ) is given by

B(T ) :=

ϕp = ϕnc
p +

∑
q∈H(T )

aqpϕ
nc
q : p ∈ NF (T ) \H(T )

 .
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Proof. The proof from [Grä11] can be extended to higher order elements without any changes.

6.2 Hanging Nodes in Theory of AFC Schemes

In this subsection we discuss the implementation of hanging nodes for the AFC schemes, the

failure of satisfaction of DMP with hanging nodes for the Kuzmin limiter and the modification

for the BJK limiter.

6.2.1 Implementation of hanging nodes

The implementation of hanging nodes is a little bit similar to the implementation of Dirichlet

nodes, i.e., it works on an algebraic level. Let us denote our finite element matrix on a non-

conforming grid by Anc and the corresponding right-hand side by bnc. Hence, our finite

problem is to find u ∈ Snc(T ) such that

Ancu = bnc,

where Snc(T ) is a finite element space defined on T . Here Anc and bnc are derived using

discontinuous elements from Snc(T ) and hence our solution is discontinuous as well. To

restore the continuity of the finite element solution, we look at the variational form of the

problem. Let anc
h : Snc(T ) × Snc(T ) → R be the corresponding bilinear form and fh be the

right-hand side, then our problem is

anc
h (u, v) = 〈fh, v〉 ∀v ∈ Snc(T ).

First we modify our test space and replace Snc(T ) by S(T ). Then

anc
h (u, v) = 〈fh, v〉 ∀v ∈ S(T ).

The algebraic form of the above problem can be written as

Āu = b̄,

where the right-hand side is assembled using continuous elements. To enforce continuity on

the solution we modify the stiffness matrix for the hanging nodes in the same way as that

for the Dirichlet nodes, i.e., we modify the rows corresponding to hanging nodes such that

the solution at hanging node is continuous with respect to the coupling nodes and set the

corresponding right-hand side to zero. Till this point the implementation of hanging nodes

is general and can be applied to any higher order elements.

127



6 Hanging Nodes in Context of AFC Schemes

i1(0, 0) i2(1, 0)

i3(1, 1)i4(0, 1)

i0(0.5, 0.5)

K1

K2

K3

Figure 6.4: Example of a patch failing non-positivity condition for the Kuzmin limiter.

For the AFC scheme, in the first step, a system is assembled that corresponds to a Galerkin

finite element discretization of the given equations but with Neumann boundary conditions

on the whole boundary. For implementation with hanging nodes, Ā is used to define D and

after the computation of limiters, Ā is modified to A with correct entries for hanging rows,

where the rows of non-hanging nodes get entries from the rows of the hanging nodes.

Example 6.13. Implementation for P1 elements We will take a patch as defined in

Fig. 6.4 and see how does the stiffness matrix and the right-hand side modify. Initially the

system is

Ancu = bnc,

where

Anc =


a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

 , bnc =


b0

b1

b2

b3

b4

 .
First, we modify Anc and bnc to Ā and b̄ by performing row transformations R1 → R1+0.5R0

and R3 → R3 + 0.5R0, then

Ā =


a00 a01 a02 a03 a04

a10 + a00
2

a11 + a01
2

a12 + a02
2

a13 + a03
2

a14 + a04
2

a20 a21 a22 a23 a24

a30 + a00
2

a31 + a01
2

a32 + a02
2

a33 + a03
2

a34 + a04
2

a40 a41 a42 a43 a44

 , b̄ =


b0

b1 + b0
2

b2

b3 + b0
2

b4

 .

At this step the computation of the limiters in AFC is performed using Ā and b̄. Once, the

computation is done we modify the hanging row to (1,−0.5, 0,−0.5, 0), where −0.5 appears

on the coupling nodes and correspondingly set the right-hand side to 0. Finally, our system

of equations is

Au = b
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where

A =


1 −1

2
0 −1

2
0

ǎ10 + ǎ00
2

ǎ11 + ǎ01
2

ǎ12 + ǎ02
2

ǎ13 + ǎ03
2

ǎ14 + ǎ04
2

ǎ20 ǎ21 ǎ22 ǎ23 ǎ24

ǎ30 + ǎ00
2

ǎ31 + ǎ01
2

ǎ32 + ǎ02
2

ǎ33 + ǎ03
2

ǎ34 + ǎ04
2

ǎ40 ǎ41 ǎ42 ǎ43 ǎ44

 , b =


0

b̌1 + b̌0
2

b̌2

b̌3 + b̌0
2

b̌4

 .

Remark 6.14. Depending on the iterative scheme for solving the nonlinear problem, the ma-

trix or the right-hand side change because of the contribution from the limiter (see Chapter 4).

Hence, instead of {aij} or {bi}, one gets {ǎij} or {b̌i}.

6.2.2 Kuzmin Limiter

In [BJK16], the proof of discrete maximum principle (DMP) for the Kuzmin limiter relies on

the assumption of the type akl + alk ≤ 0 where akl belongs to the stiffness matrix Ā defined

previously. For Convection-Diffusion-Reaction equations on conforming grids this condition

is satisfied if and only if (∇ϕl,∇ϕk) ≤ 0, which leads to the Delaunay condition (see [BJK16,

Remark 14]). For non-conforming grids we don’t have such a generalization. One needs to

check the condition, akl + alk ≤ 0 individually for all nodes. The next example presents a

patch in 2d where this condition fails.

Example 6.15. Let’s take a simple 2d example of Convection-Diffusion-Reaction equations

with some diffusion, ε, convection, b = (b1, b2), and reaction, c = 0 on the patch as shown in

Fig. 6.4. Then our non-conforming nodal basis functions {ϕnc
ij
}4
j=0 are given by

ϕnc
i0

=


0 in K1,

2− 2y in K2,

2x in K3,

ϕnc
i1

=


1− x in K1,

0 in K2,

1− x− y in K3,

ϕnc
i2

=


x− y in K1,

0 in K2,

0 in K3,

ϕnc
i3

=


y in K1,

x+ y − 1 in K2,

0 in K3,

ϕnc
i4

=


0 in K1,

−x+ y in K2,

−x+ y in K3.
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After the coupling the conforming nodal basis functions, ϕi1 and ϕi3 look like

ϕi1 = ϕnc
i1

+
1

2
ϕnc
i0

=


1− x in K1,

1− y in K2,

1− y in K3,

ϕi3 = ϕnc
i3

+
1

2
ϕnc
i0

=


y in K1,

x in K2,

x in K3.

For rest of the nodes there are not any contributions from the hanging nodes and hence

ϕij = ϕnc
ij

for j = 0, 2, 4. We need to check the sign of ai1i3 + ai3i1 . From the bilinear form

we have

ai1i3 + ai3i1 = a31 +
1

2
a01 + a13 +

1

2
a03

= ε
(
∇ϕnc

i3
,∇ϕi1

)
+
(
b · ∇ϕnc

i3
, ϕi1

)
+ε
(
∇ϕnc

i1
,∇ϕi3

)
+
(
b · ∇ϕnc

i1
, ϕi3

)
.

The gradients of the basis functions required in the above computation are given by

∇ϕnc
i1

=


(−1, 0) in K1,

(0, 0) in K2,

(−1,−1) in K3,

∇ϕnc
i3

=


(0, 1) in K1,

(1, 1) in K2,

(0, 0) in K3,

∇ϕi1 =


(−1, 0) in K1,

(0,−1) in K2,

(0,−1) in K3,

∇ϕi3 =


(0, 1) in K1,

(1, 0) in K2,

(1, 0) in K3,

Finally consider the sum ai1i3 + ai3i1 ,

ai1i3 + ai3i1 = −ε (|K2|+ |K3|) + b2

∫
K1

(1− x)ds+ (b1 + b2)

∫
K2

(1− y)ds

−b1

∫
K1

yds− (b1 + b2)

∫
K3

xds

=
−ε
2

+
(b2 − b1)

6
.

For ε ≤ 0.1 and b = (0, 1) we have ai1i3 + ai3i1 > 0.

Remark 6.16. One can consider the situation of a hanging node in Fig. 6.4 as the limit of a

non-Delaunay grid and in this respect, this property of the Kuzmin limiter is not surprising

(see Fig. 6.5).

6.2.3 BJK Limiter

We have another definition for the limiter, where the proof of DMP holds for all conforming

simplicial grids. This is the BJK limiter defined in [BJK17]. Here the condition of the DMP
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σ

Figure 6.5: Hanging node being a limit of a non-Delaunay grid as σ → 0.

i i i

Figure 6.6: Examples of ∆i for the node xi with bold lines and ∆conv
i with the shaded area.

i i i

Figure 6.7: Examples of ∆T,conv
i for the node xi.

relies on the properties of the stiffness matrix instead on the triangulation. Let us assume

that the condition
N∑
j=1

aij ≥ 0, i = 1, . . . ,M

is satisfied. Let ∆i denote supp(ϕi). Examples of ∆i for xi are shown in Fig. 6.6 with bold

lines and their convex hull, ∆conv
i , by the shaded area. In [BJK17], for conforming grids, ∆i

denoted the patch having the node xi.

Remark 6.17. One of the main assumptions for AFC schemes is the positivity of the row

sum, i.e.,
∑N

j=1 aij ≥ 0 (see [BJK17, Eq. (2.6)], [BJK16, Eq. (8)]). With the use of hanging

nodes, this condition is still satisfied, as the the positivity of row sum is not affected by

adding a positive multiple of a row to another row.
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Remark 6.18. For the computation of the limiters a certain constant γi is required to show

linearity preservation. From [BJK17, Theorem 6.1] the definition of γi is given by

γi =

max
xj∈∂∆i

|xi − xj|

dist(xi, ∂∆conv
i )

, i = 1, . . . ,M.

The computation of the numerator is easy as compared to the computation of the denomi-

nator. For simplices, ideas on computation of ∆i are given by [BJK17, Remark 6.2]. With

hanging nodes the shape of ∆i is not a polygon made of a union of triangles sharing the node

xi but a generalized polygon (in 2d). This computation is more involved. In our simulations

for the denominator we consider ∆i as all those triangles which share the vertex xi. Let us

denote it by ∆T,conv
i , see Fig. 6.7. This definition leads to

dist(xi, ∂∆T,conv
i ) ≤ dist(xi, ∂∆conv

i ),

hence, the value used in simulations might be larger than γi. From the theory of conforming

grids, it is known that the DMP is satisfied if this parameter is larger than γi.

Remark 6.19. The example patches that we have shown are for structured grids that will be

used in our simulations. As the BJK limiter can be applied to unstructured grids, we may

have presence of triangles of varying sizes and hence requiring generalizations. We would

not consider that case in this work, as we need to assume certain shape regularity on the

initial grid for the underlying a posteriori error estimates. The analysis for AFC schemes

with anisotropic grids remain an open problem [BJKR18].

6.2.4 Limiter Definition

One last thing we want to note is what should be αij for a hanging node xi. First, the idea

for Dirichlet nodes was used, i.e., αij = 1 for each hanging node xi. This choice leads to

some overshoots. The possible reason being the presence of hanging nodes in the layer and

the absence of the artificial diffusion as αij = 1 leads to standard Galerkin method. Hence,

we choose αij = 0 for hanging node xi. This is an overly diffusive approach at least locally.

This issue will be studied in the numerical simulations. One should note that none of the

applied estimators was derived for grids with hanging nodes.

6.3 Numerical Studies

The numerical studies presented in this section validates the results presented in the previous

section. We will use a posteriori error estimators defined in Chapter 5. Let us recall, in

Chapter 5 two different techniques for the upper bound were proposed in the energy norm
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of the error, one used a residual-based approach which we refer to as AFC-energy technique

and the second approach used the SUPG solution and the SUPG estimators from [JN13],

which will be referred as AFC-SUPG-energy technique.

For simulations the matrices were assembled exactly and the linear systems were solved using

the direct solver UMFPACK [Dav04]. The method fixed point rhs was used for solving the

nonlinear problems with the damping parameters as described in Chapter 4.

Example with Interior and Boundary Layers

Let us recall this example. It is given in Ω = (0, 1)2 with b = (cos(−π/3), sin(−π/3)),

c = f = 0 and the Dirichlet boundary condition

ub =

{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.7),

0 else.

Here, the convection-dominated case ε = 10−4 is considered. An analytic solution to this

problem is not available but we know that u ∈ [0, 1]. Hence, this example will help us in

showing the violation or satisfaction of the DMP with grids containing hanging nodes. This

example will also help in checking the quality of the adaptively refined grids.

To show the violation of DMP, we define a function

Var(uh) := umax
h − umin

h . (6.1)

Due to boundary conditions, umax
h ≥ 1 and umin

h ≤ 0, hence Var(uh) ≥ 1. As, the solution

u ∈ [0, 1], one would expect Var(uh) ≈ 1 for all grids.

An initial mesh was defined with two triangles by joining the points (0, 0) and (1, 1). The

simulations were started with a level 2 grid (i.e., #dof = 25), initially uniform refinement

was performed till level 4 (i.e., #dof = 289). After that adaptive refinement was performed.

AFC schemes are applicable to first order elements, hence P1 finite elements were used.

First, we study the behavior of Var(uh) for the AFC-energy technique. For the Kuzmin

limiter we see a violation of DMP on grids with hanging nodes but almost satisfaction on

grids with conforming closure (see Fig. 6.8 (left)). The failure of DMP is not surprising as this

behavior was predicted in Sec. 6.2. Whereas, for the BJK limiter, we observe the satisfaction

of DMP on both kinds of grids (see Fig. 6.9 (left)). Next, we study the behavior of Var(uh)

for the AFC-SUPG-energy technique. The results are similar to the results for AFC-energy

technique for grids with hanging nodes, that is, failure of the DMP with Kuzmin limiter (see

Fig. 6.8 (right)) and satisfaction of the DMP with the BJK limiter (see Fig. 6.9 (right)). For

grids with conforming closures the results are similar to the AFC-energy technique.
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101 102 103 104 105 106
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Unity
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100.02

# dof

ε = 10−4

Var (Conforming)
Var (Hanging)
Unity

Figure 6.8: Variation for the Kuzmin limiter as defined in (6.1). AFC-energy technique (left),
AFC-SUPG-energy technique (right)
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100.02
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Var (Conforming)
Var (Hanging)
Unity

Figure 6.9: Variation for the BJK limiter as defined in (6.1). AFC-energy technique (left),
AFC-SUPG-energy technique (right)

Now, we consider the adaptive grid refinements. The 14th adaptively refined grids with con-

forming closure are shown in Fig. 6.10 for both the techniques. Comparing the refinement

for both the limiters, we observe that more mesh cells are refined for the BJK limiter as com-

pared to the Kuzmin limiter (see Fig. 6.10 for #dof). For the AFC-SUPG-energy technique

(see Fig. 6.10 (bottom left) for the Kuzmin limiter and (bottom right) for the BJK limiter)

we observe that the mesh cells near the internal layer are not refined that much as compared

to the AFC-energy technique. Also, we see that the limiters do not play an important role

in the adaptive refinement.

The 14th adaptively refine grids with hanging nodes are shown in Fig. 6.11. For the AFC-
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Figure 6.10: 14th adaptively refined grid with conforming closure. Kuzmin limiter+AFC-
energy technique (14th grid: #dof = 19325 (top left); BJK limiter+AFC-energy
technique (14th grid: #dof = 28120 (top right) and Kuzmin limiter+AFC-
SUPG-energy technique (14th grid: #dof = 100620 (bottom left); BJK
limiter+AFC-SUPG-energy technique (14th grid: #dof = 100538 (bottom
right).

energy technique comparing the refinement for both the limiters, we observe that both the

meshes are comparable (see Fig. 6.11 for all and hanging #dof). Here, all #dof refer to

boundary+hanging+interior degrees of freedom, whereas hanging #dof refers to the hanging

nodes. With the AFC-SUPG-energy technique we observe that the mesh cells near the

internal layer are not refined that much as compared to the AFC-energy technique. Similar

to conformally closed grids, the limiters do not play an important role in the refinement of

the grid.

To check the thickness of the interior layer we follow the idea as in Chapter 5, i.e., compute

smearint (see Eq. (5.58)). We note that in Fig. 6.12, the layers are most properly resolved

on conformally closed grids for both the techniques. Overall, for adaptive grid refinement,
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6 Hanging Nodes in Context of AFC Schemes

Figure 6.11: 14th adaptively refined grid with hanging nodes. Kuzmin limiter+AFC-energy
technique (14th grid: all #dof = 34418 , hanging #dof = 10493 (top left); BJK
limiter+AFC-energy technique (14th grid: all #dof = 34633, hanging #dof =
11029 (top right) and Kuzmin limiter+AFC-SUPG-energy technique (14th grid:
all #dof = 28961 , hanging #dof = 7027 (top left); BJK limiter+AFC-SUPG-
energy technique (14th grid: all #dof = 28027, hanging #dof = 6657 (top
right).

the AFC-energy technique does a much better job since all layers are refined properly, not

only the strongest layer. We also note that the layers are better approximated on confor-

mally closed grids as compared to the grids with hanging nodes for the AFC-SUPG-energy

technique.
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Figure 6.12: Thickness of internal layer. AFC-energy technique (left), AFC-SUPG-energy
technique (right)

6.4 Summary

This is the first work in the direction of hanging nodes in context of non-linear stabilization for

convection-diffusion equations. This chapter dealt with two aspects of hanging nodes. First,

results have been extended from lower-order Lagrange elements to higher-order elements.

Second, we studied the behavior of AFC schemes on grids with hanging nodes.

The following conclusions can be made from the numerical simulations

1. The Kuzmin limiter fails to satisfy the DMP for both the estimators on grids with

hanging nodes. A concrete example was provided which justified this behavior.

2. The Kuzmin limiter almost satisfies DMP for both the estimators on grids with con-

forming closure.

3. The BJK limiter satisfies the DMP for both the estimators on all kinds of grids, i.e.,

conformally closed grids as well as grids with hanging nodes.

4. The layers were better resolved on conformally closed grids as compared to grids with

hanging nodes, irrespective of the choice of limiters.

In summary, the numerical results on grids with hanging nodes are not satisfactory and one

should find alternative ways for grid refinements in three dimension and should not continue

to work in this direction.

137





7 Summary and Outlook

7.1 Summary

This thesis presented results for the Algebraic Flux Correction schemes in the framework of

iterative solvers and a posteriori error estimation.

We started the thesis with a brief introduction to the analytical and numerical solutions of the

Convection-Diffusion-Reaction equations. First we showed that the analytical solutions sat-

isfy the maximum principles in weak form as well as strong from. Then we proved existence

and uniqueness of the weak solution to the Convection-Diffusion-Reaction and Evolutionary

Convection-Diffusion-Reaction equation. Then we studied the standard finite element ap-

proximation, i.e., the Galerkin formulation for the Convection-Diffusion-Reaction equations

and it was shown that the Galerkin method fails to give physically consistent results for a

small ε. We ended the preliminaries with an overview of a few stabilized FEMs, namely

the SUPG and the AFC schemes. It was shown that both the methods compute the layers

properly but the SUPG method fails to satisfy the DMP and hence some under and over

shoots can be observed. Whereas the AFC schemes satisfy the DMP but because of the

nonlinear nature, the system of equations are not easy to solve.

Chapter 4 dealt with the solvers for the AFC schemes. Several iterative solvers were stud-

ied including fixed point approaches and Newton-type methods. Advanced methods such

as the Newton methods reduced the number of iterations for certain examples but as the

computational cost involved in computing the Jacobian matrix, made the method inefficient

in terms of computing time. The most simple fixed-point approach referred to as fixed point

rhs has a structural advantage over other methods. Because of the fixed matrix structure,

one can use a direct solver, compute the factorization only once, store it, and use it for subse-

quent iterations making the method quite efficient. Several algorithmic components such as

dynamic damping and Anderson acceleration were also investigated. Anderson acceleration

decreased the number of iterations for the Kuzmin limiter, with an appropriate choice of

Anderson vectors (namely 10-20). But, it failed to give results for the BJK limiter. In terms

of efficiency, the fixed point rhs was still more efficient in terms of computing time. Dynamic

damping improved the convergence of the nonlinear scheme and is suggested to use with the

fixed point rhs method. For three dimensional problems, the fixed point rhs was still the

most efficient method but one needs to use an iterative solver instead of a direct solver. For
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the fine meshes, an iterative solver such as GMRES along with a proper pre-conditioner was

most efficient to solve the problem. Irrespective of the dimension, it was comparatively easier

to solve the problem with the Kuzmin limiter as that of the BJK limiter. Altogether, even

though one might get fewer iterations, with advanced methods such as Newton methods or

with the use of algorithmic components, the simple fixed point rhs method with dynamic

damping is the most efficient as the advantage of either needing only one factorization of the

matrix, in two dimensions or of the high efficiency of the iterative solver in three-dimension

compensated the drawback effectively.

Next, in Chapter 5 a posteriori error estimation for the AFC schemes was considered. Here we

studied two different approaches for finding a global upper bound in the energy norm of the

error. One was the standard residual-based approach referred to as the AFC-energy approach

and one used the SUPG norm along with the SUPG estimators referred to as AFC-SUPG-

energy approach. Results were compared based on the effectivity index and adaptive grid

refinements. The AFC-energy estimator was shown not to be robust with respect to ε and

hence for the convection-dominated regime, the AFC-SUPG-energy approach gave a better

effectivity index. For the BJK limiter, the effectivity was better than the Kuzmin limiter with

AFC-energy approach, whereas in for the AFC-SUPG-energy approach the choice of limiter

did not play an important role because of the dominating nature of the SUPG estimators.

With adaptive grid refinement, the problem could become locally diffusion dominated and

hence one has to use the BJK limiter as one can observe reduced order of convergence for

the Kuzmin limiter. This situation is only possible when ε is comparatively larger than the

mesh size. But for small ε, one has to use the Kuzmin limiter because of problems arising to

solve the nonlinear problem with the BJK limiter. In regards to adaptive grid refinement,

the AFC-energy approach approximated the layer much better as compared to the AFC-

SUPG-energy approach. Altogether, the AFC-SUPG-energy approach gave better results in

terms of effectivity index whereas the AFC-energy approach has better results in terms of

adaptive grid refinements.

Lastly, Chapter 6 is an extension of results of Chapter 5 where grids with hanging node are

considered. Here we also present a brief overview of the hanging nodes theory for Lagrange

elements and the results are extended from lower-order elements to higher-order elements.

Then we move to the interplay of hanging nodes and AFC schemes. An example is presented

in two dimensions which shows the failure of the Kuzmin limiter to satisfy the DMP on grids

with hanging nodes which are verified numerically. Numerical studies compare the results

based on adaptive grid refinements and satisfaction of the DMP. The BJK limiter satisfies

the DMP on all kinds of grids irrespective of the choice of estimators whereas the Kuzmin

limiter almost satisfies the DMP on conformally closed grids. The adaptive grid refinement

was better on conformally closed grids and the layers were computed sharply as compared

to grids with hanging nodes. Altogether, one should not use the AFC schemes for grids with

hanging nodes and find alternative grid refinement strategies.

140



7.2 Outlook

7.2 Outlook

We believe research is an ongoing journey and when you think you found the solution to a

problem, ten different questions arise from them. The research presented here is in no way

an exception to this rule. Now, we will mention some open questions for the work that has

been provided here.

The results presented in Chapter 4 start as an initial point of research in the efficient compu-

tation of the nonlinear problem. Although, the fixed point rhs method was time-efficient one

would like to examine certain quasi-Newton approaches or a combination of the Newton and

fixed point rhs approach such as the Newton-Dogleg methods (see [PSWS08]) so that one

can switch between the two methods. In three dimension, we saw the advantage of using an

iterative solver over a direct solver but the question remains, What is the most appropriate

iterative solver? The future work in this area includes the investigation of different iterative

solvers such as left-GMRES, right-GMRES, conjugate gradient, multigrid, SSOR, etc. along

with a proper preconditioner such as Jacobi, SSOR, SOR, etc.

In Chapter 5 a non-robust residual-based estimator was proposed in the energy norm. Also, a

SUPG approach was discussed. Only one work has been done in this direction (see [ABR17])

where also the estimator was not robust. Hence, one would like to develop robust estimators,

preferably in the natural norm of the system, i.e., the AFC norm. Also, one would prefer

to have the estimators independent of the choice of limiters. The local efficiency that was

proved needs to be extended for the edge estimates. Finally, simulations in three-dimension

should be performed to understand the estimators better.

Chapter 6 gave results on grids with hanging nodes. Initially, one should analyze the hanging

nodes in the framework of non-conforming elements. Even though this work does not lie in

the scope of AFC schemes, we believe this is an interesting topic of research. We treated the

hanging nodes as Dirichlet nodes and assigned the value zero to the limiters, which lead to

a diffusive solution. Hence, one should define the limiters properly and give some concrete

results in this direction. Grids with hanging nodes are mostly used in three dimensions so

as to avoid non-admissible or problematic elements, hence one needs to study the behavior

of BJK limiter in 3d. The results provided here work as a stepping stone in this direction.

We would like to finish this section by mentioning certain open questions for the AFC schemes

in general.

1. Analysis for improved order of convergence for the AFC schemes. In [BJK16] error

bounds of O(h1/2) were derived but it can be seen numerically that better convergence

rates are available. The reason being the analysis relied on general assumptions of a

limiter.
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2. Stability and error analysis of the time-dependent counterpart of AFC schemes, the

Flux-Corrected transport (FEM-FCT). The ideas of AFC schemes originate from FEM-

FCT methodology which is applied to Evolutionary Convection Diffusion Reaction

equations. There stability and convergence order remains an open question.

3. Efficient solution of the nonlinear problems in FEM-FCT. Currently, only a preliminary

work is available in this direction (see [JN12]). Different iterative schemes need to be

investigated.

4. Convergence analysis on anisotropic meshes and for mixed boundary conditions. In

[BJK16, BJK17] the analysis was performed on non-anisotropic meshes and Dirichlet

boundary conditions were prescribed. One would like to extend the analysis from these

papers to the aforementioned cases.

A lot of questions still remain open in the area of stabilized schemes for Convection-Diffusion-

Reaction equations (see [JKN18]).
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Algorithms

This appendix summarizes all the algorithms that were presented in Chapter 4.

Remark A.1. Notations We denote the residue of the solution uk by rk for k ∈ N. The

residue for solving a system of equations Ax = b, A ∈ RN×N , b ∈ RN , is defined as

rk = ‖Auk − b‖l2 ,

if uk is the numerical solution of the system.

A.1 Algorithm for Dynamic Damping

Flowchart A.1 summarizes the Dynamic damping parameter ω(ν) used in (4.3). Detailed

explanation of the algorithm can be found in [JK08, Sec. 5]. For simplicity we denote ω(ν)

by ω.
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ωmin := 0.01, ωmax := 1,
c1 := 1.001, c2 := 1.1,
c3 := 1.001, c4 := 0.9,
ω := ωmax, k := 0

εthreshold :=
√

#dof × 10−10

Compute

uk and rk

rk > εthreshold

Compute ũk+1

satisfying

(3.19),(3.20) and set

first damp= true

Done

uk+1 = uk + ω(ũk+1 − uk)
and rk+1

rk+1 < rk or
ω ≤ c1ωmin

rk+1 < rk and
first damp

= true

k := k + 1 ω := max{ωmin, ω/2}

first damp

= trueωmax := min{1, c3ωmax}
ω := min{ωmax, c2ω}

ωmax := max{ωmin, c4ωmax}
first damp = false

Yes

No

Yes No

No

Yes

Yes

No

Figure A.1: Adaptive choice of damping parameter
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A.2 Algorithm for Anderson Acceleration

Flowchart A.2 summarizes the Anderson acceleration (Algorithm AA) described in [WN11].

εAnd denotes the tolerance. In our studies it was set equal to the tolerance used in Sec. 4.3

i.e.,
√

#dof · 10−10.

Given u0,
mAnd ≥ 1
k := 1

Set uk := g(uk−1),
mk := min{mAnd, k}

mk = mAnd

Fk = (fk−mk
, . . . , fk),

where

fi = g(xi) − xi

Determine

σ(k) = (σ
(k)
0 , . . . , σ

(k)
mk)

that solves

minσ=(σ0,...,σmk
)T ‖Fkσ‖2

s.t.
∑mk

i=0 σi = 1

k = k + 1

Compute uk+1 =∑mk

i=0 σ
(k)
i g(uk−mk+i)
and rk+1

rk+1 < εAnd Done

No

Yes

No Yes

Figure A.2: Anderson Acceleration

Remark A.2. In the original paper by Anderson [And65], a general step was given for finding

uk+1 [WN11, Eq (1.2)]),

uk+1 = (1− Γk)

mk∑
i=0

σ
(k)
i uk−mk+i + Γk

mk∑
i=0

σ
(k)
i g(uk−mk+i).
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We performed our simulations with Γk = 1. It has been noted in [PE13], that, for nonlinear

problems the value of Γk is really sensitive to the solution and the method may diverge for

small Γk. We observed similar results in our simulations and hence the above formulation

was not studied.

A.3 Algorithm for Newton Dynamic Damping

Flowchart A.3 summarizes the Newton dynamic damping used for formal Newton’s method

with an adaptive damping parameter ωNewt a described in Chapter 4. In our simulations

εNewt−tol was set as 10−3 and initial value of ωNewt ∈ [0.1, 1.0] was set to 0.25.

Compute rk and set

εNewt−tol := 10−5,
ωNewt := 0.25

rk/rk−1 > 0.99

ωNewt =
max{0.1, ωNewt × 0.999}

ωNewt =
min{1.0, ωNewt × 1.001}

Done

Yes No

Figure A.3: Adaptive choice of Newton damping parameter
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Appendix B

Numerical Values for a Posteriori Error
Estimators

This appendix provides numerical values for the effectivity indices presented in Sec. 5.3.

Example 5.3.1: A Known 2d Solution with a Boundary
Layer

Table B.1: Effectivity index for ε = 10−3 using AFC-energy technique and the BJK limiter

#dof ‖u− uh‖a ηdh η ηeff

25.0 0.0786 10.3 11.0 139

81.0 0.122 15.6 17.3 142

289 0.142 22.4 24.2 171

344 0.134 125 126 942

423 0.124 102 102 824

602 0.113 67.2 67.3 595

950 0.0955 39.4 39.5 413

1240 0.0850 30.6 30.6 360

1720 0.0673 18.0 18.0 268

2660 0.0507 9.68 9.71 192

3150 0.0439 6.29 6.31 144

3730 0.0382 2.60 2.64 69.1

5350 0.0369 0.977 1.07 29.1

8420 0.0259 0.456 0.552 21.3

10 200 0.0221 0.222 0.346 15.6

15 500 0.0170 0.0599 0.211 12.5

22 900 0.0128 0.0211 0.154 12.0
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Appendix B Numerical Values for a Posteriori Error Estimators

30 400 0.0107 0.0126 0.129 12.0

52 400 0.008 12 0.008 88 0.0968 11.9

70 400 0.006 80 0.006 49 0.0809 11.9

101 000 0.005 50 0.005 70 0.0658 12.0

154 000 0.004 52 0.003 54 0.0542 12.0

213 000 0.003 79 0.001 70 0.0454 12.0

310 000 0.003 07 0.000 907 0.0365 11.9

391 000 0.002 72 0.000 545 0.0324 11.9

555 000 0.002 32 0.000 464 0.0276 11.9

760 000 0.001 96 0.000 414 0.0235 12.0

1 010 000 0.001 67 0.000 251 0.0200 12.0

Table B.2: Effectivity index for ε = 10−3 using AFC-energy technique and the Kuzmin limiter

#dof ‖u− uh‖a ηdh η ηeff

25.0 0.0779 11.7 12.3 158

81.0 0.122 17.0 18.6 152

289 0.141 24.3 25.8 183

344 0.133 134 134 1010

435 0.123 106 106 866

638 0.112 69.1 69.2 616

1050 0.0938 40.4 40.4 431

1750 0.0671 23.4 23.4 349

2430 0.0550 17.2 17.2 313

3270 0.0416 10.9 10.9 262

3910 0.0371 8.45 8.46 228

5600 0.0309 7.67 7.68 249

6870 0.0260 6.04 6.05 233

10 400 0.0212 4.54 4.54 214

13 800 0.0194 4.16 4.17 214

19 800 0.0168 4.24 4.24 252

22 900 0.0146 3.32 3.32 228

27 600 0.0132 2.96 2.97 225

34 800 0.0117 2.50 2.50 214

43 900 0.0107 2.08 2.09 196

54 800 0.009 89 1.70 1.70 172

67 000 0.009 52 1.41 1.41 148

80 600 0.0106 2.01 2.01 190

104 000 0.0118 2.85 2.85 242

124 000 0.0125 2.89 2.89 232

144 000 0.008 92 1.89 1.89 211

178 000 0.008 55 1.99 1.99 233
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210 000 0.008 77 2.06 2.06 235

248 000 0.008 81 2.00 2.00 227

295 000 0.008 71 1.99 1.99 229

354 000 0.008 74 2.04 2.04 233

423 000 0.008 53 1.98 1.98 232

505 000 0.004 72 1.02 1.03 217

623 000 0.004 29 0.941 0.941 219

792 000 0.004 86 1.12 1.12 230

974 000 0.004 95 1.21 1.21 244

1 210 000 0.005 17 1.20 1.20 232

Table B.3: Effectivity index for ε = 10−3 using AFC-SUPG-energy technique and the BJK
limiter

#dof ‖u− uh‖a η ηeff

25.0 0.0786 13.7 175

81.0 0.122 13.7 112

289 0.142 11.7 82.3

352 0.133 7.96 59.7

463 0.122 5.47 44.7

646 0.112 3.91 34.8

1050 0.0937 2.33 24.8

1690 0.0692 1.45 21.0

2020 0.0629 1.21 19.2

3640 0.0393 0.804 20.5

7490 0.0265 0.653 24.6

14 400 0.0195 0.572 29.4

39 500 0.0108 0.203 18.7

50 800 0.009 50 0.108 11.4

63 500 0.009 22 0.0673 7.30

87 100 0.007 90 0.0452 5.72

118 000 0.005 92 0.0333 5.62

157 000 0.005 06 0.0266 5.26

211 000 0.004 23 0.0222 5.25

312 000 0.003 24 0.0170 5.26

462 000 0.002 64 0.0137 5.19

881 000 0.001 89 0.009 73 5.15

1 400 000 0.001 44 0.007 46 5.18
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Table B.4: Effectivity index for ε = 10−3 using AFC-SUPG-energy technique and the Kuzmin
limiter

#dof ‖u− uh‖a η ηeff

25.0 0.0779 13.7 176

81.0 0.122 13.7 113

289 0.141 11.7 82.5

352 0.133 7.96 59.8

463 0.122 5.47 44.7

646 0.112 3.91 34.8

1050 0.0940 2.33 24.7

1690 0.0695 1.45 20.9

2020 0.0632 1.21 19.1

3640 0.0388 0.802 20.7

7490 0.0271 0.652 24.1

14 400 0.0196 0.571 29.1

39 400 0.0112 0.203 18.2

49 700 0.009 79 0.111 11.4

61 700 0.009 39 0.0718 7.65

83 700 0.009 97 0.0468 4.69

112 000 0.008 16 0.0356 4.36

151 000 0.006 18 0.0279 4.52

202 000 0.008 24 0.0247 3.00

270 000 0.006 95 0.0206 2.96

341 000 0.005 58 0.0175 3.13

430 000 0.004 44 0.0150 3.39

606 000 0.006 55 0.0148 2.26

845 000 0.005 67 0.0125 2.21
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Table B.5: Greek Symbols

Notation Description Section

α

α Multi-index 1.3

αij /αE Solution dependent limiters for AFC schemes 3.4

β

βij αijdij(uj − ui) 4.1

β̃ij Regularized version of βij 4.1

ϕ

ϕh(xi) /ϕi Nodal functional corresponding o xi 3.4

ϕ̂i Nodal functional on reference element corresponding to xi 5.1

ϕnci Non conforming nodal functional corresponding to xi 6.1

∆

δK SUPG stabilization weights 3.3

δF∈Fh,N
Kronecker delta function for Neumann faces 5.2.1.2

∆i Compact support of ϕi 3.4

∆conv
i Convex hull of ∆i 3.4

∆T,conv
i Union of all triangles sharing xi 6.2

ε

ε Diffusion coefficient 2.1

εthreshold Threshold value for dynamic damping A.1

εAnd Tolerance for Anderson acceleration A.2

εNewt−tol Tolerance for ωNewt A.3

η

ηK Global upper bound 5.2.1.2

ηInt,K Interior local estimator of K 5.2.1.2

ηFace,K Face local estimator of F ⊂ ∂K 5.2.1.2

ηdh,K Edge local estimator of E ⊂ ∂K 5.2.1.2

ηSUPG Global upper bound from [JN13] 5.3

ηAFC−SUPG Norm of difference of uSUPG and uAFC 5.3

ηeff Effectivity index 5.3

γ
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γi Linearity preserving parameter in BJK limiter 3.4

γ0 Parameter in BBK limiter 3.4

Γ Boundary of Ω 2.1

ΓD Dirichlet Boundary of Ω 2.1

ΓN Neumann Boundary of Ω 2.1

κ

κKE (n− 2) dimensional simplex opposite E 3.2

κlow Lower bound for solution 4.1.2.4

κupp Upper bound for solution 4.1.2.4

κ Number of Anderson vectors 4.2

Ω

Ω Bounded domain ⊂ Rd 2.1

ω Damping parameter for iteration 4.1

ωfp Damping parameter for fixed point matrix 4.1.1

ωNewt Damping parameter for formal Newton 4.1.2.4

ωF Set of mesh cells having common face F 5.1

ωK Set of mesh cells having a joint face with K 5.1

ωmin Lower bound for ω in dynamic damping A.1

ωmax Upper bound for ω in dynamic damping A.1

Φ

Φij αij(uj − ui) 3.4

ρ

ρK Diameter of largest ball inside K 5.1

σ

σ0 Lower bound for reaction 3.2

σ Smoothness parameter in regularization 4.1.2.4

σ
(k)
i Variables used for constrained minimization A.2

algorithm in Anderson acceleration

θ

θi Angle opposite faces Fi 5.1

θij/θ
K
E Dihedral angle between faces Fi and Fj 5.1

ψ

ψK Interior bubble function on K 5.1

ψ̂K Interior bubble function on reference element 5.1

ψF Face bubble function on F 5.1

ψ̂F Face bubble function on reference element 5.1

154



Table B.6: Latin Symbols

Notation Description Section

A
a(·, ·) Bilinear form of Convection-Diffusion-Reaction equations 2.3

ah(·, ·) Approximation of bilinear form a(·, cdot) 3.4

aAFC(·, ·) Bilinear form of AFC equations 5.1

Ah Ansatz space 3.3

A {aij}Ni,j=1, Finite element matrix 3.4

A FEM using homogeneous Dirichlet boundary condition 3.4

Ã A + D 3.4

Anc Finite element matrix using non-conforming basis function 6.2

B
b Convective transport 2.1

bh Polynomial approximation of b 5.2.1.2

B(T ) Basis of S(T ) 6.1

C
c Reaction coefficient 2.1

ch Polynomial approximation of reaction c 5.2.1.2

Ck(Ω) Space of functions having k continuous derivatives 2.2

Celliptic Elliptic constant 2.2

Cbound Boundedness constant 2.3

CPF Poincaré Friedrich’s constant 2.3

CL Lipschitz continuity constant 3.4

Cshrg Shape regularity constant 5.1

Ccos max1≤i≤3{cos(θi)} 5.1

CY Generalized Young’s inequality constant 5.1

Cinv Inverse estimate constant 5.1

CI Interpolation estimate constant 5.1

CT1, CT2 Trace inequality constant 5.1

Cedge Constant appearing in Eq. (5.16) 5.1

CF Constant depending on edge estimate constant and CI 5.2.1.1

Cedge,max maxK∈ThCedge 5.2.1.1

CK Constant appearing in Eq. (5.42) 5.2.1.2

CFB Constant appearing in Eq. (5.44) 5.2.1.2

D
dh(w; z, v)

∑N
i,j=1(1− αij(w))dij(z(xj)− z(xi))v(xi) 3.4

D {dij}Ni,j=1, Artificial diffusion matrix 3.4

DF Jacobian matrix of Fi 4.1.2.4

E
Ei /E Edge of a simplex 3.2
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Eh Set of all edges of a triangulation 5.1

F
f

flux
Total flux 2.1

f conv

flux
Convective flux 2.1

fdiff

flux
Diffusive flux 2.1

f̂ Source/Sink term with reaction 2.1

f Source/Sink term 2.1

fij dij(uj − ui) Anti-diffusive fluxes 3.4

fh Polynomial approximation of f 5.2.1.2

Fi /F (n− 1)-dim simplex opposite ki 3.2

Fh Set of all faces of Th 5.1

Fh,Ω Set of all interior aces of Th 5.1

Fh,D Set of all Dirichlet faces of Th 5.1

Fh,N Set of all Neumann faces of Th 5.1

FK Affine map from K̂ → K 5.1

G
g Neumann boundary conditions 2.1

gh Polynomial approximation of g 5.2.1.2

H
hK Width of mesh cell K 5.1

hE Width of edge E 5.1

h Mesh width 5.1

Hk(Ω) Sobolev spaces, W k,2(Ω) 1.3

Hk
0 (Ω) Closure of C∞0 (Ω) in Hk norm 1.3

H−1(Ω) Dual space of H1
0 (Ω) 1.3

H1
D(Ω) {v ∈ H1(Ω) : v|ΓD

= ub 5.1

H(T ) Set of hanging nodes 6.1

I
ihu Lagrange interpolation of u 3.4

Ihu Quasi-interpolation of u 5.1

K
ki Vertex of simplex K 3.2

k Iterate counter 4.1

Ki /K Simplex in Th 3.2

K̂ Reference Simplex 5.1

L
Lp(Ω) Space of Lebesgue integrable functions for 1 ≤ p∞ 1.3

M

maxσ{x, y}
x+y+
√

(x−y)2+σ

2
4.1.2.4

minσ{x, y}
x+y−
√

(x−y)2+σ

2
4.1.2.4

mAnd Number of iterates that need to
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be stored for Anderson acceleration A.2

Mite Matrix used in fixed point iteration 4.1

N
n Outward unit normal 2.1

Nh Set of vertices of Th 5.1

NF (T ) Set of nodal functionals 5.1

NF Number of cells sharing a face 5.2.1.2

P
Pk Lagrange finite elements of order k on simplices 3.3

P±i Intermediate fluxes in Kuzmin and BJK limiter 3.4

P̃±i Regularized intermediate fluxes in Kuzmin and BJK limiter 3.4

P (T ) Finite element function on triangulation T 5.1

Q
qi γi

∑
j∈Si

dij 3.4

Q±i Intermediate fluxes in Kuzmin and BJK limiter 3.4

Q̃±i Regularized intermediate fluxes in Kuzmin and BJK limiter 3.4

Qk Lagrange finite elements of order k on hexahedron 3.4

R
rk Residue of solution uk A.2

R±i Intermediate fluxes in Kuzmin and BJK limiter 3.4

R̃±i Regularized intermediate fluxes in Kuzmin and BJK limiter 3.4

RK(uh) Interior residual on mesh cell K 5.2.1.1

RF (uh) Face residual on face F 5.2.1.1

RK,h(uh) Polynomial approximation of RK(uh) 5.2.1.2

RF,h(uh) Polynomial approximation of RF (uh) 5.2.1.2

S
smearint Thickness of internal layer 5.3

Si Si ⊃ {j ∈ {1, . . . , N}\{i} : aij 6= 0 or aji > 0} 3.4

S Finite system of closed connected subsets of Ω 5.1

S(T ) kth order conforming finite element space 6.1

Snc(T ) kth order non-conforming finite element space 6.1

T
tE Tangential unit vector on edge E 5.1

tolsw Switching tolerance A.1

T Final time 2.1

Th Test space 3.3

Th /T Triangulation of domain Ω 5.1

U
u Concentration of the reactant 2.1

ubi Dirichlet boundary values 2.1

u0 Initial condition 2.1

157



List of Notations

u Vector in RN 3.4

ũ Vector in RM 3.4

umax
i max

j∈Si∪{i}
uj, Maximum of uj in patch Si 4.1.2.3

umin
i min

j∈Si∪{i}
uj, Minimum of uj in patch Si 4.1.2.3

uAFC AFC solution 5.2.2

uSUPG SUPG solution 5.2.2

V
V Banach space 2.3

V ′ Dual space of Banach space V 2.3

Vub {v ∈ H1(Ω) : v|Γ = ub} 2.3

VD {v ∈ H1(Ω) : v|ΓD
= 0} 2.3

Vh Finite dimensional subset of V 3.1

Vi Vertices of mesh cell K 5.1

V̂i Vertices of reference mesh cell K̂ 5.1

W
W k,p(Ω) Sobolev spaces 1.3

Table B.7: Norms and Semi-norms

Notation Description

‖ · ‖V Induced norm from (·, ·)V
‖ · ‖Lp(Ω) Norm on Lp(Ω)

‖ · ‖l2 Euclidean norm

‖ · ‖k,p,Ω Norm on W k,p(Ω)

| · |k,p,Ω Semi-norm on W k,p(Ω)

‖ · ‖k,Ω Norm on Hk(Ω)

| · |k,Ω Semi-norm on Hk(Ω)

‖ · ‖a Energy norm
(

:=
(
ε| · |21,Ω + σ0‖ · ‖2

0,Ω

)1/2
)

‖ · ‖AFC AFC norm
(

:= (‖ · ‖2
a + dh(·; ·, ·))1/2

)
‖ · ‖SUPG SUPG norm
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859, 1969.

[BB97] J. P. Boris and D. L. Book. Flux-corrected transport. I. SHASTA, a fluid trans-

port algorithm that works [J. Comput. Phys. 11 (1973), no. 1, 38–69]. J. Comput.

Phys., 135(2):170–186, 1997. With an introduction by Steven T. Zalesak, Com-

memoration of the 30th anniversary {of J. Comput. Phys.}.

[BB17] S. Badia and J. Bonilla. Monotonicity-preserving finite element schemes based

on differentiable nonlinear stabilization. Comput. Methods Appl. Mech. Engrg.,

313:133–158, 2017.

[BBK17] G. R. Barrenechea, E. Burman, and F. Karakatsani. Edge-based nonlinear

diffusion for finite element approximations of convection–diffusion equations

and its relation to algebraic flux-correction schemes. Numerische Mathematik,

135(2):521–545, Feb 2017.

[Bey95] J. Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.

[BH82] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin for-

mulations for convection dominated flows with particular emphasis on the in-

compressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.,

32(1-3):199–259, 1982. FENOMECH ’81, Part I (Stuttgart, 1981).

[BJK16] G. R. Barrenechea, V. John, and P. Knobloch. Analysis of algebraic flux correc-

tion schemes. SIAM J. Numer. Anal., 54(4):2427–2451, 2016.

[BJK17] G. R. Barrenechea, V. John, and P. Knobloch. An algebraic flux correction

scheme satisfying the discrete maximum principle and linearity preservation on

general meshes. Math. Models Methods Appl. Sci., 27(3):525–548, 2017.

[BJKR18] G. R. Barrenechea, V. John, P. Knobloch, and R. Rankin. A unified analysis of

algebraic flux correction schemes for convection-diffusion equations. SeMA J.,

75(4):655–685, 2018.
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Zusammenfassung
In dieser Arbeit wurden Finite-Elemente-Verfahren mit algebraischer Flusskorrektur (AFC)

für stationäre Konvektions-Diffusions-Reaktions Gleichungen untersucht. Die beiden Haup-

taspekte, die studiert wurden, sind iterative Löser für die auftretenden nichtlinearen Gle-

ichungen und adaptive Gitterverfeinerung basierend auf a posteriori Fehlerschätzern. Die

wichtigsten Ergebnisse der Arbeit sind im Folgenden zusammengefasst.

Zunächst wurden Studien zu den Lösern vorgestellt. Es wurden mehrere iterative Löser

untersucht, darunter Fixpunktansätze und Methoden vom Newton-Typ. Die Newton Meth-

oden reduzierten die Anzahl der Iterationen für bestimmte Beispiele, aber sie waren ineffizient

bezüglich der Rechenzeit. Der einfachste Fixpunktansatz, nämlich fixed point rhs , war auf

Grund seiner Matrixeigenschaften am effizientesten. Algorithmische Komponenten, wie die

Anderson-Beschleunigung, reduzierten die Anzahl der Iterationen in einigen Beispielen, aber

sie lieferte keine Ergebnisse für den BJK-Limiter. In drei Dimensionen wurde ein itera-

tiver Löser für feinere Gitter benötigt, aber auch hier war fixed point rhs die effizienteste

Herangehensweise. Unabhängig von der Dimension war es einfacher, die Probleme mit dem

Kuzmin-Limiter als mit dem BJK-Limiter zu lösen.

Der zweite Hauptaspekt sind Studien zur a posteriori Fehlerschätzung. Es wurden zwei

Ansätze zur Bestimmung einer oberen Schranke in der Energienorm untersucht, ein auf

Residuen basierender Ansatz (AFC-Energie Technik) und ein anderer mit der SUPG-Lösung

(AFC-SUPG-Energie Technik). Beide Techniken liefern keine robusten Schätzungen bezüglich

ε, aber es zeigte sich, dass der AFC-SUPG Energie Ansatz einen besseren Effektivitätsindex

besaß. Für den BJK-Limiter war die Effektivität besser als für den Kuzmin-Limiter mit

dem AFC-Energie Ansatz, während beim AFC-SUPG Energie Ansatz die Wahl des Lim-

iters keine Rolle spielte. Im Zuge der adaptiven Gitterverfeinerung kann das Problem lokal

diffusions-dominant werden. In diesem Falle muss man den BJK-Limiter verwenden, da man

beim Kuzmin-Limiter eine reduzierte Konvergenzordnung beobachten kann. Im Hinblick auf

die adaptive Gitterverfeinerung wurden Grenzschichten unterschiedlichen Typs besser mit

dem AFC-Energie Ansatz verfeinert als mit dem AFC-SUPG Energie Ansatz.

Schließlich wurden die Ergebnisse für die a posteriori Fehlerschätzung auf Gitter mit hängen-

den Knoten angewandt. Zunächst wurden Ergebnisse bezüglich hängender Knoten von

Lagrange-Elementen niedriger Ordnung auf Elemente höherer Ordnung erweitert. Es zeigte

sich in numerischen Studien, dass der Kuzmin-Limiter auf Gittern mit hängenden Knoten

dem DMP nicht genügt, während der BJK-Limiter Ergebnisse lieferte, die dem DMP ent-

sprachen. Die Grenzschichten wurden auf konform abgeschlossenen Gittern wesentlich besser

approximiert als auf Gittern mit hängenden Knoten. Insgesamt sollte man Gitter mit hängen-

den Knoten nicht für AFC Verfahren verwenden.
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