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Abstract

This thesis studies projection-based reduced-order models (ROMs) in the context of
computational fluid dynamics. Proper Orthogonal Decomposition (POD) is employed
to compute the reduced-order basis from snapshots, which are assumed to represent the
finite element solution of a partial differential equation. All investigations involve either
convection-diffusion-reaction equation or the incompressible Navier–Stokes equations.
The main contribution of the thesis can be divided into three parts.

Firstly, a Streamline-Upwind Petrov–Galerkin reduced-order model (SUPG-ROM) is
investigated theoretically and numerically for convection-dominated convection-diffusion-
reaction equations. Numerical analysis is utilized to propose the scaling of the stabi-
lization parameter for the SUPG-ROM. Two approaches are used: One based on the
underlying finite element discretization and the other one based on the POD truncation.
The resulting SUPG-ROMs and the standard Galerkin ROM are studied numerically on
several convection-dominated test problems aiming at answering several questions. One
of the choices for the stabilization parameter is recommended.

Secondly, an alternative approach for the computation of the ROM initial condition is
derived for problems, for which the standard approach, that is usually used in the liter-
ature, results in the ROM initial condition being polluted by spurious oscillations. The
principal idea of the method consists in modifying the conventional ROM initial condi-
tion in a post-processing step by a filtering procedure. Numerical studies are performed
in order to investigate the influence of the filtered initial condition on the ROM results.
With respect to the minimum and maximum values of the ROM solution, which char-
acterize the under- and overshoots, ROM results could be partly significantly improved
compared to the results obtained with the standard ROM initial condition.

Thirdly, three velocity-pressure reduced-order models (vp-ROMs) for incompressible
flows are investigated numerically. One method computes the ROM pressure solely based
on the velocity POD modes, whereas the other two ROMs use pressure modes as well.
One of the latter methods denoted by SM-ROM is developed within the framework of
this dissertation. Moreover, the impact of the snapshot accuracy as well as of utilizing
different linearization techniques on the ROM results is investigated numerically. Based
on weakly divergence-free velocity snapshots, SM-ROM could reproduce the results of the
finite element simulations in many cases better than the other vp-ROMs. Together with
the fact that SM-ROM does not need any specification of additional pressure boundary
conditions, which is required in the other methods, SM-ROM can be considered to be
superior to other vp-ROMs for the computation of the ROM pressure.
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1. Introduction

1.1. Motivation

A great number of important dynamical processes in nature can be modeled by partial
differential equations. However, the simulation of such equations by means of, e.g.,
finite element or finite volume methods can become computationally very expensive
or for some practical problems in the applied sciences even not feasible. Especially,
the numerical treatment of control and optimization problems in realistic engineering
applications is often very challenging as repeated numerical simulations of large-scale
dynamical systems are required.

One possible remedy is a simplification of the model from the physical point of view,
which relies on the experience and intuition of the engineers or physicists. Another
one is the so-called reduced-order modeling that is a mathematical approach serving to
overcome high computational costs of the simulations. The underlying thesis is concerned
with the latter technique. Its main idea is to approximate the large-scale problems by
much smaller ones, which yield somewhat less accurate results but can be solved with a
considerably less computational complexity. In the last decades a lot of effort has been
made to develop various methods of model reduction. An overview of many currently
existing approaches for the reduced-order modeling can be found, e.g, in [121].

For stationary linear state-space systems, some popular reduced-order approaches are
the Moment Matching Approximation and the Balanced Truncation Method. The former
method was proposed in [37, 43] and is based on projecting the dynamical system onto
Krylov subspaces, which are computed by an Arnoldi- or Lanczos process. The latter
approach, introduced in [148], is based on transforming the state-space system into a
balanced form so that its controllability and observability Gramians, which are solutions
to the two Lyapunov equations, become diagonal and equal.

For the sake of the model reduction of parametrized nonlinear problems, the most
popular techniques are the Reduced Basis (RB) method and the Proper Orthogonal De-
composition (POD). Both approaches apply the Galerkin projection of the dynamical
system onto a subspace, which is spanned by basis functions containing some relevant
characteristics of the sought solution. The difference in both strategies consists in the
computation of the so-called reduced or reduced-order basis of that subspace. The RB
method was developed in [49,110], see also [60] for an extensive overview of the progress
and application fields. It is usually applied to build bases for stationary problems, in
which the solution is sought for a large number of parameters. POD was first intro-
duced in [103] in order to detect and analyze coherent structures in turbulent flows from
experiments. It provides a low-dimensional basis computed from a known ensemble
of experimental data or numerical solutions, the so-called snapshots, which optimally
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1. Introduction

captures the dominant features of the data. POD is most commonly applied to build
reduced-order bases for time-dependent problems. For the computation of the reduced-
order basis of time-dependent parametrized problems, the so-called POD-greedy strategy
was proposed for linear evolution equations in [57], the viscous nonlinear Burgers’ equa-
tion in [106], and the Navier–Stokes equations in [145]. It is based on combining the
POD method in time with the RB approach in parameter space. In this thesis, the
main attention will be paid to the POD-based reduced-order models (POD-ROMs) for
time-dependent problems.

POD models have been successfully applied in various areas. The probably most
active fields within this context are optimization and control, see [141] for more details.
Some examples for the utilization of the POD include design of practical, real-time
feedback controllers for dynamical systems in [8], optimal control describing the laser
surface hardening of steel in [64], inverse problems in [15], flow control in [20, 107], and
calibration of models in option pricing in [120]. In optimization problems, expensive
function evaluations lead to an enormous amount of computing time at each iteration
step. Here, the reduced-order models (ROMs) can replace the dynamical system given
by the partial differential equation in the objective function resulting in a suboptimal
solution approach, which can substantially accelerate the optimization algorithm. At this
point it is meaningful to clarify, which snapshots to employ for the computation of the
reduced-order basis as it is by no means guaranteed that the reduced-order model based
on the snapshots associated with a certain control function or a parameter value is able to
approximate the probably somewhat different dynamical behavior of the system related
to a different control function or parameter value. To overcome this difficulty, several
approaches have been proposed in literature such as the Trust-Region and Optimality
System POD methods in [6] and [90], respectively. Moreover, in [4] the POD-ROMs
computed at different parameter values were interpolated to obtain a new POD-ROM
that is valid also in the intermediate zone between the original parameter values. Other
application areas of the reduced-order modeling based on POD are the parametrized
fluid-structure interaction, e.g, see [14,31], and the uncertainty quantification for partial
differential equations with parametrized random inputs, e.g., see [136].

1.2. Main Contributions

The underlying thesis is concerned with the POD-based reduced-order modeling in the
context of computational fluid dynamics, for which the incompressible Navier–Stokes
equations, governing the motion of numerous fluids, play the central role. A lot of
research has been dedicated to this topic in the last decades, e.g., see [2,19,69,96,107,136,
144,145]. The main contribution of the dissertation consists of three parts. Firstly, a new
reduced-order model for the computation of the pressure field is developed. Secondly,
two versions of the stabilization parameter for a Streamline-Upwind Petrov–Galerkin
reduced-order model are determined by means of the numerical analysis. Thirdly, an
alternative approach for the computation of the ROM initial condition is derived for
problems with polluted data. The motivation and description for these developments
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1. Introduction

are presented in the following.
In many, probably even most published reports on reduced-order models based on

the POD for incompressible flows, only velocity models are considered. Usually it is
assumed that the velocity snapshots are divergence-free and due to the properties of the
POD procedure also the velocity POD basis functions are divergence-free. It leads to the
cancellation of the mixed velocity-pressure term and thus of the pressure contribution in
the reduced-order model for the Navier–Stokes equations. However, from the practical
point of view, the pressure is needed in many computational fluid dynamics applications,
e.g., for the simulation of fluid-structure interaction problems and for the computation
of relevant properties, such as drag and lift coefficients at solid bodies. In the literature,
there exist several proposals for the computation of the pressure field in the framework
of reduced-order modeling. One class of pressure ROMs consists in defining a ROM
for the pressure that only uses the velocity POD modes [108, 138]. A second class of
pressure ROMs employs pressure POD basis functions in addition to the velocity POD
basis functions, e.g., see [2,26,136]. The pressure POD basis functions can be computed
separately from the velocity POD basis functions (i.e., the decoupled approach) [2, 26,
108, 136, 138], or together with them (i.e., the coupled, monolithic approach) [19, 145].
In the former case, the computation of the reduced-order pressure can be considered
as a post-processing step after having obtained the velocity solution. In this thesis,
the decoupled approach will be considered. Three different pressure ROMs will be
comprehensively numerically investigated. Two of the models proposed in [2,108] utilize
the pressure Poisson equation, whose derivation requires the pointwise divergence-free
velocity field. However, this assumption is in general idealized. The third pressure ROM,
referred later as SM-ROM, was first introduced in [26]1 and is part of the contribution
of the underlying dissertation. Its derivation is based on a residual-based stabilization
mechanism for the incompressible Navier–Stokes equations, which is a mathematically
well understood method [21]. The advantage of SM-ROM over the two other studied
pressure ROMs consists in the fact that its derivation requires the velocity snapshots to
be only discretely divergence-free (but not pointwise), and it does not need any ad hoc
treatment of external forces and pressure boundary conditions.

The application of most turbulent models for the simulation of turbulent flows with
finite element methods requires a choice of some stabilization parameters, [75]. In the
framework of POD-based reduced-order modeling, the stabilization parameters from the
finite element method were used in the literature, like in [88], or an optimization problem
for the determination of the parameters was solved, as in [19]. Certainly it is desirable
to have some support for the choice of stabilization parameters coming from numerical
analysis, as such parameters should be generally valid for a wide range of settings. To
the best of the author’s knowledge, the first contribution to this approach in the con-
text of reduced-order modeling was provided within the framework of the thesis. The
results were published in [44]. To avoid the effects of the velocity-pressure coupling and
the nonlinearity present in the Navier–Stokes equations, a stabilized ROM for scalar
convection-dominated convection-diffusion-reaction equation is investigated for this pur-

1Schyschlowa is the maiden name of the author, Swetlana Giere.
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1. Introduction

pose. The employed stabilization approach is the Streamline-Upwind Petrov–Galerkin
(SUPG) method, which is one of the most popular stabilization schemes in the framework
of finite element methods. As a result of the analytical considerations, two stabilization
parameters are proposed. One of them is based on the finite element resolution and
the other one is based on the POD spatial resolution. The ROMs combined with both
versions of the stabilization parameter are extensively studied numerically on several
test problems.

In the literature, the standard approach to determine the initial condition for a ROM
consists in projecting the full-order initial condition, i.e., the finite element initial con-
dition or interpolated initial condition of the continuous problem (if available), in the
L2 sense onto the POD basis. However, depending on the origin of the underlying snap-
shots, it can be observed that the ROM initial condition computed this way can be
polluted by spurious oscillations. A good quality initial condition is essential for the
numerical methods to produce accurate solutions. Therefore, it is desirable to be able
to construct an initial condition that suppresses spurious oscillations as good as possible
but still approximates well the full-order initial condition. For this purpose, an alter-
native approach for the computation of the ROM initial condition is proposed in this
thesis. The principal idea consists in modifying the standard ROM initial condition in a
post-processing step by a certain filtering procedure revived from the derivation of the
Large Eddy Simulation [75], which is one of the most popular turbulence models. Nu-
merical simulations of the convection-dominated convection-diffusion-reaction equation
are performed to compare the effect of both versions of the ROM initial condition on
the ROM results. Although it was motivated by the fluid dynamical applications, the
proposed approach for the computation of the ROM initial condition can be extended
to other types of problems with polluted data.

1.3. Outline

This thesis is organized as follows: Chapter 2 focuses on two partial differential equations,
namely the convection-diffusion-reaction equation and the incompressible Navier–Stokes
equations, which build a basis for the main investigations in terms of reduced-order
modeling in the dissertation. In particular, the numerical methods are discussed, which
are utilized to construct snapshots employed in the later chapters. Moreover, selected
analytical results for the Streamline-Upwind Petrov–Galerkin method applied to the
convection-diffusion-reaction equation are presented.

Chapter 3 is divided into two sections. In Section 3.1, the Proper Orthogonal De-
composition is motivated and derived for continuous and discrete settings. Furthermore,
some practical aspects associated with the POD are addressed. Section 3.2 describes
the Galerkin projection on the POD space resulting in a projection-based reduced-order
model. The standard approach for the computation of the initial condition for the
reduced-order model is supplemented by a new filtering procedure for the sake of sup-
pressing possible oscillations for a certain type of problems. Moreover, the treatment of
the boundary conditions and implementation issues are discussed.
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1. Introduction

Chapter 4 deals with the Streamline-Upwind Petrov–Galerkin reduced-order model
for convection-dominated problems governed by the convection-diffusion-reaction equa-
tion. Numerical analysis is carried out in order to propose two different versions of the
stabilization parameter. Subsequently, extensive numerical investigations are presented
on three test problems, which aim to answer four different questions.

Chapter 5 is devoted to the POD-based reduced-order modeling of the incompressible
Navier–Stokes equations. The reasoning for the cancellation of the pressure contribution
from the standard Galerkin ROM under some typical assumptions is provided. The
velocity ROM as well as three different reduced-order models for the computation of the
pressure field are derived and discussed. Thereafter, comprehensive numerical studies of
three different aspects are performed.

Finally, Chapter 6 summarizes the findings of this dissertation. Additionally, some
open questions and proposals for further developments are outlined.

Definitions of the function spaces, norms, scalar products, and inequalities, which are
most commonly utilized in this thesis, are presented in Appendix A.

5



2. Studied Partial Differential Equations

This chapter describes two partial differential equations, which will be employed for
theoretical and numerical investigations within the framework of the thesis. In particular,
some algorithms for the numerical solution of the equations with the Galerkin finite
element method and with stabilized methods will be derived. Moreover, results of the
error analysis necessary for the latter examinations will be presented.

The chapter consists of two sections and is structured as follows: Section 2.1 intro-
duces the time-dependent scalar convection-diffusion-reaction equation and Section 2.2
concerns itself with the time-dependent incompressible Navier–Stokes equations.

2.1. Convection-Diffusion-Reaction Equation

Many processes in nature and industry such as transport of species or scalar physical
quantities by a flow field, e.g., temperature or concentration, are modeled by the time-
dependent scalar convection-diffusion-reaction equation which is given by

∂tu− ε∆u+ b · ∇u+ cu = f in (0, T ]× Ω,

u = 0 on [0, T ]× Γ,

u(0,x) = u0(x) in Ω.

(2.1)

Here, Ω is a bounded domain in Rd, d ∈ {1, 2, 3}, with the boundary Γ, b(t,x) and
c(t,x) denote convection and reaction fields, respectively, ε > 0 is a constant diffusion
coefficient, u0(x) is a given initial condition, and T is the length of the considered time
interval.

A detailed discussion of the properties of the solution of (2.1) and of its numerical
approximation can be found in [118], or in [131] for a shorter version.

2.1.1. Weak Formulation

Let X = H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on Γ

}
. The weak or also called variational for-

mulation of the time-dependent convection-diffusion-reaction equation (2.1) is obtained
by multiplying it with the test function v ∈ X and integrating the equation over Ω.
Finally, the weak form reads as follows: Find u : [0, T ]→ X such that

(∂tu, v) + a(u, v) = (f, v) , ∀v ∈ X, (2.2)

where a(·, ·) denotes a bilinear form in X defined by

a(u, v) = (ε∇u,∇v) + (b · ∇u, v) + (cu, v) . (2.3)

6



2. Studied Partial Differential Equations

The first term on the right-hand side of (2.3) is obtained by using integration by parts
and the Gaussian theorem as follows

−
∫

Ω

ε∆uv dx = −
∫

Γ

ε∇u · nv ds+ (ε∇u,∇v) . (2.4)

The boundary term vanishes due to the prescribed homogeneous Dirichlet boundary
condition in (2.1). To guarantee the coercivity of a(·, ·), an additional assumption on
the reaction and convection fields has to be made, which is given in Lemma 2.1.

Lemma 2.1 (Coercivity of a(·, ·)). Let b(t, ·), ∇ · b(t, ·), c(t, ·) ∈ L∞(Ω) for almost all
t ∈ [0, T ]. If (

c− 1

2
∇ · b

)
(t,x) ≥ 0, ∀(t,x) ∈ [0, T ]× Ω, (2.5)

holds, then a(·, ·) is coercive, i.e., for all v ∈ X one has

a(v, v) ≥ ε‖∇v‖20 = ε|v|21.

Proof. Applying integration by parts and the product rule, one obtains

(b · ∇v, v) = −1

2
((∇ · b) v, v) .

Inserting this relation into (2.3), setting u = v, and applying the assumption (2.5) yields

a(v, v) = (ε∇v,∇v)− 1

2
((∇ · b) v, v) + (cv, v) ≥ ε‖∇v‖20.

2.1.2. Galerkin Finite Element Method

Let Xh ⊂ X denote a conforming N -dimensional finite element space spanned by
piecewise polynomials of order m ∈ N, i.e.,

Xh = {vh ∈ Xh : vh|K ∈ Pm(K), ∀K ∈ Th} ,

and let {ϕh,i}Ni=1 denote the finite element basis functions. Let the family of triangula-
tions {Th} of the domain Ω be shape-regular. Thus, the following local inverse inequality
for finite element functions holds, e.g., see [29, Thm. 3.2.6],

‖vh‖m,K ≤ µinv h
l−m
K ‖vh‖l,K , ∀vh ∈ Xh, (2.6)

for 0 ≤ l ≤ m, where hK is the size (diameter) of the mesh cell K ∈ Th. Values of µinv

for different situations can be found in [59]. They are usually of order one.
By replacing the space X in (2.2) by Xh, one obtains the time-continuous Galerkin

finite element formulation of (2.2), which reads as follows: Find uh : (0, T ] → Xh such
that

(∂tuh, vh) + a(uh, vh) = (f, vh) , ∀vh ∈ Xh. (2.7)

7



2. Studied Partial Differential Equations

Equation (2.7) has to be equipped with an appropriate finite element approximation
uh(0,x) of u0(x).

Equation (2.7) is still continuous in time. To discretize it in time, a temporal dis-
cretization scheme has to be applied. Here, a one-step θ-scheme will be employed.

Let ∆t denote a fixed time step. Let unh and fn be the finite element solution and
the right-hand side evaluated at n∆t, respectively. The fully discretized Galerkin finite
element method reads as follows: For n = 1, 2, . . . find unh ∈ Xh such that ∀vh ∈ Xh

(unh, vh) + ∆tθa(unh, vh) =
(
un−1
h , vh

)
−∆t(1− θ)a(un−1

h , vh) (2.8)

+ ∆t(1− θ)
(
fn−1, vh

)
+ ∆tθ (fn, vh) .

Parameter θ has to be chosen. In Table 2.1, some well-known one-step θ-schemes are
listed.

Table 2.1.: Some one-step θ-schemes.

θ Name of the scheme

0 Forward Euler scheme (FE)
1 Backward Euler scheme (BE)
1
2 Crank–Nicolson scheme (CN)

Problem (2.8) in matrix form is obtained by using the unique finite element represen-
tation of the solution

unh =

N∑

i=1

unh,iϕh,i, (2.9)

and by testing the equation with each finite element basis function separately. Hence,
the system of linear equations has the form

(Mh + ∆tθAnh)unh =
(
Mh −∆t(1− θ)An−1

h

)
un−1
h + ∆t(1− θ)fn−1

h
+ ∆tθfn

h
, (2.10)

with unh =
(
unh,1, . . . , u

n
h,N

)T
and

(Mh)ij = (ϕh,j , ϕh,i) , i, j = 1, . . . , N, (2.11)

(Anh)ij = (ε∇ϕh,j ,∇ϕh,i) + (bn · ∇ϕh,j , ϕh,i) + (cnϕh,j , ϕh,i) , i, j = 1, . . . , N, (2.12)

fnh,i = (fn, ϕh,i) , i = 1, . . . , N. (2.13)

In many applications, the convection coefficient b has a much greater magnitude than
the diffusion coefficient ε, i.e.,

|b|
ε
� 1.

Such problems are called convection-dominated problems. A characteristic feature of
solutions of such problems is the presence of sharp layers. It is a well-known fact that

8
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Figure 2.1.: Example 2.1: Solution of the continuous problem for different values of ε.

the Galerkin finite element method performs poorly for such problems as in general it is
hard to resolve all the small scales which are important for the solution using practicable
triangulations, particularly in higher dimensions. As a result, its solutions are strongly
polluted by non-physical oscillations. To give a better understanding of the situation, it
is enough to consider the steady-state version of (2.7), i.e., neglecting the first term on
the left-hand side, in one dimension, see Example 2.1.

Example 2.1. Consider a one-dimensional boundary value problem given by

− εu′′ + u′ = 1 on (0, 1), u(0) = u(1) = 0, (2.14)

with the solution

u(x) = x− exp
(
−1−x

ε

)
− exp

(
−1
ε

)

1− exp
(
−1
ε

) .

The solution becomes steeper at the right boundary when choosing a smaller value of ε,
see Figure 2.1.

In the steady-state case, it is known that with appropriate regularity assumptions and
fulfillment of the conditions of Lemma 2.1, the application of the Lemma of Céa [23, p.55]
yields the error estimate

‖u− uh‖X ≤ C
max{‖b‖L∞(Ω) , ‖c‖L∞(Ω)}

ε
inf

vh∈Xh

‖u− vh‖X , C ∈ R,

where u and uh are the solutions of the corresponding steady-state versions of (2.1) and
(2.7), respectively. In the convection-dominated case, the first factor of the estimate
becomes very large. Therefore, it cannot be expected that the Galerkin finite element
method gives a satisfactory numerical solution, unless the dimension of Xh is so high
that the second factor in the estimate gets extremely small.

Indeed, such unsatisfactory behavior of the Galerkin method can be very well observed
for problem (2.14) in the convection-dominated regime. Figure 2.2 shows the Galerkin

9
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Figure 2.2.: Example 2.1: Galerkin finite element solution for ε = 0.1 (left) and ε =
0.0001 (right) using different numbers of degrees of freedom (dofs).

finite element solution for ε = 0.1 and ε = 0.0001. For the former value of ε it is
sufficient to use around 15 degrees of freedom in order to obtain a good approximation
of the solution, whereas for the latter value of ε (convection-dominated case), one can
see strong spurious oscillations over the whole domain for 100 degrees of freedom, but
even choosing 800 degrees of freedom does not yield a satisfactory approximation of the
solution at the boundary x = 1. /

2.1.3. Streamline-Upwind Petrov–Galerkin Method

To overcome the poor performance of the Galerkin finite element method for convection-
dominated problems, a so-called stabilized discretization is necessary. During the last
few decades, a variety of such discretizations have been proposed, e.g., see [11,76,84] for
reviews and numerical comparisons of many of these proposals. However, the question
of finding a perfect discretization, i.e., a discretization which gives solutions with sharp
layers and without spurious oscillations, is still open. One of the most popular stabilized
finite element methods is the Streamline-Upwind Petrov–Galerkin (SUPG) scheme, also
known as Streamline-Diffusion Finite Element Method (SDFEM), proposed in [24, 66].
Solutions computed with this method possess usually steep layers but also contain spu-
rious oscillations in a vicinity of the layers.

The SUPG method adds weighted residuals, i.e., the terms

∑

K∈Th
(R(uh), δh,Kb · ∇vh)K , (2.15)

to the Galerkin finite element method (2.7). Here, R(u) denotes the residual of the first
equation in (2.1), i.e.,

R(u) = ∂tu− ε∆u+ b · ∇u+ cu− f in L2(K) ∀K ∈ Th.

10
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The parameter δh,K for K ∈ Th is a local stabilization parameter that has to be chosen.
Note that the summation in (2.15) is necessary as in general ∆uh /∈ L2(Ω) but ∆uh ∈
L2(K) for each K ∈ Th.

Inserting (2.15) into (2.7) and rearranging the terms results in the time-continuous
SUPG method which reads as follows: Find uh : (0, T ]→ Xh such that

(∂tuh, vh) + aSUPG,h(uh, vh) +
∑

K∈Th
δh,K (∂tuh, b · ∇vh)K

= (f, vh) +
∑

K∈Th
δh,K (f, b · ∇vh)K , ∀vh ∈ Xh,

(2.16)

where the bilinear form aSUPG,h(·, ·) is defined by

aSUPG,h(uh, vh) = (ε∇uh,∇vh) + (b · ∇uh, vh) + (cuh, vh)

+
∑

K∈Th
δh,K (−ε∆uh + b · ∇uh + cuh, b · ∇vh)K ,

(2.17)

for all uh, vh ∈ Xh.

Remark 2.1. The name ”SUPG” comes from the fact that the method can be considered
as the Petrov–Galerkin method with the test space

span



v +

∑

K∈Th
δh,Kb · ∇v



 .

The name ”SDFEM” comes from the fact that the method introduces artificial diffusion
only in the streamline direction b · ∇v. /

Let ∆t denote a fixed time step and let unh be the finite element solution at tn = n∆t.
With the help of a one-step θ-scheme, the fully discretized SUPG method reads as
follows: For n = 1, 2, . . . find unh ∈ Xh such that ∀vh ∈ Xh

(
unh − un−1

h , vh
)

+ ∆tθ aSUPG,h (unh, vh) = −
∑

K∈Th
δh,K

(
unh − un−1

h , bn · ∇vh
)
K

+ ∆t(1− θ)


(fn−1, vh

)
+
∑

K∈Th
δh,K

(
fn−1, bn · ∇vh

)
K




+ ∆tθ


(fn, vh) +

∑

K∈Th
δh,K (fn, bn · ∇vh)K




−∆t(1− θ) aSUPG,h

(
un−1
h , vh

)
,

(2.18)

where u0
h(x) = uh(0,x). In Table 2.1, some popular schemes are presented for different

choices of the parameter θ.
The bilinear form aSUPG,h(·, ·) is coercive under some more strict conditions than

in Lemma 2.1 for the fields b and c, and under the condition that the stabilization
parameters {δh,K} are appropriately bounded from above, e.g., see [131, Lemma 10.3].

11
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Lemma 2.2 (Coercivity of aSUPG,h(·, ·)). Let the following condition be satisfied: There
is a constant µ0 > 0 such that

0 < µ0 ≤ µ(t, x) =

(
c− 1

2
∇ · b

)
(t,x), ∀(t,x) ∈ [0, T ]× Ω. (2.19)

If the SUPG stabilization parameters are chosen such that

δh,K ≤ min

{
µ0

2 ‖c‖2L∞(K)

,
h2
h,K

2εµ2
inv

}
, (2.20)

then the bilinear form aSUPG,h(·, ·) satisfies ∀vh ∈ Xh

aSUPG,h(vh, vh) ≥ 1

2
|||vh|||2SUPG,h, (2.21)

with the so-called energy norm

|||vh|||SUPG,h =


ε |vh|21 +

∑

K∈Th
δh,K ‖b · ∇vh‖20,K + µ0 ‖vh‖20




1/2

. (2.22)

For piecewise linear finite elements, the second factor in the condition (2.20) can be
omitted.

Proof. By using integration by parts and assumption (2.19), one obtains

aSUPG,h(vh, vh) = (ε∇vh,∇vh) + (b · ∇vh, vh) + (cvh, vh)

+
∑

K∈Th
δh,K (−ε∆vh + b · ∇vh + cvh, b · ∇vh)K

≥ ε|vh|21 + µ0‖vh‖20 +
∑

K∈Th
δh,K‖b · ∇vh‖20,K

+
∑

K∈Th
δh,K (−ε∆vh + cvh, b · ∇vh)K

= |||vh|||2SUPG,h +
∑

K∈Th
δh,K (−ε∆vh + cvh, b · ∇vh)K .

(2.23)

The Cauchy–Schwarz inequality, Young’s inequality, the inverse estimate (2.6), and as-
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sumption (2.20) yield the estimate

∣∣∣∣∣∣
∑

K∈Th
δh,K (−ε∆vh + cvh, b · ∇vh)K

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

K∈Th
δh,K (−ε∆vh, b · ∇vh)K

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

K∈Th
δh,K (cvh, b · ∇vh)K

∣∣∣∣∣∣

≤
∑

K∈Th
δh,Kε ‖∆vh‖0,K ‖b · ∇vh‖0,K +

∑

K∈Th
δh,K ‖cvh‖0,K ‖b · ∇vh‖0,K

≤
∑

K∈Th
δh,Kε

2 ‖∆vh‖20,K +
∑

K∈Th
δh,K ‖cvh‖20,K +

1

2

∑

K∈Th
δh,K ‖b · ∇vh‖20,K

≤
∑

K∈Th
δh,Kε

2µ2
invh

−2 |vh|21,K +
∑

K∈Th
δh,K ‖c‖2L∞(K) ‖vh‖20,K

+
1

2

∑

K∈Th
δh,K ‖b · ∇vh‖20,K

≤ 1

2
ε |vh|21 +

1

2
µ0 ‖vh‖20 +

1

2

∑

K∈Th
δh,K ‖b · ∇vh‖20,K =

1

2
|||vh|||2SUPG,h.

Therefore, coercivity (2.21) of aSUPG,h(·, ·) holds. In the case of piecewise linear finite
elements, the term ‖∆vh‖20,K vanishes. As a result, the second constraint in (2.20) can
be omitted.

The asymptotic value of the stabilization parameter δh,K for the convection-dominated
problems is well known for steady-state problems from the finite element error analysis,
e.g., see [118]. This stabilization parameter depends on the local mesh width hh,K and
can be expressed as

δh,K = C0hK , (2.24)

where C0 is a constant to be chosen.
The situation is not completely clear for time-dependent problems. In [84], an ad-

vanced numerical study using various stabilization methods for convection-dominated
problems such as SUPG method, spurious oscillations at layers diminishing (SOLD)
methods, local projection stabilization (LPS) schemes, finite element methods - flux-
corrected transport schemes (see Section 2.1.5) with a wide range of parameters is pre-
sented. The best results were obtained with the FEM-FCT schemes showing a good
ratio of accuracy and efficiency. Several choices for the SUPG stabilization parameters
proposed in the literature (e.g., see [30,38,86,102]) depending on the length of the time
step were studied. The investigations showed that the SUPG method with this choice of
stabilization parameters yielded poor results. Indeed, the stabilization parameters de-
pending on the length of the time step do not reflect the fact that the reason for needing
a stabilized discretization is the appearance of layers in the solution, which are spatial
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Figure 2.3.: Example 2.2: SUPG and Galerkin finite element solutions for 20 (left) and
100 (right) degrees of freedom.

features. Therefore, it is more meaningful to choose δh,K depending on the mesh width
like in the steady-state case.

Finite element error analysis for the problem (2.18) can be found in [81] and will be
discussed in Section 2.1.4. For the general case of time-dependent coefficients of the
problem, an optimal error estimate could be proven for δh = O(∆t). For the situation
of steady-state convection and reaction coefficients, an optimal error estimate for δh,K =
O(hK) could be derived in [81]. Numerical studies in [81] reveal that the choice of
δh,K = O(hK) is more appropriate also in the general case.

Example 2.2. Consider the test case described in Example 2.1 in the convection-
dominated regime with ε = 0.0001. In Figure 2.3, the exact, the Galerkin, and the
SUPG solutions are shown for 20 and 100 degrees of freedom. While the Galerkin finite
element method produces solutions globally polluted with spurious oscillations all over
the domain even for large numbers of the degrees of freedom (see also Figure 2.2), with
the SUPG method it is enough to use only 20 degrees of freedom to achieve an almost
exact approximation of the solution away from the boundary layer at x = 1. /

2.1.4. Error Estimates for SUPG Method

In this section, the main analytical results for the SUPG finite element method of the
convection-dominated convection-diffusion-reaction equation will be presented.

The numerical analysis for the steady-state problems is very well studied and under-
stood, see [118] for a detailed discussion. In the convection-dominated case, the scaling
analysis yields the stabilization parameter δh,K = C0hK and the global error estimate
has the form

‖u− uh‖0 + h1/2


∑

K∈Th
‖b · ∇(u− uh)‖20,K




1/2

≤ Chm+1/2 |u|m+1 , (2.25)
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where h = maxK∈Th hK . The finite element error in the L2 norm is of order 1/2 less
than optimal and the L2 error of the derivative in the streamline direction is optimal.

Numerical analysis for the SUPG method applied to the time-dependent convection-
dominated convection-diffusion-reaction equation (2.18) was carried out in [81]. Using
the backward Euler scheme, analysis based on the standard energy arguments proposes
SUPG parameters that depend on the length of the time step. The following result
presents error estimates for this choice of the SUPG parameter.

Theorem 2.1 (Error estimate for δh,K depending on the length of the time step).
Suppose b ∈ L∞(0, T ;L∞(Ω)), ∇ · b, c ∈ L∞ (0, T ;L∞(Ω)) for the coefficients in (2.2),
and u, ∂tu ∈ L∞(0, T ;Hm+1(Ω)), ∂2

t u ∈ L2(0, T ;H1(Ω)) for the solution of (2.2). Let
the stabilization parameters fulfill (2.20), δh,K > 0, and

δh,K <
∆t

4
(2.26)

for all K ∈ Th. Denote δmax = maxK∈Th δh,K and δmin = minK∈Th δh,K . Then the
following error estimates hold

‖unh − un‖0 ≤ C
(
hm+1 + ∆t+ hm−1δ1/2

max(h2 + h+ ε) +
hm+1

δ
1/2
min

+
∥∥πhu0 − u0

h

∥∥
0

)

and 
∆t

n∑

j=1

∣∣∣
∣∣∣
∣∣∣ujh − uj

∣∣∣
∣∣∣
∣∣∣
2

SUPG,h




1/2

≤C
[
hm(ε1/2 + δ1/2

max + h) + ∆t

+hm−1δ1/2
max(h2 + h+ ε) +

hm+1

δ
1/2
min

+
∥∥πhu0 − u0

h

∥∥
0

]
,

where un = u(tn), the constants C depend on u, ∂tu, ∂
2
t u, b, ∇·b, c, and πh is the elliptic

projection from X into Xh defined by (∇(u− πhu),∇vh) = 0 for all vh ∈ Xh.

A similar result as in Theorem 2.1 can also be obtained for the condition

δh,K <
σ(∆t)hK
‖b‖L∞(K)µinv

with a function σ(∆t) satisfying 0 < σ(∆t) ≤ 1
4 for all K ∈ Th instead of (2.26). In

this case, one obtains error estimates as in Theorem 2.1 but with an additional factor
(1 + 2σ2(k))n.

As discussed in Section 2.1.4, the stabilization parameters depending on the length
of the time step do not seem to be a correct choice as the difficulty of not being able
to resolve the layers vanishes on sufficiently fine meshes but not for sufficiently small
time steps. In [81], optimal error estimates for the backward Euler and Crank–Nicolson
methods are also derived for stabilization parameters which do not depend on ∆t and
are proportional to the mesh width as follows:

δh,K = min
{
δ̂h,K , 1

}
, (2.27)
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with

δ̂h,K =
h

4µinv ‖b‖L∞(Ω)

min





1

2
,
µ

1/2
0

4
,

µ0

4 ‖c‖L∞(Ω)

,
µ

1/2
0

2 ‖c‖L∞(Ω)

,
µ

1/2
0

‖c‖1/2L∞(Ω)

, ‖b‖1/2L∞(Ω)



 .

However, the estimates could be derived for a simplified setting, i.e., for b, c, and µ being
time-independent, for the uniform mesh with width h, and stabilization parameters equal
for all mesh cells (δh,K = δh for all K ∈ Th).

In the course of the analysis, a formally steady-state version of problem (2.1) is used.
Let Πhu(t) ∈ Xh for t ∈ [0, T ] be ∀vh ∈ Xh the solution of

aSUPG,h(Πhu(t), vh) = (f(t)− ut(t), vh) + δh (f(t)− ut(t), b · ∇vh) ,

where u(t) is the solution of the corresponding continuous equation. The use of Πhu
is necessary to introduce some useful estimates for the analysis. Next, error estimates
from [81] for the stabilization parameter defined in (2.27) are presented.

Theorem 2.2 (Error estimate with δh = O(h) for backward Euler method). Let tn =
T <∞, let u, ∂tu ∈ L∞(0, T ;Hm+1(Ω)) and ∂2

t Πhu, ∂
3
t u, ∂

3
t Πhu ∈ L2(0, T ;L2(Ω)). Let

the stabilization parameter be defined as in (2.27). Then the following error estimate
holds

‖un − unh‖20 + ∆t

n∑

j=1

∣∣∣
∣∣∣
∣∣∣uj − ujh

∣∣∣
∣∣∣
∣∣∣
2

SUPG,h
≤ C(h2m+1 + ∆t2), (2.28)

where the constant C depends on b, c, u, Πhu, and µinv.

Theorem 2.3 (Error estimate with δh = O(h) for Crank–Nicolson method). Let tn =
T < ∞, let u, ∂tu ∈ L∞(0, T ;Hm+1(Ω)), ∂2

t u ∈ L2(0, T ;Hm+1(Ω)) and ∂3
t Πhu, ∂4

t u,
∂4
t Πhu ∈ L2(0, T ;L2(Ω)). Let the stabilization parameter be defined as in (2.27). Then

the following error estimate holds

‖un − unh‖20 + ∆t
n∑

j=1

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
uj − uj−1

2
− ujh − u

j−1
h

2

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

2

SUPG,h

≤ C(h2m+1 + ∆t4), (2.29)

where the constant C depends on b, c, u, Πhu, µinv, and linearly on T .

Summarizing the results from Theorem 2.2 and Theorem 2.3, the error estimates can
be formulated alternatively as follows

(∆t)1/2

(
N∑

n=1

‖un − unh‖0 +

N∑

n=1

|||un − unh|||SUPG,h

)
≤ C(hm+1/2 + (∆t)k), (2.30)

where h = maxhK∈Th hK and k is the order of the temporal discretization.
It is assumed that the space Xh satisfies the following local approximation property:

For each u ∈ X ∩Hm+1(Ω) there exists a function ûh ∈ Xh such that

‖u− ûh‖0,K + hK ‖∇(u− ûh)‖0,K + h2
T ‖∆(u− ûh)‖0,K ≤ Chm+1

K ‖u‖m+1,K (2.31)
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for all K ∈ Th. This property is given, for example, for Lagrange finite elements on mesh
cells, which allow an affine mapping to a reference mesh cell.

In the course of the thesis, the Laplacian of the error for a simplified case of the uniform
triangulations, i.e., hK = h for all K ∈ Th, will be needed. It can be obtained using the
local approximation property (2.31), the inverse estimate (2.6), and the estimate (2.30)
as follows

(∆t)1/2
N∑

n=1

∑

K∈Th
‖∆(un − unh)‖0,K

≤ (∆t)1/2
N∑

n=1


∑

K∈Th
‖∆(un − ûnh)‖0,K + ‖∆(ûnh − unh)‖0,K




≤ C(∆t)1/2
N∑

n=1


∑

K∈Th
hm−1 ‖un‖m+1,K + h−1 ‖∇(ûnh − unh)‖0,K




≤ C(∆t)1/2
N∑

n=1

∑

K∈Th

(
hm−1 + h−1 ‖∇(un − ûnh)‖0,K + h−1 ‖∇(un − unh)‖0,K

)

≤ C(∆t)1/2
(
hm−1 + ε−1/2hm−1/2 + ε−1/2h−1(∆t)k

)
.

(2.32)

2.1.5. Flux-Corrected Transport Schemes

In industrial applications, it is of great importance that the numerical solution follows
the constraints dictated by physics, e.g., approximated densities, temperatures or con-
centrations should remain non-negative. Flux-corrected transport schemes represent a
methodology that aims to obtain numerical solutions without non-physical oscillations.

The flux-corrected transport schemes have two basic goals:

1. Receive the solution in time by a low-order scheme that incorporates enough nu-
merical diffusion to suppress under- and overshoots.

2. Modify the solution by using the so-called anti-diffusive fluxes limited in such a
way that no new maxima or minima can arise and existing extrema cannot grow.

In the most stabilization approaches, some terms are added to the Galerkin finite
element formulation (2.7). Finite element method flux-corrected transport (FEM-FCT)
schemes, see [91–94, 105], work on the algebraic level, they modify the system matrix
and the right-hand side of the Galerkin finite element formulation (2.10). Initially, the
FEM-FCT schemes were developed for the transport equation, i.e., equations of type
(2.1) with ε = c = f = 0. A detailed description of the schemes including the diffusion
and reaction coefficients, and the right-hand side is given in [84], which is the basis of
the underlying exposure.

If the maximum principle holds for the continuous equation, it is crucial not to loose
the discrete counterpart of the property in the course of discretization. This way, un-
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dershoots and overshoots can be avoided. It can be achieved if the system matrix of the
dicretized system is a so-called M -matrix.

Remark 2.2. A tridiagonal matrix B is a M -matrix if the following sufficient conditions
hold [58, Theorem 84.3]:

• all diagonal entries of B are positive, i.e., (B)ii > 0, ∀i,

• all off-diagonal entries of B are non-positive, i.e., (B)ij ≤ 0, ∀j 6= i,

• B is diagonally dominant, i.e., |(B)ii| ≥
∑
j
|(B)ij | , ∀i, and it holds |(B)ii| >

∑
j
|(B)ij | for at least one i.

/

The matrices in (2.10) do not satisfy the properties of the M -matrix and therefore
have to be modified. The mass matrix Mh has to be approximated by the so-called
lumped mass matrix ML defined by

(ML)ij =





N∑
k=1

(Mh)ik , if i = j,

0, if i 6= j,

(2.33)

where i, j = 1, . . . , N and N is the dimension of the finite element basis. Moreover, all
positive off-diagonal entries of Anh in (2.10) have to be eliminated. It is accomplished by
adding an artificial diffusion operator Dn defined by

Dn
ij =





min{0,− (Anh)ij ,− (Anh)ji}, if i 6= j,

−
N∑

k=1,k 6=i
Dn
ik, if i = j,

(2.34)

to Anh and storing the result as Ln, i.e., Ln = Anh +Dn. By construction, the row sums
of Dn are zero.

By replacing Mh and Anh by ML and Ln, respectively, in (2.10), one obtains the
algebraic representation of a stable low-order scheme

(ML + ∆tθLn)unh =
(
ML −∆t(1− θ)Ln−1

)
un−1
h + ∆t(1− θ)fn−1

h
+ ∆tθfn

h
, (2.35)

which is the first goal of the FEM-FCT schemes. Its solution does not show spurious
oscillations, however layers will be smeared because the operator on the left-hand side
is too diffusive.

To achieve the second goal of the FEM-FCT schemes, i.e., to make the equation less
diffusive while the spurious oscillations are still suppressed, the right-hand side of (2.35)
has to be modified resulting in the system

(ML + ∆tθLn)unh =
(
ML −∆t(1− θ)Ln−1

)
un−1
h + ∆t(1− θ)fn−1

h
+ ∆tθfn

h
(2.36)

+ f∗(unh, u
n−1
h ).
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In order to derive the representation of the correction term f∗(unh, u
n−1
h ), consider the

difference between the residuals of systems (2.35) and (2.10)

r = (ML + ∆tθLn − (Mh + ∆tθAnh))unh

−
(
ML −∆t(1− θ)Ln−1 −

(
Mh −∆t(1− θ)An−1

h

)
un−1
h

)

= (ML −Mh)
(
unh − un−1

h

)
+ ∆t

(
θDnunh + (1− θ)Dn−1un−1

h

)
.

Since ML −Mh and D are by construction symmetric matrices with zero row sums, the
vector r can be decomposed into so-called skew-symmetric internodal fluxes rij , i, j ∈
{1, . . . , N} as follows

ri =
N∑

j=1

rij =
N∑

j=1

[
(Mh)ij

(
unh,i − unh,j

)
− (Mh)ij

(
un−1
h,i − un−1

h,j

)
(2.37)

−∆tθDn
ij

(
unh,i − unh,j

)
−∆t(1− θ)Dn−1

ij

(
un−1
h,i − un−1

h,j

) ]
,

where ri and unh,i, i = 1, . . . , N , are the components of vectors r and unh, respectively.
For more details for the derivation of the fluxes rij , e.g., see [91].

The ansatz for the correction term in (2.36) has the form

f∗(unh, u
n−1
h ) =

N∑

j=1

αijrij , i = 1, . . . , N, (2.38)

with the weights αij ∈ [0, 1] to be computed.

Remark 2.3. By construction, the high-order discretization (2.10) is recovered if all
weights αij are equal to 1 and the corresponding low-order system (2.35) is recovered
when all weights are equal to 0. /

There are linear and nonlinear versions of FEM-FCT schemes. Here, only the nonlinear
FEM-FCT scheme will be discussed as it will be used in the numerical studies. The
description of the linear FEM-FCT scheme can be found in, e.g., [84, 91].

The nonlinear FEM-FCT scheme computes an auxiliary explicit low-order solution
ũh at the time tn − θ∆t which is needed to guarantee the fulfillment of the maximum
principle. Hence, in case of the backward Euler scheme ũh = un−1

h . In case the Crank-
Nicolson scheme is employed, the auxiliary solution is obtained by solving (2.35) with
the forward Euler scheme and the time step ∆t/2, i.e.,

ũh = un−1
h − ∆t

2
M−1
L

(
Ln−1un−1

h − fn−1
h

)
. (2.39)

As ũ is computed with an explicit method, the size of the time step has to satisfy a
CFL-like condition to ensure stability, e.g., see [91].

The low-order auxiliary solution ũh is used for the computation of the weights αij . It
contributes to the decision making in which regions the additional diffusion in (2.36) can
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be eliminated resulting in the weights αij close to 1 and in which regions this diffusion
is needed setting the weights αij close to 0.

Before computing the weights, it is recommended to perform the so-called pre-limiting
(see [91, 94]) of the fluxes. The fluxes rij having the same sign as ũj − ũi may cause
problems as they flatten solution profiles instead of steepening them where needed.
Therefore, such fluxes have to be canceled, i.e., set

rij = 0 if rij(ũj − ũj) > 0.

The weights αij in (2.38) are computed using Zalesk’s algorithm [146], which is moti-
vated and discussed in detail, e.g., in [91].

The algorithm proceeds as follows:

1. Compute the sums of positive and negative fluxes

P+
i =

N∑

j=1,j 6=i
max{0, rij}, P−i =

N∑

j=1,j 6=i
min{0, rij},

2. Compute the distance to a local extremum of the auxiliary solution

Q+
i = max

{
0, max
j=1,...,N,j 6=i

(ũh,j − ũh,i)
}
, Q−i = min

{
0, max
j=1,...,N,j 6=i

(ũh,j − ũh,i)
}
,

3. Compute the nodal correction factors

R+
i = max

{
1,

(ML)iiQ
+
i

∆tP+
i

}
, R−i = min

{
1,

(ML)iiQ
−
i

∆tP−i

}
,

4. Limit the fluxes rij and rji in a symmetric fashion

αij =

{
min{R+

i , R
−
j }, if rij > 0,

min{R−i , R+
j }, otherwise,

where i, j = 1, . . . , N .

2.2. Incompressible Navier–Stokes Equations

The motion of fluids such as water, oil, and air are governed by the general Navier–
Stokes equations. However, numerous engineering applications involve fluids changing
their density only to a lesser extent throughout space and time. Such fluids can be
described by a simplified but still very important variation of the equations, the so-
called incompressible Navier–Stokes equations.
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Let Ω ⊂ Rd, d ∈ {2, 3}, denote an open, bounded domain with the boundary Γ and
T the length of the time interval. The time-dependent incompressible Navier–Stokes
equations read in the dimensionless form as

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω, (2.40)

∇ · u = 0 in [0, T ]× Ω, (2.41)

where u(t,x) and p(t,x) denote the fluid velocity and pressure fields, respectively, f(t,x)
is the given body force per unit mass, and ν = Re−1 denotes the dimensionless viscosity
with Re being the Reynolds number. In what follows, bold symbols denote vector-valued
quantities of dimension d.

Equation (2.40) is called the momentum equation. It follows from the conservation
of linear momentum (Newton’s second law of motion for fluids) stating that the rate
of change of the linear momentum must be equal to the net force (combination of the
internal and external forces) acting on a collection of particles. Equation (2.41) is called
the continuity or mass equation. It is derived from the conservation of mass (general
conservation law) stating that the rate of change of mass in an arbitrary volume V ⊂ Ω
must be equal to the flux of mass across the boundary of V. Formulation (2.41) represents
an incompressibility constraint for the velocity. For a detailed derivation of the Navier–
Stokes equations, e.g., see [75,95].

The Navier–Stokes equations (2.40) and (2.41) have to be equipped with appropriate
boundary and initial conditions in order to become a well-posed problem. These issues
will be discussed in Section 2.2.1.

Remark 2.4. Using the divergence constraint from (2.41), i.e., ∇·u = 0, an equivalent
formulation of the convective term in the momentum equation (2.40) can be obtained
with the help of the equality

∇ · (uvT ) = (∇ · v)u+ (v · ∇)u.

Setting v = u yields the divergence form of the convective term

(u · ∇)u = ∇ · (uuT ). (2.42)

Note that the above reformulations are in general no longer equivalent in the case of the
discretized Navier–Stokes equations as the discrete velocity is generally not divergence-
free. /

Remark 2.5. There are two main challenges when carrying out the mathematical anal-
ysis and the numerical simulations of the Navier–Stokes equations: First, the coupling
of velocity and pressure, and second, the nonlinearity of the convective term. The first
difficulty is characterized by the special way the velocity and the pressure fields are cou-
pled, namely the absence of pressure in the continuity equation (2.41). Practically, the
continuity equation can be considered as an incompressibility constraint for the velocity
field. The pressure field in the momentum equation (2.40) is often referred to be the
Lagrangian multiplier enforcing the incompressibility condition. This particular type of
coupling is called saddle point problem. /
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Remark 2.6. From the point of view of numerical simulations, one has to differ between
the laminar and turbulent flows. There exists no exact definition of these notions. In
practice, a flow is considered to be laminar if all its structures can be resolved on a
reasonable grid. Otherwise, it is turbulent. The latter type of flows is much more
challenging in the sense of simulations as so-called turbulence models are required to
obtain a meaningful solution, see [73,98,111]. /

Remark 2.7. In the special case when the body force, the velocity and pressure fields
do not depend on time, the time derivative ∂tu vanishes and one obtains the stationary
Navier–Stokes equations. If, in addition, the fluid moves very slowly, i.e., the viscous
transport dominates the convective transport, the convective term in the momentum
equation can be neglected. As the result, one gets the so-called Stokes equations

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω.
(2.43)

/

The focus of the presentation in this section lies on the numerical methods for the
solution of the Navier–Stokes equations (2.40)-(2.41). For the results on existence and
uniqueness of solutions, the reader is referred to [40, 45, 129]. Moreover, an extensive
compilation of existing results for the Navier–Stokes equations including the uniqueness
and existence of the solutions, error analysis and numerical methods can be found in [75].
The latter reference lays the foundation for the presentation in this section.

2.2.1. Initial and Boundary Conditions

The Navier–Stokes equations (2.40) and (2.41) are partial differential equations of first
order in time and second order in space. Therefore, it is necessary to equip them with
an initial condition at t = 0 and with boundary conditions on the boundary Γ of the
domain Ω. It is important that the compatibility condition is fulfilled between the initial
velocity condition and the limit of the boundary conditions for t→ 0, t > 0.

Unlike the time-dependent convection-diffusion-reaction equation discussed in Section
2.1, the initial condition for the Navier–Stokes equations cannot be chosen arbitrary just
satisfying the required regularity. Namely, the initial velocity field u(0,x) = u0(x),
x ∈ Ω, has to be divergence-free in some sense on Ω ∪ Γ, e.g., see [50].

For incompressible flows, different kinds of boundary conditions can be prescribed.
Here, only the boundary conditions used in the course of the thesis will be discussed.
For a more detailed presentation, the reader is referred to, e.g., [50, 75,115,135].

Dirichlet Boundary Conditions

A widely used boundary condition for the incompressible flows is the so-called Dirich-
let boundary condition, also called the essential boundary condition. It describes the
velocity field on a part of the boundary denoted by ΓD with ΓD ⊆ Γ and reads as

u(t,x) = gD(t,x) in (0, T ]× ΓD. (2.44)
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This kind of boundary condition is usually used to prescribe the inflow into Ω or the
outflow from Ω.

In the special case of gD(t,x) = 0, the boundary condition is called the no-slip or
homogeneous boundary condition, and the corresponding boundary is denoted by Γ0

with Γ0 ⊆ ΓD. This condition states that the velocity field does not penetrate the wall,
i.e., u · n = 0, and does not slip along the wall, i.e., u · ti = 0, i ∈ {1, 2} for R3, where
n and ti are the unit normal and the tangential vectors, respectively, on the boundary
Γ0, which build an orthonormal system of vectors.

If the Dirichlet boundary condition is prescribed on the whole boundary of Ω, i.e.,
ΓD = Γ, then two issues have to be taken into account. The first one consists in the
fact that the pressure field can only be determined up to an additive constant. To fix
its value, an additional condition has to be introduced. Usually, the condition

∫

Ω

p(t,x) dx = 0, t ∈ (0, T ], (2.45)

is used, which states that the integral mean value of the pressure should vanish. The
second issue represents the compatibility condition for the prescribed function gD on the
boundary Γ. With (2.41) and integration by parts, it follows that

0 =

∫

Ω

∇ · u(t,x) dx =

∫

Γ

(u · n)(t, s) ds =

∫

Γ

(gD · n)(t, s) ds, ∀t ∈ (0, T ].

Natural Boundary Conditions

This boundary condition is usually used to model the outflow from the bounded domain
Ω in the numerical simulations and is proven to be well suited for (essentially) parallel
domains, see [61, 135]. The part of the boundary, where it is prescribed, is denoted by
Γout with Γout ⊂ Γ and the condition has the form

(ν∇u− pI)n = 0 on (0, T ]× Γout, (2.46)

where n denotes the unit normal vector on Γout. When building the weak formulation
of the Navier–Stokes equations, the left-hand side of (2.46) appears in the integral on
the boundary. With the condition (2.46), the corresponding integral vanishes on Γout.
For that reason this condition is also called the natural (as it naturally appears in the
variational formulation) or ”do-nothing” (as it does not prescribe anything at Γout)
boundary condition. The presence of the pressure in the natural boundary condition
circumvents the problem of the non-unique pressure field, see [115], i.e., for Γout 6= ∅ there
is no need to employ the condition (2.45). Even if it is a widely used outflow boundary
condition, it can cause some undesirable behavior of the numerical solution, e.g., for
problems with more than one outlet (see [115, 135] for more details). Furthermore, the
natural boundary condition (2.46) can cause numerical instabilities in the presence of
a back flow at Γout. In [22], a modification of the boundary condition is proposed to
prevent the instability.
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2.2.2. Pressure Poisson Equation

In this section, the equation for the pressure, the so-called pressure Poisson equation,
will be derived and some aspects of the correct boundary conditions will be presented.
An extensive discussion of this topic can be found in [50, Section 3], [75]. The pressure
Poisson equation is obtained by taking the divergence of the momentum equation (2.40)
and by applying the continuity constraint (2.41) to it. It has to be assumed that the
velocity u and the pressure p functions are sufficiently smooth up to the boundary.

By taking the divergence operator of (2.40), the equation becomes

∆p = ∇ · [ν∆u+ f − (u · ∇)u− ∂tu] in (0, T ]× Ω. (2.47)

Assuming sufficient regularity, it holds ∇ · ∂tu = ∂t(∇ · u) = 0 in (0, T ]. Moreover, one
can invoke the rotational form of the Laplacian

∆u = ∇(∇ · u)−∇×∇× u,

which yields
∇ ·∆u = ∇ · ∇(∇ · u)−∇ · (∇×∇× u) = 0.

Finally, the pressure Poisson equation has the form

∆p = ∇ · [f − (u · ∇)u] in (0, T ]× Ω. (2.48)

To ensure the well-posedness of (2.48), the equation has to be equipped with appropriate
boundary conditions. Consider the part of the boundary where the velocity in the normal
direction is given, e.g., which is true for Dirichlet boundary conditions (2.44) on ΓD ⊆ Γ.
To obtain the correct boundary condition for the pressure on ΓD, the normal component
of the momentum equation (2.40) restricted to ΓD has to be taken. It results in the
Neumann boundary condition for the pressure

∇p · n = (ν∆u+ f − (u · ∇)u− ∂tu) · n on (0, T ]× ΓD, (2.49)

where n · ∂tu = ∂t(n · gD) can be used for the last term. In the special case of the ho-
mogeneous boundary condition for the velocity, the boundary condition for the pressure
reads

∇p · n = (ν∆u+ f) · n on (0, T ]× ΓD. (2.50)

If the Dirichlet boundary condition for the velocity is prescribed on the whole boundary,
i.e., ΓD = Γ, then the solution of the pressure Poisson equation with (2.49) is unique
only up to an additive constant. To avoid it, one can prescribe the pressure at any point
in Ω̄ or set

∫
Ω p dx = 0. Moreover, in this case it can be shown that for t ∈ (0, T ] also

the tangential components of the momentum equation (2.40) are automatically satisfied
(see [50, Section 3.8.2] for further details).

If not the normal velocity but the normal traction is specified on the boundary Γ (or
on the part of it), i.e.,

(ν∇u− pI)n = w on (0, T ]× Γ̃,

24



2. Studied Partial Differential Equations

where Γ̃ ⊆ Γ and w is the force applied by the boundary to the fluid, then it is inherited
by the pressure Poisson equation but it becomes a Dirichlet boundary condition for the
pressure. Consequently, one obtains the boundary condition

p = νn · ∇u · n− n ·w on (0, T ]× Γ̃.

However, it is often observed that the viscous part of (2.2.2) becomes small, see [50,
Section 3.8.2], such that the following expression

p = −n ·w on (0, T ]× Γ̃ (2.51)

is usually used.

Remark 2.8. In the special case of the natural boundary condition for the velocity
(2.46), the pressure boundary condition on the boundary Γout becomes the homogeneous
Dirichlet boundary condition, i.e., p = 0 on Γout. /

Note that the pressure Poisson equation (2.48) is defined only for t > 0. For t = 0,
it can be derived in a similar way as (2.48) but one has to be cautious when computing
the pressure boundary condition as the velocity boundary condition is only prescribed
for t > 0 and the initial velocity field u(0,x) = u0(x) is divergence-free in some sense,
see Section 2.2.1. Under certain conditions, one can ensure the well-posedness of the
problem, see [50,62], [75, Chapter 7].

2.2.3. Time Discretization - Saddle Point Problem

In order to perform numerical simulations of a flow, the Navier–Stokes equations need
to be discretized in space and in time. First, the semi-discretization in time will be
discussed. There is a number of time-stepping schemes available leading to coupled
problems for velocity and pressure, the so-called saddle point problems, or to decoupled
problems, where velocity and pressure are computed by separate equations. In this
section, several popular time-stepping schemes known from the treatment of ordinary
differential equations, which result in a saddle point problem, will be presented .

In what follows, let ∆tn be the length of the current time step from tn−1 to tn, and
let un, pn and fn denote the evaluations of the functions at the time tn.

One of the most popular time-stepping schemes for the incompressible flows is the
one-step θ-scheme, which is a special case of the general fractional-step θ-schemes, e.g.,
see [75, Chapter 7]. For the Navier–Stokes equations (2.40)-(2.41), it reads: Given
u0(x) = u(0,x), find (un, pn) such that

un + θ∆tn [−ν∆un + (un · ∇)un] + ∆tn∇pn

= un−1 − (1− θ)∆tn
[
−ν∆un−1 + (un−1 · ∇)un−1

]

+ (1− θ)∆tnfn−1 + θ∆tnf
n,

∇ · un = 0,

(2.52)
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where the parameter θ has to be chosen, see Table 2.1 for some widely used choices
resulting in the explicit or forward Euler, implicit or backward Euler and Crank–Nicolson
methods.

Both the explicit and the implicit Euler methods are of first order of accuracy. The
resulting ordinary equation is stiff with respect to time. Explicit time-stepping schemes,
such as the forward Euler method, require very small time steps satisfying the CFL con-
dition introduced in [33] to ensure stable simulations. It leads to very high computational
costs and therefore the explicit Euler method is in general not recommended for the sim-
ulation of the Navier–Stokes equations. The backward Euler method is quite popular but
the results are often too dissipative and therefore too inaccurate. The Crank–Nicolson
method produces more accurate results as it is of second order of accuracy. However, it
is only A-stable and sometimes it suffers from instabilities. For more details about the
advantages and disadvantages of the one-step θ-methods applied to the simulations of
the Navier–Stokes equations, e.g., see [75,135].

Note that the scaling of the pressure term in the first equation of (2.52) is different
to the one applied to the viscous and convective terms for θ 6= 1. It is an often used
formulation in the literature which does not require the initial condition for the pres-
sure p0 = p(0,x). Its derivation can be conducted using the variational formulation
in two steps. In the first step, the one-step θ-scheme is applied to the variational for-
mulation only for the velocity in a weakly divergence-free space, a subspace of V . In
the second step, the variational formulation is extended to V × Q, where the pressure
term ∆tn(∇ · v, pn) appears as the Lagrange multiplier inforcing the incompressibility
condition.

It is also possible to scale the pressure term in the same way as the viscous and
convective terms yielding the following formulation: Given (u0, p0), find (un, pn)

un + θ∆tn [−ν∆un + (un · ∇)un +∇pn]

= un−1 − (1− θ)∆tn
[
−ν∆un−1 + (un−1 · ∇)un−1 +∇pn−1

]

+ (1− θ)∆tnfn−1 + θ∆tnf
n,

∇ · un = 0.

(2.53)

In this version of the method, besides the initial velocity also the initial pressure is
needed. In practice, one can obtain it by storing the solution of the simulation of the
developed flow, for which an arbitrary initial condition for the velocity (if none is given)
and the pressure was used. Up to the best of the author’s knowledge, there exits no
extensive numerical comparison of both options (2.52) and (2.53) in the literature. For
the numerical computations in this thesis, version (2.52) will be applied.

2.2.4. Time Discretization - Decoupled Problem

One of the difficulties mentioned in Remark 2.5 for the numerical simulation of incom-
pressible flows is the special coupling of the velocity and the pressure resulting in a
saddle point problem to be solved. Driven by the motivation to overcome this diffi-
culty, the so-called projection methods or fractional step methods were first proposed
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in [28, 132]. The biggest advantage of the projection methods lies in the fact that they
are very efficient as one only needs to solve decoupled elliptic equations for the pressure
and the velocity in each time step of the simulation. Fractional step methods consist of
three classes: the pressure-correction schemes, the velocity-correction schemes, and the
consistent splitting methods. A detailed overview of the analysis and implementation of
this type of schemes can be found in [53]. In what follows, the main focus will be on the
pressure-correction schemes, see also [75, Chapter 7].

For simplicity of presentation, the Navier–Stokes equations (2.40)-(2.41) will be con-
sidered, which are equipped with homogeneous Dirichlet boundary conditions for the
velocity field, i.e., u = 0 on (0, T ]×ΓD = Γ. Let ∆tn denote the length of the time step
with ∆tn = tn − tn−1 for n ≥ 1.

The starting point is the approximation of the time derivative of the velocity field u
at time tn by the qth-order backward difference formula (BDFq)

∂tu
n ≈ 1

∆tn


τqun +

q−1∑

j=0

τq−1−jun−j


 ,

q∑

j=0

τj = 0. (2.54)

Especially, it holds

∂tu
n ≈

{
un − un−1, if q = 1,
3
2u

n − 2un−1 + 1
2u

n−2, if q = 2.
(2.55)

Let p̂n ∈ L2(Ω) be given. In particular, assuming that the pressure field p is smooth, p̂n

is an extrapolation of p evaluated at tn of order s with

p̂n =





0, if s = 0,

pn−1, if s = 1,

2pn−1 − pn−2, if s = 2.

(2.56)

Pressure-correction schemes consist of two steps. The first step is the equation for the
intermediate velocity ũ which arises from the momentum equation (2.40). Here, the
pressure is treated explicitly for s > 0 and ignored for s = 0. The first step reads

1

∆tn


τqũn +

q−1∑

j=0

τq−1−jun−j


− ν∆ũn + (ũn · ∇) ũn = fn −∇p̂n in Ω,

ũn = 0 on Γ,

(2.57)

with the initial condition u(0,x) = ũ(0,x) = u0 in Ω. In general, the intermediate
velocity ũn is not divergence-free. The second step can be considered as a pressure-
correction step. It has the form

τq
∆tn

(un − ũn) +∇ (pn − p̂n) = 0 in Ω,

∇ · un = 0 in Ω,

un · n = 0 on Γ.

(2.58)
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The problem (2.58) describes the L2 projection of the intermediate velocity ũn into the
space of weakly divergence-free functions

L2
div(Ω) =

{
v ∈ L2(Ω) : ∇ · v = 0, v · n|Γ = 0

}
, (2.59)

where the divergence and the boundary terms have to be understood in the sense of
distributions and traces, respectively. Moreover, as notified in Appendix A, there is no
difference in the notation between function spaces for scalar and vector-valued functions
in the framework of this thesis. To prove that the projection (2.58) is well-defined, it is
necessary to require the H2-elliptic regularity of the domain Ω, see [53], [133, Remark
1.6]. System (2.57)-(2.58) represents the standard form of the fractional step methods,
which is the only form that will be described here. In the literature, the so-called
rotational form can also be found, which includes the gradient of ν∇ · ũn on the left-
hand side of the first equation of (2.58), e.g., see [53,134] for more details.

Note that (2.58) is a partial differential equation of first order in space unlike the
Navier–Stokes equations, which are of second order in space. Hence, it is not possible to
enforce the same boundary condition for u in (2.58) as for the Navier–Stokes equations.
As the result, the fractional step methods incorporate two solutions for the velocity field
ũn and un. The former one has the correct boundary condition but it is not divergence-
free, and the latter one is divergence-free but does not satisfy the correct boundary
condition. This property makes it difficult to decide which version of both velocities
to consider as the correct one. This issue was intensively discussed in the literature,
see [53] for the overview. Concerning the order of convergence, both velocities give the
same results.

Next, two popular special cases of pressure-correction schemes will be presented.

Non-Incremental Pressure-Correction Scheme

The so-called non-incremental pressure-correction scheme can be reconstructed from the
system (2.57)-(2.58) by choosing q = 1, i.e., the BDF1 scheme, which is the backward
Euler method, and s = 0, i.e., p̂n = 0. Thus, the scheme has the form

1

∆tn

(
ũn − un−1

)
− ν∆ũn + (ũn · ∇) ũn = fn in Ω,

1

∆tn
(un − ũn) +∇pn = 0 in Ω,

∇ · un = 0 in Ω,

un · n = 0 on Γ,

ũn = 0 on Γ,

u(0,x) = ũ(0,x) = ũ0 in Ω.

(2.60)

It is the first and the simplest pressure-correction scheme which was proposed by Chorin
and Temam in [28,132]. Sometimes it is called Chorin’s method in the literature.
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Restricting the second equation in (2.60) to the boundary Γ, one can see that a non-
physical Neumann boundary condition

∇pn · n = 0 on Γ (2.61)

is enforced for the pressure. The irreducible error of this scheme is of order O(∆t),
which makes it meaningless to use a higher-order time-stepping scheme. For further
details concerning the convergence of (2.60) see [53,114].

It is possible to reformulate system (2.60) such that the divergence-free velocity u is
eliminated from the solving process. It can be obtained by substituting un−1 in the first
equation by

un−1 = ũn−1 −∆tn∇pn−1, (2.62)

which is just the second equation at time tn−1. The second equation is replaced by the
equation for the pressure, which is obtained by taking the negative divergence of the
original second equation. Altogether, one has to solve

1

∆tn

(
ũn − ũn−1

)
− ν∆ũn + (ũn · ∇) ũn +∇pn−1 = fn in Ω,

∆pn =
1

∆tn
∇ · ũn in Ω,

ũn = 0 on Γ,

∇pn · n = 0 on Γ,

u(0,x) = ũ(0,x) = ũ0 in Ω.

(2.63)

After having solved (2.63), the divergence-free velocity un can be reconstructed by (2.62).

Remark 2.9. In contrast to (2.60), the system (2.63) requires the initial condition not
only for the velocity u0 but also for the pressure p0. In practice, one can obtain it
by solving the pressure Poisson equation, see Section 2.2.2, or by storing the numerical
solution of the developed flow. /

Incremental Pressure-Correction Scheme

The non-incremental pressure-correction scheme (2.60) involves no gradient of the pres-
sure in the first step. In [46], it was proposed to include the gradient of the known
pressure field into the first equation of (2.60) leading to a better accuracy of the ve-
locity solution in the correction step of the method. In [139], this idea was combined
with the second-order time-stepping scheme resulting in the second-order incremental
pressure-correction scheme. Due to the author’s name, the method is often called van
Kan scheme in the literature.

The second-order scheme scheme can be reconstructed from the system (2.57)-(2.58)
using q = 2, which results in the BDF2 time-stepping scheme, and s = 1. Altogether,
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the method reads

1

2∆tn

(
3ũn − 4un−1 + un−2

)
− ν∆ũn + (ũn · ∇) ũn +∇pn−1 = fn in Ω,

3

2∆tn
(un − ũn) +∇χn = 0 in Ω,

∇ · un = 0 in Ω,

un · n = 0 on Γ,

ũn = 0 on Γ,

(2.64)

where
χn = pn − pn−1 (2.65)

is called the pressure increment. Restricting the second equation in (2.64) to Γ and
using the prescribed boundary conditions for ũ and u, one obtains the following artificial
boundary condition for the pressure

∇pn · n = ∇pn−1 · n = . . . = ∇p0 · n on Γ, (2.66)

which is non-physical and thus leads to numerical boundary layers. Proofs of the error
estimates that are the same for all second-order A-stable time-stepping schemes can be
found in [36, 52, 124]. The irreducible splitting error of this scheme is of order O(∆t2)
and therefore the use of a higher-order time-stepping scheme would not improve the
accuracy of the method.

Similarly to the non-incremental pressure-correction scheme, also here a system of
equations without any occurrence of u can be obtained by substituting un−1 in the first
equation of (2.64) by

un−1 = ũn−1 − 2∆tn
3
∇χn−1, (2.67)

which is basically the second equation of (2.64). The negative divergence of the second
equation of (2.64) yields the pressure equation. Hence, one obtains the system

1

2∆tn

(
3ũn − 4ũn−1 + ũn−2

)
− ν∆ũn + (ũn · ∇) ũn +∇pn−1

+
4

3
∇χn−1 − 1

3
∇χn−2 = fn in Ω,

∆χn =
3

2∆tn
∇ · ũn in Ω,

ũn = 0 on Γ,

∇χn · n = 0 on Γ.

(2.68)

The divergence-free velocity un can be computed using equation (2.67).

Remark 2.10. Both versions of the incremental pressure-correction scheme (2.64) and
(2.68) need to be equipped besides the initial condition for the velocity u0 also with
p0 and (u1, p1). Moreover, the system (2.68) even needs p2. In practice, the value of
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p0 can be obtained as described in Remark 2.9. The other values can be computed by
performing the required number of time steps of the non-incremental pressure-correction
scheme or of the incremental pressure-correction scheme combined with a time-stepping
scheme of first order. /

Remark 2.11. When the finite element method is applied to perform the simula-
tions, which is the case in this thesis, it is of advantage to use the schemes (2.63)
and (2.68), which do not incorporate the divergence-free velocity u, see [53]. Otherwise,
the divergence-free velocity has to be recovered by (2.62) or (2.67) after having solved
the pressure equation (the second equation of (2.63) and (2.68), respectively) in the
weak form. As both equations (2.62) and (2.67) require the computation of the pressure
gradient, the resulting velocity occurs to be discontinuous. For this reason, in what
follows only the schemes which do not incorporate the divergence-free velocity u will be
considered. /

Remark 2.12. (Mixed boundary conditions). For the sake of simplicity, the above pro-
jection methods were presented for the Navier–Stokes equations (2.40)-(2.41) equipped
with the homogeneous Dirichlet boundary condition for the velocity. However, the most
applications require more complicated boundary conditions. For example, for the nu-
merical investigations in Chapter 5 the boundary conditions

u = 0 on (0, T ]× Γ0,

u = gD on (0, T ]× Γin,

(ν∇u− pI)n = 0 on (0, T ]× Γout

(2.69)

are prescribed, where Γ0, Γin, and Γout are mutually disjoint parts of the boundary Γ
with Γ = Γ0 ∪ Γin ∪ Γout and ΓD = Γ0 ∪ Γin, see Section 2.2.1. For this setting, the
velocity boundary conditions in the schemes (2.60) and (2.64) are

ũn = 0, un · n = 0 on Γ0,

ũn = gD, un · n = gnD · n on Γin.
(2.70)

The second equations of (2.60) and (2.64), respectively, taken into the normal direction
thus yield the following boundary conditions for the pressure and the pressure increment:

∇pn · n = 0, ∇χn · n = 0 on Γ0 ∪ Γin. (2.71)

The choice of the correct boundary condition for the pressure and the pressure increment
on Γout is not trivial. Based on the discussion in Section 2.2.2, the homogeneous Dirichlet
boundary conditions can be prescribed for the pressure and the pressure increment on
Γout, i.e.,

pn = 0, χn = 0 on Γout. (2.72)

For the intermediate velocity in (2.63) and (2.68), it holds

∇ũnn = 0 on Γout. (2.73)

/
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2.2.5. Linearization

In this section, the second difficulty of the Navier–Stokes equations mentioned in Remark
2.5 is discussed. Semi-discrete problems obtained in Section 2.2.3 and 2.2.4 are nonlinear
and thus have to be solved iteratively in each time step. For the solution of the nonlinear
saddle point problems, the reader is referred to [18] for more details.

In each nonlinear iteration at time tn, the initial guess denoted by un0 is required. For
its value, one can use the solution from the previous time step un−1 or some extrapolation
of the solution of more than one previous time step.

A popular method for the solution of the nonlinear problems is the fixed point iteration
or also called the Picard iteration. It linearizes the convective term by the following
approximation: Given a known velocity field unk−1, then

(unk · ∇)unk ≈ (unk−1 · ∇)unk . (2.74)

The semi-discretized problem (2.52) combined with the Picard iteration reads as follows:
For each n = 1, 2, . . . and given unk−1 with k = 1, 2, . . ., find (unk , p

n
k) such that

unk + θ∆tn
[
−ν∆unk + (unk−1 · ∇)unk

]
+ ∆tn∇pnk

= un−1 − (1− θ)∆tn
[
−ν∆un−1 + (un−1 · ∇)un−1

]

+ (1− θ)∆tnfn−1 + θ∆tnf
n,

∇ · unk = 0.

(2.75)

The right-hand side does not change during one time iteration. Equations of type (2.75)
are called Oseen equations, see [75, Chapter 5].

The semi-implicit methods, also called the IMEX (implicit-explicit) schemes, avoid
the solution of the nonlinear system. The convective term is approximated by

(unk · ∇)unk ≈ (uold · ∇)unk , (2.76)

where uold can be obtained from the already computed solutions. The simplest choice
consists in setting uold = un−1, which can be interpreted as the Picard iteration with only
one iteration step. This method will be simply denoted by IMEX. Another possibility
is to use the linear extrapolation of the previous two time steps as follows

uold =
∆tn

∆tn−1
(un−1 − un−2) + un−1, (2.77)

see [75] for more details. A similar scheme combined with the Crank–Nicolson method
with a constant length of the time step ∆t was proposed and investigated in [70]. It has
the form

∆t
[((
un−1 + 0.5un−2 − 0.5un−3

)
· ∇
)
un+1/2

]
, (2.78)

where un+1/2 = 1
2

(
un + un−1

)
. In what follows, this method will be referred to IMEX-

LE. More details on the relation between (2.77) and (2.78) can be found in [75].
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In the framework of projection methods, the convective term is usually treated semi-
implicitly or even explicitly to obtain a linear problem. Thus, instead of (ũn · ∇)ũn in
(2.60) and (2.64), one can use any version of the semi-implicit or explicit terms like

(ũn−1 · ∇)ũn, (ũn−1 · ∇)ũn−1, (un−1 · ∇)ũn, (un−1 · ∇)un−1.

Another iterative approach to solve nonlinear problems is Newton’s method, which
uses the following approximation of the convective term: Given a known velocity field
unk−1, then

(unk · ∇)unk ≈ (unk−1 · ∇)unk + (unk · ∇)unk−1 − (unk−1 · ∇)unk−1. (2.79)

The semi-discretized problem (2.52) combined with Newton’s method reads: For each
n = 1, 2, . . . and given unk−1 with k = 1, 2, . . ., find (unk , p

n
k) such that

unk + θ∆tn
[
−ν∆unk + (unk−1 · ∇)unk + (unk · ∇)unk−1

]
+ ∆tn∇pnk

= un−1 − (1− θ)∆tn−1

[
−ν∆un−1 + (un−1 · ∇)un−1

]

+ θ∆tn(unk−1 · ∇)unk−1 + (1− θ)∆tnfn−1 + θ∆tnf
n,

∇ · unk = 0.

(2.80)

In [74], a three-dimensional problem was studied to compare the efficiency of the Picard
iteration and of the Newton’s method. In that case, the Picard iteration was found to
be much more efficient than the Newton’s method. For a more detailed comparison of
both methods in terms of accuracy, convergence and computational cost, the reader is
referred to [75, Chapter 6].

As the stopping criterion for a nonlinear iteration, usually the Euclidean norm of the
residual vector is evaluated. The iteration is proceeded until the norm is smaller than
a certain tolerance number. If the tolerance threshold is too small, then one expects
a very accurate solution but the computational time can grow unproportionally. If the
tolerance threshold is set too large, the computation is more efficient but one possibly
obtains a poor accuracy of the solution. To the best of the author’s knowledge, there is
no general approach to choose a good tolerance number. It depends on the example and
the used numerical methods.

2.2.6. Weak Formulation

The semi-discrete problems presented in Sections 2.2.3 and 2.2.4 will be approximated
by the Galerkin finite element method in Section 2.2.7, whose starting point is the
variational or weak formulation of the problem. At this point, the first difficulty of the
Navier–Stokes equations mentioned in Remark 2.5 has to be addressed. The velocity and
the pressure fields are coupled in such a special way that the velocity and the pressure
spaces cannot be chosen arbitrarly to obtain a well-posed problem. The stationary Stokes
equations (2.43) possess the same coupling of the velocity and pressure as the time-
dependent Navier–Stokes equations (2.40)-(2.41). As the Stokes equations are linear, the
abstract theory of the linear saddle point problems can be applied to them to investigate
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the well-posedness of the problem, e.g., see [45]. According to the theory, the so-called
inf-sup condition (2.81) has to be satisfied in order to ensure the uniqueness of the
pressure solution.

Definition 2.1. Let V and Q denote real Hilbert spaces with inner products (·, ·)V and
(·, ·)Q and the induced norms ‖·‖V and ‖·‖Q, respectively. The (Babus̆ka-Brezzi) inf-sup
condition reads as follows: There is a constant β > 0 such that

inf
q∈Q, q 6=0

sup
v∈V,v 6=0

− (q,∇ · v)

‖v‖V ‖q‖Q
> β. (2.81)

Consider the Navier–Stokes equations equipped with the boundary conditions

u = 0 on (0, T ]× Γ0,

u = gD on (0, T ]× Γin,

(ν∇u− pI)n = 0 on (0, T ]× Γout,

(2.82)

where Γ0, Γin, and Γout are mutually disjoint parts of the boundary Γ with Γ = Γ0 ∪
Γin ∪ Γout and ΓD = Γ0 ∪ Γin, see Section 2.2.1. It is the setting required for the
numerical investigations in Chapter 5. The velocity space incorporates the prescribed
essential boundary conditions. Let V and Q denote the velocity and pressure spaces,
respectively, defined by

V = H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, Q = L2(Ω), (2.83)

where the value of u on the boundary ΓD is to be understood in the sense of traces. It
can be proven that V and Q satisfy the inf-sup condition (2.81), see [113, Proposition
5.3.2]. Furthermore, let ug ∈ H1(Ω) denote an extension of gD into Ω for t ∈ (0, T ].

Next, as an example, one variational formulation for each type of the problems from
Sections 2.2.3 and 2.2.4, respectively, will be derived. The derivation of the variational
formulation will be first presented for the semi-discrete equations (2.75) (saddle point
problem) and then for the incremental pressure-correction scheme (2.68) (decoupled
problem) with the convective term approximated by (ũn−1 · ∇)ũn. For the other prob-
lems, the weak formulation can be built equivalently.

Saddle Point Problem

A weak formulation of the semi-discretized Navier–Stokes equations (2.75) is obtained
by multiplying the momentum equation (the first equation) with a test function v ∈ V
and the continuity equation (the second equation) with a test function q ∈ Q. Then,
the equations are integrated over Ω.

For the continuity equation it holds

∫

Ω

(∇ · un) q dx = (∇ · un, q) = 0.
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Using the integration by parts and the Gaussian theorem, the pressure term in the
momentum equation (2.40) has the form

∫

Ω

∇pn · v dx =

∫

Γ

pnv · n ds− (pn,∇ · v) . (2.84)

The first term on the right-hand side is zero on Γ0 ∪ Γin as v ∈ V .
The variational formulation of the viscous term is obtained by integration by parts

and the Gaussian theorem as follows

−ν
∫

Ω

∆un v dx = −ν
∫

Γ

∇un v · n ds+ ν (∇un,∇v) , (2.85)

where the first term on the right-hand side vanishes on Γ0 ∪ ΓD due to the definition of
the space V . The L2 inner product of tensors is defined component by component.

Altogether, the weak formulation of (2.75) reads: For n = 1, 2, . . . and given unk−1 ∈
H1(Ω) with unk−1−ung ∈ V and k = 1, 2, . . ., find (unk , p

n
k) ∈ H1(Ω)×Q with unk−ung ∈ V

such that

(unk ,v) + θ∆tn
[
(ν∇unk ,∇v) +

(
(unk−1 · ∇)unk ,v

)]
−∆tn (∇ · v, pnk)

=
(
un−1,v

)
− (1− θ)∆tn

[(
ν∇un−1,∇v

)
+
(
(un−1 · ∇)un−1,v

)]

+ (1− θ)∆tn
(
fn−1,v

)
+ θ∆tn (fn,v) ,

− (∇ · unk , q) = 0,

(2.86)

for all (v, q) ∈ V × Q and parameter θ to be chosen, see Table 2.1. Note that the
boundary terms on Γout from (2.84) and (2.85) cancel out due to the natural boundary
condition imposed on Γout, see (2.82).

Decoupled Problem

According to Remark 2.12, one can employ the same velocity space V for the variational
formulation of the decoupled problem (2.68) as for the saddle point problem because
the intermediate velocity ũn satisfies the same Dirichlet boundary conditions as u in
(2.86). However, one needs a different definition of the pressure space for the following
reasons: Firstly, the second equation in (2.68) involves a higher-order derivative of the
pressure (or more precisely the pressure increment) than the saddle point problem and,
secondly, the decoupled problem is equipped with the homogeneous Dirichlet boundary
condition for the pressure on Γout, which has to be incorporated by the definition of
the corresponding space. Thus, the pressure space for the decoupled problem (2.68) is
defined by

Q̃ = H1
Γout

(Ω) = {q ∈ H1(Ω) : q = 0 on Γout}. (2.87)

The variational formulation of (2.68) with (ũn−1 · ∇)ũn as the approximation of the
convective term and the boundary conditions from Remark 2.12 is obtained by multi-
plying the first equation with a test function v ∈ V and the second equation with a
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test function q ∈ Q̃. Then the resulting equations are integrated over Ω. For the terms
including the gradient of the pressure and the Laplacian of the velocity, similar transfor-
mations with ũ instead of u can be undertaken as in (2.84) and (2.85), respectively. Due
to the boundary conditions discussed in Remark 2.12, the respective boundary terms in
(2.84) and (2.85) vanish on the entire boundary Γ. The weak form of the Laplacian
of the pressure increment on the left-hand side of the second equation in (2.68) can be
achieved by using integration by parts and the Gaussian theorem as follows

∫

Ω

∆χnq dx =

∫

Γ

∇χnq · n ds− (∇χn,∇q) . (2.88)

Also in this case the boundary term on the right-hand side vanishes on Γ following the
specification of the boundary conditions for the pressure increment, see Remark 2.12.

Finally, the variational formulation reads: For n = 2, 3, . . . and given
(
ũn−1, χn−1

)
∈

H1(Ω)× Q̃ and
(
ũn−2, χn−2

)
∈ H1(Ω)× Q̃ with ũn−1−un−1

g ∈ V and ũn−2−un−1
g ∈ V ,

find (ũn, χn) ∈ H1(Ω)× Q̃ with ũn − ung ∈ V such that

3

2
(ũn,v) + ∆tn

[
ν (∇ũn,∇v) +

((
ũn−1 · ∇

)
ũn,v

)]
= 2

(
ũn−1,v

)

− 1

2

(
ũn−2,v

)
+ ∆tn

[ (
pn−1,∇ · v

)
+

4

3

(
χn−1,∇ · v

)

− 1

3

(
χn−2,∇ · v

)
+ (fn,v)

]
,

(∇χn,∇q) = − 3

2∆tn
(∇ · ũn, q) ,

(2.89)

for all (v, q) ∈ V × Q̃, and χn = pn − pn−1.

2.2.7. Galerkin Finite Element Method

For the sake of clarity, Galerkin finite element method will be presented for a homo-
geneous Dirichlet boundary condition for the velocity field on the entire boundary Γ.
Then, the corresponding velocity and pressure spaces have the form

V = H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ},

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω
q dx = 0}, Q̃ = L2

0(Ω) ∩H1(Ω).

Implementation issues of the Galerkin finite element method for inhomogeneous Dirichlet
conditions on ΓD ⊂ Γ are discussed, e.g., in [3]. In what follows, the three-dimensional
case will be considered. The two-dimensional representation is obtained equivalently.

The Galerkin finite element method is obtained by replacing the infinite-dimensional
velocity space V and the pressure space Q (or Q̃) by the finite-dimensional spaces Vh and
Qh in the corresponding variational formulation. Here, only conforming finite element
spaces will be considered, i.e., Vh ⊂ V and Qh ⊂ Q (or Qh ⊂ Q̃). The pair of the finite
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element spaces will be denoted by Vh/Qh. Note that for the case of mixed boundary
conditions (2.82), one needs to define a different finite element pressure space for the
decoupled problem than that for the saddle point problem.

The velocity space Vh and the pressure space Qh are equipped with a basis. For the
vector-valued velocity space it holds

Vh = span
{
φh,i

}3Nv

i=1

= span











φh,i
0
0







Nv

i=1

∪








0
φh,i
0







Nv

i=1

∪








0
0
φh,i







Nv

i=1




,

(2.90)

i.e., each basis function has non-zero values only in one of the components and Nv is the
number of degrees of freedom in each component of the velocity. The pressure space is
of the form

Qh = span {ψh,i}Np

i=1 , (2.91)

where Np is the number of pressure degrees of freedom. Hence, the finite element velocity
uh and the pressure ph have the unique representation

uh =

3Nv∑

i=1

uh,iφh,i, ph =

Np∑

i=1

ph,iψh,i, (2.92)

where uh = (uh,i)
3Nv

i=1 and p
h

= (ph,i)
Np

i=1 are unknown real coefficients.

Saddle Point Problem

The fully discretized Galerkin finite element method for the Navier–Stokes equations
combined with the one-step θ-scheme and the Picard iteration reads: For each n =
1, 2, . . . and given unh,k−1 ∈ Vh with k = 1, 2, . . ., find (unh,k, p

n
h,k) ∈ Vh ×Qh such that

(
unh,k,vh

)
+ θ∆tn

[(
ν∇unh,k,∇vh

)
+
(
(unh,k−1 · ∇)unh,k,vh

)]

−∆tn
(
∇ · vh, pnh,k

)

=
(
un−1
h ,vh

)
− (1− θ)∆tn

[ (
ν∇un−1

h ,vh
)

(2.93)

+
(
(un−1

h · ∇)un−1
h ,vh

) ]
+ (1− θ)∆tn

(
fn−1,vh

)
+ θ∆tn (fn,vh) ,

−
(
∇ · unh,k, qh

)
= 0,

for all (vh, qh) ∈ Vh × Qh. In practice, the representation (2.92) is inserted into (2.93)
and tested with each basis function separately. As a result, one obtains the linear system
of equations

(
MNS
h + θ∆tn

[
ANS
h +NNS

h (unh,k−1)
] (

BNS
h

)T

BNS
h 0

)(
unh,k
pn
h,k

)
=

(
lnh
0

)
, (2.94)
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where
(
MNS
h

)
ij

=
(
φh,j ,φh,i

)
, i, j = 1, . . . , 3Nv, (2.95)

(
ANS
h

)
ij

=
(
ν∇φh,j ,∇φh,i

)
, i, j = 1, . . . , 3Nv, (2.96)

(
NNS
h (uh)

)
ij

=
(
(uh · ∇)φh,j ,φh,i

)
, i, j = 1, . . . , 3Nv, (2.97)

(
BNS
h

)
ij

= −
(
∇ · φh,j , ψh,i

)
, i = 1, . . . , Np, j = 1, . . . , 3Nv, (2.98)

lnh,i = MNS
h un−1

h − (1− θ)∆tn
[
ANS
h +NNS

h (un−1
h )

]
un−1
h (2.99)

+ (1− θ)∆tn
(
fn−1,φh,i

)
+ θ∆tn

(
fn,φh,i

)
, i = 1, . . . , 3Nv.

The matrices MNS
h , ANS

h , NNS
h (uh) ∈ R3Nv×3Nv consist of 3× 3 blocks, e.g.,

MNS
h =



M11 0 0

0 M11 0
0 0 M11,




where the expression (2.95) vanishes, if φh,i and φh,j represent different components,

e.g., φh,i = (φh,i, 0, 0)T and φh,j = (0, φh,j , 0)T . Non-zero matrices on the diagonal have
all the same values as φh,i and φh,j are of the same form independent of the fact which
component they describe. For more details on the practical implementation and solution
of the linear saddle point systems of type (2.94), see [55,75].

Decoupled Problem

The fully discretized Galerkin finite element method for the Navier–Stokes equations
resulting from the incremental pressure-correction scheme (2.68) reads: For n = 2, 3, . . .
and given

(
ũn−1
h , χn−1

h

)
∈ Vh×Qh and

(
ũn−2
h , χn−2

h

)
∈ Vh×Qh, find (ũnh, χ

n
h) ∈ Vh×Qh

such that

3

2
(ũnh,vh) + ∆tn

[
ν (∇ũnh,∇vh) +

((
ũn−1
h · ∇

)
ũnh,vh

)]
= 2

(
ũn−1
h ,vh

)

− 1

2

(
ũn−2
h ,vh

)
+ ∆tn

[ (
pn−1
h ,∇ · vh

)
+

4

3

(
χn−1
h ,∇ · vh

)

− 1

3

(
χn−2
h ,∇ · vh

)
+ (fn,vh)

]
,

(∇χnh,∇qh) = − 3

2∆tn
(∇ · ũnh, qh) ,

(2.100)

for all (vh, qh) ∈ Vh × Qh, and χnh = pnh − pn−1
h . In contrast to (2.93), problem (2.100)

is not a system of linear equations of the saddle point type but consists of two separate
systems of linear equations for the intermediate velocity and the pressure increment,
respectively, which have to be solved one after another.

As ũnh ∈ Vh and χnh ∈ Qh, the intermediate velocity and the pressure increment can
be written in the same form as the velocity and the pressure in (2.92), namely as

ũh =

3Nv∑

i=1

ũh,iφh,i, χh =

Np∑

i=1

χh,iψh,i, (2.101)

38



2. Studied Partial Differential Equations

where ũh = (ũh,i)
3Nv

i=1 and χ
h

= (χh,i)
Np

i=1 are unknown real coefficients. Inserting (2.101)
into (2.100) and testing both equations with each basis function φi, i = 1, . . . , 3Nv, and
ψi, i = 1, . . . , Np, respectively, yields

(
3

2
MNS
h + ∆tn

[
ANS
h +NNS

h (ũn−1
h )

])
ũnh = MNS

h

(
2ũn−1

h − 1

2
ũn−2
h

)
(2.102)

+∆tn
(
BNS
h

)T
(
pn−1
h

+
4

3
χn−1
h
− 1

3
χn−2
h

)
+ ∆tnf

n
h
,

PNS
h χn

h
= − 2

3∆tn
BNS
h ũnh, (2.103)

where pn−1
h

= χn−1
h

+pn−2
h

, the matrices MNS
h , ANS

h , NNS
h (·), BNS

h are defined as in (2.95)-
(2.98), and

(
PNS
h

)
ij

= (∇ψh,j ,∇ψh,i) , i, j = 1, . . . , Np, (2.104)

fnh,i =
(
fn,φh,i

)
, i = 1, . . . , 3Nv. (2.105)

On the Discrete Inf-Sup Condition

Finite element spaces Vh and Qh are real Hilbert spaces. Therefore, the abstract theory
of the linear saddle point problems, see [45], can be applied to the investigation of the
existence and the uniqueness of a solution of the finite element problems of incompressible
flow problems. In particular, the spaces Vh and Qh have to satisfy the discrete inf-sup
condition which reads: There is βh > 0 such that

inf
qh∈Qh, qh 6=0

sup
vh∈Vh,vh 6=0

− (qh,∇ · vh)

‖vh‖Vh ‖qh‖Qh

> βh. (2.106)

For optimal convergence, the constant βh has to be independent of the mesh width h,
see [75, Chapter 3]. It must be pointed out that even for conforming finite element
spaces Vh and Qh the fulfillment of the inf-sup condition (2.81) is not inherited from
the spaces V and Q, see details in [75, Chapter 3]. One of the most popular inf-sup
stable finite element spaces are the Taylor–Hood finite elements spaces, see [65]. They
are given by Pk/Pk−1, k ≥ 2, on triangular and tetrahedral grids and by Qk/Qk−1,
k ≥ 2, on quadrilateral and hexahedral grids. In particular, due to simplicity of the
implementation, the Taylor–Hood finite elements with k = 2 are among the most popular
finite elements for the simulation of incompressible flows, see [50]. Another popular pair
of inf-sup stable finite element spaces is the so-called MINI element introduced in [7].
The basic idea is to start with piecewise linear finite element spaces P1 for the velocity
and the pressure fields, and then to enrich the velocity space such that the discrete inf-
sup condition is satisfied. It is the lowest inf-sup stable pair of conforming finite element
spaces. For more inf-sup stable finite element spaces and further details, the reader is
referred to [50], [75, Chapter 3].
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The fulfillment of the discrete inf-sup condition is essential for the linear system of
equations (2.94), which is a saddle point problem, in order to ensure the uniqueness
of the solution. In the incremental pressure-correction scheme, the projection step,
i.e., the second equation of (2.100), serves as stabilization with respect to the discrete
inf-sup condition, if the pressure increment is sufficiently large, see [53, 75]. In this
case, one does not need necessarily inf-sup stable finite element spaces to perform flow
simulations. However, if the stationary flow is reached then the stabilization vanishes.
In such a situation spurious oscillations can occur, if Vh/Qh do not satisfy the discrete
inf-sup condition, see [54].
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3. Reduced-Order Modeling Based on
Proper Orthogonal Decomposition

The focus of this thesis is the investigation of the reduced-order models that are based on
the Proper Orthogonal Decomposition. To build such a model, three major steps have
to be performed. The first step involves obtaining the so-called snapshots. Their origin
could be the result of a scientific experiment or the numerical solution of a parametrized
partial differential equation. Within the framework of this thesis, the snapshots are
assumed to be the finite element solution of a parabolic partial differential equation
(PDE). In Chapter 2, finite element methods were presented for two parabolic PDEs that
lay the foundation for the core investigations in this dissertation. In the second step, the
reduced-order basis has to be computed by means of Proper Orthogonal Decomposition,
which is described in Section 3.1. Finally, a Galerkin reduced-order model is built using
that computed reduced-order basis. The presentation of this process takes place in
Section 3.2.

3.1. Proper Orthogonal Decomposition

The main idea of the Proper Orthogonal Decomposition (POD) is to provide a low-
dimensional basis of a known ensemble of data, e.g., of experimental data or solutions
of numerical simulations, which captures the dominant features of the data. The POD
was introduced in the context of turbulence in [103] as a method for detecting and ana-
lyzing coherent structures in experimental turbulent flows. In other scientific fields, the
same procedure is also called Singular Value Decomposition (numerical mathematics),
Karhuen–Loève Decomposition (stochastics), Principal Components Analysis (statisti-
cal analysis), Empirical Orthogonal Functions (meteorology), and Singular Spectrum
Analysis (time series analysis). The interested reader is referred to [63,103,128,141,142]
for a more detailed presentation of this method.

3.1.1. Continuous Setting

Let X denote a real separable Hilbert space with the inner product (·, ·)X , which induces
the norm ‖·‖X , and let [0, T ] be a finite time interval.

Hypothesis 3.1. Suppose that for the Hilbert space X the equality

T∫

0

(v, φ)X dt =




T∫

0

v dt, φ



X

(3.1)
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holds for all v ∈ L2(0, T ;X) and φ ∈ X.

Lemma 3.1. With Hypothesis 3.1, the identity




T∫

0

v(t, ·) dt,
T∫

0

v(s, ·) ds



X

=

T∫

0

T∫

0

(v(t, ·), v(s, ·))X ds dt. (3.2)

is true for all u, v ∈ L2(0, T ;X).

Proof. Using the statement of Hypothesis 3.1, one obtains




T∫

0

v(t, ·) dt,
T∫

0

v(s, ·) ds



X

=

T∫

0


u(t, ·),

T∫

0

v(s, ·) ds



X

dt

=

T∫

0




T∫

0

v(s, ·) ds, u(t, ·)



X

dt

=

T∫

0

T∫

0

(u(t, ·), v(s, ·))X ds dt.

Let u(t, x) ∈ L2(0, T ;X) denote a given function. The goal of the POD approach
consists in finding an orthonormal basis {φi}ri=1 of a subspace of X with dimension
r ∈ N which solves the problem

arg min
φ1,...,φr

T∫

0

∥∥∥∥∥u(t, x)−
r∑

i=1

ξi(t)φi(x)

∥∥∥∥∥

2

X

dt s.t. (φi, φj)X = δij , (3.3)

where δij denotes the Kronecker delta function and ξi(t) ∈ R, i = 1, . . . , r, t ∈ [0, T ],
denote unknown coefficients. Hence, one seeks the best possible approximation of the
given function u by an orthonormal basis of dimension r.

Definition 3.1. The solution {φ1, . . . , φr} of (3.3) is called the POD basis and its
elements the POD basis functions or POD modes. The space spanned by the POD basis
is called the POD space and is denoted by Xr = span{φ1, . . . , φr}.

By the general Hilbert space theory, it is known that the best approximation of u in
Xr at a given time t ∈ [0, T ] can be computed by

r∑

i=1

(u, φi)Xφi. (3.4)
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Note that this is a separated form since the first factor in each term depends only on t
and the second one only on x. Thus, the optimization problem (3.3) can be reformulated
as

arg min
φ1,...,φr

T∫

0

∥∥∥∥∥u(t, x)−
r∑

i=1

(u, φi)Xφi(x)

∥∥∥∥∥

2

X

dt s.t. (φi, φj)X = δij . (3.5)

Using the orthonormality of the basis functions {φi}ri=1, the properties of the inner
product and the homogeneity of the integral, one obtains

arg min
φ1,...,φr

T∫

0

∥∥∥∥∥u−
r∑

i=1

(u, φi)Xφi

∥∥∥∥∥

2

X

dt

= arg min
φ1,...,φr

T∫

0


u−

r∑

i=1

(u, φi)Xφi, u−
r∑

j=1

(u, φj)Xφj



X

dt.

The first term is a constant for the optimization problem. Altogether, the minimization
problem (3.5) is equivalent to the maximization problem

arg max
φ1,...,φr

T∫

0

r∑

i=1

| (u, φi)X |2 dt s.t. (φi, φj)X = δij . (3.6)

Problem (3.6) is an optimization problem with constraints. Its Lagrangian has the form

L(φ1, . . . , φr,Λ) =

T∫

0

r∑

i=1

| (u, φi)X |2 dt−
r∑

i=1

r∑

j=1

λij [(φi, φj)X − δij ] ,

where Λ ∈ Rr×r with (Λ)ij = λij .
First-order necessary optimality conditions are given by

∂φiL = 0, i = 1, . . . , r, (3.7)

∂λijL = 0, i, j = 1, . . . , r. (3.8)
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For any i = 1, . . . , r and ψ ∈ X, the Gateaux derivatives for L have the form

∂φiL = lim
ε→0

T∫
0

[
(u, φi + εψ)X(φi + εψ, u)X − (u, φi)X(φi, u)X

]
dt

ε

− lim
ε→0

r∑
j=1

λij

[
(φi + εψ, φj)X − (φi, φj)X

]

ε

− lim
ε→0

r∑
j=1

λji

[
(φj , φi + εψ)X − (φj , φi)X

]

ε

= lim
ε→0

T∫
0

[
(u, εψ)X(φi, u)X + (u, φi)X(εψ, u)X + (u, εψ)X(u, εψ)X

]
dt

ε

− lim
ε→0

r∑
j=1

[
λij(εψ, φj)X + λji(φj , εψ)X

]

ε

= 2

T∫

0

(φi, u)X(u, ψ)X dt−
r∑

j=1

(λji + λij)(φj , ψ)X ,

∂λijL = (φi, φj)X − δij .

(3.9)

With Hypothesis 3.1, the final expression of ∂φiL in (3.9) can be rewritten ∀ψ ∈ X as

2

T∫

0

(φi, u)X u dt, ψ



X

−
r∑

j=1

(λji + λij)(φj , ψ)X

=


2

T∫

0

(φi, u)X u dt−
r∑

j=1

(λji + λij)φj , ψ



X

, i = 1, . . . , r,

where the commutativity of the integral and the inner product was used.
Hence, the first-order optimality condition (3.7) results in

T∫

0

(φi, u)X u dt =
1

2

r∑

j=1

(λji + λij)φj , i = 1, . . . , r, (3.10)

with (φi, φj)X = δij , i, j = 1, . . . , r.

Lemma 3.2. Problem (3.10) is equivalent to the eigenvalue problem

T∫

0

(φi, u)X u dt = λiφi, i = 1, . . . , r, (3.11)

where λi = λii.
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Proof. The statement of this lemma will be proven by induction. For r = 1 it holds
i = 1. Hence, expression (3.10) has the form

T∫

0

(φ1, u)X u dt = λ1φ1.

Next, assume that for r > 1, the problem (3.10) is equivalent to

T∫

0

(φi, u)X u dt = λiφi, i = 1, . . . , r. (3.12)

Now it has to be shown that the problem (3.10) for r + 1 is equivalent to

T∫

0

(φi, u)X u dt = λiφi, i = 1, . . . , r + 1. (3.13)

Due to assumption (3.12), it only has to be proven that

T∫

0

(φr+1, u)X u dt = λr+1φr+1. (3.14)

Using the orthonormality of the POD basis, assumption (3.12), expression (3.10), and
Hypothesis 3.1 yields for any i = 1, . . . , r

0 = λi(φi, φr+1)X =




T∫

0

(φi, u)X u dt, φr+1



X

=

T∫

0

(u, φi)X (u, φr+1)X dt

=




T∫

0

(φr+1, u)X u dt, φi



X

=


1

2

r+1∑

j=1

(λj,r+1 + λr+1,j)φj , φi



X

=
1

2
(λi,r+1 + λr+1,i).

It follows that λi,r+1 = −λr+1,i for i = 1, . . . , r. Consequently, with (3.10) it holds

T∫

0

(φr+1, u)X u dt =
1

2

r∑

j=1

(λj,r+1 + λr+1,j)φj + λr+1,r+1φr+1

=
1

2

r∑

j=1

(λj,r+1 − λj,r+1)φj + λr+1,r+1φr+1

= λr+1,r+1φr+1.
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To study the solvability and the properties of (3.11), define an operator R : X → X
for a given u ∈ L2(0, T ;X) by

Rφ =

T∫

0

(φ, u)X u dt. (3.15)

With this operator, the eigenvalue problem in X defined by

Rφ = λφ (3.16)

has the same form as (3.11). Next, the spectral properties of R will be studied.

Lemma 3.3. Let R be the operator given by (3.15) and u ∈ L2(0, T ;X). Then R is
linear and bounded.

Proof. The linearity of R follows from the linearity of the inner product (·, ·)X in the
first argument. By using Lemma 3.1 and the Cauchy–Schwarz inequality, one obtains

‖Rφ‖2X =

T∫

0

T∫

0

(((φ, u)X u) (t, ·), ((φ, u)X u) (s, ·))X ds dt

≤
T∫

0

T∫

0

‖((φ, u)X u) (t, ·)‖X ‖((φ, u)X u) (s, ·)‖X ds dt

=

T∫

0

T∫

0

| (φ, u(t, ·))X | ‖u(t, ·)‖X | (φ, u(s, ·))X | ‖u(s, ·)‖X ds dt

≤ ‖φ‖2X
T∫

0

T∫

0

‖u(t, ·)‖2X ‖u(s, ·)‖2X ds dt

= ‖φ‖2X
T∫

0

‖u(t, ·)‖2X dt
T∫

0

‖u(s, ·)‖2X ds

≤ ‖φ‖2X ‖u‖4L2(0,T ;X),

yielding that R is bounded as u ∈ L2(0, T ;X).

Lemma 3.4. Let R be the linear and bounded operator defined by (3.15) and u ∈
L2(0, T ;X). Then R has the following properties:

(i) non-negative, i.e., (Rφ, φ)X ≥ 0, ∀φ ∈ X,

(ii) self-adjoint, i.e, (Rφ, ψ)X = (φ,Rψ)X , ∀φ, ψ ∈ X,

(iii) compact.
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Proof. In Lemma 3.3 it was shown that R is linear and bounded. Statement (i) can be
verified as follows

(Rφ, φ)X =




T∫

0

(φ, u)X u dt, φ



X

=

T∫

0

(φ, u)X (u, φ)X dt =

T∫

0

| (u, φ)X |2 dt ≥ 0.

Statement (ii) results similarly from

(Rφ, ψ)X =




T∫

0

(φ, u)X u dt, ψ



X

=

T∫

0

(φ, u)X (u, ψ)X dt

=

T∫

0

(ψ, u)X (u, φ)X dt =




T∫

0

(ψ, u)X u dt, φ



X

=


φ,

T∫

0

(ψ, u)X u dt



X

= (φ,Rψ)X .

(iii) In a separable Hilbert space, which is the case for X, an operator is called compact
if it maps weakly convergent sequences into strongly convergent ones, see [87]. Let {φn}
be an arbitrary weakly convergent sequence in X. By the definition of R, one obtains

lim
n→∞

Rφn = lim
n→∞

T∫

0

(φn, u)X u dt =

T∫

0

lim
n→∞

(φn, u)X u dt =

T∫

0

(φ, u)X u dt = Rφ.

The second equality holds because of the continuity of the integral and the fact that the
integrand is integrable for every element of X.

Lemma 3.5. The operator R defined by (3.15) has the following spectral properties:

(i) all eigenvalues of R are non-negative,

(ii) eigenfunctions of R corresponding to different eigenvalues are mutually orthogonal.

Proof. (i) The non-negativity of the eigenvalues follows directly from the non-negativity
of R (see Lemma 3.4).
(ii) Let λ and β with λ 6= β be the eigenvalues of R corresponding to the eigenfunctions
φ and ψ, respectively. The fact that R is self-adjoint yields

λ (φ, ψ)X = (Rφ, ψ)X = (φ,Rψ)X = β (φ, ψ)X .

Since λ 6= β, it follows that (φ, ψ)X = 0.

Now, a theorem will be formulated which is crucial for the solution properties of the
eigenvalue problem (3.16) .
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Theorem 3.1 (Hilbert–Schmidt). Let X be a separable Hilbert space. Let T : X → X
define a bounded, self-adjoint, compact operator. Then there exists a sequence of non-
zero real eigenvalues {λi}i∈N with λi → 0 as i → ∞, and a complete orthonormal basis
{φi}i∈N of X consisting of the corresponding eigenfunctions so that T φi = λiφi.

Proof. The reader is referred, e.g., to [117].

Corollary 3.1. There exists a complete orthonormal basis {φi}i∈N of X and a sequence
of real non-negative eigenvalues {λi}i∈N so that

Rφi = λiφi with λ1 ≥ λ2 ≥ . . . ≥ 0, (3.17)

where λi → 0 as i→∞.

Proof. The statement follows directly from Lemma 3.3, Lemma 3.4, and Lemma 3.5.

Remark 3.1. The number r which denotes the rank of the POD basis may not exceed
the number of positive eigenvalues of R denoted by #{λ1, λ2, . . . : λi > 0}. /

Each element v ∈ X can be expressed as

v =
∞∑

i=1

(v, φi)Xφi.

Consequently, the operator R has the following spectral decomposition

Rv =
∞∑

i=1

λi(v, φi)Xφi. (3.18)

By now, only the first-order necessary condition (3.7) was considered. It was shown
in [140] that there is no second-order sufficient condition for the solution of (3.7). As
a result, it is still not clear if the eigenfunctions of the eigenvalue problem (3.11) or,
equavalently, (3.17), really solve the optimization problem (3.6).

For i = 1, 2, . . ., consider

T∫

0

| (u, φi)X |2 dt =

T∫

0

(φi, u)X (u, φi)X dt =




T∫

0

(φi, u)X u dt, φi



X

= (Rφi, φi)X = λi.

If one uses the orthonormal basis {φi}i∈N, the eigenfunctions φ1, . . . , φr corresponding
to the r largest eigenvalues yield the largest value of the functional in the optimization
problem (3.6) as the eigenvalues are arranged in descending order. In the following
theorem the optimality of the POD basis will be assured.

Theorem 3.2 (Optimality). Let {φi}i∈N and {λi}i∈N be the eigenfunctions and the
corresponding eigenvalues of the eigenvalue problem (3.17) with λ1 ≥ λ2 ≥ . . . ≥ 0, and,
r ∈ N, r ≤ #{λ1, λ2, . . . : λi > 0}. Then {φi}ri=1 solves the optimization problem (3.6).
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Proof. The proof follows the lines of [140]. Let {φi}ri=1 be the eigenfunctions of (3.17)
corresponding to the first largest eigenvalues {λi}ri=1, and {φ̃i}ri=1 be any other orthonor-
mal set in X of dimension r.

The goal is to show that

T∫

0

r∑

i=1

|(u, φi)X |2 dt ≥
T∫

0

r∑

j=1

∣∣∣
(
u, φ̃j

)
X

∣∣∣
2
dt. (3.19)

The left-hand side can be rewritten as follows, see the proof of Lemma 3.4 (i),

T∫

0

r∑

i=1

|(u, φi)X |2 dt =
r∑

i=1

(Rφi, φi)X =
r∑

i=1

λi. (3.20)

Since {φi}i∈N is a complete orthonormal basis of X, the following holds

φ̃j =

∞∑

i=1

(
φ̃j , φi

)
X
φi, 1 =

∞∑

i=1

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2

for every j = 1, . . . , r. Accordingly, one obtains

T∫

0

∣∣∣
(
u, φ̃j

)
X

∣∣∣
2
dt =




T∫

0

(
φ̃j , u

)
X
u, φ̃j



X

=
(
Rφ̃j , φ̃j

)
X

=

( ∞∑

i=1

λi

(
φ̃j , φi

)
X
φi, φ̃j

)

X

=

∞∑

i=1

λi

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2

= λr

(
1−

∞∑

i=1

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2
)

+
∞∑

i=1

λi

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2

= λr +
r∑

i=1

(λi − λr)
∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2
−

∞∑

i=r+1

(λr − λi)︸ ︷︷ ︸
≥0

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2

≤ λr +

r∑

i=1

(λi − λr)
∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2
, j = 1, . . . , r.

Summing up the last expression for j = 1, . . . , r yields
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T∫

0

r∑

j=1

∣∣∣
(
u, φ̃j

)
X

∣∣∣
2
dt ≤

r∑

j=1

[
λr +

r∑

i=1

(λi − λr)
∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2
]

(3.21)

=

r∑

i=1



λr + (λi − λr)︸ ︷︷ ︸

≥0

r∑

j=1

∣∣∣
(
φi, φ̃j

)
X

∣∣∣
2

︸ ︷︷ ︸
≤1




(3.22)

≤
r∑

i=1

[λr + (λi − λr)] =

r∑

i=1

λi, (3.23)

which, together with (3.20), verifies the assertion.

Remark 3.2. (Role of the POD eigenvalues). With (3.11), one can represent the POD
eigenvalues by

λi = (λiφi, φi)X =




T∫

0

(φi, u)X u dt, φi



X

=

T∫

0

(φi, u)X (φi, u)X dt. (3.24)

In the literature, the expression (u, u)X sometimes refers to the energy of the system. In
the case that the function u(t, x) represents the velocity field and X = L2(Ω), then the
value of (u, u)X is proportional to the kinetic energy. Let {φi}∞i=1 denote the orthonormal
basis of X as an extension of the POD basis {φi}ri=1. Then, by using (3.24) and u(t, x) =
∞∑
i=1

(φi, u)X φi, one obtains

T∫

0

(u, u)X dt =

T∫

0



∞∑

i=1

(φi, u)X φi,

∞∑

j=1

(φj , u)X φj



X

dt

=

∞∑

i=1

∞∑

j=1

T∫

0

(φi, u)X (φj , u)X (φi, φj)X dt

=

∞∑

i=1

T∫

0

(φi, u)X (φi, u)X dt =

∞∑

i=1

λi.

(3.25)

Hence, every POD eigenvalue λi reflects the respective contribution to the energy of the
system. /

3.1.2. Discrete Setting

In practice, one wishes to find the best low-dimensional approximation of an ensemble
of data. The origin of the data can vary, e.g., representing known numerical solutions
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or experimental measurements. In case the data represents numerical solutions of a
partial differential equation with, e.g., a finite element method, then each element of the
given data is a finite element solution evaluated at a particular time instance for time-
dependent problems or at a particular parameter value for parameterized problems. In
this work, it will be assumed that the data is the finite element solution of a time-
dependent partial differential equation.

In what follows, let X denote a Hilbert space with the properties given in Section
3.1.1 and Xh ⊂ X a finite element space of dimension N which is spanned by a nodal
finite element basis consisting of finite element basis functions {ϕh,i}Ni=1, i.e.,

Xh = span{ϕh,1, . . . , ϕh,N}.

Let {u1, . . . , uM} ⊂ Xh denote the given data. Moreover, consider the time grid

0 ≤ t1 < . . . < tM ≤ T (3.26)

of the finite time interval [0, T ].

Definition 3.2. The space XR spanned by the given ensemble of data, i.e.,

XR = span{u1, . . . , uM},

is called the snapshot space, and the elements of the data ui, i = 1, . . . ,M , are called
snapshots. In general, the snapshots are not linearly independent. Therefore, it holds
R ≤M with R = dim(XR).

Each snapshot ui can be interpreted as a finite element solution at the i-th time
instance ti ∈ [0, T ]

ui(x) = u(ti, x), i = 1, . . . ,M

The goal of POD is to find an orthonormal basis {ϕro,1, . . . , ϕro,r}, called POD basis, of
rank r ≤ R with

ϕro,i ∈ span{ϕh,1, . . . , ϕh,N}, i = 1, . . . , r,

that provides the best possible approximation of the given snapshots. It can be formu-
lated as an optimization problem similarly to (3.5) in Section 3.1.1

arg min
ϕro,1,...,ϕro,r

M∑

m=1

ωm

∥∥∥∥∥um −
r∑

i=1

(um, ϕro,i)Xϕro,i

∥∥∥∥∥

2

X

s.t. (ϕro,i, ϕro,j)X = δij , (3.27)

where the integral over time interval is approximated by a quadrature formula with
appropriate positive weights ωm.

Example 3.1. Let the time grid (3.26) be uniform with ∆t = T
M−1 . In case of a

trapezoidal rule, the weights in (3.27) are equal to

ω1 =
1

2
∆t, ωm = ∆t, m = 2, . . . ,M − 1, ωM =

1

2
∆t.

As the value of ∆t is a constant for the optimization problem (3.27) and thus does not
influence the solution, it can be set to 1 without loss of generality. /
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Definition 3.3. The space Xr spanned by the POD basis, i.e.,

Xr = span{ϕro,1, . . . , ϕro,r}

is called the POD space, and the elements of the POD basis are called POD basis func-
tions or POD modes.

The POD space Xr is a subspace of Xh. Altogether, the following inclusions hold

Xr ⊂ XR ⊂ Xh ⊂ X. (3.28)

Usually one has the following dimensional relations

r ≤ R ≤M � N. (3.29)

The theoretical results presented in Section 3.1.1 for a continuous setting of POD can now
be applied with only minor changes to the discrete case. Consequently, the minimization
problem (3.27) is equivalent to the following maximization problem

arg max
ϕro,1,...,ϕro,r

M∑

m=1

r∑

i=1

ωm
∣∣(um, ϕro,i)X

∣∣2 s.t. (ϕro,i, ϕro,j)X = δij , (3.30)

and the POD modes can be determined by solving the eigenvalue problem

M∑

m=1

ωm (ϕro,i, um)X um = λi ϕro,i, i = 1, . . . , r, (3.31)

with λ1 ≥ . . . ≥ λr ≥ 0. Due to the inclusion relation (3.28), one can represent the
snapshots and the POD modes with respect to the finite element basis as

ui(x) =
N∑

j=1

ui,jϕh,j(x), i = 1, . . . ,M, (3.32)

ϕro,i(x) =

N∑

j=1

ϕro,i,jϕh,j(x), i = 1, . . . , r, (3.33)

with the finite element coefficients vectors ui = (ui,j)
N
j=1 and ϕ

ro,i
= (ϕro,i,j)

N
j=1, respec-

tively. Hereinafter, the finite element coefficients vector of a function v will be denoted
by v.

In practice, the coefficients in (3.32) are summarized into a so-called snapshot matrix
U ∈ RN×M as follows

U =



u1,1 · · · uM,1

...
. . .

...
u1,N · · · uM,N


 = (u1, . . . , uM ) , (3.34)
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where the i-th column corresponds to the finite element coefficients of the discrete solu-
tion at the time instance ti, i = 1, . . . ,M , from the time grid (3.26).

The rank of the snapshot matrix U is equal to the dimension of the snapshot space,
i.e., rank(U) = R.

Let G ∈ RN×N denote a symmetric, positive definite Gramian matrix which describes
the inner product (·, ·)X , i.e., for u, w ∈ Xh it holds

(u,w)X = uTGw. (3.35)

Example 3.2. Set X = L2(Ω), where Ω ⊂ Rd, d ∈ {2, 3}, denotes a bounded domain.
It holds then for u, w ∈ Xh ⊂ X

(u,w) =




N∑

j=1

ujϕh,j ,

N∑

i=1

wiϕh,i


 =

N∑

j=1

N∑

i=1

ujwi (ϕh,j , ϕh,i) = uTMhw, (3.36)

where Mh ∈ RN×N is the mass matrix defined in (2.11). Therefore, it holds G = Mh.
Similarly, for X = H1

0 (Ω) one obtains

(∇u,∇w) = uTAhw, (3.37)

where Ah ∈ RN×N denotes the stiffness matrix defined in (2.12). In this case, it holds
G = Ah. /

Using notations (3.34) and (3.35), the eigenvalue problem (3.31) can be written in
matrix form as an eigenvalue problem in RN as

UWUTGϕ
ro,i

= λiϕro,i
, i = 1, . . . , r, (3.38)

where W = diag{ω1, . . . , ωM}, i.e., W is a diagonal matrix with (W )mm = ωm, m =
1, . . . ,M . Since all the weights ωm are positive, it holds holds

W = W 1/2W 1/2 = W 1/2W T/2,

where W 1/2 = diag{√ω1, . . . ,
√
ωM}. Let Ũ be defined by

Ũ = UW 1/2, (3.39)

with
rank(Ũ) = rank(UW 1/2) = rank(U) = R, (3.40)

as W 1/2 ∈ RM×M is a non-singular matrix. Then, the eigenvalue problem (3.38) can be
rewritten as

Ũ ŨTGϕ
ro,i

= λiϕro,i
, i = 1, . . . , r. (3.41)
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Example 3.3. (Trapezoidal rule). For the weights ωi, i = 1, . . . ,M, originating from
the trapezoidal rule (see Example (3.1)), one has

W 1/2 = diag





1√
2
, 1, . . . , 1︸ ︷︷ ︸
M−2 times

,
1√
2



 .

To obtain the matrix Ũ , one just has to multiply the first and the last column of U with
1√
2
. /

Remark 3.3. Note that (3.41) is an eigenvalue problem in RN with N being the di-
mension of the finite elment basis. Usually N is very large, and therefore the solution of
the eigenvalue problem is very expensive. In Section 3.1.3, a more efficient way for the
computation of the POD basis will be introduced. /

Remark 3.4. In practice, the POD basis is computed not from the snapshot matrix
U which consists of the so-called raw snapshots but from a modified one, ensuring that
its columns satisfy the homogeneous Dirichlet conditions of the problem. The detailed
discussion of this issue is presented in Section 3.2.3. /

3.1.3. Method of Snapshots

The straightforward way to compute the POD modes is to solve the eigenvalue problem
(3.41) in RN . However, in practice it can be very expensive since N , the dimension of
the finite element basis, is usually very large. An alternative way to obtain the POD
basis was introduced in [128], known as the method of snapshots. The basic idea is to
transform the large eigenvalue problem (3.41) in RN into a much smaller one in RM
(as M � N) by applying some algebraic manipulations. As a result, the POD basis
functions can be obtained with much less computational effort.

Multiplication of (3.41) with ŨTG from the left-hand side yields an eigenvalue problem
in RM

ŨTGŨξ
i

= λiξi, i = 1, . . . , r, (3.42)

with ξ
i

:= ŨTGϕ
ro,i

. The matrix G ∈ RN×N defined by (3.35) is symmetric and positive

definite. Thus, it holds G = GT/2G1/2 and the matrix ŨTGŨ can be rewritten as

ŨTGŨ =
(
G1/2Ũ

)T (
G1/2Ũ

)
. (3.43)

Due to the equality (3.43), one can easily verify that ŨTGŨ is a symmetric, positive
semi-definite matrix with rank(ŨTGŨ) = R. Therefore, the eigenvalue problem (3.42) is
solvable and its solution consists of real, non-negative eigenvalues λi, i = 1, . . . , r, with
λ1 ≥ . . . ≥ λr, and corresponding orthogonal eigenvectors ξ

i
, i = 1, . . . , r.
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Now, multiplication of (3.42) with ξT
i

from the left-hand side results in ‖Ũξ
i
‖X =√

λi(ξ
T
i
ξ
i
). By setting

ϕ
ro,i

:=
Ũξ

i

‖Ũξ
i
‖X

=
1√

λi(ξ
T
i
ξ
i
)
Ũξ

i
=

1√
λi
Ũ

ξ
i√
ξT
i
ξ
i

, i = 1, . . . , r, (3.44)

one obtains the eigenvectors of (3.41). This can be verified by inserting (3.44) into (3.41)
and using the definition of ξ

i
as follows

Ũ ŨTGϕ
ro,i

= Ũ ŨTG


 1√

λi(ξ
T
i
ξ
i
)
Ũξ

i




=
1√

λi

(
ϕT

ro,i
GT Ũ ŨTGϕ

ro,i

) Ũ ŨTGŨŨTGϕro,i

=
λ2
iϕro,i√

λ2
i

(
ϕT

ro,i
Gϕ

ro,i

)

︸ ︷︷ ︸
=1

= λiϕro,i
.

Altogether, the method of snapshots employs the following algorithm:

1. Solve (3.42) and obtain ξ
i
, i = 1, . . . , r.

2. Recover the POD basis coefficients ϕ
ro,i

by (3.44) from ξ
i
, i = 1, . . . , r.

3.1.4. Connection with Singular Value Decomposition

In this section the relationship between POD and Singular Value Decomposition (SVD)
will be discussed.

Theorem 3.3 (Singular Value Decomposition). Let S ∈ Rn×m denote an arbitrary real
matrix with rank(S) = d ≤ min{m,n}. Then there exist orthogonal matrices V1 ∈ Rn×n
and V2 ∈ Rm×m and real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and such that

V T
1 SV2 =

(
D 0
0 0

)
=: Σ ∈ Rn×m, (3.45)

where D = diag{σ1, . . . , σd} ∈ Rd×d and zeros in (3.45) denote zero matrices of appro-
priate dimensions.
Moreover, the columns {v1,i}ni=1 of V1, the so-called left-singular vectors of S, and the
columns {v2,i}mi=1 of V2, the so-called right-singular vectors of S, are the eigenvectors of

SST and STS, respectively. The non-zero eigenvalues of SST and STS are the squares
of σ1, . . . , σd, which are the non-zero singular values of S.

55



3. Reduced-Order Modeling Based on Proper Orthogonal Decomposition

Proof. E.g., see [123].

Multiplication of (3.41) with G1/2 from the left-hand side and using the fast that
G = GT/2G1/2 yields

G1/2Ũ ŨTGT/2G1/2ϕ
ro,i

= λiG
1/2ϕ

ro,i
, i = 1, . . . , r, (3.46)

or
Û ÛT ϕ̂

ro,i
= λiϕ̂ro,i

, i = 1, . . . , r, (3.47)

where
Û = G1/2Ũ = G1/2UW 1/2 and ϕ̂

ro,i
= G1/2ϕ

ro,i
. (3.48)

Let Φ ∈ RN×R denote the so-called POD matrix columnwise consisting of the finite
element coefficients vectors of the POD modes, i.e.,

Φ =
(
ϕ

ro,1
, . . . , ϕ

ro,r

)
, (3.49)

and let Φ̂ ∈ RN×R be the matrix with the vectors {ϕ̂
ro,i
}ri=1 as columns defined in (3.48),

i.e.,

Φ̂ =
(
ϕ̂

ro,1
, . . . , ϕ̂

ro,r

)
= G1/2Φ. (3.50)

According to Theorem 3.3, the eigenvectors {ϕ̂
ro,i
}ri=1 of Û ÛT in (3.47) are the left-

singular vectors of Û . Thus, instead of solving the eigenvalue problem (3.41) or applying
the method of snapshots ((3.42) together with (3.44)), one can compute the SVD of Û
to determine the POD basis.

Consequently, the POD basis {ϕro,i}ri=1 can be computed by applying the following
algorithm:

1. Compute SVD of Û , which results in Û = Φ̂ΣΞ̂T .

2. Recover the POD basis coefficient vectors ϕ
ro,i

, i = 1, . . . , r, from the first r

columns of Φ̂ by computing

ϕ
ro,i

= G−1/2ϕ̂
ro,i
. (3.51)

3.1.5. Practical Aspects

In practice, the POD basis is usually computed with the method of snapshots, see
Section 3.1.3, by solving the eigenvalue problem (3.42) or by building the SVD of a
slighly modified snapshot matrix, see Section 3.1.4. Numerous computer software pack-
ages are available to carry out these procedures. For instance, the linear algebra module
numpy.linalg for Python and MATLAB provide several routines to solve eigenvalue prob-
lems and compute the SVD. Both are based on the routines of the LAPACK package. In
this thesis, the POD modes are computed with the method of snapshots in the C/C++
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Figure 3.1.: Velocity (right) and pressure (left) POD eigenvalues for flow around a cylin-
der problem (Example 5.1) for different values of the Reynolds number.

code MooNMD [78] using the routine dsyev from the LAPACK library. The lower
threshold value for the eigenvalues is set to 10−10.

In applications, the POD basis serves as a low-dimensional basis of the reduced-order
model, see Section 3.2.1. One of the important parameters for the accuracy of the model
is the dimension of the used POD basis. In the literature, there exists only a heuristic
approach for the choice of the rank of the POD basis. It is based on the ratio of the
modeled energy to the total energy of the system, the so-called energy ratio, denoted by
E(r) . In Remark 3.2 it was shown that for every i, the POD eigenvalues λi reflect the
ith fraction of the system’s energy. Therefore, the energy ratio E(r) is given by

E(r) =

∑r
i=1 λi∑R
i=1 λi

, (3.52)

where λi are the POD eigenvalues from (3.41). For example, if one wishes the POD
basis to contain at least 99, 9% of the total energy, then r is chosen to be the smallest
integer such that E(r) ≥ 0.999.

POD is most effective for problems for which the POD eigenvalues λi, i = 1, . . . , r,
decrease rapidly. In this case only a few POD modes are needed to approximate the
elements from the snapshot space with good accuracy. Otherwise, a lot more POD
modes are required.

In Figure 3.1, the distribution of the POD eigenvalues is depicted (semilogarithmic
plot) for the flow around a cylinder problem, see Example 5.1, at different values of the
Reynolds number (Re = 100, 200, 600). In all cases the flow is laminar. One can see that
with an increasing value of Re, the POD eigenvalues decrease slower, i.e., the higher the
values of the Reynolds number, the more POD modes are needed to capture a certain
energy level of the system. For convection-dominated problems, the POD eigenvalues
decrease slowly, e.g., see Example 4.2 or [137] for the decay of the POD eigenvalues in
the case of a turbulent flow.
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3.2. Galerkin Reduced-Order Modeling

This section presents how the POD basis (see Section 3.1) can be utilized to build a
projection-based reduced-order model using the Galerkin projection. Moreover, such
practical aspects as treatment of the initial and boundary conditions as well as efficient
implementation are addressed.

3.2.1. Galerkin Projection

Galerkin projection, or Galerkin method, introduced by the Russian mathematician
and engineer Boris Galerkin (1871-1945), is an approach that approximates an infinite-
dimensional partial differential equation into a system of ordinary differential equations
by projecting the equation into a finite-dimensional space. The Galerkin method is
closely connected with the weak formulation of the partial differential equation. One
of the popular applications of the approach is the Galerkin finite element method, see
Sections 2.1.2 and 2.2.7 for its application to the time-dependent scalar convection-
diffusion-reaction equation and the time-dependent incompressible Navier–Stokes equa-
tions, respectively. In a similar way, one can also derive a so-called projection-based or
Galerkin reduced-order model (ROM) using the r-dimensional POD basis, see Section
3.1.

For the sake of simplicity, the derivation of the Galerkin ROM based on POD will
be carried out for a prototypical example of a parabolic partial differential equation,
the heat equation. It is the special case of the convection-diffusion-reaction equation
(2.1) with zero convection and reaction fields, i.e., b = 0 and c = 0, and ε = 1. The
heat equation equipped with the non-homogeneous Dirichlet boundary condition and
the initial condition is given by

∂tu−∆u = f in (0, T ]× Ω,

u(t,x) = gD(t,x) on [0, T ]× ΓD = Γ,

u(0,x) = u0(x) in Ω,

(3.53)

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with Lipschitz boundary Γ.
Assume that gD(t, ·) ∈ H1/2(ΓD) for all t ∈ [0, T ]. By the trace theorem (e.g., see [1]),

there exists ug(t, ·) ∈ H1(Ω), which is an extension of gD into Ω. Furthermore, assume
that f(t, ·) ∈ L2(Ω) and u0 ∈ H1(Ω) with u0 − ug(0, ·) ∈ H1

0 (Ω) for all t ∈ [0, T ].
The time-continuous weak formulation of problem (3.53) has the following form: Find

u : (0, T ]→ H1(Ω) with u(t, ·)− ug(t, ·) ∈ H1
0 (Ω) for all t ∈ [0, T ], such that

(∂tu, v) + (∇u,∇v) = (f, v) , ∀v ∈ H1
0 (Ω). (3.54)

The second term on the left-hand side is obtained from the Laplace term by applying
integration by parts and the Gaussian theorem, see (2.4).

In the framework of the Galerkin method, instead of H1
0 (Ω), one considers in (3.54) a

finite-dimensional subspace of H1
0 (Ω). By choosing this subspace to be a finite element

space Xh ⊂ H1
0 (Ω), one recovers the Galerkin finite element formulation for (3.54).
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Substitution of H1
0 (Ω) by the POD space Xr ⊂ H1

0 (Ω), spanned by the POD basis
{ϕro,i}ri=1, see Section 3.1, results in the Galerkin reduced-order model (G-ROM).

Let uro(t,x) denote the reduced-order approximation of the solution function u(t,x)
in Xr by the POD basis {ϕro,i}ri=1

u(t,x) ≈ uro(t,x) = ug(t,x) + ur(t,x) = ug(t,x) +
r∑

i=1

αi(t)ϕro,i(x), (3.55)

where αi, i = 1, . . . , r, are the unknown ROM coefficients that have to be determined,
and ug(t,x) is the extension of the Dirichlet boundary condition into the domain Ω.

Finally, the reduced-order model based on POD associated with (3.54) reads as follows:
Find ur = uro − ug : (0, T ]→ Xr such that

(∂tur, ϕro,i) + (∇ur,∇ϕro,i) = (f, ϕro,i)− (∂tug, ϕro,i)− (∇ug,∇ϕro,i) , (3.56)

with i = 1, . . . , r. Using the definition (3.55), the Galerkin ROM (3.56) can be written
in matrix form as follows: Find α = (αi)

r
i=1 : (0, T ]→ Rr such that

Mroα̇+Aroα = f
ro

+ lro, (3.57)

where the dot over α(t) denotes the time derivative, and

(Mro)ij = (ϕro,j , ϕro,i) , i, j = 1, . . . , r, (3.58)

(Aro)ij = (∇ϕro,j ,∇ϕro,i) , i, j = 1, . . . , r, (3.59)

fro,i = (f, ϕro,i) , i = 1, . . . , r, (3.60)

lro,i = − (∂tug, ϕro,i)− (∇ug,∇ϕro,i) , i = 1, . . . , r, (3.61)

with the initial condition obtained by one of the approaches presented in Section 3.2.2.
The ROM (3.57) is thus a system of r ordinary differential equations (ODEs). In prac-

tical applications, the dimension of the POD basis r should be chosen to be small, e.g., of
order O(10), to obtain efficient ROM simulations by applying any ODE solver. The solu-
tion consists of the ROM coefficients α(t), from which the reduced-order approximation
uro(t, x) in (3.55) can be constructed.

Note that for (3.57), the POD basis must satisfy homogeneous Dirichlet boundary
conditions on the Dirichlet boundary as Xr ⊂ H1

0 (Ω). In Section 3.1, the presented
algorithms for the computation of the POD basis were carried out for a general case
disregarding any boundary conditions. A detailed discussion about the treatment of
different Dirichlet boundary conditions within the framework of POD will be carried out
in Section 3.2.3.

3.2.2. Initial Condition

In the literature, the intital condition α0 for a projection-based reduced-order model
based on the POD like (3.57) is usually obtained by projecting u0 − u0

g in the L2 sense
onto the POD basis as follows

α0
i =

(
u0 − u0

g, ϕro,i

)
, i = 1, . . . , r, (3.62)
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where u0
g = (ug(t, ·)). Consequently, the reduced-order approximation of the initial

condition u0 has the form

u0 ≈ u0
ro = u0

g +
r∑

i=1

α0
iϕro,i. (3.63)

It represents the best possible approximation of the given initial condition u0 in the
POD space Xr in the L2 sense. Unless noted otherwise, any projection-based ROM in
the thesis will be equipped with this initial condition.

However, there might be different goals than the optimality of the ROM approximation
of the initial condition in the L2 sense. Depending on the origin of the POD basis, the
initial condition (3.62), although optimal in the L2 sense, can be polluted by spurious
oscillations, e.g., see the top row of Figure 4.28. A good quality initial condition is crucial
for the numerical methods to produce accurate solutions. Therefore, it is desirable to be
able to construct a ROM initial condition that suppresses spurious oscillations as good
as possible but still approximates well the function u0.

A possible way to achieve this goal originates from turbulence modeling. Turbulent
flows contain tiny eddies that cannot be resolved by the realistic computational meshes.
For that reason, the idea of the Large Eddy Simulation (LES) is to replace the solution
u by some kind of the spatial average u, e.g., obtained by the convolution of the solution
with the Gaussian filter function. Averaging the Navier–Stokes equations (2.40)-(2.41)
defined in Rd yields the Navier–Stokes equations for the averaged solution with the
additial term ∇ · uuT , which has to be modeled. The approximation of the additional
term is called the closure model. One of the approaches to model ∇ · uuT is based on
the approximation of the Fourier transform of the Gaussian function using a rational
approximation resulting in the rational LES, see [41,75]. The closure model includes an
operator that describes an elliptic, second order Helmholtz equation to be solved

−µ2∆u+ u = u, (3.64)

where µ is the filter width usually chosen to be µ = O(h). In turbulence modeling,
the problem (3.64) is called differential filter. It represents an approximation of the
convolution operator with the Gaussian filter in Rd. The differential filter is also utilized
in further turbulence models such as Approximate Deconvolution Models and the Leray
α-Model, see [75] for more details.

Thus, the ROM initial condition (3.63) can be filtered in a post-processing step by
computing the Galerkin approximation of the Helmholtz equation (3.64) with respect to
the POD basis {ϕro,1, . . . , ϕro,r}. Finally, the following problem has to be solved: Find

ũ0
ro with ũ0

ro − u0
g =

r∑
i=1

α̃0
iϕro,i ∈ Xr such that

µ2
(
∇ũ0

ro,∇ϕro,i

)
+
(
ũ0

ro, ϕro,i

)
=
(
u0

ro, ϕro,i

)
, i = 1, . . . , r, (3.65)

where u0
ro is the ROM approximation (3.63).
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Next, the convergence of the filtered ROM initial condition for the special case of a
family of uniform triangulations will be investigated. Using the triangle inequality yields

∥∥u0 − ũ0
ro

∥∥
0
≤
∥∥u0 − u0

ro

∥∥
0

+
∥∥u0

ro − ũ0
ro

∥∥
0
. (3.66)

The first term on the right-hand side can be expected to be small by the construction
of u0

ro. In order to obtain an estimation of the second term on the right-hand side, the
difference u0

ro − ũ0
ro has to be employed as a test function in (3.65). By shifting the

second term on the left-hand side to the right-hand side of the equation, and by using
the Cauchy–Schwarz inequality as well as the global inverse estimate, cf. (4.13), one
obtains ∥∥u0

ro − ũ0
ro

∥∥2

0
≤ µ2

∥∥∇ũ0
ro

∥∥
0

∥∥∇
(
u0

ro − ũ0
ro

)∥∥
0

≤ Ch−1µ2
∥∥∇ũ0

ro

∥∥
0

∥∥u0
ro − ũ0

ro

∥∥
0
.

(3.67)

It must be noted that the inverse estimate is applicable as it is assumed that Xr ⊂ Xh.
With µ = O(h), it holds

∥∥u0
ro − ũ0

ro

∥∥
0

= O(h). (3.68)

On the one hand, the filtering procedure (3.65) yields the solution that does not represent
the best possible approximation of u0 in the L2 sense anymore but because of (3.68)
the function ũ0

ro is still a good approximation of u0 with the convergence of at least first
order in the L2 sense. On the other hand, ũ0

ro can lead to a better approximation of u0 in
the sense of other quantities of interest taking advantage of the suppression of spurious
oscillations.

To the best of the author’s knowledge, the utilization of the differential filter in the
post-processing step to the ROM initial condition computed by (3.62) is new. In Figure
4.28, the plots in the bottom line show the results of the filtering procedure (3.65)
applied to the initial conditions depicted in the top row. In Section 4.4, the filtered
initial condition will be employed to investigate its impact on the results of the ROM
simulations.

3.2.3. Boundary Conditions

In Section 3.2.1 it was described how a projection-based Galerkin ROM (3.57) based on
POD can be obtained by applying the Galerkin projection to the weak formulation of
the underlying PDE. Note that the POD basis functions that utilized as ansatz and test
functions have to fulfill homogeneous Dirichlet boundary conditions.

In Section 3.1, the algorithms for the computation of the POD basis are based on
snapshots that do not necessarily vanish on the Dirichlet boundary. In fact, every POD
mode ϕro,i can be interpreted as a particular linear combination of the snapshots, see
(3.44), yielding that the POD modes computed from the raw snapshots representing
the finite element solution are in general non-zero on the Dirichlet boundary. Hence,
some attention has to be paid to the treatment of the boundary conditions within the
framework of the computation of the POD basis and building a ROM in order to obtain
POD modes that are zero on the Dirichlet boundary.
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There are several suggestions in the literature on how to deal with inhomogeneous
Dirichlet boundary conditions. First, the treatment of steady Dirichlet boundary condi-
tions will be depicted, and subsequently three approaches for the time-dependent case
will be presented. As Neumann/outflow boundary conditions are usually homogeneous
in applications, no attention is paid to this type of boundary conditions.

Steady Dirichlet Boundary Conditions

Let the snapshots {um}Mm=1 represent the finite element solution of the problem with
the steady Dirichlet boundary condition

u(t,x) = g(x) on [0, T ]× ΓD ⊂ Γ. (3.69)

In this case, the POD is applied not to the raw snapshots {um}Mm=1 like it is presented
in (3.27), but to the modified snapshots {um − ug}Mm=1, where ug is an extension of g
into Ω which fulfills the boundary condition (3.69). Afterwards this function has to be
added to the reduced-order approximation of u as it is done in (3.55). In the literature,
the most popular choice for ug is the time average of the snapshots, i.e.,

ug := ūh =
1

M

M∑

i=1

ui. (3.70)

Thus, the POD modes are computed from the snapshots’ fluctuations. This approach is
often called the centered-trajectory method. For flow problems, using the average of the
snaphsots for ug has a big advantage as it preserves the linear properties of the solution
such as divergence in the case of the velocity field.

The modified snapshots {um − ug}Mm=1 satisfy homogeneous Dirichlet boundary con-
ditions. Due to (3.44), the POD is a linear procedure. Consequently, the POD basis
functions also satisfy homogeneous Dirichlet boundary conditions and can be used to
build a ROM.

Time-Dependent Dirichlet Boundary Conditions

In the literature one can find several suggestions on how to treat time-dependent Dirich-
let conditions in the ROM applications, e.g., see [20, 47, 48, 56, 116]. In all cases it is
assumed that the Dirichlet boundary conditions are given in the separated form, i.e.,
they can be expressed as a product of two functions depending only on space and on
time, respectively. In this section, the following Dirichlet boundary condition will be
considered

u(t,x) = γk(t)gk(x) on (0, T ]× ΓD,k, k = 1, . . . ,K, (3.71)

where ΓD = ΓD,1 ∪ . . . ∪ ΓD,K , ΓD,i ∩ ΓD,j = ∅ for i 6= j, i, j = 1, . . . ,K. Note that the
steady-state Dirichlet boundary condition is a special case of (3.71), i.e., γk is a constant
for all k = 1, . . . ,K. Three methods for the treatment of the boundary condition of type
(3.71) will be presented.
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Method 1. The method presented here is often used in the literature for K = 1 in
(3.71), e.g., see [20,25,116]. To the best of the author’s knowledge, its generalization for
K ≥ 1 was initially introduced in [56] for the Navier–Stokes equations.

Similarly to the time-independent case presented in Section (3.2.3), the goal is to
obtain a POD basis, which is zero on the Dirichlet boundary. For this purpose, the
original snapshots u1, . . . , uM have to be modified. The following algorithm is suggested
in [56]:

1. Choose K vectors β
k
∈ RK , k = 1, . . . ,K. For the sake of simplicity, the vectors

will be chosen here such that

βk,j = δjk, j, k = 1, . . . ,K,

where δjk denotes the Kronecker delta function, see [56] for a detailed description
of the choice of β

k
, k = 1, . . . ,K.

2. Generate K solutions uS,k, k = 1, . . . ,K, that satisfy the Dirichlet boundary con-
dition

uS,k(x) = βk,jgk(x) on [0, T ]× ΓD,k, j = 1, . . . ,K. (3.72)

Such solutions can be obtained, e.g., by solving the steady-state version of the PDE
by the finite element method with the boundary condition (3.72), or by taking the
solution of the time-dependent PDE at a particular time step such that (3.72) is
fulfilled.

3. Modify the snapshots u1, . . . , uM by

ui(x)−
K∑

k=1

γk(ti)uS,k(x), i = 1, . . . ,M, (3.73)

where the known functions γk are evaluated at the same time instances as the cor-
responding snapshots. The modified snapshots (3.73) fulfill homogeneous Dirichlet
boundary conditions on the entire Dirichlet boundary ΓD.

4. Compute POD basis functions {ϕro,i}ri=1 as described in Section 3.1.3 or 3.1.4.

Finally, the computed POD modes can be used to build the ROM as described in Section
3.2.1. Moreover, the function ug in the reduced-order approximation (3.55) is defined by

ug(t,x) =
K∑

k=1

γk(t)uS,k(x).

Remark 3.5. For many applications one has Dirichlet boundary conditions of type
(3.71) with K = 2 such that

u(t,x) =

{
γ1(t)g1(x) on [0, T ]× ΓD,1,

g2(x) on [0, T ]× ΓD,2,
(3.74)
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i.e., the boundary condition on ΓD,2 is time-independent with γ2(t) = 1. In this case, one
can run the above algorithm for K = 2 generating additionally two solutions uS,1 and
uS,2 by solving the fully discrete system as described in the algorithm. Alternatevely,
one can apply a similar approach for the steady Dirichlet boundary condition on ΓD,2

as presented in Section 3.2.3. For this sake, define uS,2 by

uS,2(x) =
1

M

M∑

i=1

(ui(x)− γ1(ti)uS,1(x)) . (3.75)

Finally, the modified snapshots {ui − γ1(ti)uS,1 − uS,2}Mi=1 are also zero on the entire
Dirichlet boundary ΓD but no additional problem has to be solved to generate uS,2. /

Method 2. The approach for the treatment of time-dependent Dirichlet boundary con-
ditions (3.71) that will be presented next was introduced in [56] in the context of the
Navier–Stokes equations. In contrast to Method 1, the snapshots {u1, . . . , uM} generated
using the boundary conditions (3.71) are not modified to fulfill homogeneous Dirichlet
boundary conditions on ΓD before the POD application. The algorithm reads as follows:

1. Compute POD basis functions {ϕro,i}ri=1 from the raw snapshots {um}Mm=1. Hence,
the resulted POD basis functions are non-zero on ΓD, see the discussion at the
beginning of the Section.

2. Compute a new basis {ϕ̃ro,j}r−Kj=1 as a linear combination of the POD basis functions
{ϕro,i}ri=1 such that each ϕ̃ro,j , j = 1, . . . , r −K, satisfies homogeneous boundary
conditions on ΓD. The construction of such a basis will be explained below.

3. Set the ROM approximation of u(t,x) as

u(t,x) ≈ uro(t,x) =
r∑

i=1

αi(t)ϕro,i(x) (3.76)

and build a projection-based ROM using {ϕ̃ro,j}r−Kj=1 as test functions. To enforce
the correct boundary conditions, and obtain the same number of equations and
unknowns, K more equations have to be added to the system:

uro(t,xk) = γk(t)gk(xk), k = 1, . . . ,K,

where xk is any point on ΓD,k for which g(xk) 6= 0.

Altogether, the time-continuous projection-based ROM for the heat equation with
boundary conditions (3.71) has the form: Find uro(t,x) =

∑r
i=1 αi(t)ϕro,i(x) such that

(∂turo, ϕ̃ro,i) + (∇uro,∇ϕ̃ro,i) = (f, ϕ̃ro,i) , i = 1, . . . , r −K,
uro(t,xk) = γk(t)gk(xk), k = 1, . . . ,K.

(3.77)
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Next, the construction of the basis {ϕ̃ro,j}r−Kj=1 in step 2 of the above algorithm will
be presented. For this purpose, one has to choose an arbitrary point xk with gk(xk) 6= 0
on each boundary part ΓD,k, k = 1, . . . ,K, and solve the problem

ϕ̃ro,j(xk) =
r∑

i=1

βij,iϕro,i(xk) = 0, k = 1, . . . ,K, j = 1, . . . , r −K.

The unknown coefficients βi,j can be computed as the solutions of the systems of
equations

Aβ
j

= 0, j = 1, . . . , r −K, (3.78)

where

A =



ϕro,1(x1) · · · ϕro,r(x1)

...
. . .

...
ϕro,1(xK) · · · ϕro,r(xK)


 ∈ RK×r, β

j
=



αj,1

...
αj,r


 ∈ Rr.

To ensure that (3.78) is not over-determined, one has to choose r such that r ≥ K. The
solution of (3.78) is equivalent to determining ker(A). In [56], it is done by using the
QR decomposition of AT .

It is known that
ker(A) ⊥ im(AT ), (3.79)

where im(AT ) = {AT b}b∈RK . From the QR decomposition of AT , i.e., AT = Q̃R̃, it
follows that

Q̃T im(AT ) = R̃b, ∀b ∈ RK .

As R̃ ∈ Rr×K is an upper triangular matrix and r ≥ K, the last r−K rows of R̃ are zero.
This means that the last r −K rows of Q̃T are orthogonal to im(AT ), or, equivalently,
that the last r −K columns of Q̃ are orthogonal to im(AT ). Due to the relation (3.79),
the last r −K columns of Q̃ are elements of ker(A), i.e., they solve (3.78).

Therefore, the basis functions ϕ̃ro,j , j = 1, . . . , r −K, can be constructed by

ϕ̃ro,j =

r∑

i=1

Q̃K+j,iϕro,i. (3.80)

Method 3. The third method consists in treating the time-dependent Dirichlet bound-
ary conditions of a reduced-order model in the weak sense. This approach was proposed
in [47,48] in the context of reduced-order modeling for the Navier–Stokes equations and
it is also known in the framework of finite element methods as the penalty method,
see [39].

In [47, 48], the Dirichlet boundary conditions of type (3.71) for K = 2, see (3.74), is
considered, i.e., on ΓD,1 a time-dependent and on ΓD,2 a steady boundary condition is
imposed. For the sake of simplicity, the method from [47] will be presented for the heat
equation, see Section 3.2.1. The algorithm reads as follows:
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1. Modify the snapshots {um}Mm=1 by

um − ug,2, m = 1, . . . ,M,

where ug,2 is the function that satisfies the time-independent Dirichlet boundary
condition on ΓD,2 (see Section 3.2.3), e.g., the snapshots’ average. Thus, the
snapshots {um − ug,2}Mm=1 satisfy the homogeneous boundary condition on ΓD,2.

2. Compute POD basis functions {ϕro,i}ri=1 as described in Section 3.1.3 or 3.1.4
from the modified snapshots {um − ug,2}Mm=1. Note that the basis functions ϕro,i,
i = 1, . . . , r, satisfy the homogeneous boundary condition on ΓD,2 but not on ΓD,1.

3. Build a ROM as it was described to build (3.56) using {ϕro,i}ri=1 as the test func-
tions and the reduced-order approximation of u(t,x) of the form

u(t,x) ≈ uro(t,x) = ug,2(t,x) + ur(t,x) = ug,2(t,x) +

r∑

i=1

αi(t)ϕro,i(x).

In contrast to (3.56), here it holds span{ϕro,1, . . . , ϕro,r} 6⊂ H1
0 (Ω). Consequently,

the boundary term

−
∫

ΓD,1

∇uroϕi · n ds, i = 1, . . . , r,

arising from integration by parts of (∆uro, ϕro,i), see (2.4), does not cancel. The
time-dependent boundary condition on ΓD,1 is enforced in a weak sense by adding
the following term to the ROM

−
∫

ΓD,1

uro − γ1g1

ε
ϕro,i ds, i = 1, . . . , r,

where ε is a parameter to be chosen. It weights the importance of the fulfillment
of the boundary condition versus the fulfillment of the underlying equation.

Altogether, the time-continuous projection-based Galerkin ROM for the heat equation
reads as follows: Find ur = uro − ug,2 such that

(∂tur, ϕro,i) + (∇ur,∇ϕro,i)−
∫

ΓD,1

∇urϕro,i · n ds−
1

ε

∫

ΓD,1

urϕro,i ds

= (f, ϕro,i)− (∂tug,2, ϕro,i)− (∇ug,2,∇ϕro,i)

+

∫

ΓD,1

∇ug,2ϕro,i · n ds+

∫

ΓD,1

ug,2 − γ1g1

ε
ϕro,i ds.

(3.81)

Remark 3.6. The algorithm above can be modified by, e.g., treating the steady bound-
ary condition on ΓD,2 the same way as the time-dependent one on ΓD,1. In this case, step
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1 can be skipped and one computes the POD basis {ϕro,i}ri=1 from the raw snapshots
{ui}Mm=1. In step 3, the ROM has to be modified by setting ug,2 = 0 and additionally
inforcing the Dirichlet boundary condition on ΓD,2, i.e., adding the boundary terms

−
∫

ΓD,2

∇uroϕro,i · n ds−
∫

ΓD,2

uro − g2

ε
ϕro,i ds

on the left-hand side of (3.81). The approach can be extended straightforwardly for
the boundary condition of type (3.71) with K ≥ 2. In this case, the reduced-order

approximation has the form u(t, x) ≈ uro(t, x) =
r∑
i=1

αi(t)ϕro,i(x). Moreover, one has to

add

−
∫

ΓD

∇uroϕro,i · n ds−
K∑

k=1

∫

ΓD,k

uro − γkgk
ε

ϕro,i ds, i = 1, . . . , r, (3.82)

to the ROM obtained in step 3 of the above algorithm. /

3.2.4. Implementation

In practice, one has to disretize the problem (3.56) in time in order to solve it numerically.
For the sake of simplicity, let ∆t denote a fixed time step. The superscipt n, n = 1, 2, ...,
of a function denotes the evaluation of the function at time tn = n∆t. The projection-
based Galerkin reduced-order model of the heat equation (3.53) combined with the
one-step θ-scheme reads: For n = 1, 2, . . . find unr = unro − ung ∈ Xr such that

(unr , ϕro,i) + θ∆t (∇unr ,∇ϕro,i) =
(
un−1
r , ϕro,i

)
− (1− θ)∆t

(
∇un−1

r ,∇ϕro,i

)

+ (1− θ)∆t
(
fn−1, ϕro,i

)
+ θ∆t (fn, ϕro,i) +

(
un−1
g − ung , ϕro,i

)

−∆t
(
θ∇ung + (1− θ)∇un−1

g ,∇ϕro,i

)
, i = 1, . . . , r,

(3.83)

where θ has to be chosen, e.g., see Table 2.1.
Its corresponding matrix-vector form reads: Find αn = (αni )ri=1 ∈ Rr such that

[Mro + θ∆tAro]αn = [Mro − (1− θ)∆tAro]αn−1 + (1− θ)∆tfn−1
ro

+ θ∆tfn
ro

+ lnro,

(3.84)
where Mro, Aro and fn

ro
are defined by (3.58), (3.59), (3.60), resprectively, and

lnro,i =
(
un−1
g − ung , ϕro,i

)
−∆t

(
θ∇ung + (1− θ)∇un−1

g ,∇ϕro,i

)
, (3.85)

α0
i =

(
u0 − u0

g, ϕro,i

)
, i = 1, . . . , r. (3.86)

The computational process for the reduced-order modeling based on POD can be inte-
grated into the already existing finite element software used to compute snapshots. Thus,
one does not need to provide any new assembling routines for the ROM setting. By ap-
plying some algebraic manipulations, one can switch between the finite element and the
reduced-oder model presentations as it can be considered as a basis transformation.
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3. Reduced-Order Modeling Based on Proper Orthogonal Decomposition

One of the core goals of the reduced-order models is computational efficiency. The
computational time of a ROM can be divided into offline and online stages. The offline
stage includes the computations that have to be performed only once, before the time
iteration loop. The offline stage usually comprises the computation of the POD basis
functions and all parts of the system that do not depend on time. The online stage
consists of computations that have to be repeated at each iteration inside the time loop.
Therefore, any computations involving the complexity of the finite element dimension
N � r should be avoided in the online stage.

Let the Dirichlet boundary condition in (3.53) be of the form (3.71)

u(t,x) = γk(t)gk(x) on (0, T ]× ΓD,k, k = 1, . . . ,K.

Next, the practical computation of the Galerkin ROM (3.84) will be presented applying
Method 1 in Section 3.2.3 for the treatment of the time-dependent Dirichlet boundary
conditions. The implementation of the other two methods can be carried out similarly
and therefore will not be described here.

Let the POD basis functions {φro,i}ri=1 be constructed following the algorithm of
Method 1 in Section 3.2.3, and let Φ ∈ RN×r denote the matrix consisting of the fi-
nite element coefficients of the POD modes columnwise, see (3.49). Hence, the function
ug fulfilling the correct Dirichlet boundary conditions on ΓD reads

ug(t,x) =
K∑

k=1

γk(t)uS,k(x), (3.87)

where uS,k ∈ Xh, k = 1, . . . ,K, are obtained as described in Step 2 of the algorithm.
Hence, in what follows, ug is to be understood as the finite element representation of
the extension of the Dirichlet boundary condition into Ω.

With (3.33), the reduced mass and stiffness matrices in (3.84) can be represented by

Mro = ΦTMhΦ, Aro = ΦTAhΦ, (3.88)

where Mh and Ah are the finite element mass and stiffness matrices, defined by (2.11)
and (2.12), respectively. Note that the reduced mass matrix Mro is the identity matrix
if the POD basis is computed with respect to the L2 inner product. The computation
of Mro and Aro can be conducted in the offline stage by assembling Mh and Ah, and
subsequently by multiplying the matrices with Φ as shown in (3.88).

Expression lnro defined by (3.85) can be computed efficiently in the online stage due to
the separated form of the function ug. For this sake, r-dimensional vectors

ΦTMhuS,k, ΦTAhuS,k, k = 1, . . . ,K, (3.89)

are constructed only once before the time loop. At each time iteration, one needs to
compute

lnro =
K∑

k=1

[
(γnk − γn−1

k )ΦTMhuS,k −∆t(θ1γ
n
k + θ2γ

n−1
k )ΦTAhuS,k

]
. (3.90)
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3. Reduced-Order Modeling Based on Proper Orthogonal Decomposition

Similarly to lnro, the source term fn
ro

can be obtained with a low computational effort
in the online stage if the source field f can be formulated in the separated form by
f(t,x) = γf (t)gf (x). In such a case, in the offline stage one has to assemble the finite
element vector g

f,h
= ((gf , ϕh,1), . . . , (gf , ϕh,N ))T . At the nth time step, one computes

fn
ro

by

fn
ro

= γnf ΦT g
f,h
. (3.91)

Let unh denote the finite element solution at time tn, n ≥ 0. Similarly to (3.86), the
ROM solution αn at time tn can be reconstructed from unh by

αn = ΦTMh(unh − ung ). (3.92)

Vice versa, the reduced-order approximation of the finite element solution is given by

unh ≈ ung + Φαn. (3.93)

The reduced-order models of more complicated equations like the convection-diffusion-
reaction equation (2.1) and the Navier–Stokes equations (2.40)-(2.41) include additional
terms compared to (3.84). Their implementation will be discussed in Section 4.2 and
Section 5.3, respectively.
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4. SUPG Reduced-Order Models for
Convection-Dominated Problems

This chapter presents a projection-based Streamline-Upwind Petrov–Galerkin reduced-
order model (SUPG-ROM) for convection-dominated problems which are described by
the convection-diffusion-reaction equation (2.1). The ROM is based on the Proper Or-
thogonal Decomposition, see Section 3.1, and investigated theoretically and numerically.
A large part of the results presented in this chapter can be found in [44]. To the best of
the author’s knowledge, the SUPG-ROM was first studied in [88] and later on in [19], in
both papers for the Navier–Stokes equations. Numerical analysis is utilized to propose
the scaling of the stabilization parameter for the SUPG-ROM. In this respect two ap-
proaches are applied: One based on the underlying finite element discretization and the
other one based on the POD truncation. For the numerical investigation of the deter-
mined stabilization parameters, the SUPG finite element method was used on realistic
meshes for computing the snapshots, leading to some noise in the POD data. The result-
ing SUPG-ROMs and the standard Galerkin ROM (G-ROM) are studied numerically.
Another objective of the numerical investigations consists in exploring the impact of the
accuracy of the snapshots and of the utilized initial condition on the ROM results.

4.1. Introduction

Reduced-order models based on POD are already used for many complex systems. There
are situations where G-ROMs are efficient and relatively accurate (see [63, 97, 107]).
However, in other situations, a G-ROM might produce inaccurate results [10]. One
of the main reasons for these inaccurate results is that the underlying G-ROM can be
numerically unstable, e.g., the G-ROM solution can blow up in a nonphysical way, see [5,
16,85] for the compressible Navier-Stokes equations and [13,127] for the incompressible
Navier-Stokes equations. Various stabilized ROMs have been proposed, see [5, 9, 12,
13, 19, 71, 88, 127, 144]; see also [34, 35, 109] for similar work in reduced basis methods.
This chapter focuses on ROMs for convection-dominated convection-diffusion-reaction
equations and these ROMs’ potential numerical instability due to the unresolved layers.
For the stabilization of the ROMs, the Streamline-Upwind Petrov–Galerkin is employed.

The finite element Streamline-Upwind Petrov–Galerkin method is one of the most
popular stabilized finite element methods, see Section 2.1.3. The method contains a
stabilization parameter to be chosen, whose asymptotic value for steady-state problems
is well known from finite element error analysis (e.g., [118]); it depends on the local mesh
width. However, the situation is not completely clear for time-dependent problems. For
general problems, optimal estimates can only (to the best of the author’s knowledge)
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4. SUPG Reduced-Order Models for Convection-Dominated Problems

be derived for parameters dependent on the length of the time step. For a simplified
situation, estimates can also be proven for parameters dependent on the mesh width;
see [81] and Section 2.1.3 for details. From the practical point of view, the latter choice
seems to be more appropriate since the difficulty of not being able to resolve the layers
vanishes on sufficiently fine meshes but not for sufficiently small time steps.

As in the finite element SUPG method, the question of appropriate stabilization pa-
rameters for SUPG-ROMs arises. SUPG-ROM parameters depending only on the spatial
resolution are preferable for the same reasons as in the finite element method (see the
discussion in Section 2.1.3). A ROM based on finite element data has two parts to its
spatial resolution: The spatial resolution from the finite element space and the spatial
resolution from the space of POD modes used in the ROM, which is a subspace of the
finite element space. One can ask on which spatial resolution the stabilization parameter
for the SUPG-ROM should depend. This is the main question studied here.

The question of appropriate stabilization parameters for the SUPG-ROM is addressed
by means of a numerical analysis of this problem. To the best of the author’s knowledge,
the use of numerical analysis to propose the SUPG-ROM stabilization parameter is first
introduced in [44]. In the literature so far, simply the stabilization parameter from the
finite element method was used, like in [88], or an optimization problem for the deter-
mination of the parameter was solved, as in [19]. Motivations for these approaches with
numerical analysis were not provided. Without any doubt it is desirable to have some
support for the choice of stabilization parameters coming from numerical analysis, since
parameters determined with considerations from numerical analysis should be valid for
a wide range of settings (e.g., with respect to the diffusion coefficients and the convec-
tion vector). As a result of the analytical considerations, two stabilization parameters
will be proposed. One of them is based on the finite element resolution and the other
one is based on the POD spatial resolution. The resulting ROMs will be denoted as
FE-SUPG-ROM and POD-SUPG-ROM, respectively.

Solutions of the convection-dominated convection-diffusion-reaction problems (2.1) de-
scribing such physical quantities as, e.g., concentration or temperature, can take values
only in a certain interval. Especially for the simulation of strongly coupled systems, e.g.,
like in [80], it is of great importance to employ numerical methods producing solutions
without or at least with small under- and overshoots. The reason is that non-physical
solutions serving as an input to other equations could cause instabilities or completely
incorrect model results. In the context of finite element methods, there exist schemes
that aim to prevent the under- and overshoots of the solution, e.g., the FEM-FCT
scheme presented in Section 2.1.5. One of the objectives of the numerical studies will
be to provide an answer to the question if the employed ROMs based on the physically
meaningful snapshots are able to yield solutions without or with very small under- and
overshoots.

In some situations, the reduced-order approximation of the initial condition computed
in the standard way by (3.62) can contain some spurious oscillations, e.g., see the upper
row in Figure 4.28. In order to reduce those oscillations, a filtering post-processing
procedure of the initial condition was proposed in Section 3.2.2. Within the scope of
the numerical investigations in this chapter, the impact of the utilization of the filtered
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initial condition on the ROM results will be studied.
The chapter is organized as follows. Section 4.2 gives formulations of the G-ROM and

the SUPG-ROM. The core of Section 4.3 is the proposal of two stabilization parameters
for the SUPG-ROM, using a numerical analysis of the SUPG-ROM. The SUPG-ROMs
and the G-ROM are studied numerically in Section 4.4 on three convection-dominated
convection-diffusion-reaction problems.

4.2. ROM Setting

In this section, the SUPG reduced-order model for the convection-dominated problem
(2.1) will be derived.

Let X = H1
0 (Ω), and Xh ⊂ X denote a conforming finite element space spanned by

piecewise polynomials of order m used to compute the snapshots. Let XR be the R-
dimensional space of the snapshots, and Xr the r-dimensional POD space spanned by the
POD basis functions {ϕro,1, . . . , ϕro,r} with r ≤ R. The POD modes are assumed to be
computed with respect to the L2 inner product, which is the most common choice found
in the literature. To compute the POD basis functions, the centered-trajectory method
is utilized, i.e., the POD modes are computed from the fluctuation of the snapshots
umh − ūh, m = 1, . . . ,M , where ūh is the average of the snapshots, see Section 3.2.3.

The projection-based G-ROM for (2.1) can be built as described in Section 3.2 by
projecting the continuous problem into the finite-dimensional POD space Xr.

Let the ROM approximation of the solution u be expressed by

u(t,x) ≈ uro(t,x) = ūh(x) + ur(t,x),

where ur(t,x) =
∑r

i=1 αi(t)ϕro,i(x) with the unknown coefficients {αi}ri=1. Then, the
Galerkin reduced-order model for (2.1) reads: Find ur = uro − ūh : (0, T ] → Xr such
that ∀vr ∈ Xr

(∂tur, vr) + (ε∇ur,∇vr) + (b · ∇ur, vr) + (cur, vr)

= (f, vr)− (ε∇ūh,∇vr)− (b · ∇ūh, vr)− (cūh, vr) .
(4.1)

In many engineering applications, one has to deal with the convection-dominated regime,
see Section 2.1.2. An important question is how to compute a solution in the POD space
Xr which is as accurate as possible compared with the solution of the continuous problem.
To achieve this goal, it might be necessary in the convection-dominated regime to add
some stabilization to the finite-dimensional problem (4.1) similarly to the finite element
methods presented in Section 2.1. Here, the SUPG stabilization, see Section 2.1.3, of
(4.1) will be considered.

Let the superscript n of a function denote the evaluation of the function at the time
instance tn and let ∆t denote the fixed time step. The backward Euler/SUPG reduced-
order model reads as follows: For n = 1, 2, . . . find unr = unro − ūh ∈ Xr such that
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∀vr ∈ Xr

(
unr − un−1

r , vr
)

+ ∆taSUPG,r (unr , vr) = ∆t (fn, vr)

+ ∆t
∑

K∈Th
δr,K (fn, bn · ∇vr)K −

∑

K∈Th
δr,K

(
unr − un−1

r , bn · ∇vr
)
K

−∆t aSUPG,r (ūh, vr) ,

(4.2)

where

aSUPG,r(ur, vr) = (ε∇ur,∇vr) + (bn · ∇ur, vr) + (cnur, vr)

+
∑

K∈Th
δr,K (−ε∆ur + bn · ∇ur + cnur, b

n · ∇vr)K (4.3)

for all ur, vr ∈ Xr.

Remark 4.1. The bilinear form aSUPG,r(·, ·) consists of the same terms as the bilinear
form (2.17) but with the SUPG-ROM parameter δr,K instead of δh,K on the underlying
triangulation Th. /

Remark 4.2. Note that by setting δr,K = 0 in (4.2), the Galerkin ROM (4.1) discretized
with the backward Euler scheme in time is recovered. /

Similarly to (3.84), one can formulate the problem (4.2) in the matrix-vector form as
follows: Find αn = (αni )ri=1 ∈ Rr such that

[M∗ro + θ∆tSro]αn = M∗roα
n−1 + θ∆tf∗,n

ro
+ l∗,nro , (4.4)

where

(M∗ro)ij = (ϕro,j , ϕro,i) +
∑

K∈Th

∫

K
δr,Kϕro,jb

n · ∇ϕro,i dx, i, j = 1, . . . , r, (4.5)

(Sro)ij = (ε∇ϕro,j ,∇ϕro,i) + (bn · ∇ϕro,j ,∇ϕro,i) + (cnϕro,j , ϕro,i)

+
∑

K∈Th

∫

K
δr,K (−ε∆ϕro,j + bn · ∇ϕro,j + cnϕro,j) b

n · ∇ϕro,i dx, (4.6)

i, j = 1, . . . , r,

f∗,nro,i = (fn, ϕro,i) +
∑

K∈Th

∫

K
δr,Kf

nbn · ∇ϕro,i dx, i = 1, . . . , r, (4.7)

l∗,nro,i = (ε∇ūh,∇ϕro,i) + (bn · ∇ūh,∇ϕro,i) + (cnūh, ϕro,i)

−
∑

K∈Th

∫

K
δr,K∆ūhb

n · ∇ϕro,i dx+
∑

K∈Th

∫

K
δr,Kb

n · ∇ūhbn · ∇ϕro,i dx (4.8)

+
∑

K∈Th

∫

K
δr,Kc

nūhb
n · ∇ϕro,i dx, i, j = 1, . . . , r,

α0
i =

(
u0 − ūh, ϕro,i

)
, i = 1, . . . , r. (4.9)
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Remark 4.3. The fourth term of Sro with the piecewise defined Laplacian is well-defined
as the POD basis functions ϕro,i, i = 1, . . . , r, are, by construction, linear combinations
of finite element basis functions, see Section 3.1.2. The term vanishes when less than
second order finite elements are used. /

The computational efficiency of the reduced-order models is of crucial importance.
Therefore, within the time loop it is desired to avoid computations of the complexity of
the finite element dimension. In Section 3.2.4, the implementation of the terms in (4.4)
which do not include the reaction and the convection fields was discussed. All terms
with b and c can be efficiently computed if the convection and the reaction fields can be
written in the separated form as

b(t,x) = γb(t)gb(x), c(t,x) = γc(t)gc(x).

For the sake of brevity, only the implementation of the third term of Sro will be described.
The computation of other terms can be carried out following the same idea. Let Cro

denote the reduced-order matrix with the entries

(Cro)ij = (cnϕro,j , ϕro,i) , i, j = 1, . . . , r.

Its computation comprises two steps. In the first step, which is the offline stage, one has
to assemble the finite element matrix Ch with the time-independent part of the reaction
field once, i.e.,

(Ch)ij = (gcϕh,j , ϕh,i) , i, j = 1, . . . , N.

In the second step, which is the online stage, Cro is obtained at every time iteration by

Cro = γnc ΦTChΦ, n = 1, 2, . . . .

4.3. Stabilization Parameter Based on Numerical Analysis

In this section, numerical analysis is used to propose scalings of the stabilization pa-
rameter of the SUPG-ROM (4.2). In what follows, C denotes a generic constant which
does not depend on the mesh width h and on the size of the diffusion ε. The in-
vestigation is restricted to the case of uniform meshes. Therefore, δr,K = δr for all
K ∈ Th. Thus, the SUPG-ROM (4.2) can be reformulated as follows: For n = 1, 2, . . .
find unr = unro − ūh ∈ Xr such that ∀vr ∈ Xr

(
unr − un−1

r , vr
)

+ ∆taSUPG,r (unr , vr) = ∆t (fn, vr)

+ ∆tδr (fn, bn · ∇vr)− δr
(
unr − un−1

r , bn · ∇vr
)
−∆t aSUPG,r (ūh, vr) .

(4.10)

The analytical study for the proposal of the stabilization parameter δr in (4.10) is based
on considerations of the error between the solution u of the continuous problem (2.2)
and the solution uro of (4.10). Here, it is assumed that the SUPG finite element method
(2.18) is applied to generate snapshots needed for the computation of the POD basis.
As a first step, the error is split in the form

u− uro = (u− uh) + (uh − Pr(uh)) + (Pr(uh)− uro), (4.11)
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where uh is the finite element solution and

Pr(uh) := ūh +
r∑

j=1

(uh − ūh, ϕro,j)ϕro,j (4.12)

is the L2 projection of a finite element function into the space Xr.
The first term on the right-hand side of (4.11) is the finite element error discussed

in Section 2.1.4. In the course of the numerical analysis, different types of the inverse
estimates are discussed in Section 4.3.1. To estimate the second term in (4.11), estimates
of the projection error for the projection from Xh to Xr are derived in Section 4.3.2.
Next, conditions for the coercivity of the SUPG bilinear form in Xr are given in Section
4.3.3. Finally, in Section 4.3.4 two different versions of the SUPG-ROM parameters are
proposed.

4.3.1. Inverse Estimates

Assuming that the family of triangulations is quasi-uniform, the local inverse inequality
(2.6) for finite element functions with the inverse constant µinv holds. For families of
uniform triangulations, as considered in this analytical study, one can derive from (2.6)
global inverse estimates of the form


∑

K∈Th
‖vh‖2m,K




1/2

≤ Chl−m

∑

K∈Th
‖vh‖2l,K




1/2

, ∀vh ∈ Xh, (4.13)

where µinv is included into the generic constant C.
Inverse estimates are also known in the context of POD. In [89], the following inverse

estimate was proven:

‖∇vr‖0 ≤
√
|||Aro|||2

∣∣∣∣∣∣M−1
ro

∣∣∣∣∣∣
2
‖vr‖0, ∀vr ∈ Xr, r ∈ {1, . . . , R}, (4.14)

where |||·|||2 denotes the spectral norm of a matrix, Mro and Aro are the reduced mass
and stiffness matrices defined by (3.58) and (3.59), respectively. When L2(Ω) is the
norm to generate the POD modes (as in this study), Mro in (4.14) is the identity matrix.
Estimate (4.14) was derived in [89] for the situation that the POD basis is computed
from snapshots in an infinite-dimensional Hilbert space.

In the setting of [89], the POD basis functions are known to belong to the infinite-
dimensional Hilbert space. In practice, however, the POD basis is usually computed from
snapshots of some numerical approximation of the solution of the continuous problem.
Here, the snapshots are computed with a finite element method and belong to Xh.
Consequently, the POD basis functions {ϕro,1, . . . , ϕro,r}, r ≤ R, belong not only to X
but also to Xh and XR, see Section 3.1.2. Hence, two inverse estimates hold for functions
in Xr: a POD estimate of form (4.14) and a finite element estimate of form (4.13).
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The POD inverse estimate (4.14) can be extended to the piecewise defined Laplacian.
Let the reduced Hessian matrix, denoted by Hro, be given by

(Hro)ij =
∑

K∈Th

∫

K
∆ϕro,j∆ϕro,i dx, i, j = 1, . . . , r. (4.15)

Lemma 4.1 (POD Inverse Estimate). For all vr ∈ Xr, 1 ≤ r ≤ R, the following
estimate holds:

‖∆vr‖0 ≤
√
|||Hr|||2

∣∣∣∣∣∣A−1
ro

∣∣∣∣∣∣
2
‖∇vr‖0, (4.16)

where ‖∆vr‖0 is defined by a sum over the mesh cells as used in (4.15).

Proof. The proof follows [89]. Let vr =
∑r

j=1 xjϕro,j and x = (x1, . . . , xr)
T . Then, one

obtains from the definition of Hro, a standard estimate of matrix-vector products, the
fact that Aro is symmetric and positive definite, and the definition of Aro

‖∆vr‖20 = xTHrox ≤ |||Hro|||2‖x‖2eucl = |||Hro|||2xTx

= |||Hro|||2xTAT/2ro A−1
ro A

1/2
ro x ≤ |||Hro|||2

∣∣∣∣∣∣A−1
ro

∣∣∣∣∣∣
2

∥∥∥A1/2
ro x

∥∥∥
2

eucl

= |||Hro|||2
∣∣∣∣∣∣A−1

ro

∣∣∣∣∣∣
2
xTArox = |||Hro|||2

∣∣∣∣∣∣A−1
ro

∣∣∣∣∣∣
2
‖∇vr‖20,

where ‖·‖eucl denotes the Euclidian vector norm.

If in the generation of the POD basis, the H1(Ω) seminorm was used (see, e.g., [68,89])
instead of the L2(Ω) norm utilized in the underlying study, then Aro in (4.16) is the
identity matrix.

Remark 4.4. The asymptotic behavior of the first factor on the right-hand side of (4.14)
and (4.16) will be discussed in a simplified situation. As in [68], it is assumed that the
POD vectors are the Fourier basis in a single dimension with homogeneous Dirichlet
boundary conditions, i.e., ϕro,j(x) = sin(πjx) on [0, T ]. The single dimension case is
relevant because the considered convection-dominated problems exhibit motion along a
preferred direction. Therefore, the matrices Aro, Hro, M−1

ro , and A−1
ro are diagonal and

have the entries

(Aro)jj =

∫ 1

0
(πj)2 cos(πjx)2 = O(j2), j = 1, . . . , r,

(Hro)jj =

∫ 1

0
(π2j2)2 sin(πjx)2dx = O(j4), j = 1, . . . , r,

(M−1
ro )jj =

(∫ 1

0
sin(πjx)2dx

)−1

= O(1), j = 1, . . . , r,

(A−1
ro )jj =

(∫ 1

0
(πj)2 cos(πjx)2

)−1

= O(j−2), j = 1, . . . , r.

Hence, |||Aro|||2 = O(r2),
∣∣∣∣∣∣M−1

ro

∣∣∣∣∣∣
2

= O(1), |||Hro|||2 = O(r4) and
∣∣∣∣∣∣A−1

ro

∣∣∣∣∣∣
2

= O(1).
Altogether, the first factors on the right-hand sides of (4.14) and (4.16) scale like O(r)
and O(r2), respectively. /
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Figure 4.1.: Remark 4.5: Dependence of the constants from the inverse estimates (4.14)
(left) and (4.16) (right) on the dimension of the POD basis.

The following numerical example will demonstrate that this scaling can be observed
also in more general situations.

Remark 4.5. Consider a two-dimensional test example for the convection-diffusion-
reaction equation (2.1) describing a traveling wave with ε = 10−8. A detailed specifica-
tion of the problem setting is given in Example 4.2 below. In Figure 4.1, the dependence
of the constants from the inverse estimates (4.14) and (4.16) on the dimension of the
POD basis r is shown. The asymptotic behavior discussed in Remark 4.4 can be observed
also in this two-dimensional case. /

4.3.2. Projection Error

This section presents an estimate for the error between the snapshots and their projection
into the POD space Xr. This error is the second term on the right-hand side of the error
decomposition (4.11).

Lemma 4.2. Let ūh = 0 and let 〈·, ·〉s, s ∈ {0, 1, 2}, be a semi-inner product, see [32],
with induced seminorm | · |s of Hs(Ω). Then the POD projection error in the s-seminorm
satisfies

M∑

m=1

∣∣∣∣∣∣
umh −

r∑

j=1

(umh , ϕro,j)ϕro,j

∣∣∣∣∣∣

2

s

=

R∑

j=r+1

λj |ϕro,j |2s.

For s = 0, 〈·, ·〉s and | · |s are the inner product (·, ·) and the norm ‖·‖0, respectively. For
s = 2, the definitions of 〈·, ·〉s and | · |s have to be understood as a sum over the mesh
cells.

Proof. Taking the s-seminorm of the POD truncation error
∑R

j=r+1 (umh , ϕro,j)ϕro,j , m =
1, . . . ,M , using the definition of the eigenvalues and eigenfunctions of the POD, e.g.,
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see [26, Eq. (6)] or (3.38) for the matrix-vector representation, and applying the orthog-
onality of the POD basis functions yields

M∑

m=1

∣∣∣∣∣∣
umh −

r∑

j=1

(umh , ϕro,j)ϕro,j

∣∣∣∣∣∣

2

s

=

M∑

m=1

∣∣∣∣∣∣

R∑

j=r+1

(umh , ϕro,j)ϕro,j

∣∣∣∣∣∣

2

s

=

M∑

m=1

〈
R∑

j=r+1

(umh , ϕro,j)ϕro,j ,

R∑

k=r+1

(umh , ϕro,k)ϕro,k

〉

s

=
M∑

m=1

R∑

j=r+1

R∑

k=r+1

(umh , ϕro,j) (umh , ϕro,k) 〈ϕro,j , ϕro,k〉s

=

R∑

j=r+1

R∑

k=r+1

(
M∑

m=1

(umh , ϕro,j)u
m
h , ϕro,k

)
〈ϕro,j , ϕro,k〉s

=
R∑

j=r+1

R∑

k=r+1

(λjϕro,j , ϕro,k) 〈ϕro,jϕro,k〉s

=

R∑

j=r+1

λj |ϕro,j |2s.

The result of Lemma 4.2 is similar to results obtained in [69,126].

Corollary 4.1. It holds that

M∑

m=1

|umh − Pr(umh )|2s =

R∑

j=r+1

λj |ϕro,j |2s. (4.17)

Proof. By the definition (4.12) of the projection, it follows that

M∑

m=1

|umh − Pr(umh )|2s =
M∑

m=1

∣∣∣∣∣∣
(umh − ūh)−

r∑

j=1

(umh − ūh, ϕro,j)ϕro,j

∣∣∣∣∣∣

2

s

.

Since the arithmetic average umh − ūh is zero, the application of Lemma 4.2 proves the
statement.

Corollary 4.2. It holds that

M∑

m=1

|umh − Pr(umh ))|2s ≤ Ch−2s
R∑

j=r+1

λj . (4.18)
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Proof. Since Xr ⊂ Xh, one can apply the inverse estimate (4.13) to the right-hand side
of (4.17)

|ϕro,j |2s ≤ Ch−2s‖ϕro,j‖20.
The statement of the corollary follows by utilizing the fact that the POD basis functions
are normalized.

Altogether, there are two ways to bound the projection error: with data from the
POD only, see (4.17), or with data from the POD and the finite element method, see
(4.18). Note that the sums on the right-hand side of (4.17) and (4.18) can be practically
computed.

4.3.3. Coercivity of the SUPG-ROM Bilinear Form in Xr

The coercivity of the SUPG bilinear form (2.17) in Xr is essential for the well-posedness
of the SUPG-ROM problem in Xr. This property gives first restrictions on the stabi-
lization parameters.

Lemma 4.3. Let either

0 ≤ δr ≤
1

2
min

{
µ0

‖c‖2L∞(Ω)

,
h2

εµ2
inv

}
, (4.19)

or

0 ≤ δr ≤
1

2
min

{
µ0

‖c‖2L∞(Ω)

,
1

ε|||Hro|||2
∣∣∣∣∣∣A−1

ro

∣∣∣∣∣∣
2

}
. (4.20)

Then

aSUPG,r(vr, vr) ≥
1

2
|||vr|||2SUPG,r, ∀vr ∈ Xr, (4.21)

with

|||vr|||SUPG,r =
(
ε|vr|21 + µ0‖vr‖20 + δr‖b · ∇vr‖20

)1/2
, (4.22)

and µ0 from (2.19).

Proof. The proof follows the standard lines as it can be found, e.g., in [118], see also
the proof of Lemma 2.2. Using integration by parts, the assumption (2.19), and the
definition (4.22) one obtains

aSUPG,r(vr, vr) ≥ ε|vr|21 + µ0‖vr‖20 + δr‖b · ∇vr‖20 − δr
∑

K∈Th
(−ε∆vr + cvr, b · ∇vr)K

(4.23)

= |||vr|||2SUPG,r − δr
∑

K∈Th
(−ε∆vr + cvr, b · ∇vr)K .

By the Cauchy–Schwarz inequality and Young’s inequality, the last term on the right-
hand side of (4.23) can be estimated by
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∣∣∣∣∣∣
δr
∑

K∈Th
(−ε∆vr + cvr, b · ∇vr)K

∣∣∣∣∣∣

≤ δr

∣∣∣∣∣∣
∑

K∈Th
(−ε∆vr, b · ∇vr)K

∣∣∣∣∣∣
+ δr |(cvr, b · ∇vr)|

≤ δr


∑

K∈Th
ε‖∆vr‖0,K


 ‖b · ∇vr‖0 + δr‖cvr‖0‖b · ∇vr‖0

≤ δr
∑

K∈Th
ε2‖∆vr‖20,K + δr‖c‖2L∞(Ω)‖vr‖20 +

δr
2
‖b · ∇vr‖20.

Inserting this estimate into (4.23) results in

aSUPG,r(vr, vr) ≥ |||vr|||2SUPG,r − δr
∑

K∈Th
ε2‖∆vr‖20,K − δr‖c‖2L∞(Ω)‖vr‖20 −

δr
2
‖b · ∇vr‖20.

For estimating the term with the Laplacian, one can either use the finite element inverse
estimate (4.13) or the POD inverse estimate (4.16). Inserting in either case of the
restrictions on the stabilization parameter proves the statement of the lemma.

Note that the second restriction in (4.19) and (4.20) is only necessary if finite elements
are used where the restriction of the Laplacian to a mesh cell does not vanish.

4.3.4. On Error Estimates Involving the SUPG-ROM Solution

The first approach considers the error between un, the solution of the continuous problem
(2.2) evaluated at time step tn, and the SUPG-ROM solution unro of (4.10) directly, using
the splitting

un − unro = (un − Pr(unh)) + (Pr(u
n
h)− unro) = ηn − ζnr . (4.24)

Subtracting the SUPG-ROM problem (4.10) from the continuous equation (2.2) and
using ζnr ∈ Xr ⊂ X as a test function yields

(
∂tu

n − unr − un−1
r

∆t
, ζnr

)
+ (ε∇un,∇ζnr ) + (bn · ∇un, ζnr ) + (cnun, ζnr )

= aSUPG,r(u
n
ro, ζ

n
r ) + δr

(
unr − un−1

r

∆t
, bn · ∇ζnr

)
− δr (fn, bn · ∇ζnr ) .

(4.25)

Adding the residual of (2.1) at time step tn tested by bn ·∇ζnr and multiplied by δr, i.e.,

δr (unt − ε∆un + bn · ∇un + cnun − fn, bn · ∇ζnr ) ,
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to (4.25), and using the fact that it vanishes almost everywhere, one obtains

aSUPG,r(u
n
ro, ζ

n
r ) =aSUPG,r(u

n, ζnr ) +

(
∂tu

n − unr − un−1
r

∆t
, ζnr

)

+ δr

(
∂tu

n − unr − un−1
r

∆t
, bn · ∇ζnr

)
.

(4.26)

A modification of (4.26) by adding

aSUPG,r(Pr(u
n
h), ζnr )− aSUPG,r(Pr(u

n
h), ζnr ) = 0

and using the definition of ηn and ζnr from (4.24) results in the error equation

aSUPG,r (ζnr , ζ
n
r ) = aSUPG,r (ηn, ζnr ) +

(
∂tu

n − unr − un−1
r

∆t
, ζnr

)

+ δr

(
∂tu

n − unr − un−1
r

∆t
, bn · ∇ζnr

)
.

(4.27)

The second approach considers the error between the SUPG finite element solution unh
of (2.18) with the backward Euler method and the SUPG-ROM solution unro of (4.10)
and uses the decomposition

unh − unro = (unh − Pr(unh)) + (Pr(u
n
h)− unro) = ηnh − ζnr . (4.28)

Since Xr ⊂ Xh, POD functions can be used as test functions in the finite element
problem (2.18). By subtracting the SUPG-ROM problem (4.10) from (2.18) using the
backward Euler method, i.e., θ = 1, with a test function ζnr , one obtains

(unh − unro, ζnr )− (un−1
h − un−1

ro , ζnr ) + ∆t aSUPG,h(unh, ζ
n
r )−∆t aSUPG,r(u

n
ro, ζ

n
r ) (4.29)

+ δh(unh − un−1
h , bn · ∇ζnr )− δr(unro − un−1

ro , bn · ∇ζnr ) = ∆t(δh − δr)(fn, bn · ∇ζnr ).

The third and the fourth term in (4.29) can be reformulated by adding a zero term

(δr − δr)
∑

K∈Th
(−ε∆unh + bn · ∇unh + cnunh, b

n · ∇ζnr )K

as follows

∆t aSUPG,h(unh, ζ
n
r )−∆t aSUPG,r(u

n
ro, ζ

n
r ) = ∆t aSUPG,r(u

n
h − unro, ζnr )

+ ∆t(δh − δr)
∑

K∈Th
(−ε∆unh + bn · ∇unh + cnunh, b

n · ∇ζnr )K .
(4.30)

Using the error definition (4.28) and inserting (4.30) in (4.29) gives

(ηnh , ζ
n
r )− ‖ζnr ‖20 − (ηn−1

h , ζnr ) + (ζn−1
h , ζnr ) + ∆t aSUPG,r(η

n
h − ζnr , ζnr )

+ ∆t(δh − δr)
∑

K∈Th
(−ε∆unh + bn · ∇unh + cnunh, b

n · ∇ζnr )K (4.31)

+ δh(unh − un−1
h , bn · ∇ζnr )− δr(unro − un−1

ro , bn · ∇ζnr ) = ∆t(δh − δr)(fn, bn · ∇ζnr ).
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The right-hand side of (4.31) can be rewritten by replacing fn by the solution of the
continuous problem (2.1) at time tn, i.e.,

(fn, bn · ∇ζnr ) =
∑

K∈Th
(∂tu

n − ε∆un + bn · ∇un + cnun, bn · ∇ζnr )K .

The first and the third term on the left-hand side of (4.31) vanish as Pr(u
n
h) is a L2

projection of unh into Xr. Finally, the error equation at time tn reads

‖ζnr ‖20 + ∆t aSUPG,r (ζnr , ζ
n
r ) =

(
ζn−1
r , ζnr

)
+ ∆t aSUPG,r (ηnh , ζ

n
r )

+ ∆t(δh − δr)
∑

K∈Th
(−ε∆(unh − un) + bn · ∇(unh − un) + c(unh − un), bn · ∇ζnr )K

+ δh
(
unh − un−1

h −∆t∂tu
n, bn · ∇ζnr

)
− δr

(
unr − un−1

r −∆t∂tu
n, bn · ∇ζnr

)
.

(4.32)

Ideally, one would obtain optimal choices for δr by deriving an error estimate from (4.27)
or (4.32). However, it is not known if such a derivation is possible. Even if it is possible,
one has to expect that in the general case δr depends on the length of the time step
like for the finite element error estimate in [81]. Numerical evidence for simulations of
the finite element problem shows that the stabilization parameter should not depend on
the length of the time step; see the discussion of this topic in Section 2.1.3. In [81], an
error estimate with the stabilization parameter depending on the mesh width as in the
steady-state case was proven in a simplified case. Here, also a simplified situation will
be considered, which also ensures that the stabilization parameter does not depend on
the length of the time step: The steady-state situation will be studied. To this end, all
dependencies of the previous results on the length of the time step will be neglected in
the following. Thus, the error equation (4.27) simplifies to

aSUPG,r (ζnr , ζ
n
r ) = aSUPG,r (ηn, ζnr ) (4.33)

and the error equation (4.32) to

aSUPG,r (ζnr , ζ
n
r ) = aSUPG,r (ηnh , ζ

n
r )

+ (δh − δr)
∑

K∈Th
(−ε∆(unh − un) + bn · ∇(unh − un) + cn(unh − un), bn · ∇ζnr )K .

(4.34)

Stabilization Parameters Obtained with (4.33)

By the definition of the bilinear form aSUPG,r(·, ·) in (4.3), the right-hand side of (4.33)
reads as follows

(ε∇ηn,∇ζnr ) + (bn · ∇ηn, ζnr ) + (cnηn, ζnr )

+ δr
∑

K∈Th
(−ε∆ηn + bn · ∇ηn + cnηn, bn · ∇ζnr )K ,

(4.35)

and its estimate is obtained in the same way as it can be found in the literature, e.g.,
see [118]. With the Cauchy–Schwarz inequality and (4.22), the first term in (4.35) can
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be estimated by
|ε (∇ηn,∇ζnr ) | ≤ ε‖∇ηn‖0‖∇ζnr ‖0

≤ ε1/2‖∇ηn‖0
(
ε‖∇ζnr ‖20

)1/2

≤ ε1/2‖∇ηn‖0|||ζnr |||SUPG,r.

(4.36)

Using integration by parts for the convective term, the triangle inequality, the Cauchy–
Schwarz inequality, and (4.22) gives the estimates of the second and the third term of
(4.35) which read as

|(bn · ∇ηn, ζnr )| ≤ |((∇ · bn)ηn, ζnr )|+ |(ηn, bn · ∇ζnr )|
≤ ‖∇ · bn‖L∞(Ω) ‖ηn‖0‖ζnr ‖0 + ‖ηn‖0‖bn · ∇ζnr ‖0

=
‖∇ · bn‖L∞(Ω)

c
1/2
0

‖ηn‖0
(
c0‖ζnr ‖20

)1/2
+ δ−1/2

r ‖ηn‖0
(
δr‖bn · ∇ζnr ‖20

)1/2

≤
(
‖∇ · bn‖L∞(Ω)

c
1/2
0

+ δ−1/2
r

)
‖ηn‖0|||ζnr |||SUPG,r

(4.37)
and

|(cnηn, ζnr )| ≤ ‖cn‖L∞(Ω) ‖ηn‖0‖ζnr ‖0

=
‖cn‖L∞(Ω)

c
1/2
0

‖ηn‖0
(
c0‖ζnr ‖20

)1/2

≤
‖cn‖L∞(Ω)

c
1/2
0

‖ηn‖0|||ζnr |||SUPG,r.

(4.38)

The estimates of the other terms in (4.35) can be obtained in the similar way resulting
in

δr
∑

K∈Th
ε (−∆ηn, bn · ∇ζnr )K ≤ δrε


∑

K∈Th
‖∆ηn‖20,K




1/2

‖bn · ∇ζnr ‖0

≤ δ1/2
r ε


∑

K∈Th
‖∆ηn‖20,K




1/2 (
δr‖bn · ∇ζnr ‖20

)1/2

≤ δ1/2
r ε


∑

K∈Th
‖∆ηn‖20,K




1/2

|||ζnr |||SUPG,r,

(4.39)

δr (bn · ∇ηn, bn · ∇ζnr ) ≤ δ1/2
r ‖bn · ∇ηn‖0 (δr‖bn · ∇ζnr ‖0)1/2

≤ δ1/2
r ‖bn · ∇ηn‖0|||ζnr |||SUPG,r,

(4.40)

and
δr (cnηn, bn · ∇ζnr ) ≤ δr‖cn‖L∞(Ω)‖ηn‖0‖bn · ∇ζnr ‖0

≤ δ1/2
r ‖cn‖L∞(Ω)‖ηn‖0|||ζnr |||SUPG,r.

(4.41)
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Using the coercivity (4.21) of the SUPG-ROM bilinear form, inserting (4.36)–(4.41)
into (4.33), and including all data from convection and reaction into the constant yields

|||ζnr |||SUPG,r ≤ C

[(
1 + δ−1/2

r + δ1/2
r

)
‖ηn‖0 + ε1/2‖∇ηn‖0

+ δ1/2
r ‖bn · ∇ηn‖0 + δ1/2

r ε


∑

K∈Th
‖∆ηn‖20,K




1/2 ]
.

(4.42)

The second factor on the right-hand side of (4.42) shall be minimized, thereby providing
information about an appropriate choice of the stabilization parameter.

The straightforward approach consists in decomposing

ηn = un − Pr(unh) = (un − unh) + (unh − Pr(unh)) (4.43)

and using the error estimates (2.30) and (2.32) for the first part and the estimate (4.18)
(the finite element option) or (4.17) (the POD option) for the second part.

The Finite Element Option. Here, in order to estimate the norms including ηn in
(4.42), the error estimates (2.30) and (2.32) for the first part and the estimate (4.18) for
the second part of the decomposition of ηn in (4.43) will be used. Thus, one gets

‖ηn‖0 ≤ C(hm+1/2 + Λ0),

‖∇ηn‖0 ≤ C(ε−1/2hm+1/2 + h−1Λ0),

‖bn · ∇ηn‖0 ≤ C(δ
−1/2
h hm+1/2 + h−1Λ0),


∑

K∈Th
‖∆ηn‖20,K




1/2

≤ C(hm−1 + ε−1/2hm−1/2 + h−2Λ0),

where

Λ0 =




R∑

j=r+1

λj




1/2

. (4.44)

The term to minimize becomes

g(δr) =
(

1 + δ−1/2
r + δ1/2

r

)(
hm+1/2 + Λ0

)
+ hm+1/2 + ε1/2h−1Λ0 + δ1/2

r δ
−1/2
h hm+1/2

+ δ1/2
r h−1Λ0 + δ1/2

r εhm−1 + δ1/2
r ε1/2hm−1/2 + δ1/2

r εh−2Λ0.

Calculating the first derivative of g with δh = h yields

g′(δr) =
1

2
δ−3/2
r

[
−
(
hm+1/2 + Λ0

)
+ δr

(
hm−1(h3/2 + h+ ε+ ε1/2h1/2)

+ Λ0(1 + h−1 + εh−2)
)]
.
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By setting it to zero, one obtains the extremum

δ∗r =
hm+1/2 + Λ0

hm−1(h3/2 + h+ ε+ ε1/2h1/2) + Λ0(1 + h−1 + εh−2)
. (4.45)

The second derivative of g has the following form:

g′′(δr) =− 3

4
δ−5/2
r

[
−
(
hm+1/2 + Λ0

)
+ δr

(
hm−1(h3/2 + h+ ε+ ε1/2h1/2)

+ Λ0(1 + h−1 + εh−2)
)]

+
1

2
δ−3/2
r

[
hm−1(h3/2 + h+ ε+ ε1/2h1/2)

+ Λ0(1 + h−1 + εh−2)
]

with

g′′(δ∗r ) =
1

2

(
hm+1/2 + Λ0

)−3/2

(
hm−1(h3/2 + h+ ε+ ε1/2h1/2) + Λ0(1 + h−1 + εh−2)

)−5/2
> 0.

Consequently, δ∗r is a minimum of g. Concentrating on the convection-dominated case
ε� h and for grid widths h < 1, δ∗r in (4.45) can be reduced to

h
hm+1/2 + Λ0

hm+1 + Λ0
.

Numerical evidence, e.g., Remark 4.7 below, shows that Λ0 dominates the finite element
errors, which are theoretically of order hm+1/2, see (2.30). Hence, in this case the
stabilization parameter becomes

δFE
r = h. (4.46)

The SUPG-ROM using δFE
r is denoted by FE-SUPG-ROM.

Remark 4.6. Some remarks on (4.46) are as follows:

• In the convection-dominated case, condition (4.19) for the coercivity of the SUPG-
ROM bilinear form will be satisfied for δFE

r .

• There is an explicit impact of the setup for simulating the snapshots onto the
stabilization used in the SUPG-ROM. It is not clear, if this situation is always
desirable, e.g., if the snapshots were computed on a very fine mesh, there would
be only a weak stabilization in the SUPG-ROM.

• For using δFE
r , one has to know the mesh width. If even the mesh itself is known,

then it is possible to use also the local mesh width in assembling the terms for the
stabilization, like usually done in the finite element method.

• There is no impact of the number of used snapshots or POD modes on δFE
r .

/
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The POD Option. Here, the norms of the second part of the decomposition (4.43) are
estimated by applying (4.17) instead of (4.18).

Hypothesis 4.1. Let the finite element simulation be sufficiently accurate or let suf-
ficiently few POD basis functions be used in the ROM, such that the norms on the
left-hand sides of (2.30) and (2.32) can be estimated by a constant multiplied by the
respective terms of the right-hand side of (4.17).

This hypothesis implies that there is a constant CΛ such that

‖ηn‖0 ≤ CΛ




R∑

j=r+1

λj




1/2

= CΛΛ0,

‖∇ηn‖0 ≤ CΛ




R∑

j=r+1

λj |ϕro,j |21




1/2

= CΛΛ1,


∑

K∈Th
‖∆ηn‖20,K




1/2

≤ CΛ




R∑

j=r+1

λj |ϕro,j |22




1/2

= CΛΛ2.

(4.47)

Note that the constant CΛ will cancel in further calculations such that its actual value
does not influence the final result.

Remark 4.7. Considering the same problem as in Remark 4.5, Figure 4.2 shows the dis-
crete versions of the L1(0, T ;L2(Ω)) and the L1(0, T ;H1

0 (Ω)) errors of the finite element
solution defined by

1

N

N∑

n=1

‖un − unh‖0 and
1

N

N∑

n=1

‖∇(un − unh)‖0, (4.48)

respectively. The errors are computed for the finite element solution on different meshes
(levels 6, 7, and 8 are introduced in the beginning of Section 4.4) and for the correspond-
ing values Λ0 and Λ1 for different dimensions of the ROM basis. One can observe that
in these cases Hypothesis 4.1 is satisfied. /

Using the estimate ‖bn · ∇ηn‖0 ≤ C‖∇ηn‖0, the factor to be minimized in (4.42) has
the form

g(δr) =
(

1 + δ−1/2
r + δ1/2

r

)
CΛΛ0 +

(
ε1/2 + δ1/2

r

)
CΛΛ1 + δ1/2

r εCΛΛ2.

Computing its first derivative yields

g′(δr) =
1

2
δ−3/2
r (δr (CΛΛ0 + CΛΛ1 + εCΛΛ2)− CΛΛ0) ,

which leads to the extremum

δ∗r =
Λ0

Λ0 + Λ1 + εΛ2
. (4.49)
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Figure 4.2.: Remark 4.7: Numerical verification of Hypothesis 4.1 with the help of the
test example in Remark 4.5.

The second derivative of g reads

g′′(δr) = −3

4
δ−5/2
r (δr (CΛΛ0 + CΛΛ1 + εCΛΛ2)− CΛΛ0)

+
1

2
δ−3/2
r (CΛΛ0 + CΛΛ1 + εCΛΛ2)

= −1

4
δ−3/2
r (CΛΛ0 + CΛΛ1 + εCΛΛ2) +

3

4
δ−5/2
r CΛΛ0,

with

g′′(δ∗r ) =
1

2

(CΛΛ0)−3/2

(CΛΛ0 + CΛΛ1 + εCΛΛ2)−5/2
> 0.

Therefore, δ∗r from (4.49) is in fact a minimum of the second factor in (4.42). In the
convection-dominated regime, the last term in the denominator of δ∗r is small. From
estimate (4.18), it can be expected that Λ0 � Λ1, at least for small mesh widths. Thus,
an appropriate choice of the stabilization parameter is

δPOD
r =

Λ0

Λ1
. (4.50)

The SUPG-ROM using δPOD
r is denoted by POD-SUPG-ROM.

Remark 4.8. For the problem described in Remark 4.5, the values in the denominator
of (4.49) are presented in Figure 4.3. Hence, for this example, the assumptions made for
reducing (4.49) to (4.50) are satisfied. The same behavior was observed also for other
test cases. /

Remark 4.9. Some remarks on (4.50) are as follows:

87



4. SUPG Reduced-Order Models for Convection-Dominated Problems

40 80 120 160 200

rank

10−4

10−3

10−2

10−1

100

101

102

103

Λ0

Λ1

εΛ2

Figure 4.3.: Remark 4.8: Curves for Λ0, Λ1, and εΛ2 for the problem from Remark 4.5.

• If one of the conditions (4.19) or (4.20) for the coercivity of the SUPG-ROM
bilinear form is satisfied by δPOD

r is not clear a priori. In the numerical simu-
lations carried out in the course of the underlying investigation, where the grids
for computing the snapshots were not extremely fine, it was found that generally
δPOD
r ≤ δFE

r , which implies the satisfaction of (4.19).

• The parameter δPOD
r is influenced by the number r of used POD modes and also

by the simulation for computing the snapshots, since this simulation determines
the eigenvalues and eigenfunctions.

• For computing δPOD
r , one has to consider all POD modes in the offline step of the

ROM simulation , because they are necessary for the computation of Λ1.

• There is no possibility to localize δPOD
r .

/

Stabilization Parameters Obtained with (4.34)

The goal of this section is to propose the scaling of the SUPG-ROM stabilization param-
eter based on the error equation (4.34) instead of (4.33) as it was done in the previous
section. Most terms of the first term on the right-hand side of (4.34) are estimated in
the same way as it was done in the previous section. Only, instead of (4.40),

δr (bn · ∇ηnh , bn · ∇ζnr ) ≤ Cδ1/2
r ‖∇ηnh‖0|||ζnr |||SUPG,r

is used, giving the upper bound
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C

[(
1 + δ−1/2

r + δ1/2
r

)
‖ηnh‖0 +

(
ε1/2 + δ1/2

r

)
‖∇ηnh‖0

+ δ1/2
r ε


∑

K∈Th
‖∆ηnh‖20,K




1/2 ]
|||ζnr |||SUPG,r,

where ηnh = unh − Pr(unh) is defined in (4.28).
For the estimation of the second term of (4.34), the finite element error estimates

(2.30) and (2.32) are utilized, leading to the upper bound

C|δh − δr|δ−1/2
r

(
εhm−1 + ε1/2hm−1/2 + δ

−1/2
h hm+1/2 + hm+1/2

)
|||ζnr |||SUPG,r.

Inserting these bounds into (4.34) and using the coercivity (4.21) of the bilinear form
aSUPG,r(·, ·) and δh = h results in the estimate

|||ζnr |||SUPG,r ≤ C

[(
1 + δ−1/2

r + δ1/2
r

)
‖ηnh‖0 +

(
ε1/2 + δ1/2

r

)
‖∇ηnh‖0

+ δ1/2
r ε


∑

K∈Th
‖∆ηnh‖20,K




1/2

+ |h− δr|δ−1/2
r

×
(
εhm−1 + ε1/2hm−1/2 + hm + hm+1/2

)]
.

(4.51)

The second factor on the right-hand side of (4.51) has to be minimized in order to
determine the SUPG-ROM parameter.

The Finite Element Option. In order to estimate the norms including ηnh in (4.51),
the estimate (4.18) will be used here. Thus, one obtains

‖ηnh‖0 ≤ CΛ0, ‖∇ηnh‖0 ≤ Ch−1Λ0,


∑

K∈Th
‖∆ηnh‖20,K




1/2

≤ Ch−2Λ0,

where

Λ0 =




R∑

j=r+1

λj




1/2

.

Therefore, one has to minimize the function

g(δr) =
(

1 + δ−1/2
r + δ1/2

r

)
Λ0 +

(
ε1/2 + δ1/2

r

)
h−1Λ0 + δ1/2

r εh−2Λ0

+ |h− δr|δ−1/2
r C0,
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where C0 := εhm−1 + ε1/2hm−1/2 + hm + hm+1/2.
The first derivative of g has the form

g′(δr) =
1

2
δ−3/2
r

[
Λ0

(
−1 + δr(1 + h−1 + εh−2)

)
− sgn(h− δr)C0 (2δr + |h− δr|)

]
.

To determine the minimum of g(δr), the case-by-case analysis will be employed.

Case δr < h. In this case the first derivative of g is

g′(δr) =
1

2
δ−3/2
r

[
Λ0

(
−1 + δr(1 + h−1 + εh−2)

)
− C0 (δr + h)

]
.

Setting it to zero yields the extremum

δ∗r =
Λ0 + hC0

Λ0 (1 + h−1 + εh−2)− C0
.

The second derivative of g is

g′′(δr) =
1

2
δ−5/2
r

[3

2
(Λ0 + C0h)− 1

2

(
Λ0

(
1 + h−1 + εh−2

)
− C0

)
δr

]
.

By the construction of g, the meaningful values of δ∗r are positive real numbers. Hence,
when evaluating g′′ at δ∗r , the last factor has to be investigated. It has the form

3

2
(Λ0 + C0h)− 1

2
(Λ0 + hC0) = Λ0 + C0h > 0.

Hence, δ∗r is the minimum of g.
For the convection-dominated setting when ε� h and h < 1, one can pick the relevant

terms in δ∗r which gives

δ∗r = h
Λ0 + hm+1 + hm+3/2

Λ0 − hm+1 − hm+3/2
.

As already discussed in Section 4.3.4 for deriving δFEr , Λ0 dominates the finite element
errors. Therefore, the stabilization parameter becomes

δFEr = h.

Case δr > h. In this case one obtains for the first derivative of g the expression

g′(δr) =
1

2
δ−3/2
r

[
Λ0

(
−1 + δr(1 + h−1 + εh−2)

)
− C0 (3δr − h)

]
.

The extremum obtained by setting the derivative to zero has the form

δ∗r =
Λ0 − C0h

Λ0 (1 + h−1 + εh−2)− 3C0
.
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The second derivative of g is

g′′(δr) =
1

2
δ−5/2
r

[3

2
(Λ0 − C0h)− 1

2

(
Λ0

(
1 + h−1 + εh−2

)
− 3C0

)
δr

]
.

Taking into account only positive values for δ∗r , the last factor of g′′, i.e., the expression
in the square brackets, has to be evaluated at δ∗r to investigate the behavior of the
extremum. Due to the definition of δ∗r it becomes Λ0 − C0h. From Remark 4.7, it can
be expected that for sufficiently small h and ε, which is the case in the simulations in
the convection-dominated regime, the term is positive. Hence, δ∗r is the minimum of g.
In the convection-dominated regime, δ∗r reduces to

δ∗r = h
Λ0 − C0h

Λ0 − 3C0h
.

As the second factor is of the same order, the stabilization parameter becomes

δFEr = h.

Case δr = h. In this case one obtains for the first derivative of g the expression

g′(δr) =
1

2
δ−3/2
r Λ0

(
−1 + δr(1 + h−1 + εh−2)

)
.

Similar calculations as conducted for the other cases yield the extremum

δ∗r =
1

1 + h−1 + εh−2
.

The second derivative of g, which has the form

g′′(δr) =
1

2
δ−5/2
r

[
− 1

2
Λ0

(
1 + h−1 + εh−2

)
δr +

3

2
Λ0

]
,

has to be evaluated at δ∗r resulting in

g′′(δ∗r ) =
1

2
(δ∗r )

−5/2 Λ0 > 0.

Hence, δ∗r is the minimum of g. The value δ∗r can be reduced in the convection-dominated
regime to

δFEr = h.

Consequently, by using (4.34) the same stabilization parameter for the finite element
option is obtained as in Section 4.3.4.
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The POD Option. In this case, the norms including ηnh in (4.51) will be estimated
using (4.17). Finally, the function to minimize is

g(δr) =
(

1 + δ−1/2
r + δ1/2

r

)
Λ0 +

(
ε1/2 + δ1/2

r

)
Λ1 + δ1/2

r εΛ2 + |h− δr|δ−1/2
r C0,

where C0 := εhm−1 +ε1/2hm−1/2 +hm+hm+1/2, and Λi, i = 1, 2, 3, are defined in (4.47).
The first derivative of g has the form

g′(δr) =
1

2
δ−3/2
r

[
− Λ0 + (Λ0 + Λ1 + εΛ2) δr − sgn(h− δr)C0 (2δr + |h− δr|)

]
.

Like for the finite element option, the case-by-case analysis will be used to calculate
the minimum of g.

Case δr < h. In this case the first derivative of g is

g′(δr) =
1

2
δ−3/2
r

[
− Λ0 + (Λ0 + Λ1 + εΛ2) δr − C0 (δr + h)

]

with the extremum

δ∗r =
Λ0 + hC0

Λ0 + Λ1 + εΛ2 − C0
.

In the convection-dominated regime, all the terms including ε can be omitted. From es-
timate (4.18), it can be asserted at least for small mesh widths that Λ0 � Λ1. Moreover,
using the numerical evidence, see Remark 4.7, Λ0 dominates the finite element error.
Hence, the stabilization parameter becomes

δPODr =
Λ0

Λ1
.

Case δr > h. The first derivative of g has the form

g′(δr) =
1

2
δ−3/2
r

[
− Λ0 + (Λ0 + Λ1 + εΛ2) δr + C0 (3δr − h)

]
.

with the extremum

δ∗r =
Λ0 + hC0

Λ0 + Λ1 + εΛ2 + 3C0
.

Using the same argumentation for the convection-dominated regime as in the case when
δr < h, the stabilization parameter becomes

δPODr =
Λ0

Λ1
.

Case δr = h. Here, the first derivative of g has the from

g′(δr) =
1

2
δ−3/2
r

[
− Λ0 + (Λ0 + Λ1 + εΛ2) δr

]
.
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One has the same situation when regarding the extremum as in the POD case in Section
4.3.4, which yields in the convection-dominated regime the stabilization parameter

δPODr =
Λ0

Λ1
.

Remark 4.10. Similarly to the evaluations of g′′ for the finite element option, δ∗r is the
minimum of g also for the POD option for the considered three cases. /

4.4. Numerical Studies

The numerical investigations aim at answering the following questions:

1. Does the SUPG-ROM yield more accurate results than the G-ROM?

2. Which of the two stabilization parameters of the SUPG-ROM (derived in Sec-
tion 4.3.4 and 4.3.4) yields more accurate results?

3. Does the filtering procedure (3.65) of the ROM initial condition improve the ROM
results?

4. Is the accuracy of the ROM solution proportional to the accuracy of the underlying
snapshots? In particular, are the ROMs based on the physically correct snapshots
without under- and overshoots able to reproduce physically correct ROM solutions?

In total, the results of three test problems will be presented: A hump changing its
height (Example 4.1), a traveling wave (Example 4.2), and a rotating body problem
(Example 4.3). The former two tests are used to answer the questions 1 and 2. ROM
simulations for a rotating body problem serve to investigate the questions 1, 3, and 4. In
the numerical studies presented below, the analytical solutions of the continuous prob-
lems are known. To generate the snapshots, the Galerkin finite element method (2.7),
the SUPG method (2.18) with Pk, k = 1, 2, finite elements, or the Lagrange interpolation
of the analytical solution in the appropriate finite element space was used. Simulations
with the SUPG finite element method presented in this section were performed with
δh = h (see the discussion in Section 2.1.3). All test problems were defined in the unit
square. For the coarsest grid (level 0), the unit square was divided by the diagonal from
bottom left to top right into two triangles. Uniform grid refinement was applied for
constructing the finer grids, resulting in 16641, 66049, 263169 degrees of freedom (in-
cluding Dirichlet nodes) on levels 6, 7, and 8, respectively, with P2 finite elements and
on levels 7, 8, and 9, respectively with P1 finite elements. In all cases, the POD modes
were computed with respect to the L2(Ω) inner product and with the centered-trajectory
method, i.e., from the fluctuating parts of the snapshots.

Two types of ROMs were studied. The first one is the G-ROM, i.e., the ROM with-
out any stabilization. It is known that solutions of convection-dominated problems
can be approximated accurately with the Galerkin finite element method if the finite
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element space possesses sufficient information about the considered problem and its so-
lution. This information can be used to construct suitable grids, e.g., layer-adapted
grids as in [101], or to design appropriate finite element functions, e.g., exponentially
fitted functions as in [125]. For the ROM, the POD modes already contain important
features of the solution. The questions are if the information contained in these basis
functions suffices to stabilize the G-ROM and if yes, how the accuracy of the computa-
tional results compares with the accuracy of the results obtained with the second type
of the studied ROM, namely the ROM with SUPG stabilization (SUPG-ROM) given
by (4.2). The same questions were posed in [109], where stabilized ROMs were used
for convection-dominated convection-diffusion-reaction equations. In the “Offline-only”
approach in [109], the SUPG method was used in the offline stage, but not in the online
stage. Thus, the “Offline-only” approach is similar to the G-ROM considered in this
thesis. In the “Offline-Online” approach in [109], the SUPG method was used both in
the offline and online stages.

As already mentioned, Examples 4.1 and 4.2 deal, inter alia, with answering the second
question posed at the beginning of the section. For the sake of clarity, the SUPG-
ROMs using the stabilization parameters δFE

r from (4.46) and δPOD
r from (4.50) will

be denoted by FE-SUPG-ROM and POD-SUPG-ROM, respectively. From the practical
point of view, the computation of the stabilization parameter δFE

r is much easier than the
computation of δPOD

r . The former parameter is equal to the mesh width h; no additional
information is needed. The latter one requires the storage of all R POD modes and
eigenvalues. Moreover, Λ0 and Λ1 have to be calculated, which can be time-consuming
for problems with a high-dimensional snapshot space XR. However, these values have to
be computed only once in the offline step. In Example 4.3, the SUPG-ROM only with
δFE
r will be studied. Therefore, its notation remains SUPG-ROM.
The fourth question investigated in Example 4.3 is mainly motivated by practical

applications. In fact, solutions representing, e.g., concentrations are non-physical if
they feature under- and overshoots. Such solutions are often not acceptable for practical
purposes. In applications requiring simulations of strongly coupled systems, e.g., see [80],
the non-physical solutions could cause some instabilities or completely incorrect model
solutions if they serve as an input quantity to other equations. Therefore, it is of great
importance to construct methods producing solutions without or at least with small
under- and overshoots.

To evaluate the results of the performed simulations, several measures of interest
will be monitored. Besides the so-called ”eye measure”, i.e., looking at the plots of
the obtained solutions, the L2(Ω) error at certain times and the discrete analog of the
L1(0, T ;L2(Ω)) error, given, e.g., for the ROM solution by

‖un − unro‖0 and
1

N + 1

N∑

n=0

‖un − unro‖0, (4.52)

respectively, will be considered, where un denotes the solution of the continuous problem
at time tn. In addition, the minimum and the maximum values of the solution for
Example 4.3 will be computed in the vertices of the mesh cells evaluated at different
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times. The L2(Ω) error gives some idea of the accuracy of the methods and the smearing
in the numerical solutions. The minimum and the maximum values indicate the under-
and overshoots of the numerical solution.

Remark 4.11. After computing the POD modes, the question is how to design a nu-
merical method that gives a solution that is as accurate as possible in the space spanned
by the first r POD modes compared with the solution of the continuous problem. Since
the numerical method providing the most accurate solution in the r-dimensional space
is not necessarily the method which was used for computing the snapshots, other ROM
methods can be investigated as well. In the numerical studies below, the snapshots are
computed in Examples 4.1 and 4.2 with the finite element SUPG method. In the ROM
context, besides FE-SUPG-ROM (which corresponds to the finite element SUPG method
but in the ROM context) two other methods, namely G-ROM and POD-SUPG-ROM,
are used. /

Remark 4.12. When the solution of the continuous problem is not available, one could
compare the ROM results with the solution of the simulation used to compute the
snapshots. Based on own experience, one gets the smallest L2 errors with respect to the
finite element solution, when the computation of the snapshots and the ROM involve the
same numerical methods. Note that the method is usually not the best approximation
of the continuous solution in the finite element space. /

The code MooNMD [78] was utilized to perform the numerical experiments.

Example 4.1. Hump changing its height. This example is taken from [84]. It is defined
in Ω = (0, 1)2 and (0, T ) = (0, 2). The coefficients of (2.1) were chosen to be ε = 10−6,
b = (2, 3)T and c = 1. There is a prescribed solution of the form

u(t, x, y) =16 sin(πt)x(1− x)y(1− y)

×
[

1

2
+

arctan
(
2ε−1/2

(
0.252 − (x− 0.5)2 − (y − 0.5)2

))

π

]
.

(4.53)

The forcing term f , the initial condition u0, and the boundary conditions were set
such that (4.53) satisfies the boundary value problem. The solution (4.53) possesses an
internal layer of size O (

√
ε).

The finite element problem for computing the snapshots was solved on level 7 with P2

finite elements, such that h = 1.1 · 10−2, and the backward Euler scheme was applied
with the time step ∆t = 10−3. Since the problem is convection-dominated and the
solution has a layer, the use of a stabilized discretization is necessary, see Figure 4.4
for a comparison of snapshots from the Galerkin finite element method and the SUPG
method (2.18). Whereas the solution of the Galerkin finite element method is globally
polluted with spurious oscillations, there are only few oscillations, mainly in the right
upper part of the domain, in the solution computed with the SUPG method.

For computing the POD basis, every fifth solution was stored such that 401 snapshots
were used. If the finite element method accurately resolved all layers, then the POD
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Figure 4.4.: Example 4.1: Galerkin finite element method (left), SUPG finite element
method (right) at t = 0.5.

Figure 4.5.: Example 4.1: POD modes ϕro,1, ϕro,2, and ϕro,3 (from left to right).

basis would consist just of one mode representing the time-independent part of (4.53).
However, such a method is not known so far and in the simulations of convection-
dominated problems one always has to expect numerical artifacts. With the spurious
oscillations of the SUPG method, one obtains 14 POD modes, see Figure 4.5 for the first
POD modes and Figure 4.6 for the corresponding eigenvalues, where the POD modes
for r > 1 come from the spurious oscillations of the finite element solution.

Figures 4.7 and 4.8 present results for the three considered ROMs. In Figure 4.7,
the temporal evolution of the error in the L2(Ω) norm for r = 9 and the errors in the
discrete L1(0, T ;L2(Ω)) norm are shown. Corresponding numerical solutions for r = 9
are depicted in Figure 4.8.

Before answering the first two questions posed in the beginning of this section, the
following important observation should be made: The L1(0, T ;L2(Ω)) error in the right
panel of Figure 4.7 shows that adding more POD modes that represent oscillations (i.e.,
POD modes ϕro,2, ϕro,3, . . . , ϕro,14) results in a continuous increase of the error. This
behavior is in clear contrast with the standard POD-ROM experience, where adding
more POD modes generally reduces the error. The reason for this behavior is that the
POD uses noisy data, resulting in POD modes which contain mostly information on the
numerical artifacts of the finite element solution. As already discussed above, with most
of the finite element methods, the appearance of such modes is inevitable. Unlike the
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Figure 4.6.: Example 4.1: POD eigenvalues.
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Figure 4.7.: Example 4.1: Errors for different ROMs, L2(Ω) error (left), L1(0, T ;L2(Ω))
error (right).

Figure 4.8.: Example 4.1: Solution at t = 0.5 for G-ROM, FE-SUPG-ROM, POD-
SUPG-ROM (from left to right) for r = 9.

present example, in general it is not known which modes are strongly influenced by the
noise. In adding more and more POD modes, it is important that the ROM can suppress
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Figure 4.9.: Example 4.1: Stabilization parameters for the SUPG-ROMs.

the influence of such noisy modes.
The answer to the first question is given by Figures 4.7 and 4.8: Both the FE-SUPG-

ROM and the POD-SUPG-ROM yield more accurate results than the G-ROM for r ≥ 2.
The stabilized ROMs can compute good solutions even if POD modes are used which
are strongly influenced by spurious oscillations. Question 2 is answered in Figure 4.7:
The FE-SUPG-ROM performs better than the POD-SUPG-ROM, which seems to be
due to the larger stabilization parameters, see Figure 4.9. /

Example 4.2. Traveling wave. This example is similar to the one used in [51]. It is given
in Ω = (0, 1)2 and (0, T ) = (0, 1) with the coefficients of (2.1) chosen as ε ∈ {10−4, 10−8},
b = (cos(π/3), sin(π/3)), and c = 1. The analytical solution is defined by

u(t, x, y) = 0.5 sin(πx) sin(πy)

[
tanh

(
x+ y − t− 0.5√

ε

)
+ 1

]
. (4.54)

The right-hand side f , the initial condition u0, and the boundary condition were chosen
such that (4.54) satisfies the boundary value problem. Solution (4.54) possesses a moving
internal layer of width O (

√
ε).

First, the numerical results for the diffusion coefficient ε = 10−4 will be investigated.
The finite element problem using P2 finite elements and the backward Euler scheme
with a time step ∆t = 10−4 is solved on level 7 with the mesh width h = 1.1 · 10−2.
Consequently, it holds h ≈ O(

√
ε), i.e., the internal layer is resolved and no stabilization

is needed to obtain a satisfactory finite element solution. One can observe this behavior
in Figure 4.10, where the Galerkin and SUPG finite element solutions at t = 1.0 are
depicted. As the numerical analysis in Section 4.3 to derive the scaling of the SUPG-
ROM parameter was carried out for snapshots computed with the SUPG finite element
method, in addition to the Galerkin finite element snapshots also the SUPG snapshots
will be used to build the ROMs.

For computing the POD basis, every tenth solution was stored such that 1001 snap-
shots were used. Note that Example 4.2 is more complex than Example 4.1 since the
position of the layer depends on time. The complexity is reflected by the dimension of
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Figure 4.10.: Example 4.2 with ε = 10−4: Galerkin (left) and SUPG (right) finite element
solutions at t = 1.0.
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Figure 4.11.: Example 4.2 with ε = 10−4: POD eigenvalues.

the snapshot space XR, which is 14 for Example 4.1 and around 200 for Example 4.2
with ε = 10−4 (see Figure 4.11 with the corresponding POD eigenvalues).

In Figure 4.12, the ROM errors in the discrete L1(0, T ;L2(Ω)) norm (left) and the
SUPG-ROM parameters (right) are shown for the snapshots computed with the Galerkin
finite element method. In Figure 4.13, the same quantities are depicted for the snapshots
computed with the SUPG method. One can see that the difference between the both
figures is very small. The answer to the first question from the beginning of the section
is given by the right-hand side plots in Figures 4.12 and 4.13. Independently of the
origin of the snapshots, the FE-SUPG-ROM and POD-SUPG-ROM yielded negligibly
better results than G-ROM for smaller values of r. The G-ROM based on the snapshots
computed with the Galerkin finite element method gives slightly more accurate results
for larger r, starting at r = 110, than both SUPG-ROMs. All investigated ROMs
built from the SUPG finite element snapshots yielded comparable errors in the discrete
L1(0, T ;L2(Ω)) norm for larger values of r. Also the second question can be answered
by Figures 4.12 and 4.13. Despite of different values of the SUPG-ROM parameters
δFE
r and δPOD

r , both SUPG-ROMs yielded almost the same results with negligibly small
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Figure 4.12.: Example 4.2 with ε = 10−4: L1(0, T ;L2(Ω)) error for Galerkin finite ele-
ment snapshots and for different ROMs.
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Figure 4.13.: Example 4.2 with ε = 10−4: L1(0, T ;L2(Ω)) error for SUPG finite element
snapshots and for different ROMs.

differences.
Now, the numerical results for the diffusion parameter ε = 10−8 will be presented. It

is a convection-dominated problem. By using realistic meshes with h ∈ [10−3, 10−2], it is
not possible to resolve the interval layer. Therefore, a stabilization method is needed to
solve the finite element problem. To investigate the sensitivity of the numerical results
with respect to the mesh width h, the finite element problem for computing the snapshots
was solved on levels 6, 7, and 8. The backward Euler scheme was applied with a time step
∆t = 10−4. The SUPG stabilization was applied to the finite element method, just as in
Example 4.1. In Figure 4.14, the Galerkin and SUPG finite element solutions evaluated
at t = 0.5 and t = 1.0 are shown. One can see that, in contrast to the Galerkin method,
the SUPG method is able to suppress the global oscillations. Every tenth solution was
stored, resulting in 1001 snapshots, to compute the POD basis. Note that Example 4.2
with ε = 10−8 is even more complex than Example 4.2 with ε = 10−4 investigated before.
Here, the snapshot space XR has the dimension between 800 and 1000 depending on the
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Figure 4.14.: Example 4.2 with ε = 10−8 for level 7: Galerkin (left) and SUPG (right)
finite element solutions at t = 0.5 (top) and t = 1.0 (bottom).
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Figure 4.15.: Example 4.2 with ε = 10−8: POD eigenvalues.

underlying spatial level (see Figure 4.15 with the corresponding POD eigenvalues). The
plot in Figure 4.15 also shows that the snapshot space XR changes with the mesh width
h, its dimension increases with decreasing h. Like in Example 4.1, the studied ROMs use
noisy POD data, which, as explained, is inevitable for convection-dominated problems
on realistic meshes.

In Figures 4.16 – 4.18, the errors in the discrete L1(0, T ;L2(Ω)) norm are shown for
the three considered ROMs and for spatial levels 6, 7, and 8. On every spatial level,
a similar behavior as that in Example 4.1 is observed: Increasing the number of POD
modes results eventually in an increase of the G-ROM error. This time, however, this
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Figure 4.16.: Example 4.2 with ε = 10−8: L1(0, T ;L2(Ω)) error for different ROMs and
three different spatial levels.
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Figure 4.17.: Example 4.2 with ε = 10−8: L1(0, T ;L2(Ω)) error for different ROMs, three
different spatial levels, and small r.

error increase is observed later than in Example 4.1 (around r = 70 for level 6, r = 130
for level 7, and r = 270 for level 8). Like in Example 4.1, the G-ROM error grows due
to the fact that the impact of noise becomes more and more dominant for modes with
higher indices. Note that the finer the mesh, the higher the threshold rank is. Here, the
threshold rank refers to the lowest POD dimension at which the G-ROM error starts
to grow. Furthermore, below this threshold the discrete L1(0, T ;L2(Ω)) errors of the
G-ROM and the SUPG-ROMs are similar.

The answer to the first question from the beginning of the section is given by Figures
4.16 – 4.19. For small numbers of POD modes, all ROMs have a similar error in the
discrete L1(0, T ;L2(Ω)) norm and for large numbers of POD modes, both the FE-SUPG-
ROM and POD-SUPG-ROM yield more accurate results than the G-ROM. With respect
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Figure 4.18.: Example 4.2 with ε = 10−8: Different ROMs at three different spatial levels
and for very small r: Stabilization parameters (left) and L1(0, T ;L2(Ω))
error (right). The G-ROM error curves for all spatial levels are the same.

Figure 4.19.: Example 4.2 with ε = 10−8 for level 7: Solution at t = 1.0 for G-ROM,
FE-SUPG-ROM, POD-SUPG-ROM (from left to right) for r = 30, 130
(from top to bottom).

to the size of the spurious oscillations, the SUPG-ROMs are always better than the G-
ROM. In Figures 4.18 and 4.20, the used stabilization parameters δFE

r and δPOD
r for

three spatial levels are shown. Even if the representation of δPOD
r in (4.50) has no

explicit dependence on the mesh width h, the stabilization parameter seems to depend
implicitly on the underlying grid. This behavior is expected as Λ0 and Λ1 in (4.50)
are computed using the POD modes and eigenvalues resulting from the finite element
simulation. In particular, the value of δPOD

r decreases for finer grids. The difference
between the parameters δFE

r and δPOD
r becomes more pronounced for large r. Question

2 can be studied with the results presented in Figures 4.16 – 4.19. Concerning the
spurious oscillations, the results obtained with FE-SUPG-ROM are always better. With
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Figure 4.20.: Example 4.2 with ε = 10−8: Stabilization parameters for the SUPG-ROMs.

respect to the error in the discrete L1(0, T ;L2(Ω)) norm, POD-SUPG-ROM performs
slightly better than FE-SUPG-ROM for larger values of r. The explanation of both
observations comes again from the different sizes of the stabilization parameters, see
Figure 4.20. Since δFE

r is larger than δPOD
r , the spurious oscillations in the FE-SUPG-

ROM are damped more efficiently than in the POD-SUPG-ROM. To investigate why
the POD-SUPG-ROM for larger r yielded slightly more accurate results than the SUPG
finite element method in Figure 4.16, additional SUPG finite element simulations with
δh = δPOD

r = 0.2h were carried out. The resulting discrete L1(0, T ;L2(Ω)) error was
comparable to that of the POD-SUPG-ROM for larger r in Figure 4.16. The plots in
Figures 4.16 – 4.18 also show that as the mesh width h changes, the ROM results change
as well, but the qualitative behavior of the ROMs (and in particular the answers to the
first two questions from the beginning of the section) remains unchanged. The plots in
Figure 4.18, however, show that for very low r as the mesh width decreases the difference
between the stabilization parameters and the difference between the errors of the two
SUPG-ROMs decrease as well. /

Example 4.3. Rotating body problem. This example describes one full counter-clock
rotation of three disjoint bodies. It is an adaption of the transport problem from [99]
and was extensively studied, e.g., in [91, 94] for transport problems. In [82, 84], the test
case was used to study discretizations with a very small diffusion coefficient.

Consider (2.1) in Ω = (0, 1)2 and (0, T ) = (0, 6.28) with the coefficients ε = 10−20,
b = (0.5 − y, x − 0.5)T , and c = f = 0. The initial condition is represented by three
disjoint bodies (slotted cylinder, conical body and hump) as shown in Figure 4.21. Each
body has its center (x0, y0) and is placed within the radius r0 = 0.15. The initial
condition is zero outside the bodies. Let

r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2.
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Figure 4.21.: Example 4.3: Initial condition.

The slotted cylinder is described by

u(0, x, y) =

{
1, if r(x, y) ≤ 1, ‖x− x0‖ ≥ 0.0225 or y ≥ 0.85,

0, elsewhere,

with the center (x0, y0) = (0.5, 0.75). The conical body is given by

u(0, x, y) = 1− r(x, y),

and the center (x0, y0) = (0.5, 0.25). Finally, the hump is described by (x0, y0) =
(0.25, 0.5) and

u(0, x, y) =
1

4
(1 + cos(πmin{r(x, y), 1})) .

The original version of the example from [99] is a pure transport problem with ε = 0.
In this case, an ideal numerical method should yield the initial condition as the solution
after each revolution of the three bodies. With such a small diffusion coefficient ε as
used in this study, one can expect that an ideal numerical method nearly recovers the
initial solution at t = 6.28 ≈ 2π.

For the underlying numerical studies, three sets of snapshots were considered. The first
set of snapshots, which will be denoted by SUPG-FEM, was obtained by approximating
the solution of (2.1) with the SUPG finite element method, see Section 2.1.3, using
the backward Euler scheme for the time discretization (as it was done in Examples 4.1
and 4.2). To create the second set of snapshots, which will be denoted by FEM-FCT,
the nonlinear flux-corrected transport scheme presented in Section 2.1.5 was used with
the Crank–Nicolson method as time integrator, e.g., see [84]. For both finite element
methods, the piecewise linear finite elements P1 and the length of the time step ∆t =
10−3 were used. The computations were carried out on the spacial level 7, such that
h = 1.1 · 10−2. The third set of snapshots, which will be denoted by Reference, was
obtained by interpolating the solution of the continuous problem (2.1) using the same
finite element space as for other two snapshot sets. Note that the snapshot sets can
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Figure 4.22.: Example 4.3: Solution at t = 6.28 for Reference (left), the FEM-FCT
scheme (center), and the SUPG-FEM (right).

be divided into two types: Representing the solution of a discrete problem (FEM-FCT,
SUPG-FEM) and the projection of the continuous solution onto the finite element space
(Reference).

In Fig. 4.22, the solution for all three approaches is shown for the final time t = 6.28.
One can see that the interpolated continuous solution (on the left-hand side) represents
the optimal solution as it looks the same as the initial condition in Fig. 4.21. The FEM-
FCT solution (in the center) looks less accurate due to the slightly smoothed corners
but still better than the SUPG-FEM solution (on the right-hand side) which exhibits
some oscillations at the slotted cylinder. In Fig. 4.23, the time evolution of the L2 error,
and the minimum and the maximum values for these three approaches are displayed.
The interpolated continuous solution has the best performance in terms of the L2 error
and features no under- or overshoots, i.e., the minimum and the maximum values of the
solution are equal to 0 and 1, respectively. The FEM-FCT method produces a greater
L2 error but due to the design of the numerical method, see Section 2.1.5, the solution
has no under- or overshoots. Finally, the SUPG-FEM solution performs worse than the
other two approaches in terms of all three measures of interest.

Each set of snapshots consists of 1257 elements, which represent every fifth solution
of the finite element methods, i.e., the solution at times t = 5n · 10−3, n = 0, . . . , 1256,
and the evaluation of the interpolated solution at the same times. Three POD bases
were computed from the fluctuating part of the snapshot sets SUPG-FEM, FEM-FCT,
and Reference with respect to the L2 inner product by the method of snapshots, see
Section 3.1.3. The distribution of the POD eigenvalues and the missing energy ratio
computed by 1 − E(r), r ≤ R, where E(r) is defined by (3.52), are shown in Fig. 4.24.
From the plot, one immediately takes note of the fact that the POD eigenvalues based
on the SUPG-FEM snapshot set fall much more rapidly than the eigenvalues based on
Reference and FEM-FCT. By taking into account only the POD eigenvalues with the
lower threshold of 10−10, the dimension R of the snapshot space XR for SUPG-FEM is
only 119 and for the other two sets it is 1256. In the case of Reference and FEM-FCT,

106



4. SUPG Reduced-Order Models for Convection-Dominated Problems

0 1 2 3 4 5 6

time

0.04

0.05

0.06

0.07

0.08

0.09

L
2

er
ro

r

FEM-FCT SUPG-FEM Reference

0 1 2 3 4 5 6

time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

m
in

im
um

0 1 2 3 4 5 6

time

1.00

1.05

1.10

1.15

1.20

m
ax

im
um

Figure 4.23.: Example 4.3: Time evolution of the measures of interest for the finite
element methods used to compute the snapshots.
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Figure 4.24.: Example 4.3: POD eigenvalues (left) and the missing energy ratio 1 −
E(r) (right), see (3.52), for the finite element methods used to compute
snapshots. The dashed line on the right-hand side indicates the missing
energy ratio of 0.01.

no single snapshot can be represented by a linear combination of the other snapshots
because of the moving inner layers. The steeper descrease of the POD eigenvalues based
on FEM-FCT can be explained by the smearing of the FEM-FCT solution at the inner
layers. The possible reason for the low dimension of the snapshot space XR arising
from SUPG-FEM lies in the fact that the SUPG-FEM solution features some spurious
oscillation around the inner layers. This not quite local effect might lead to the linear
dependency of the snapshots. In Fig. 4.25, the snapshot mean ūh and the first three
POD modes ϕro,i, i = 1, 2, 3, are depicted based on all three snapshot sets. No essential
differences besides of slightly different value ranges and minor shifts of the forms can be
asserted.

In terms of reduced-order modeling, simulations with G-ROMs and SUPG-ROMs were
run with the backward Euler scheme, see (4.2), using the length of the time step ∆t =
10−3. To distinguish the ROMs with respect to different snapshot sets, the notations
G-ROM(∗) and SUPG-ROM(∗) will be utilized, where ∗ can be Ref (short version of
Reference), FCT (short version of FEM-FCT), or SUPG (short version of SUPG-FEM).
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Figure 4.25.: Example 4.3: Snapshot mean ūh and POD modes ϕro,1, ϕro,2, ϕro,3 (from
top to bottom) based on the Reference, FEM-FCT, and SUPG-FEM snap-
shot sets (left to right).
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Figure 4.26.: Example 4.3: Measures of interest obtained with G-ROMs and SUPG-
ROMs based on three different snapshot sets at the final time t = 6.28.

Unless otherwise stated, all ROMs will be equipped with the initial condition (3.62).
The L2 errors, the minimum and the maximum values for the G-ROMs and SUPG-

ROMs at the final time t = 6.28 for different dimensions of the POD space and the time
evolution of all three measures of interest for r ∈ {50, 110} are depicted in Figs. 4.26
and 4.27, respectively. These figures contain the answer to the first question from the
beginning of the section. In terms of the L2 error, the G-ROMs performed in general
better than the corresponding SUPG-ROMs based on all three sets of snapshots. It
is noticeable that the SUPG-ROM based on the most accurate snapshot set Reference
produces a considerably larger L2 error than the other ROMs. The situation is different
with respect to the minimum and the maximum values. The SUPG-ROMs based on the
snapshot sets representing the numerical solution of a discrete problem, i.e., FEM-FCT
and SUPG-FEM, yielded in general better minimum and maximum values than the
associated G-ROMs. At the first glance, the plots in Fig. 4.26 reveal that the G-ROMs
based on SUPG-FEM and FEM-FCT snapshots result in similar or even more accurate
minimum and maximum values for some POD dimensions r compared to the SUPG-
ROMs. If one takes a closer look at the time evolution of these values in Fig. 4.27, one can
see that the SUPG-ROMs produce more reliable results, as the minimum and maximum
values of their solutions do not fluctuate over time as much compared to the G-ROMs.
Both the G-ROM and the SUPG-ROM based on on the snapshot set Reference, which
does not arise from the numerical solution of a discrete problem but from the projection
of the continuous problem on the finite element space, did not result in satisfactory
minimum and maximum values. In particular, the SUPG-ROM(Ref) features a strong
decay of the maximum value in the course of time.

The reduced-order approximation of the initial condition u0
ro = ūh+

∑r
i=1 α

0
iϕro,i with

α0 computed by (3.62), which was used for the above ROM computations, is shown
in Fig. 4.28 in the top row. It is noteworthy that the ROM initial condition for all
snapshot sets exhibits some oscillations not only at the bodies themselves but also in
the smooth region along the trajectory of the rotation. The initial condition based on
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Figure 4.27.: Example 4.3: Time evolution of the measures of interest for G-ROMs and
SUPG-ROMs based on three different snapshot sets for r = 50 (top) and
r = 110 (bottom).

the interpolated exact solution is particularly strongly polluted in the smooth region.
A good quality initial condition is of great importance for the numerical simulations
employing implicit time discretization methods as it directly influences the accuracy of
the solution at the subsequent time steps. In order to obtain a smoother initial condition,
the post-processing filtering procedure (3.65) proposed in Section 3.2.2 was applied with
the filter width µ = h to the initial condition given by (3.62). The plots in the bottom
row of Fig. 4.28 present the filtered ROM initial condition. It is clearly visible that the
filtered initial condition features much less spurious oscillations than the standard one.

Figures 4.29 and 4.30 show the L2 errors, the minimum and the maximum values at
the final time for different POD dimensions and their time evolution for r ∈ {50, 110},
respectively, for the G-ROMs and the SUPG-ROMs combined with the filtered initial
condition. At this point, the third question from the beginning of this section will be
addressed. According to the plots, the L2 errors are slightly larger for all ROMs with the
filtered initial condition than for the corresponding ROMs with the conventional initial

110



4. SUPG Reduced-Order Models for Convection-Dominated Problems

Figure 4.28.: Example 4.3: ROM initial condition given by (3.62) (top) and additionally
filtered by (3.65) (bottom) based on the snapshots Reference (left), FEM-
FCT (center), and SUPG-FEM (right) for r = 50.

condition. Despite of the smoother initial condition, the SUPG-ROM(Ref) resulted in
by far the largest L2 error as it was already observed in Figs. 4.26 and 4.27. Also the
minimum and the maximum values of the SUPG-ROM(Ref) solution did not improve
with the smoother initial condition. The maximum value became even worse. This
observation supports the presumption that SUPG-ROM is not suitable for this kind of
snapshots. In contrast, the filtering procedure of the initial condition has a positive
effect on the minimum values of the SUPG-ROMs based on both the FEM-FCT and the
SUPG-FEM snapshots. A close monitoring of the maximum values of the SUPG-ROM
solutions in Figs. Figures 4.29 and 4.30 reveals a smaller distance to the optimal value
for the SUPG-FEM snapshots and more or less the same distance for the FEM-FCT
snapshots. However, a slightly dissipative behavioral pattern can be observed as the
values are shifted below the optimum. Furthermore, a significant improvement of the
minimum and the maximum values of the solution resulted from the G-ROMs based
on the interpolated exact solution for r ∈ [50, 170] and on the FEM-FCT snapshots
for r ∈ [50, 190]. Regarding the first question, G-ROM(FCT) behaves in the lower
part of the indicated range of the POD dimensions even somewhat better than the
corresponding SUPG-ROM. The solution of G-ROM(Ref) is notably superior to SUPG-
ROM(Ref) in the range r ∈ [50, 170], where it features almost the optimal maximum

111



4. SUPG Reduced-Order Models for Convection-Dominated Problems

50 100 150 200 250

rank

0.04

0.06

0.08

0.10

0.12

0.14
L

2
er

ro
r

t=6.28

SUPG-ROM(Ref)
SUPG-ROM(FCT)
SUPG-ROM(SUPG)

G-ROM(Ref)
G-ROM(FCT)
G-ROM(SUPG)

Reference
FEM-FCT
SUPG-FEM

50 100 150 200 250

rank

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

m
in

im
um

t=6.28

50 100 150 200 250

rank

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

m
ax

im
um

t=6.28

Figure 4.29.: Example 4.3: Measures of interest obtained with G-ROMs and SUPG-
ROMs based on three different snapshot sets combined with the filtered
initial condition.

value. The performance of the G-ROM based on the SUPG-FEM snapshots could also
be improved by smoothing the initial condition. However, its solution still exhibits
fluctuations of the minimum and the maximum values over time especially for higher
POD dimensions. Thus, SUPG-ROM(SUPG) performed better than the corresponding
G-ROM independently of the utilized initial condition.

Summing up all the presented findings, the fourth question posed at the beginning
of this section will be responded. For the snapshot sets representing the numerical
solution of a discrete problem, i.e., FEM-FCT and SUPG-FEM, SUPG-ROM combined
with the standard initial condition (3.62) yields better results when it is based on the
more accurate snapshots FEM-FCT. From Fig. 4.26, one can assert that SUPG-ROM
based on the most inaccurate set of snapshots SUPG-FEM achieves the accuracy of the
underlying finite element simulation for r ≥ 70. SUPG-ROM based on the FEM-FCT
snapshots never reaches the optimal minimum and maximum values 0 and 1, respectively,
which were obtained by the corresponding finite element simulation. However, it yields
closer values to the optimal ones compared to SUPG-ROM(SUPG). With the filtered
initial condition, SUPG-ROM(FCT) does better than SUPG-ROM(SUPG) in terms of
the minimum value, but the opposite behavior can be observed for the maximum value.
SUPG-ROM seems to be an inappropriate model for the POD basis computed from the
snapshots describing the interpolation of the continuous solution. The statements refer
to both the unfiltered and the filtered initial condition. There is no obvious relation
between the accuracy of the underlying snapshots and the accuracy of the G-ROM
solutions.

For the most ROMs considered in the underlying investigation, it is sufficient to choose
the POD dimension in the range of [50, 70] to achieve the best possible results.

/
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Figure 4.30.: Example 4.3: Time evolution of the measures of interest for G-ROMs and
SUPG-ROMs based on three different snapshot sets for r = 50 (top) and
r = 110 (bottom) combined with the by (3.65) filtered initial condition.

Figure 4.31.: Example 4.3: SUPG-ROM(SUPG) solution for r = 50 at t = 6.28 combined
with the initial condition given by (3.62) (left) and with the initial condition
additionally filtered by (3.65) (right).
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5. Velocity-Pressure Reduced-Order
Models for Incompressible Flows

This chapter has three main goals. First, it numerically investigates three different types
of velocity-pressure reduced-order models (ROMs) for incompressible flows. The Proper
Orthogonal Decomposition (POD) presented in Section 3.1 is used to generate the bases
for the ROMs. One method computes the ROM pressure solely based on the velocity
POD modes, whereas the other two ROMs use pressure POD modes as well. One of
the velocity-pressure ROMs is new and was first introduced in [26]. Two further goals
are to numerically investigate the impact of the snapshot accuracy and of the employed
nonlinear iteration schemes on the results of the ROMs. A substantial part of the chapter
can be found in [26].

5.1. Introduction

By means of the numerical methods for solving the Navier–Stokes equations (2.40)-
(2.41) like, e.g., finite elements methods, one can compute more and more details of the
flow field by increasing the dimension of the finite element spaces. However, increasing
the number of basis functions yields large linear or nonlinear systems to be solved in
the simulations. Consequently, the numerical simulation of the flow can be very time-
consuming. It is especially the case, when similar problems need to be solved multiple
times. In addition, the finite element basis is generally defined independently of the
solution, and it only depends on the structure of the computational mesh. In the case
that a priori information on the solution is available, one could transfer this knowledge
to the finite element space by pre-adapting the triangulation of Ω.

Reduced-order models aim at reducing the computational cost of full finite element,
finite difference or finite volume simulations by drastically reducing the dimension of the
solution space. The key idea of ROMs consists in utilizing basis functions that already
represent the most important features of the solution. In contrast to finite element
bases, ROM bases are global bases. The focus in this chapter will be on the ROMs, in
which the basis functions are obtained through a POD (see Section 3.1). Reduced-order
modeling for incompressible flows based on the POD is meanwhile widely used and is an
active field of research, see, e.g., [5,12,13,27,130,144] for recent publications. Here, the
snapshots will be obtained from detailed finite element simulations. It is worth noticing
that generally the snapshots might even come from experimental data [9, 63].

Within the framework of this chapter, three main goals will be pursued. One of the
goals consists in investigating three different types of ROMs that compute, besides the
velocity, also the pressure, called here for shortness vp-ROMs. One of these ROMs was
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developed within the framework of this thesis and published in [26]. Furthermore, it will
be studied how the choice of three nonlinear iteration schemes of different complexity
affects the accuracy of the ROMs. Finally, this chapter investigates the impact of the
accuracy of the simulations for computing the snapshots, shortly denoted by snapshot
accuracy, on the vp-ROM results. The motivation and background for these numerical
investigations are presented in the following.

To motivate the use of vp-ROMs, it must be noted that although most ROMs for
incompressible flows do not include a pressure component, there are important settings
in which vp-ROMs are appropriate. From the practical point of view, the pressure is
needed in many computational fluid dynamics applications, e.g., for the simulation of
fluid-structure interaction problems and for the computation of relevant quantities such
as drag and lift coefficients on solid bodies, and for ROM simulations of shear flows [108].
Other reasons for including the pressure are connected to the definition of ROMs. Using
only a velocity ROM leads to a comparatively simple model that can be simulated very
efficiently. The rationale behind velocity ROMs, as it can be found in the literature,
is that all snapshots are divergence-free, hence all basis functions are divergence-free
and consequently the ROM velocity is divergence-free, such that the pressure (which
acts as a Lagrange multiplier of the divergence-free constraint) is not needed. As it will
be clarified in Section 5.3, the same rationale can be applied in the context of finite
element methods and discretely divergence-free velocity fields. In this case, only the in-
tegrals of the product of the velocity divergence and all test functions from the discrete
pressure space vanish. In fact, many numerical methods for computing the snapshots
do not provide pointwise divergence-free flow fields. Even for finite element methods,
the discretely divergence-free property does not hold for many popular discretizations
of the Navier–Stokes equations. Such examples include the case of using the same finite
element spaces for velocity and pressure, where a numerical stabilization becomes neces-
sary, or pressure-correction schemes without reconstructing the discretely divergence-free
solution. Experimental data will generally not be divergence-free as well. Altogether,
the violation of the divergence-free constraint on the snapshots is another reason for
incorporating the pressure into ROMs for incompressible flow simulations. Moreover,
as already pointed out in [19], the availability of the pressure enables the computation
of the residual of the strong form of the Navier–Stokes equations (2.40)-(2.41). Strong
residuals are often needed in stabilized discretizations, e.g., for stabilization with respect
to the violation of the inf-sup condition or with respect to dominating convection.

In the literature, one can find different proposals for an approximation of the pressure
field or its inclusion into the ROM. One class of vp-ROMs consists in defining a ROM
for the pressure that only uses the velocity POD modes [108, 138]. One of the methods
is based on the continuous in space pressure Poisson equation (see Section 2.2.2) and the
other one is based on the discretized version of the pressure Poisson equation (see [50]
for a detailed discussion). The former pressure ROM, denoted by VMB-ROM, will be
studied in the numerical studies in Section 5.5. A second class of vp-ROMs employs
pressure POD basis functions in addition to the velocity POD basis functions, e.g.,
see [2,26,136]. The pressure POD basis functions can be computed separately from the
velocity POD basis functions (i.e., the decoupled approach) [108], or together with them
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(i.e., the coupled, monolithic approach) [19,145]. In this study, the decoupled approach
will be utilized.

Two vp-ROMs that employ a pressure POD basis will be investigated in this chapter.
The first vp-ROM in this class, here denoted by PMB-ROM, is based on the approach
proposed in [2]. The second vp-ROM, called SM-ROM, was introduced in [26]. SM-
ROM uses a residual-based stabilization mechanism for the incompressible Navier–Stokes
equations. It is based on a mathematically well understood method [21]. The advantage
over the two other vp-ROMs consists in the fact that its derivation requires the snapshots
to be only discretely divergence-free (but not pointwise), and it does not need any ad hoc
treatment of external forces and pressure boundary conditions. Overall, three vp-ROMs
will be considered in the numerical studies. VMB-ROM and PMB-ROM solve the same
equation for the pressure but in different finite-dimensional spaces. PMB-ROM and SM-
ROM work in the same space, but in these methods different equations for the pressure
are solved. All vp-ROMs can be considered as a post-processing step to a velocity ROM.

In order to exploit their computational efficiency, ROMs are often used in combination
with simple, and therefore potentially inaccurate, numerical methods. Indeed, ROMs
generally avoid the solution of nonlinear systems and use, where possible, explicit time
integration schemes, see, e.g., [130,143]. The second goal of the chapter is to investigate
how strong the actual effect of different linearization techniques, known from the context
of the finite element methods, is on the ROM results with respect to different quantities
of interest.

The third main goal of this chapter is to investigate the impact of the accuracy of
the snapshots, and therefore of the resulting POD basis, on the numerical results of
the vp-ROMs. The generation of the snapshots might be time consuming. Considering,
e.g., a turbulent flow, then one can perform a direct numerical simulation (DNS), if the
Reynolds number is sufficiently small for this approach to be feasible, or one can apply
more or less advanced turbulence models on more or less fine meshes for this purpose.
All approaches (should) give reasonable approximations of the large and important flow
structures. The main differences will be in the resolved details of the flow. However, the
DNS has to be performed on a very fine mesh and its computing time is usually orders
of magnitude higher than of a simulation with a turbulence model on a coarser grid.
And even simulations with a simple turbulence model, such as the Smagorinsky model,
might be much faster than simulations with an advanced model such as a variational
multiscale method. Since ROMs aim to compute only the most important features
of the solution, and since ROMs generally utilize computationally efficient numerical
approaches, the following question naturally emerges: “How strong are the impacts of
the snapshot accuracy, on the one hand, and of the (simple) numerical method used in
the ROMs, on the other hand, onto the ROM results?” In this chapter, a first step in
numerically investigating this question will be performed. To the best of the author’s
knowledge, the first study of this topic was conducted in [26].

To construct snapshot data of different accuracies, two approaches can be considered.
The first approach uses the same numerical method, but different discretization param-
eters, e.g., different mesh sizes and/or different time steps. The second approach uses
the same discretization parameters, but different numerical methods. In this study, the
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second approach will be utilized.
The chapter is structured as follows: In Section 5.2, the derivation of the coupled

Galerkin ROM for the Navier–Stokes equations will be carried out. The ROM for the
computation of solely the velocity field, including its fully discretized formulation and
the implementation aspects, will be presented in Section 5.3. Thereafter, the derivation
of three different reduced-order models for the computation of the ROM pressure will
be conducted in Section 5.4. Furthermore, the advantages and disadvantages of the
respective methods will be discussed. Finally, detailed numerical studies on a two-
dimensional test problem describing the flow around a cylinder will be presented.

5.2. Galerkin ROM for Navier–Stokes Equations

In this section the Galerkin reduced-order model for the Navier–Stokes equations (2.40)-
(2.41) will be derived. It will be assumed that the Navier–Stokes equations are equipped
with the boundary conditions required for the numerical studies in Section 5.5 of the
form

u = 0 on (0, T ]× Γ0,

u = gD on (0, T ]× Γin,

(ν∇u− pI)n = 0 on (0, T ]× Γout,

(5.1)

where Γ0, Γin, and Γout are mutually disjoint parts of the boundary Γ with Γ = Γ0 ∪
Γin ∪ Γout and the Dirichlet boundary ΓD = Γ0 ∪ Γin, see Section 2.2.1. Notice that, in
general, gD might depend also on time.

Following the guidelines for the construction of the Galerkin reduced-order model
presented in Section 3.2.1, the starting point is the weak formulation of the Navier–
Stokes equations (see Section 2.2.6). Let the velocity space V and the pressure space
Q be defined by (2.83). The time-continuous weak formulation of the Navier–Stokes
equations reads: Find u : (0, T ] → H1(Ω), such that u(t, ·) − ug(t, ·) ∈ V for all
t ∈ (0, T ], and p : (0, T ]→ Q such that

(∂tu,v) + (ν∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) = (f ,v) , ∀ v ∈ V,
−(∇ · u, q) = 0, ∀ q ∈ Q, (5.2)

where ug(t, ·) ∈ H1(Ω) is an extension of the Dirichlet boundary condition into Ω for
t ∈ (0, T ].

Furthermore, the finite-dimensional POD bases for the velocity and the pressure have
to be computed by one of the algorithms shown in Sections 3.1.3 and 3.1.4. Let

{φro,1, . . .φro,rv} (5.3)

denote the velocity POD basis of dimension rv and

{ψro,1, . . . ψro,rp} (5.4)

the pressure POD basis of dimension rp. Let {um}Mm=1 and {pm}Mm=1 denote sets of
snapshots of the finite element velocity and pressure solutions, respectively.
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As the velocity Dirichlet boundary condition on ΓD is not homogeneous, one of the
approaches from Section 3.2.3 has to be applied to treat the boundary condition in the
ROM correctly. Let the velocity and the pressure POD bases be computed from the
modified snapshots {um − ug(tm, ·)}Mm=1 and {pm − ph}Mm=1, respectively. For possible
definitions of ug(tm, ·) the reader is referred to Section 3.2.3; ph stands for the average
of the pressure snapshots pm, m = 1, . . . ,M . Note that theoretically the pressure snap-
shots do not need to be modified as for the pressure no Dirichlet boundary is imposed.
However, in the literature the pressure snapshots are often modified in this way, e.g.,
see [2].

The reduced-order approximations of the velocity and the pressure fields read as fol-
lows:

u(t,x) ≈ uro(t,x) = ug(t,x) + urv(t,x) = ug(t,x) +

rv∑

i=1

αv,i(t)φro,i(x), (5.5)

p(t,x) ≈ pro(t,x) = ph(x) + prp(t,x) = ph(x) +

rp∑

j=1

αp,j(t)ψro,j(x). (5.6)

Vectors αv = (αv,1, . . . , αv,rv)T and αp =
(
αp,1, . . . , αp,rp

)T
represent the unknown ROM

coefficients for the velocity and the pressure, respectively.
Altogether, the Galerkin ROM for the Navier–Stokes equations reads: Find (uro, pro)

with uro − ug : (0, T ]→ span{φro,i}rvi=1 and pro − ph : (0, T ]→ span{ψro,j}rpj=1 such that
for i = 1, . . . , rv, j = 1, . . . , rp,

(∂turo,φro,i) + (ν∇uro,∇φro,i) + ((uro · ∇)uro,φro,i)− (pro,∇ · φro,i) = (f ,φro,i),

−(∇ · uro, ψro,j) = 0,
(5.7)

with the ROM coefficients of the initial velocity condition

αv,i(0) = α0
v,i =

(
u(0,x)− ug(0,x),φro,i(x)

)
=
(
u0 − u0

g,φro,i

)
, i = 1, . . . , rv, (5.8)

where u0 is the finite element approximation of the initial condition and u0
g the finite

element representation of the function fulfilling the Dirichlet boundary values on the
boundary part ΓD.

The Galerkin ROM for the Navier–Stokes equations discretized in time by the one-
step θ-scheme (superscript n) and linearized by the Picard iteration (subscript k) reads:
For each n = 1, 2, . . . and given (unro,k−1, p

n
ro,k−1) with k = 1, 2, . . ., find (unro,k, p

n
ro,k) with
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unro,k − ung ∈ span{φro,i}rvi=1 and pnro,k − ph ∈ span{ψro,j}rpj=1 such that

(
unro,k,φro,i

)
+ θ∆t

[(
ν∇unro,k,∇φro,i

)
+
(
(unro,k−1 · ∇)unro,k,φro,i

)]

−∆t
(
∇ · φro,i, p

n
ro,k

)

=
(
un−1

ro ,φro,i

)
− (1− θ)∆t

[ (
ν∇un−1

ro ,φro,i

)
(5.9)

+
(
(un−1

ro · ∇)un−1
ro ,φro,i

) ]
+ (1− θ)∆t

(
fn−1,φro,i

)

+ θ∆t
(
fn,φro,i

)
,

−
(
∇ · unro,k, ψro,j

)
= 0,

for all i = 1, . . . , rv, j = 1, . . . , rp.

5.3. Velocity ROM

In many, probably even most, published reports on reduced-order models based on the
POD for incompressible flows, only velocity models are considered. This approach ex-
ploits the linearity of the divergence operator and of the POD procedure. If the raw
velocity snapshots {um}Mm=1 are divergence-free, then also the modified ones {um −
ug(tm, ·)}Mm=1 are divergence-free if ug is divergence-free. As every POD basis function
φro,i, i = 1, . . . , rv, is a particular linear combination of the used snapshots, see (3.44),
then the POD basis functions φro,i, i = 1, . . . , rv, are also divergence-free. In fact, if
uro and {φro,i}rvi=1 are divergence-free, the pressure term on the left-hand side of the
momentum equation and the continuity equation of (5.7) drops out.

Finally, the projection-based velocity Galerkin ROM (v-ROM) has the following form:
Find

uro(t,x) = ug(t,x) + urv(t,x) = ug(t,x) +

rv∑

i=1

αv,i(t)φro,i(x),

such that, for i = 1, . . . , rv,

(∂turo,φro,i) + (ν∇uro,∇φro,i) + ((uro · ∇)uro,φro,i) = (f ,φro,i). (5.10)

Note that (5.10) requires only the velocity POD basis. Due to the absence of the pressure
in problem (5.10), the boundary conditions (5.1) have to be modified yielding

u = 0 on (0, T ]× Γ0,

u = gD on (0, T ]× Γin,

∇u n = 0 on (0, T ]× Γout.

(5.11)

It must be emphasized that the assumption of divergence-free snapshots as the solution
of a finite element method is idealized. For instance, in the context of inf-sup stable finite
element discretizations there are only very few divergence-free pairs of spaces, like the
Scott–Vogelius element on barycentric refined grids [147]. Most of the inf-sup stable
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pairs, in particular the most popular ones like the Taylor–Hood finite elements, see
Section 2.2.7, are only discretely divergence-free. The magnitude of the divergence of
the finite element solution can be even large [100]. Indeed, the standard finite element
convergence theory shows that the L2(Ω) norm of the divergence has the same order of
convergence as the error in the L2(Ω) norm of the velocity gradient [72].

The reduction from (5.7) to (5.10), however, can be achieved in certain situations by
using the argument that the snapshots are only discretely divergence-free. This situation
holds if the finite element continuity equation is not perturbed by any additional term.
Moreover, the POD modes {φro,i}rvi=1 with the corresponding function ug and {ψj}rpj=1

with ph should belong to the velocity and pressure finite element spaces, respectively. In
this case, the pressure term in the ROM (5.7) drops out and (5.7) reduces to the velocity
ROM (5.10). The above argument does not apply if the continuity equation is disturbed
by additional terms, as in the case of finite element pairs that do not fulfill a discrete
inf-sup condition, e.g., equal finite elements for velocity and pressure, which require
additional stabilizations introducing a control on the pressure through a modification of
the continuity equation (2.41) .

The velocity ROM (5.10) is continuous in time and nonlinear due to the convective
term. Therefore, in order to solve it numerically it has to be discretized in time, see
Section 2.2.3 and to be solved iteratively in each time step, see Section 2.2.5.

Let tn denote the discrete times, the functions evaluated at those times with a cor-
responding superscript n, and the length of the equidistant time step by ∆t. The k-th
iteration of the nonlinear solver in each time step is denoted by the subscript k of the
solution. The initial step for each nonlinear iteration at time tn is the value of the so-
lution evaluated at tn−1, see [70] and references therein for other possible choices of the
initial guess.

The velocity ROM (5.10) combined with the one-step θ-scheme and the Picard itera-
tion reads in matrix form: For each n = 1, 2, . . . and given αnv,k−1 ∈ Rrv with k = 1, 2, ...,
find αnv,k ∈ Rrv such that

[
MNS

ro + θ∆t
(
ANS

ro +NNS
ro (unro,k−1)

) ]
αnv,k = (1− θ)∆tfn−1

ro
+ θ∆tfn

ro

+
[
MNS

ro − (1− θ)∆t
(
ANS

ro +NNS
ro (un−1

ro )
)]
αn−1
v + lnro,

(5.12)

where θ has to be chosen, see Table 2.1, and
(
MNS

ro

)
ij

= (φro,j ,φro,i), i, j = 1, . . . , rv, (5.13)
(
ANS

ro

)
ij

= (ν∇φro,j ,∇φro,i), i, j = 1, . . . , rv, (5.14)
(
NNS

ro (unro)
)
ij

=
(
(unro · ∇)φro,j ,φro,i

)
, i, j = 1, . . . , rv, (5.15)

fnro,i =
(
fn,φro,i

)
, i = 1, . . . , rv, (5.16)

and finally

lnro,i =
(
un−1
g − ung ,φro,i

)
−∆t

(
θν∇ung + (1− θ)ν∇un−1

g ,∇φro,i

)
(5.17)

−∆t
(
θ
(
unro,k−1 · ∇

)
ung + (1− θ)

(
un−1

ro · ∇
)
un−1
g ,φro,i

)
, i = 1, . . . , rv.

The initial condition is given by (5.8).

120



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

5.3.1. Implementation

In this section, the implementation of the velocity ROM (5.12) equipped with the Dirich-
let boundary conditions of type (3.71), i.e.,

u = γk(t)gk(x) on (0, T ]× ΓD,k, k = 1, . . . ,K, (5.18)

with ΓD =
⋃K
k=1 ΓD,k, ΓD,i ∩ ΓD,j = ∅ for i 6= j, i, j = 1, . . . ,K, will be discussed.

Moreover, a zero source term, i.e., f = 0, will be assumed which corresponds to the
definition of the problems considered in Section 5.5.

Remark 5.1. The Dirichlet part of the boundary conditions (5.11) can be interpreted
to be of type (5.18) for K = 2 with

u = γ1(t)g1(x) on (0, T ]× Γin = ΓD,1,

u = γ2(t)g2(x) on (0, T ]× Γ0 = ΓD,2,
(5.19)

where gD(t,x) = γ1(t)g1(x), and γ2 = 1, g2 = 0. /

As in Section 3.2.4, the velocity POD basis {φro,i}rvi=1 is computed from the modified
snapshots following the algorithm of Method 1 introduced in Section 3.2.3. Hence, the
function ug satisfying the boundary conditions (5.18) reads

ug(t,x) =
K∑

k=1

γk(t)uS,k(x), (5.20)

with the functions uS,k ∈ Vh obtained as it is specified in the algorithm.
Let Φv denote the velocity POD matrix with the velocity POD modes as columns,

i.e.,
Φv =

(
φro,1, . . . ,φro,rv

)
∈ RNv×rv .

With the exception of the contributions from the convective term, i.e., the matrix
NNS

ro (unro) and the last term of lnro, all other parts of the system (5.12) can be built
up efficiently following the lines in Section 3.2.4. Thereby, expressions Mro, Aro, Mh,
Ah, Φ, uS,k have to be substituted by MNS

ro , ANS
ro , MNS

h , ANS
h , Φv, uS,k, respectively.

Next, the implementation of the contributions from the convective term will be dis-
cussed, i.e., expressions of the form

(
NNS

ro (un−1
ro )

)
ij

=
((
un−1
g · ∇

)
φro,j ,φro,i

)
+
((
un−1
rv · ∇

)
φro,j ,φro,i

)
(5.21)

and

((
un−1

ro · ∇
)
un−1
g ,φro,i

)
=
((
un−1
g · ∇

)
un−1
g ,φro,i

)
+
((
un−1
rv · ∇

)
un−1
g ,φro,i

)
. (5.22)

Due to the separated form of ug, see (5.20), and the definition of urv , see (5.5), the
computation of both terms on the right-hand side of (5.21) can be split up efficiently
between the offline and online stages in three steps as follows:
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1. Offline stage: Assemble finite element matrices

{NNS
h (uS,k)}Kk=1 and {NNS

h (φro,i)}rvi=1, (5.23)

defined by (2.97).

2. Offline stage: Reduce the matrices by building

{ΦT
vN

NS
h (uS,k)Φv}Kk=1 and {ΦT

vN
NS
h (φro,i)Φv}rvi=1, (5.24)

respectively. Each matrix is an element of the space Rrv×rv .

3. Online stage: Compute

K∑

k=1

γn−1
k ΦT

vN
NS
h (uS,k)Φv and

rv∑

i=1

αn−1
v,i ΦT

vN
NS
h (φro,i)Φv

to obtain the first and the second terms of (5.21), respectively, at each iteration
step.

Hence, in the online stage the computational complexity does not depend on the dimen-
sion of the finite element space Vh as it is desired in the framework of the reduced-order
modeling.

Similarly, one can split the computation of both terms on the right-hand side of (5.22).
In this case, the first step remains the same, i.e., the finite element matrices (5.23) need
to be assembled. In the second step, instead of (5.24), one pre-computes

ΦT
vN

NS
h (uS,k)uS,m, k,m = 1, . . . ,K,

ΦT
vN

NS
h (φro,i)uS,m, i = 1, . . . , rv, m = 1, . . . ,K,

(5.25)

in the offline stage. Note that each expression in (5.25) is a vector in Rrv . Finally, at
each iteration of the online stage, the first and the second summands of (5.22) can be
obtained efficiently by computing

K∑

k=1

K∑

m=1

γn−1
k γn−1

m ΦT
vN

NS
h (uS,k)uS,m and

rv∑

i=1

K∑

m=1

αn−1
v,i γ

n−1
m ΦT

vN
NS
h (φro,i)uS,m,

respectively.

5.4. Pressure ROMs

To the best of the author’s knowledge, the ROMs with a pressure component can be
divided into two classes, depending on if they use pressure POD modes or not. If pres-
sure modes are employed, there are again two principal approaches. In the decoupled
approach, the velocity and pressure snapshots are considered separately. Choosing the
velocity POD modes with the highest kinetic energy and the pressure POD modes with
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the largest L2(Ω) norm, one obtains two separate bases. For this approach, it is straight-
forward to choose a different number of POD modes for velocity and pressure, based on
the corresponding distribution of their eigenvalues. In the coupled approach, see [19],
each snapshot, and thus, each POD mode, has both a velocity and the corresponding
pressure component. This approach naturally yields the same number of velocity and
pressure modes. In this thesis the decoupled approach will be considered.

5.4.1. Pressure ROM Based on Velocity Modes

After having solved the velocity ROM (5.10), the pressure field must be reconstructed
a posteriori using the ROM velocity solution. In this section, the approach proposed
in [108] will be considered. It utilizes the pressure Poisson equation

−∆p = ∇ · ((u · ∇)u) in Ω, (5.26)

which is obtained by taking the divergence of the momentum equation of the Navier–
Stokes equations (2.40)-(2.41), see Section 2.2.2, assuming that the source term f is
divergence-free. For the sake of simplicity, the pressure model will be derived for the
stationary Dirichlet boundary condition for u on Γin such that the function ug in (5.5)
can be chosen to be the average of the snapshots uh, see Section 3.2.3. Thus, the
problem (5.26) is equipped with the Neumann boundary condition for the pressure

∇p · n = ν∆u · n− (u · ∇)u · n on Γ \ Γout, (5.27)

and the homogeneous Dirichlet boundary condition on Γout, see also Section 2.2.2. The
main idea used in [108] consists in replacing u on the right-hand side of (5.26) by uro

defined by (5.5), which can also be written in the form

uro(t,x) =

rv∑

i=0

αv,i(t)φro,i(x), (5.28)

with αv,0(t) = 1 and φro,0(x) = uh(x). Assuming that all velocity POD functions in
(5.5) are divergence-free, one obtains in Ω
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−∆pro =

rv∑

i=0

rv∑

j=0

αv,i(t)αv,j(t)∇ ·
((
φro,i · ∇

)
φro,j

)

=

rv∑

i=0

rv∑

j=0

αv,i(t)αv,j(t)

d∑

k=1

∂xk

((
d∑

m=1

φmro,i∂xm

)
φkro,j

)

=

rv∑

i=0

rv∑

j=0

αv,i(t)αv,j(t)

[
d∑

k=1

d∑

m=1

∂xkφ
m
ro,i∂xmφ

k
ro,j

+

d∑

m=1

φmro,i∂xm

(
d∑

k=1

∂xkφ
k
ro,i

)

︸ ︷︷ ︸
=0

]

=

rv∑

i=0

rv∑

j=0

αv,i(t)αv,j(t)

(
d∑

k=1

d∑

m=1

∂xkφ
m
ro,i∂xmφ

k
ro,j

)
,

(5.29)

where φkro,i denotes the kth component of the velocity POD mode φro,i, ∂xk denotes the
partial derivative with respect to the k-th component of x ∈ Ω, and d is the dimension
of the domain Ω.

Problem (5.29) is an equation in space, in which the functions αv,i(t), αv,j(t) act as
constants. Hence, the solution of (5.29) has the quadratic form

pro(t,x) =

rv∑

i=0

rv∑

j=0

αv,i(t)αv,j(t)pij(x) , (5.30)

where the functions pij(x) are obtained by solving

−∆pij =
d∑

k=1

d∑

m=1

∂xkφ
k
ro,i∂xmφ

m
ro,j in Ω. (5.31)

In what follows, the velocity ROM (5.12) together with pro(x) given by (5.30), will be
referred to as the VMB-ROM (velocity-modes-based ROM). Within the framework of the
numerical studies in Section 5.5, the coefficients pij will be determined by applying the
Galerkin projection to (5.31) on the pressure finite element space Qh. Using integration
by parts, the resulting left-hand side can be expressed for all qh ∈ Qh by

(−∆pij , qh) = (∇pij ,∇qh)−
∫

Γ\Γout

∇pij · n qh ds. (5.32)

Finally, the following finite element problem has to be solved: Find pij ∈ Qh such that

(∇pij ,∇qh) =

(
d∑

k=1

d∑

m=1

∂xkφ
m
ro,i∂xmφ

k
ro,j , qh

)
+

∫

Γ\Γout

∇pij ·n qh ds, ∀qh ∈ Qh. (5.33)
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By applying the velocity ROM approximation (5.28) instead of u, the Neumann bound-
ary condition (5.27) on Γ \ Γout can be represented by

∇pro · n =

rv∑

i=0

αv,i
(
ν∆φro,i −

(
φro,i · ∇

)
uh
)
· n, (5.34)

where it was used that the velocity POD modes {φro,i}rvi=1 vanish on Γ \ Γout by con-
struction. In order to maintain the quadratic representation as in (5.30), the right-hand
side can be rewritten leading to the form

rv∑

i=0

αv,i si =
(
1 αv,1 · · · αv,rv

)




s0
1
2s1 · · · 1

2srv
1
2s1 0 · · · 0
...

...
. . .

...
1
2srv 0 · · · 0







1
αv,1
· · ·
αv,rv


 ,

with si =
(
ν∆φro,i −

(
φro,i · ∇

)
uh
)
· n. Finally, the boundary term on the right-hand

side of (5.33) can be computed by employing the following expressions

∇pij · n =





s0, if i, j = 0,
1
2si, if i > 0, j = 0,
1
2sj , if j > 0, i = 0,

0, otherwise.

Note that pij(x) = pji(x) and, thus, system (5.31) has only (rv + 1)rv/2 unknowns.
The functions pij(x) can be computed in the offline stage. In this way, the ROM pressure
pro(x) can be efficiently reconstructed at each time step by using (5.30). It should be
noted that this pre-processing approach does not work if the Navier–Stokes equations
have a time-dependent body force which is not divergence-free.

In [108], the term (∇pro,φro,i) was even introduced into the momentum equation
(5.10) to improve the results of ROMs for shear flows. If only the term (∇pro,φro,i)
is of interest, while the explicit computation of pro is not required, it was proposed
in [42,108] to approximate this term using linear models in αv,i(t), resulting in additional
minimization problems to be solved for determining the coefficients in the ansatz.

5.4.2. Pressure ROM Based on Pressure Modes

A second approach for defining a pressure ROM a posteriori consists in reducing the
pressure equation (5.26) (see also Section 2.2.2) using a pressure POD basis computed
from the pressure snapshots. This method was proposed in [2].

Assuming that the reduced velocity unro has already been computed by the velocity
ROM (5.12), and assuming the velocity POD space to be divergence-free, one obtains
the pressure Poisson equation

−∆pnro = ∇ · ((unro · ∇)unro) in Ω, (5.35)
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with a homogeneous Dirichlet boundary condition on Γout and a Neumann boundary
condition on Γ \ Γout (5.27), using uro instead of u.

In [2], it was suggested to compute the ROM pressure by applying the Galerkin pro-
jection to (5.35) on the pressure POD modes {ψro,i}rpi=1. Employing integration by parts
yields

(−∆pnro, ψro,i) = (∇pnro,∇ψro,i)−
∫

Γ\Γout

∇pnro · nψro,i ds

= (∇pnro,∇ψro,i)−
∫

Γ\Γout

(
ν∆unro − (unro · ∇)ung

)
· nψro,i ds,

(5.36)

where it was used that unrv vanishes on Γ \ Γout by the construction of the POD modes
{φro,i}rvi=1. Finally, one has to solve the following problem: Find

pnro = ph +

rp∑

i=1

αnp,iψro,i , (5.37)

such that for i = 1, . . . , rp,

(∇pnro,∇ψro,i) = (∇ · ((unro · ∇)unro) , ψro,i)

+

∫

Γ\Γout

(
ν∆unro − (unro · ∇)ung

)
· nψro,i ds. (5.38)

In the numerical studies presented in Section 5.5, the velocity ROM (5.12) together
with (5.38), will be referred to as PMB-ROM (pressure-modes-based ROM).

Note that, although VMB-ROM and PMB-ROM are based on the same equation, the
respective pressures are computed using different discrete spaces. In the VMB-ROM, the
pressure is represented in terms of the functions computed from the derivatives of the
velocity POD modes, see (5.31), whereas in the PMB-ROM the pressure is represented
in terms of the pressure POD modes, cf. (5.37).

5.4.3. Pressure ROM Based on a Stabilization of the Coupled Problem

A ROM that is based on a coupled scheme for (uro, pro), such as the ROM (5.7), raises
the issue of the inf-sup condition for saddle point problems [45]. It seems to be hard to
address this question for the general setting of the ROM, unlike for, e.g, finite element
methods, where the approximation spaces are specified beforehand and the correspond-
ing discrete inf-sup condition (2.106) can be investigated a priori. In the ROM framework
based on POD, however, the approximation spaces are problem-dependent – they are
known only after having performed the underlying finite element simulations, or even an
actual physical experiment [9, 63]. Thus, checking beforehand whether the velocity and
pressure POD spaces satisfy an inf-sup condition is generally not possible. In the context
of finite element methods, the discrete inf-sup condition (2.106) states, loosely speaking,
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that the dimension of the discrete velocity space is sufficiently high compared with the
dimension of the discrete pressure space. In the case of reduced basis method, several
suggestions exist in the literature on how to enrich the velocity space to verify the inf-sup
condition [96,112,119]. For ROMs based on POD, to the author’s best knowledge, there
are no results on that issue. In the framework of finite element methods, the coupled
velocity-pressure problem (2.93) can be stabilized by including additional terms in the
variational formulation, in order to overcome a possible violation of the inf-sup condition.
This aspect motivates the new ROM for the pressure introduced in this section. The
idea is to define an equation for the pressure based on a stabilization approach for the
coupled velocity-pressure ROM (5.7). Among the stabilizations for incompressible flow
problems [21], the class of residual-based approaches seems to be promising, since these
methods immediately allow the stabilization of dominant convection. These approaches
are also the basis of residual-based variational multiscale methods [17].

A popular residual-based stabilization is the SUPG/PSPG/grad-div method, see [21]
and the references therein. In this approach, the residual of the momentum equation is
tested with the streamline derivative of the velocity and the gradient of the pressure.
Thus, the following stabilization term is added to the momentum equation in (2.93)

sh =
∑

K∈Th

(
∂tuh− ν∆uh + (uh ·∇)uh +∇ph−f , δK,uh

(uh ·∇)vh + δK,p∇qh
)
K
, (5.39)

where K denotes a mesh cell of the considered triangulation Th of Ω, and δK,u and δK,p
are the stabilization parameter functions. The so-called grad-div term is based on the
residual of the continuity equation and it adds the following stabilization term to the
momentum equation in (2.93)

∑

K∈Th

(
∇ · uh, µK∇ · vh

)
K
, (5.40)

where µK denotes the stabilization parameter function. The SUPG term in (5.39) ac-
counts for stabilizing dominating convection, the grad-div term (5.40) accounts for im-
proving the discrete conservation of mass, and the PSPG term in (5.39) accounts for
stabilizing a violated inf-sup condition.

Note that the SUPG/PSPG/grad-div method has already been used in [19,145] within
a ROM framework. However, in [19,145] the ROM pressure was not computed by solving
a separate pressure equation.

Although an explicit treatment of (5.39) and (5.40) might be advantageous in terms
of computational efficiency, the stabilization of the inf-sup condition has to appear in
the system matrix in order to become effective.

In the residual for the momentum balance (5.39), the viscous term is generally ne-
glected, since it is of little importance in the interesting case of small viscosity. Denote
by

resnro =
unro − un−1

ro

∆t
+ (unro · ∇)unro +∇pnro − fn

an reduced-order approximation of the residual at tn. Then, the right-hand side of the
momentum equation of the coupled system (5.9) at tn contains the explicit stabilization
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terms

−
∑

K∈Th
δK,u

(
resn−1

ro , (un−1
ro · ∇)φro,i

)
K
, −

∑

K∈Th
µK
(
∇ · un−1

ro ,∇ · φro,i

)
K
, (5.41)

∀i = 1 . . . , rv, where the stabilization parameters are now assumed to be piecewise
constant. In the continuity equation in (5.9), the term

∑

K∈T h

δK,p
(
∇pnro,∇ψro,j

)
K
, j = 1, . . . , rp,

is included to the left-hand side, i.e., to the system matrix. Moving the velocity-pressure
coupling of the stabilization

−
∑

K∈Th
δK,p

(
resnro −∇pnro,∇ψro,j

)
K
, j = 1, . . . , rp, (5.42)

to the right-hand side of the continuity equation in (5.9), the matrix form of the coupled
problem has the form

(
MNS

ro + θ∆t
(
ANS

ro +NNS
ro (unro,k−1)

)
(BNS

ro )T

BNS
ro CNS

ro

)
, (5.43)

where MNS
ro , A

NS
ro , N

NS
ro (unro,k−1) are defined by (5.13), (5.14), and (5.15), respectively,

and

(BNS
ro )ij = (∇ · φro,j , ψro,i), i = 1, . . . , rp, j = 1, . . . , rv,

(CNS
ro )ij =

∑

K∈Th
δK,p(∇ψro,j ,∇ψro,i)K , i, j = 1, . . . , rp.

Consider now the ROM matrix (5.43) for the case in which the velocity snapshots are
discretely divergence-free, e.g., when they are computed with a Galerkin finite element
method with inf-sup stable pairs of finite element spaces. In this case, the matrix BNS

ro

vanishes. Hence, the system with matrix (5.43) results in two decoupled equations.
After having computed the reduced velocity, the right-hand side (5.42) of the continuity
equation can be evaluated. If the stabilizations of dominating convection and of violating
the mass conservation (5.41) can be neglected, as for the flow problem considered in
Section 5.5, the velocity equation corresponding to (5.43) is the same as that in the
velocity ROM (5.12).

Altogether, we propose to combine the ROM velocity equation (5.12) with

∑

K∈Th
δK,p

(
∇pnro,∇ψro,j

)
K

=

= −
∑

K∈Th
δK,p

(
unro − un−1

ro

∆t
+ (unro · ∇)unro − fn,∇ψro,j

)

K

, j = 1, . . . , rp.
(5.44)
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In what follows, the ROM (5.12) together with (5.44), will be referred to as SM-ROM
(stabilization-motivated ROM). The SM-ROM (5.12), (5.44) was first proposed in [26].

The matrix for the pressure equation in (5.43) corresponds to the discretization of
a scaled Laplacian. In (5.44), the stabilization parameters {δK,p} have to be chosen.
Since there is no numerical analysis for this choice in the context of ROMs, the guidance
provided by the standard finite element theory will be used. For this case, following
the finite element theory, an optimal stabilized method is obtained with δK,p = C hK in
(5.44), where C is a generic constant and hK is the diameter of the mesh cell K, [21].
Note that the value of the constant C has no effect on the SM-ROM, since it appears
on both sides of (5.44). Thus, without loss of generality, δK,p = hK can be used.

It is worth emphasizing that one of the advantages of SM-ROM is that its derivation
requires the velocity snapshots to be only discretely divergence-free but not pointwise
divergence-free, as needed for the derivation of the VMB-ROM and PMB-ROM. Fur-
thermore, being based on a general formulation of the Navier–Stokes equations, the
SM-ROM does not need any ad hoc treatment of external forces and any specification
of additional pressure boundary conditions.

5.5. Numerical Studies

First, this section presents numerical results for the three vp-ROMs introduced in Sec-
tion 5.4, which are summarized in Table 5.1. Second, the influence of nonlinear iteration
schemes of different complexity and accuracy, employed in the velocity ROM, on the
accuracy of the vp-ROM results with respect to various quantities of interest will be
studied. Third, it investigates the impact of the snapshot accuracy on the results of the
vp-ROMs. The effect of the dimension of the POD basis on the numerical results is also
monitored.

Table 5.1.: Velocity-pressure ROMs presented in Section 5.4. VMB-ROM and PMB-
ROM use the same equation for computing the ROM pressure, but the dis-
crete spaces in these methods are different. PMB-ROM and SM-ROM apply
the same discrete space, but different equations for the ROM pressure.

Acronym Description Equations

VMB-ROM velocity-modes based (5.12), (5.31)
PMB-ROM pressure-modes based (5.12), (5.38)
SM-ROM stabilization motivated (5.12), (5.44)

Example 5.1. Laminar flow around a cylinder. To allow a detailed discussion of the
results, the numerical studies were carried out for the well understood example of a
two-dimensional laminar flow around a circular cylinder defined in [122]. This problem
is given in

Ω = {(0, 2.2)× (0, 0.41)} \ {x : (x− (0.2, 0.2))2 ≤ 0.052},
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see Fig. 5.1. At the boundary x = 0 the steady-state inflow condition u(x, 0) =
(0.41−2(6y(0.41 − y)), 0)T is used, at the boundary x = 2.2 the outflow (”do noth-
ing”) condition (ν∇u − pI)n = 0 is applied, while no-slip boundary conditions are
prescribed elsewhere, see Section 3.2.3. The kinematic viscosity of the fluid is given
by ν = 10−3 m2/s. The initial condition is a fully developed flow field that has to be
computed in a pre-processing step. Based on the mean inflow velocity U = 1 m/s, the
diameter of the cylinder L = 0.1 m and the kinematic viscosity, the Reynolds number
of the flow is Re = 100. In the fully developed periodic regime, a vortex shedding (von
Kármán vortex street) can be observed behind the obstacle, see Fig. 5.2.

Figure 5.1.: Example 5.1: The flow domain (left) and the coarse grid (right).

Figure 5.2.: Example 5.1: Snapshots of the finite element solution.

Quantities of interest are the drag and lift coefficients at the cylinder. In the presented
numerical studies, these quantities were computed as volume integrals by the following
expressions

cd = − 2

LU2

[
(∂tu,vd) + (ν∇u,∇vd) + ((u · ∇)u,vd)− (∇ · vd, p)

]
, (5.45)

cl = − 2

LU2

[
(∂tu,vl) + (ν∇u,∇vl) + ((u · ∇)u,vl)− (∇ · vl, p)

]
, (5.46)

for functions vd, vl ∈ H1(Ω) such that vd = (1, 0)T and vl = (0, 1)T on the boundary
of the cylinder and vd = vl = (0, 0)T on all other boundaries. Since vd and vl are not
discretely divergence-free, the last term in (5.45) and (5.46) does not vanish and the
pressure is needed for computing the drag and the lift coefficients. One can compute
these quantities by boundary integrals defined on the cylinder. The definitions, however,
can be reformulated as integrals on the domain Ω, which is numerically advantageous,
see [77] and the discussion therein. The latter approach, extended to the time-dependent
Navier–Stokes equations, see [74], was used in the present numerical studies. In the
periodic regime, another important quantity of interest is the Strouhal number

St =
Lνf
U

,

130



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

which is correlated to the frequency of the vortex shedding νf . According to [122], the
reference intervals for the functionals of interest are

Maximum drag coefficient: cmax
d ∈ [3.22, 3.24] ,

Maximum lift coefficient: cmax
l ∈ [0.98, 1.02] ,

Strouhal number: St ∈ [0.295, 0.305] .

To the best of the author’s knowledge, there is no known relation between the kinetic
energy or the L2 norm, which was the criterion used to compute the POD basis, and
these quantities of interest.

All simulations were performed with the code MooNMD [78] on a grid obtained by
three uniform red refinements of the coarse grid presented in Fig. 5.1, where the reso-
lution of the cylinder was improved with each refinement. The Navier–Stokes equations
(2.40)-(2.41) were discretized in space with the inf-sup stable Taylor–Hood Q2/Q1 finite
elements, resulting in 107 712 velocity degrees of freedom and 13 616 pressure degrees
of freedom.

Numerical Methods for Computing the Snapshots

One of the goals of this section is to numerically investigate the effect of the snapshot
accuracy on the results obtained with the vp-ROMs. Different numerical methods on
the same grids in time and space were employed for computing snapshots of different
accuracies.

The most expensive numerical method, denoted by SP-NONLIN, requires the solu-
tion of a nonlinear saddle point problem at each discrete time. The nonlinear problem
is solved by a fixed point iteration (Picard iteration), as described in Section 2.2.5. The
second numerical method, denoted by SP-LIN, uses the IMEX version of the Crank–
Nicolson scheme, see Section 2.2.5 for more details. Thus, the convective term is dis-
cretized explicitly in the convective component ((un−1

h · ∇)unh,vh) and all other terms
are handled implicitly. SP-LIN yields one linear saddle point problem at each time it-
eration. For both methods, the Crank–Nicolson time integration scheme with the time
step ∆t = 0.005 was employed, which showed, among simple time stepping schemes, a
good balance between accuracy and computational efficiency [79, 83]. Finally, the third
numerical method is the standard second order incremental pressure-correction scheme
(2.100), denoted by PC, which employs the IMEX method and removes even the saddle
point character of the problem. The method is similar to the van Kan scheme [53,139],
however it utilizes the BDF2 time stepping scheme. For the numerical simulations in
this section the same time step ∆t = 0.005 as for SP-NONLIN and SP-LIN will be
used. At each discrete time, PC requires only the solution of one linear equation for
the velocity, where the equations for the velocity components are decoupled, and one
linear equation for the pressure. PC provides two approximations for the velocity. For
the underlying numerical studies, the non-incompressible velocity approximation, which
satisfies the correct boundary conditions, is used (see Remark 2.11 for the motivation of
the choice).

131



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

0.0 0.2 0.4 0.6 0.8 1.0

time

3.20

3.24

3.28

3.32

3.36

3.40
dr

ag

0.0 0.2 0.4 0.6 0.8 1.0

time

−1.2

−0.6

0.0

0.6

1.2

lif
t

SP-NONLIN SP-LIN PC

3.20 3.25 3.30 3.35 3.40

drag

−1.2

−0.6

0.0

0.6

1.2

lif
t

Figure 5.3.: Example 5.1: Drag and lift coefficients for the finite element simulations.

Clearly, the three different numerical methods possess different numerical costs. In the
simulations for computing the snapshots, SP-NONLIN took about 2.6 times longer than
SP-LIN, and SP-LIN took about 2.2 longer than PC. But it can be also expected that
the three methods exhibit differences in accuracy. This expectation is met by the results
presented in Fig. 5.3 and Table 5.2. One can observe that SP-NONLIN, the numerical
method with the highest computational price, is also the most accurate one, as the
results for all reference values are within the reference intervals given in Table 5.2. The
accuracy deteriorates for SP-LIN and for PC, but one can see that the results of SP-LIN
are still considerably more accurate than the results computed with PC. Accordingly,
three sets of snapshots were obtained: of the highest accuracy, of intermediate accuracy,
and of the lowest accuracy.

Table 5.2.: Example 5.1: Maximum drag coefficient, maximum lift coefficient, and
Strouhal number for the finite element simulations.

cmax
d cmax

l St

SP-NONLIN 3.23 0.99 0.301
SP-LIN 3.32 1.32 0.295
PC 3.43 1.62 0.287

reference results from [122] [3.22, 3.24] [0.98, 1.02] [0.295, 0.305]

Impact of the Snapshot Accuracy on the POD Modes

Here, the influence of using numerical methods of different accuracies on the velocity
and the pressure POD bases will be monitored.

From the simulations with SP-NONLIN, SP-LIN, and PC, after having collected snap-
shots over the time interval [0, 2] for each discrete time, three different POD bases for the
velocity and the pressure fields, respectively, were generated from the fluctuating part of
the snapshots (see Section 3.2.3 for more details) by the method of snapshots described
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Figure 5.4.: Example 5.1: Norm of the velocity snapshots’ mean (top) and the first
velocity POD modes: POD basis computed from SP-NONLIN (left) and
PC (right).

in Section 3.1.3. Moreover, the velocity and the pressure POD bases were computed
with respect to the L2(Ω) inner product, which is a popular choice in the literature.
Figs. 5.4 and 5.5 display the norm of the snapshots’ mean and of the first velocity and
pressure POD modes, respectively. For clarity of presentation, only the most accurate
(SP-NONLIN) and the lowest accurate (PC) numerical methods are considered.

Both Fig. 5.4 and Fig. 5.5 show that, although structurally similar, the maximum and
minimum values are quite different for the two numerical methods.

Next, the POD bases are investigated in terms of the POD eigenvalues {λi}, defined
in (3.41), and the missing energy ratio equal to 1− E(r) with E(r) defined by (3.52).
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Figure 5.5.: Example 5.1: Pressure snapshots’ mean (top) and the first pressure POD
modes: POD basis computed from SP-NONLIN (left) and PC (right).

Figure 5.6 shows {λi} and the missing energy ratio for the velocity and pressure POD
bases for the three sets of snapshots. It can be observed that all sets of snapshots lead
to a similar number of non-zero POD eigenvalues.

Figure 5.6 also shows that there are steep decreases in the eigenvalues of the velocity
POD modes, e.g., after the second and the sixth mode. Similar jumps can be seen in
the eigenvalues of the pressure POD modes after the second, fourth, and eighth mode.
Correspondingly, there are strong decreases in the missing energy ratio. It is interesting
to note that the velocity and pressure jumps in the eigenvalues and the missing energy
ratio seem not to be correlated. This observation supports the point of view that using
a different number of velocity and pressure POD modes might be advantageous. The
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Figure 5.6.: Example 5.1: POD eigenvalues and missing energy ratio.

study of this issue, however, is outside the scope of the thesis and will not be further
pursued herein.

Assessment of the vp-ROMs

This subsection presents an assessment of the effect of the snapshot accuracy on the
three vp-ROMs introduced in Section 5.4, see Table 5.1. Within the framework of the
present numerical studies, the same number of POD modes for the velocity and the
pressure fileds is used, i.e., rv = rp = r.

Theoretical error estimates in [67], see also [89, 104], show that the total error in the
numerical discretization of velocity-type ROMs consists of three parts: the spatial error
due to the finite element discretization, the temporal error due to the time-stepping
scheme, and the POD error due to the POD truncation. In the present numerical
investigations of vp-ROMs, however, the spatial and temporal error components are
constant, since the mesh size and the time step are fixed. Thus, assuming that the ROM
estimates in [67, 89, 104] can be extended to vp-ROMs, for increasing values of r, one
expects the POD error component of the vp-ROMs to initially decrease, but then to
reach a plateau where the POD error component has the same or a lower magnitude
than the spatial and temporal error components.

The v-ROM (5.10) of all three vp-ROMs investigated in this section does not in-
clude the pressure term −(pro,∇ · φro,i). When the POD modes were computed by
solving a saddle point problem (SP-NONLIN, SP-LIN), the motivation for it was dis-
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cussed in Section 5.3: since the velocity snapshots are discretely divergence-free, the
term −(pro,∇ · φro,i) vanishes. In the case of PC, when the snapshots are obtained
from a non divergence-free velocity field, this argument does not hold. The impact of
adding the pressure term to the vp-ROMs was numerically tested but it did not yield
any improvement of the results.

An essential motivation for developing ROMs is computational efficiency. For this
reason, one usually prefers to avoid complex and time-consuming numerical methods
in combination with the ROM, see, e.g., [130, 143]. For the numerical studies in this
section, the Crank–Nicolson scheme (θ = 1

2 , see Table 2.1) with the time step ∆t = 0.005
is utilized for the time discretization of the velocity ROMs. In order to investigate the
influence of the utilized nonlinear iteration scheme on the vp-ROM results, three different
methods for the linearization of the velocity ROMs will be employed: the Picard method,
the IMEX, and the IMEX-LE schemes (see Section 2.2.5). The Picard iteration is the
most time-consuming method as it usually involves several nonlinear iterations, which
requires solving a linear system in each iteration. The latter two methods are more
efficient as they involve only one solution of a linear system at each time iteration.
However, the IMEX-LE scheme performs in the framework of the finite element method
significantly better than the IMEX scheme, see [75]. For the underlying test problem
with the same time and space discretization as used for the computation of the snapshots
SP-NONLIN and SP-LIN, the following measures of interest were obtained with the
IMEX-LE scheme: cmax

d = 3.24, cmax
l = 1.01, St = 0.30. All three values lie within the

reference intervals shown in Table 5.2. To distinguish the vp-ROMs with respect to the
employed nonlinear iterations methods, the notations v-ROM(∗), vp-ROM(∗), PMB-
ROM(∗), SM-ROM(∗), and VMB-ROM(∗) will be utilized, where ∗ stands for Picard,
IMEX, and IMEX-LE.

To assess the behavior of the vp-ROM results, several quantities of interest will be
evaluated for each set of snapshots. As there exists no analytical representation of
the continuous equations (2.40)-(2.41) for the underlying problem, the ROM results
will be compared with the corresponding finite element results. Firstly, the impact of
the involved nonlinear iteration scheme on the accuracy of the ROM velocity will be
investigated. For this sake, the mean kinetic energy error defined by

Ekin =
1

M

M∑

m=1

∣∣∣∣
1

2
‖umh ‖20 −

1

2
‖umro‖20

∣∣∣∣ (5.47)

or the discretized version of the L1(0, T ;L2(Ω)) error

EROM =
1

M

M∑

m=1

‖umh − umro‖0 (5.48)

can be considered. As both measures yielded qualitatively similar results, only the former
error will be discussed in the following part. For periodic flows, it is not meaningful to
investigate the errors of type (5.47), which are based on the comparison of two solutions
at each time step, if the frequencies with the largest amplitudes do not coincide. The
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verification of this fact can be achieved by performing, e.g., the Fast Fourier Transform
(FFT) for one of the velocity components evaluated at a point behind the cylinder.
For this purpose, the y-component of the velocity field at every time instance tm, m =
1, . . . ,M , will be evaluated at (0.5, 0.2).

Secondly, the time evolution of the drag and lift coefficients computed by the vp-
ROMs combined with the three nonlinear iteration schemes for different values of r will
be monitored. The root mean square (rms) value of the local maxima of the drag and
lift coefficients denoted by cmax

d,rms and cmax
l,rms, respectively, will be computed in order to

figure out how periodic the coefficients are in terms of the largest amplitudes. This
investigation is of great importance if the maximum of the drag and lift coefficients cmax

d

and cmax
l are the measures of interest for the vp-ROM results or if the long-time behavior

of the flow is of interest. In both cases it is desired that cmax
d,rms and cmax

l,rms are as small as
possible, e.g., all local maxima of the coefficients do not differ much.

Thirdly, the error in the Strouhal number, the errors in the mean values of the drag
and lift coefficients cd and cl, and the errors in the rms values of the drag and lift
coefficients defined by

cd,rms =

[
1

M

M∑

m=1

(cd − cd(tm))2

]1/2

, cl,rms =

[
1

M

M∑

m=1

(cl − cl(tm))2

]1/2

,

will be investigated. Here, cd (or cl) denotes the drag (or lift) coefficient computed
with a certain numerical method (finite element method or vp-ROM). The rms values
provide information on the magnitude of the oscillations around the mean value. The
errors are defined as the absolute values of the difference of the quantity of interest
resulted from the vp-ROM simulation and the finite element simulation, which was used
for computing the snapshots. The frequency of the vortex shedding, needed for the
computation of the Strouhal number, was computed using the inverse of the average
period of the lift coefficients.

All simulations were performed in the time interval [0, 2] and the reference values were
computed over five periods for the lift coefficient (5.46).

vp-ROMs using snapshots of the highest accuracy. The numerical results for the vp-
ROMs using the snapshots from SP-NONLIN are presented in this part of the section.
The top row of Fig. 5.7 shows the time evolution of the y-component of the velocity
fields computed by SP-NONLIN and the v-ROMs combined with the Picard, IMEX,
and IMEX-LE scheme evaluated at (0.5, 0.2) for r ∈ {3, 6, 24}. One can assert almost
no difference between the v-ROM results obtained using different nonlinear iteration
methods. For r = 3, all three v-ROMs fail to reproduce the shape of the velocity
component from the underlying finite element method SP-NONLIN. Already 6 POD
modes are sufficient to obtain a rather good approximation of the y-component of the
velocity solution obtained by SP-NONLIN. When using r = 24, all curves coincide. In
the bottom row of Fig. 5.7 the corresponding frequency-based representation of the
y-component of the velocity fields at (0.5, 0.2) computed by the Fast Fourier Transform
is depicted. From the plot, one can conclude that for r = 3 all v-ROMs do not manage
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Figure 5.7.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): Time-based
(top) and frequency-based (bottom) representation of the y-component of
the velocity field evaluated at (0.5, 0.2).
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Figure 5.8.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): Mean kinetic
energy error (5.47) for different POD dimensions r computed from the ve-
locity field obtained by the v-ROMs combined with three different nonlinear
iteration schemes.

to replicate the correct amplitude of the frequency value of 9. Beginning with r = 6, all
frequencies with the largest amplitudes coincide. Due to this finding, the investigation
of the mean kinetic energy Ekin defined by (5.47) is meaningful. In Fig. 5.8, the error
is shown for the v-ROMs combined with the three nonlinear iteration methods for the
POD dimensions r = 1, . . . , 24. In contrast to Fig. 5.7, one can clearly see that the
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three curves behave differently. If the Picard method is employed in the v-ROM, which
corresponds to the same nonlinear iteration scheme used for the computation of the
underlying snapshots, the graph falls as expected when the POD dimension increases
(with the exception of r = 20 and r = 21). One can reach any order of precision if
only the POD dimension is chosen large enough. In the case of other two linearization
schemes, for small values of r the curves fall but then they reach a certain plateau at
r = 6 for the IMEX and at r = 8 for the IMEX-LE methods. However, v-ROM(IMEX-
LE) for larger POD dimensions produces a mean kinetic energy error which is almost
one magnitude smaller than the one obtained with v-ROM(IMEX).

The time evolution of the drag and lift coefficients obtained by the vp-ROMs from
Table 5.1 for three different POD dimensions together with the Picard, IMEX, and
IMEX-LE linearization techniques is displayed in Fig. 5.9. There is no obviously visible
difference between the behavior of the coefficients with respect to the utilized nonlin-
ear iteration method. It can be observed that PMB-ROM and SM-ROM are able to
reproduce the results of the underlying finite element simulation for the snapshots very
well with already r = 6 POD modes. In contrast, the range of the drag coefficient
computed with VMB-ROM is not correct, even for r = 24 POD modes. With respect
to the lift coefficient, the results with the VMB-ROM are much better. In more detail,
clear improvements in the quality of the reproduction can be seen for all three vp-ROMs
when going from r = 5 to r = 6, which corresponds to a jump in the missing energy
ratio of the velocity POD modes, see Fig. 5.6. For values r ≥ 6 both PMB-ROM and
SM-ROM yield drag coefficients within the reference intervals given in Table 5.2. For
VMB-ROM, the size of the amplitude of the drag coefficient improved for r = 6 modes,
but not the mean value of the drag. Even increasing the number of modes to r = 24,
the mean value of the coefficient stays considerably below the reference. A closer look at
the presentations of the drag in Fig. 5.9 reveals that also its time evolution is not fully
periodic since the values of the peaks are changing visibly, which is another shortcoming
of the method. Considering the lift coefficient, all three vp-ROMs perform well for r ≥ 6
independently of the used linearization scheme.

To explain the inaccurate drag coefficient obtained with the VMB-ROM, note that the
drag coefficient depends mainly on the pressure at the cylinder. In the simulations with
VMB-ROM, the main contribution to the ROM pressure is p00(x), whereas the main part
of the ROM pressure for PMB-ROM and SM-ROM is ph(x). Both functions are depicted
in Fig. 5.10. A closer look at the plots reveals that the pressure difference between the
back and the front of the cylinder is somewhat smaller for p00(x) than for ph(x), which
results in inaccurate drag forces. The same behavior could also be observed for the
other two snapshots sets SP-LIN and PC. Since the mean drag is often very important
in applications, this result shows a considerable shortcoming of this method.

To better assess the periodic behavior of vp-ROMs, Fig. 5.11 displays the root mean
square values of the local maxima of the drag and lift coefficients for all vp-ROMs.
The less the rms value, the less differ the peaks of the coefficients resulting in a more
periodic behavior. Immediately, one takes note of the fact that the smallest rms values
are achieved with the combination of vp-ROMs with the Picard method, i.e., the same
linearization scheme as employed for the computation of the underlying snapshots. For

139



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

3.08

3.12

3.16

3.20

dr
ag

r = 3 r = 6 r = 24

0.2 0.4 0.6 0.8 1.0
time

-1.0

-0.5

0.0

0.5

1.0

lif
t

0.2 0.4 0.6 0.8 1.0
time

0.2 0.4 0.6 0.8 1.0
time

SP-NONLIN PMB-ROM(PICARD) SM-ROM(PICARD) VMB-ROM(PICARD)

3.08

3.12

3.16

3.20

dr
ag

r = 3 r = 6 r = 24

0.2 0.4 0.6 0.8 1.0

time

−1.0

−0.5

0.0

0.5

1.0

lif
t

0.2 0.4 0.6 0.8 1.0

time
0.2 0.4 0.6 0.8 1.0

time
SP-NONLIN PMB-ROM(IMEX) SM-ROM(IMEX) VMB-ROM(IMEX)

3.08

3.12

3.16

3.20

dr
ag

r = 3 r = 6 r = 24

0.2 0.4 0.6 0.8 1.0

time

−1.0

−0.5

0.0

0.5

1.0

lif
t

0.2 0.4 0.6 0.8 1.0

time
0.2 0.4 0.6 0.8 1.0

time
SP-NONLIN PMB-ROM(IMEX-LE) SM-ROM(IMEX-LE) VMB-ROM(IMEX-LE)

Figure 5.9.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): Time evo-
lution of the drag and lift coefficients computed by the vp-ROMs combined
with the Picard, IMEX and IMEX-LE nonlinear iteration schemes (top to
bottom) for r = 3, 6, 24 (from left to right).
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Figure 5.10.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): Pressure
coefficient p00(x) computed with VMB-ROM (left), pressure snapshots’
average ph(x) for PMB-ROM and SM-ROM (right).
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Figure 5.11.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): cmax
d,rms (top)

and cmax
l,rms (bottom) for the finite element simulation SP-NONLIN, the three

vp-ROMs combined with the Picard (left), IMEX (center), and IMEX-LE
(right) nonlinear iteration schemes.

r ≥ 6 with PMB-ROM and SM-ROM, and for r ≥ 13 with VMB-ROM one gets the
drag coefficient that is at least as periodic as the one obtained with SP-NONLIN. With
respect to the lift coefficient, the three vp-ROMs achieve the accuracy of the finite
element simulation for r ≥ 15. By employing the IMEX scheme for the computation of
the ROM velocity, all vp-ROMs yield coefficients, whose peaks vary most of all. With
the IMEX-LE method, the PMB-ROM and SM-ROM almost achieve the rms value of
the drag coefficient obtained with SP-NONLIN. The VMB-ROM performs worse than
the other two vp-ROMs in terms of the drag coefficient, whereas all vp-ROMs perform
comparably well for the lift coefficient.

Another way to investigate the quality of the vp-ROM results consists in the investiga-
tion of their errors with respect to the values of SP-NONLIN in the Strouhal number, in
the mean drag, in the mean lift, in the drag rms, and in the lift rms values. These errors
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Figure 5.12.: Example 5.1, snapshots of the highest accuracy (SP-NONLIN): Drag mean,
drag rms, lift mean, lift rms, and Strouhal number errors (from top to
bottom) obtained by the vp-ROMs combined with the Picard, IMEX and
IMEX-LE nonlinear iteration schemes (left to right).
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Figure 5.13.: Example 5.1, snapshots of intermediate accuracy (SP-LIN): Time-based
(top) and frequency-based (bottom) representation of the y-component of
the velocity field evaluated at (0.5, 0.2).

are presented in Fig. 5.12. In contrast to Figs. 5.8 and 5.11, one cannot observe any
obvious relation between the results with the linearization scheme employed in the finite
element simulation for the computation of the snapshots and the vp-ROMs. As already
seen in Fig. 5.9, VMB-ROM fails to reproduce the correct drag mean value. In terms of
the other measures of interest, its performance is somewhat better than that of PMB-
ROM and comparable or worse than that of SM-ROM. Moreover, it can be seen that
SM-ROM yields often smaller errors than PMB-ROM. For r ≥ 10, PMB-ROM(IMEX)
fails to reproduce the Strouhal number as good as the other vp-ROMs do. The lengths
of the period differ by about one time step ∆t. The same behavior can be asserted for
SM-ROM(IMEX-LE) for some values of r with r ≥ 12.

vp-ROMs using snapshots of intermediate accuracy. After having studied the numer-
ical results of the vp-ROMs based on the SP-NONLIN snapshots, the same measures
of interest will be investigated here for the vp-ROMs built with respect to the SP-LIN
snapshots.

Figure 5.13 displays the time evolution and the frequency-based representation of the
y-component of the velocity field computed by SP-LIN serving as the reference and
the v-ROM utilized with three different nonlinear iteration methods. Similarly to the
corresponding plots for SP-NONLIN from Fig. 5.7, the finite element results can be
reproduced quite well already with r = 6 POD modes: the frequencies with the largest
amplitudes coincide for all tested ROMs and SP-LIN. Hence, the consideration of the
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Figure 5.14.: Example 5.1, snapshots of intermediate accuracy (SP-LIN): Mean kinetic
energy error (5.47) for different POD dimensions r computed from the ve-
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Figure 5.15.: Example 5.1, snapshots of intermediate accuracy (SP-LIN): cmax
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l,rms (bottom) for the finite element simulation SP-LIN, the three

vp-ROMs combined with the Picard (left), IMEX (center), and IMEX-LE
(right) nonlinear iteration schemes.

mean kinetic energy error Ekin, presented in Fig. 5.14, is meaningful. It can be asserted
that the error for v-ROM(IMEX) falls with the increasing POD dimension, whereas the
v-ROMs with the Picard and IMEX-LE schemes fall for small values of r, and for r ≥ 7
both curves reach a plateau at Ekin ≈ 10−2. This fact supports the presumption that the
mean kinetic energy error as well as the discretized version of the L1(0, T ;L2(Ω)) error
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Figure 5.16.: Example 5.1, snapshots of intermediate accuracy (SP-LIN): Time evolu-
tion of the drag and lift coefficients computed by the vp-ROMs combined
with the Picard, IMEX and IMEX-LE nonlinear iteration schemes (top to
bottom) for r = 3, 6, 24 (from left to right).
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Figure 5.17.: Example 5.1, snapshots of intermediate accuracy (SP-LIN): Drag mean,
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bottom) obtained by the vp-ROMs combined with the Picard, IMEX and
IMEX-LE nonlinear iteration schemes (left to right).
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(5.48) can reach any magnitude of accuracy, if a large enough value of r is chosen, when
the same linearization method is utilized both for the finite element simulation and the
v-ROM.

In Fig. 5.16, the time evolution of the drag and lift coefficients for all studied vp-
ROMs is shown. No obvious relation in the results can be observed between using any
particular linearization method within the v-ROM and the IMEX scheme within SP-
LIN. VBM-ROM does not manage to reproduce the range of the drag coefficient also
for this set of snapshots. For r ≥ 6, the drag and lift coefficients can be reproduced
very well by both PMB-ROM and SM-ROM. The root mean square values of the peaks
of the drag and lift coefficients are shown in Fig. 5.15. Similarly to the mean kinetic
energy error in Fig. 5.14, the clearly best performance of the vp-ROMs is achieved when
the same nonlinear iteration method is employed as in the finite element simulation,
i.e., the IMEX scheme. In this case, all vp-ROMs, except PMB-ROM with respect to
the drag coefficient, feature even somewhat better periodic behavior for both coefficients
than SP-LIN for larger POD dimensions. All vp-ROMs combined with the two other
linearization schemes reach for r ≥ 7 a certain level of the rms value and never reach
the accuracy of the underlying finite element simulation.

The representation of the errors with respect to the values obtained with SP-LIN
in Fig. 5.17 allows a more detailed assessment of the results. In contrast to the rms
values of the peaks of the coefficients in Fig. 5.17, there is no clear advantage to utilize
the same linearization scheme in the vp-ROMs as in SP-LIN. SM-ROM performs often
better than PMB-ROM, especially with the IMEX-LE scheme with the exception of the
mean lift value. As expected, VMB-ROM features a large error in the very important
for applications mean drag value, but otherwise it produces in many cases even smaller
errors than the other linearizations. For r ≥ 10, all vp-ROMs combined with the IMEX
scheme fail to reproduce the Strouhal number as good as with the other linearization
methods. The lengths of the period differ by about one time step ∆t.

vp-ROMs using snapshots of the lowest accuracy. Finally, the numerical investiga-
tions of vp-ROMs based on the snapshots which were obtained with the finite element
simulations PC will be presented. Similarly to the former studies for other snapshot
sets, Fig. 5.18 shows the time evolution of the y-component of the velocity field and
its corresponding frequency-based representation for PC and the v-ROM combined with
the three different linearization schemes. One can assert that in general the frequencies
with the largest amplitudes for the finite element simulation and the v-ROMs coincide,
which is important for the mean kinetic energy error (5.47) to be a meaningful quantity
of interest. However, the reproduction of the finite element results is visibly worse even
for r = 24 than it was the case for SP-NONLIN and SP-LIN in Figs. 5.7 and 5.13.
This trend can be also observed for the mean kinetic energy error shown in Fig. 5.19.
In contrast to Figs. 5.8 and 5.14, the use of none of the linearization schemes yields an
error of arbitrarily high accuracy, when the POD dimension is chosen to be large enough.
According to previous findings, one would expect this behavior for v-ROM(IMEX) as
PC involved the IMEX scheme for the sake of linearization. Although v-ROM(IMEX)
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Figure 5.18.: Example 5.1, snapshots of the lowest accuracy (PC): Time-based (top)
and frequency-based (bottom) representation of the y-component of the
velocity field evaluated at (0.5, 0.2).
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Figure 5.19.: Example 5.1, snapshots of the lowest accuracy (PC): Mean kinetic energy
error (5.47) for different POD dimensions r computed from the velocity
field obtained with the v-ROMs.

produces the smallest error compared to the v-ROMs combined with the Picard and
IMEX-LE schemes, it stagnates for r ≥ 8 at the level of Ekin ≈ 2 ·10−2. One possible ex-
planation for this performance is the fact that the incremental pressure-correction scheme
(2.100), which was employed to compute the underlying snapshots, includes the BDF2
time discretization scheme in contrast to the v-ROM which utilizes the Crank–Nicolson
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Figure 5.20.: Example 5.1, snapshots of the lowest accuracy (PC): Time evolution of the
drag and lift coefficients computed by the vp-ROMs for r = 3, 6, 24 (from
left to right).

method. To investigate if one can achieve any improvement of the results by changing
the time discretization strategy, the v-ROM simulations together with the IMEX and
BDF2 schemes, denoted by v-ROM(IMEX,BDF2), were carried out. The corresponding
mean kinetic energy error is shown in Fig. 5.19. A clear improvement of the error of
almost one order of magnitude, compared with vp-ROM(IMEX), can be asserted. How-
ever, also for this setting the error does not fall constantly for the increasing dimension of
the POD space but reaches at some point a plateau. The remaining inaccuracy is most
likely caused by the fact that the velocity snapshots are not discretely divergence-free,
which was a necessary condition for the derivation of the velocity ROM in Section 5.3.
Adding the pressure term

(
pro,∇ · φro,i

)
, i = 1, . . . , r, was tested numerically but did

149



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

10−3

10−2

cm
a
x

d
,r

m
s

v-ROM(IMEX) v-ROM(IMEX,BDF2)

5 10 15 20
rank

10−3

10−2

10−1

cm
a
x

l,
r
m

s

5 10 15 20
rank

PC PMB-ROM SM-ROM VMB-ROM

Figure 5.21.: Example 5.1, snapshots of the lowest accuracy (PC): cmax
d,rms (top) and cmax

l,rms

(bottom) for the finite element simulation PC and the three vp-ROMs.

not yield any improvement of the results. A possible remedy could be, e.g., the applica-
tion of the coupled Galerkin ROM for the Navier–Stokes equations (5.9). However, the
investigation of this issue is out of scope of this thesis.

The rest of the measures of interest studied for the other two sets of snapshots were
very similar for vp-ROM(Picard), vp-ROM(IMEX), and vp-ROM(IMEX-LE). For this
reason, only the vp-ROM(IMEX) results will be presented. They will be compared
with the results produced by the vp-ROMs combined with the IMEX scheme for lin-
earization and the BDF2 method for time discretization of the momentum equation.
These vp-ROMs will be correspondingly denoted by PMB-ROM(IMEX,BDF2), SM-
ROM(IMEX,BDF2), and VMB-ROM(IMEX,BDF2).

Figure 5.20 displays the time evolution of the drag and lift coefficients for the three
types of vp-ROM(IMEX) and vp-ROM(IMEX,BDF2). Again, PMB-ROM and SM-
ROM in both settings were able to reproduce the results of the underlying snapshots
quite well, whereas VMB-ROM failed for the drag coefficient. The deviation of the
peaks from the mean value for both coefficients is depicted in Fig. 5.21. One can clearly
see that cmax

d,rms for VMB-ROM(IMEX) and VMB-ROM(IMEX,BDF2) is larger than for
the other two types of vp-ROMs. It is in accordance with the situation in Fig. 5.20,
where the increase of the peaks of the drag coefficient for VMB-ROM(IMEX) can be
observed even for r = 24. The other two types of vp-ROMs perform in terms of cmax

d,rms

somewhat better if the BDF2 method is utilized instead of the Crank–Nicolson scheme.
PMB-ROM(IMEX,BDF2) even reaches the accuracy of the underlying finite element
simulation for r ≥ 13. The rms value for the maximum lift coefficient is more or less the
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Figure 5.22.: Example 5.1, snapshots of the lowest accuracy (PC): Drag mean, drag
rms, lift mean, lift rms, and Strouhal number errors (from top to bottom)
obtained by the vp-ROMs.

same for all types of vp-ROMs. By employing the BDF2 and not the Crank–Nicolson
method in the v-ROM, the values become however somewhat smaller but cmax

l,rms for PC

151



5. Velocity-Pressure Reduced-Order Models for Incompressible Flows

is not reached for any POD rank.
The errors in the mean and rms values for both coefficients as well as the error in the

Strouhal number are presented in Fig. 5.22. One cannot assert any evident improvement
in the results on the right-hand side of the plot. For some errors, e.g., in cd or St,
the performance could be slightly improved by employing the BDF2 method. At the
same time, other errors were comparable or became larger. In most cases, PMB-ROM
produced somewhat smaller errors than SM-ROM.

Computational Cost

At each time step, the vp-ROMs that were investigated in this report were comprised
of the computation of the ROM velocity solving the v-ROM of the form (5.12) followed
by the computation of the ROM using one of the pressure ROMs presented in Sections
5.4.1-5.4.3.

Three different approaches for the linearization of the convective term were utilized
in the v-ROM: the Picard, IMEX, ann IMEX-LE methods. All other computational
steps, such as computation of the POD basis, the matrices and the right-hand side in
the offline stage, are the same. The latter two methods have more or less the same
computational costs, whereas the computation with the Picard method lasts from two
to three times longer, depending on how many iterations are necessary to achieve the
accuracy threshold of 10−10 in the nonlinear iteration loop.

Next, the computational complexity of the pressure ROMs will be discussed. The
ROM pressure in PMB-ROM and SM-ROM requires the computation of the pressure
POD modes, which represents the most time consuming part of their offline stage, and
the assembling and factorization of the matrices in (5.38) and (5.44). These procedures
are not necessary for VMB-ROM. However, the pressure coefficients pij(x) in (5.30)
have to be pre-computed by solving (5.31). In the presented numerical experiments, for
r = 25, the computation of the (r+ 1)r/2 coefficients pij(x) took about twice as long as
the computation of the r pressure modes. Thus, in the offline stage, the computational
costs of PMB-ROM and SM-ROM are lower than those of VMB-ROM.

In the online stage, the main difference is that VMB-ROM does not require the solution
of a linear system for the pressure at each iteration, as the pressure is recovered as a
linear combination of pre-computed functions pij(x), see (5.30). Thus, it would seem
that the computational cost of VMB-ROM is lower than the computational cost of
the two other vp-ROMs. It could be observed, however, that this is not the case.
In fact, the solution of the r × r linear system in PMB-ROM and SM-ROM requires
only O(r2) operations, yielding relatively low computational times. In addition, the
cost of recovering the finite element approximation is O(rNp), where Np denotes the
dimension of the pressure finite element space. On the other hand, for a given r, the
computational complexity for VMB-ROM is O(r2Np), as the approximation of the finite
element pressure solution is computed as a linear combination of the functions pij(x),
see (5.31), which are represented by Np coefficients. Since r � Np, the computational
costs for VMB-ROM in the online stage is higher than for the other two vp-ROMs. In
our numerical experiments, in the online stage, the computational times of PMB-ROM
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and SM-ROM combined with the IMEX or IMEX-LE schemes were about the same for
moderate values of r (r < 15), representing between 0.01% and 0.06% of the computing
time of SP-NONLIN. For the same range of values of r, VMB-ROM utilized with the
same linearization schemes in the v-ROM was computationally more expensive, taking
between 0.10% and 1.15% of the time of SP-NONLIN. /
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6.1. Summary

This thesis studies projection-based reduced-order modeling in the context of computa-
tional fluid dynamics. Proper Orthogonal Decomposition (POD), introduced in Chapter
3, is utilized in order to obtain a reduced-order basis from the snapshots, which are as-
sumed to represent the finite element solution of a partial differential equation. All inves-
tigations are based on the convection-diffusion-reaction equation and the incompressible
Navier–Stokes equations. These equations and finite element methods employed for the
computation of the snapshots are formulated in Chapter 2. The main results of this dis-
sertation can be divided into three parts. Their summary is discussed in the following.

Firstly, Chapter 4 presented a theoretical and numerical investigation of a Stream-
line-Upwind Petrov–Galerkin reduced-order model, denoted by SUPG-ROM, for the
convection-dominated convection-diffusion-reaction equation. At a theoretical level, nu-
merical analysis was used to suggest the stabilization parameter applied in the SUPG-
ROM. Two scalings for the stabilization parameter were proposed: One based on the
underlying finite element discretization (which yields the FE-SUPG-ROM with the sta-
bilization parameter δFE

r ) and one based on the POD truncation (which yields the POD-
SUPG-ROM with the stabilization parameter δPOD

r ). At a numerical level, the Galerkin
reduced-order model (G-ROM), the FE-SUPG-ROM, and the POD-SUPG-ROM were
tested on two convection-dominated convection-diffusion-reaction problems aiming at
answering two questions: First, whether the SUPG-ROM yields more accurate results
than the G-ROM, and, second, which of the two SUPG-ROMs produces more accurate
results. The numerical investigations yielded that if the finite element discretization
was fine enough to capture the internal layer (and thus no numerical stabilization was
needed to compute the snapshots), then the standard G-ROM yielded accurate results.
The SUPG-ROM gave only negligibly better results for smaller values of the POD di-
mension r. If the finite element discretization was not able to resolve the internal layer,
which often occurs when dealing with convection-dominated problems, the following
conclusions could be drawn:

• On relatively coarse meshes, which is the usual situation encountered in practice,
a SUPG finite element discretization was used to generate the snapshots. This
approach led to POD modes containing numerical artifacts (spurious oscillations).
Thus, the considered ROMs used noisy POD data.

• The standard G-ROM yielded comparable results to the SUPG-ROMs with respect
to the discrete L1(0, T ;L2(Ω)) error only if sufficiently few POD modes were used.
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Once the number of POD modes was increased above a certain limit, the noise of
these modes was reflected strongly in the results of the G-ROM.

• Both the FE-SUPG-ROM and the POD-SUPG-ROM yielded results that were
significantly more accurate than those for the G-ROM for larger numbers of used
POD modes. Both SUPG-ROMs suppressed the noise of the POD modes much
better than the G-ROM.

• The exact meanings of “sufficiently few” and “large” numbers of POD modes in
the previous points depend on the example and the mesh width. In practice,
corresponding values for the number of POD modes will generally not be known.

• In the numerical studies, it was observed that δPOD
r was in general smaller than

δFE
r . Based on the author’s experience so far, it is recommended that one uses
δFE
r , i.e., FE-SUPG-ROM. This choice of the SUPG-ROM stabilization parameter

suppressed the spurious oscillations in the ROM in many situations somewhat
better than δPOD

r and it was never observed that the results obtained with FE-
SUPG-ROM were notably worse in any respect than the results of POD-SUPG-
ROM. Moreover, the computation of δFE

r is easier than that of δPOD
r .

• The sensitivity study with respect to the mesh width showed that, although the
ROMs yield different results, their qualitative behavior remains unchanged.

Another objective of the numerical studies in Chapter 4 was to investigate, whether the
accuracy of the ROM solution is related to the accuracy of the underlying snapshots. Of
particular importance was the question, whether the ROMs based on physically correct
snapshots, which exhibit no under- and overshoots, are able to reproduce physically cor-
rect ROM solutions. For this sake, three sets of snapshots were employed to compute the
POD bases for the G-ROM and the SUPG-ROM. Two snapshot sets represented numer-
ical solutions of a discrete problem by means of the SUPG finite element method and the
flux-corrected transport scheme, denoted by SUPG-FEM and FEM-FCT, respectively.
The third set of snapshots was obtained by interpolating the solution of the continuous
problem using the same finite element space as for other two sets of snapshots. By
construction, it was the most accurate one in terms of the L2 error. The quantitative
behavior of the under- and overshoots was measured by the minimum and maximum
values of the solution. SUPG-FEM produced the largest L2 error and was the only snap-
shot set, which exhibited under- and overshoots. The numerical simulations yielded that
the accuracy of the minimum and maximum values of the SUPG-ROM solutions based
on the snapshot sets, which represented the numerical solution of a discrete problem,
i.e., SUPG-FEM and FEM-FCT, correlated with the accuracy of the underlying snap-
shots. The quality of the SUPG-ROM solutions in terms of the L2 error was however
similar for both sets of snapshots. Compared to the G-ROMs for all three snapshot
sets, the SUPG-ROMs performed better in terms of the minimum and maximum values
and slightly worse in terms of the L2 error. It turned out that the SUPG-ROM is not
a suitable ROM model for the POD basis obtained from the interpolated solution of
the continuous problem. Its solution became too dissipative in the course of time. The
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under- and overshoots of the SUPG-ROM based on the FEM-FCT snapshots could not
be completely overcome as it is the case for the corresponding finite element solution.
However, the distance of the minima and maxima to the optimal values was smaller than
for the SUPG-ROM based on the SUPG-FEM snapshots.

The second part of the results is associated with the computation of the ROM initial
solution. Depending on the origin of the snapshots, the standard ROM initial condition,
which is usually employed in the literature and represents the best approximation of the
full-order initial condition in the L2 sense, can be polluted by spurious oscillations. In
Section 3.2.2, a new filtering procedure was proposed that aims at suppressing those spu-
rious oscillations, which consists in utilizing the Galerkin approximation of the Helmholtz
equation with respect to the POD basis in a post-processing step of the standard ap-
proach. The proposed ROM initial condition looses the property of the best possible
approximation of the full-order solution in the L2 sense. However, it could be shown for
the special case of a family of uniform triangulations that the new ROM initial condition
still approximates well the full-order initial condition in the L2 sense with a convergence
of at least first order. At the same time it can lead to a more appropriate approxima-
tion of the full-order initial condition in the sense of other quantities of interest, e.g.,
indicating the strength of under- and overshoots. In Section 4.4, the effect of the filtered
ROM initial condition on the G-ROM and SUPG-ROM results with respect to the L2

error as well as the minimum and maximum values of the solution was investigated. For
this sake, three different sets of snapshots as described above were employed to compute
the POD bases. It could be observed that the proposed filtering procedure was able to
noticeably smoothen the standard ROM initial condition, which was plagued by spurious
oscillations. The application of the new approach caused a slight increase of the L2 error
for all ROMs. With respect to the minimum and maximum values, the G-ROM and
SUPG-ROM results could be for many settings significantly improved. In particular,
for two sets of snapshots and moderate POD dimensions, one could achieve satisfactory
results even by applying the standard G-ROM without any stabilization. The SUPG-
ROM based on the SUPG-FEM snapshots resulted in a solution with smaller under- and
overshoots than the corresponding finite element solution.

Finally, Chapter 5 deals with the velocity-pressure ROMs (vp-ROMs) for the incom-
pressible Navier–Stokes equations, which comprises the third part of the results. The
first goal of the chapter was to discuss and compare three different velocity-pressure
ROMs. VMB-ROM uses only velocity POD modes, whereas PMB-ROM and SM-ROM
use pressure POD modes as well. SM-ROM was developed within the framework of
this dissertation and published in [26]. The second goal was to investigate the influ-
ence of employing different linearization techniques, known, e.g., from the context of
finite element methods, on the accuracy of the ROMs in terms of several quantities of
interest. The third goal was to perform the first step in answering the question about
the impact of the snapshot accuracy, on the one hand, and of the potentially simple
numerical methods used in the ROMs, on the other hand, onto the results of the ROMs.
For studying these questions, three sets of snapshots with different accuracy were used.
The numerical investigations showed that the snapshots had, irrespectively of the way
they were computed and of their accuracy, a much stronger impact on the ROM re-
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sults than the choice of the numerical methods used in the vp-ROMs. Generally, the
results of the simulation for computing the snapshots were reproduced quite well with
the velocity-pressure ROMs in terms of the drag and lift coefficients, and the Strouhal
number. Altogether, this study clearly supports the approach of performing accurate
(and probably time-consuming) simulations for computing the snapshots in order to
obtain similar results in the ROM simulations.

Concerning the comparisons of the velocity-pressure ROMs, the main conclusion
drawn from the numerical investigation is that the two ROMs that utilize pressure
modes (PMB-ROM and SM-ROM) were superior, both in terms of reproducing the re-
sults of the simulations for computing the underlying snapshots and of efficiency, to
the ROM that uses only velocity POD modes (VMB-ROM). The results obtained with
VMB-ROM for an important quantity of interest, the mean drag coefficient, and in
terms of the periodic behavior of the drag coefficient were not satisfactory. Based on
weakly divergence-fee velocity snapshots, SM-ROM could reproduce the results of the
finite element simulations in many cases better than PMB-ROM. Finally, together with
the fact that SM-ROM does not need any specification of additional pressure boundary
conditions, which is required in PMB-ROM, SM-ROM can be considered to be superior
to other vp-ROMs for the computation of the ROM pressure.

The numerical studies associated with the second goal in Chapter 5 showed that the
employed linearization techniques in the velocity ROM, namely the Picard, IMEX, and
IMEX-LE methods discussed in Section 2.2.5, had different effects on the reproduction of
the finite element simulations depending on the quantity of interest taken into account.
In order to obtain the best possible mean kinetic energy error (5.47), the discrete version
of the L1(0, T ;L2(Ω)) error (5.48), and the periodic behavior of the peaks of the drag
and lift coefficients, it is of advantage to utilize the same nonlinear iteration scheme
in the velocity ROM as in the underlying finite element simulation. However, for the
most accurate set of snapshots, the IMEX-LE method performed better, especially in
terms of the drag coefficient, than the IMEX method. With respect to the errors in the
mean and the root mean squared values of the drag and lift coefficients, as well as the
error in the Strouhal number, one could not observe any clear relation concerning the
nonlinear iteration schemes between the finite element simulations for the computation
of snapshots and the corresponding vp-ROMs. The vp-ROMs combined with the Picard
and IMEX-LE methods yielded in many situations slightly smaller errors than the ones
with the IMEX scheme. However, in contrast to finite element methods, for which the
IMEX scheme is generally considerably less accurate than the other two methods, the
difference in the accuracy of the results between all three schemes is very small in the
context of the vp-ROMs.

6.2. Outlook

In the subsequent studies, it would be interesting to investigate whether the SUPG-ROM
is generally not suitable for snapshots, which do not represent the solution of a discrete
problem. This aspect is especially important for applications, in which the snapshots
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arise from physical experiments and not from numerical simulations. Moreover, it is
desirable to develop a ROM able to suppress the non-physical under- and overshoots of
its solution similarly to the FEM-FCT scheme in the context of finite element methods.

Several research directions could be pursued in the future concerning velocity-pressure
ROMs for the incompressible Navier–Stokes equations. For instance, one can study
whether the conclusions of the numerical studies in Chapter 5 carry over to the case
of structure-dominated turbulent flows. In addition, the rigorous numerical analysis for
discretizations of the new velocity-pressure ROM (SM-ROM) can be a topic of future
research.
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A. Function Spaces and Inequalities

In this chapter, the function spaces and inequalities, which are most commonly em-
ployed in the thesis, will be presented. Let Ω be an arbitrary domain in Rd, where d
is the dimension of the physical space, and let Γ denote the boundary of the domain.
In the framework of this work, there will be no difference in the notation between func-
tion spaces for scalar and vector-valued functions. The reader is referred to [1] for a
comprehensive presentation of the subject matter in this chapter.

Definition A.1 (Lebesgue spaces). For 1 ≤ p < ∞, the Lebesgue space denoted by
Lp(Ω) consists of the all measurable functions f defined on Ω for which

∫

Ω

|f(x)|p dx <∞.

The space L∞(Ω) is defined as a vector space of all functions f that are essentially
bounded on Ω, i.e., f is measurable and there is a constant C such that |f(x)| < C a.e.
on Ω. The Lebesgue norm is defined by

|f‖Lp(Ω) =





(∫
Ω

|f(x)|p dx
)1/p

, if 1 ≤ p <∞,

ess supx∈Ω|f(x)|, if p =∞.
(A.1)

Remark A.1. An important special case is the Lebesgue space L2(Ω) as it represents
a Hilbert space. The associated inner product is defined by

(f, g) =

∫

Ω

f(x)g(x) dx, (A.2)

and the induced norm, which will be denoted by ‖·‖0 instead of ‖·‖L2(Ω), is defined by

‖f‖0 = (f, f)1/2. /

Definition A.2 (Sobolev spaces). For any positive integer m and 1 ≤ p ≤ ∞, the
Sobolev space denoted by Wm,p(Ω) is given by

Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for 0 ≤ |α| ≤ m} , (A.3)

where Dαf denotes the weak partial derivative of f (e.g., see [1, Paragraph 1.62] for its
definition).
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The Sobolev norm is defined by

‖f‖Wm,p(Ω) =





(
∑

0≤|α|≤m
‖Dαf‖pLp(Ω)

)1/p

, if 0 ≤ p <∞,

max
0≤|α|≤m

‖Dαf‖L∞(Ω) , if p =∞.
(A.4)

Remark A.2. Sobolev spaces with p = 2 are Hilbert spaces and will be denoted by
Wm,2(Ω) = Hm(Ω). They are equipped with the inner product

(f, g)m =
∑

0≤|α|≤m
(Dαf,Dαg) (A.5)

and with the induced norm

‖f‖m =


 ∑

0≤|α|≤m
(Dαf,Dαf)




1/2

, (A.6)

which is denoted for the sake of simplicity by ‖·‖m instead of ‖·‖Wm,2(Ω). For m = 0, it

holds H0(Ω) = L2(Ω) with the corresponding notation (f, g)0 = (f, g). /

Remark A.3. Sobolev spaces denoted by Wm,p
0 (Ω) are defined to be the closure of

C∞0 (Ω) in the space Wm,p(Ω). Here, C∞0 (Ω) consists of all functions in C∞(Ω) =⋂∞
m=0C

m(Ω) that have compact support in Ω. In this thesis, the case p = 2 is of

importance, i.e., the spaces Wm,2
0 (Ω) = Hm

0 (Ω).
For 1 ≤ m <∞ and for 1 ≤ j ≤ m the functionals | · |j on Hm(Ω) defined by

|f |j =


∑

|α|=j

(
‖Dαf‖20

)



1/2

(A.7)

are called seminorms. If Ω is a bounded domain, then | · |m is a norm on Hm
0 (Ω) and, due

to the Poincaré’s inequality, it is equivalent to the norm ‖·‖m (see [1, Corollary 6.31]).
Seminorm (A.7) can be induced from the semi-inner product

〈f, g〉m =
∑

|α|=m
(Dαf,Dαg) . (A.8)

/

Remark A.4. In the context of finite element methods, often the norms (A.1) for p = 2
and p =∞, (A.6), (A.7), and the inner product (A.2) are needed, which are not defined
on the entire domain Ω but locally on the individual mesh cells K ∈ Th. Here, Th denotes
the triangulation of the domain Ω. These norms and the inner product will be denoted
by ‖·‖0,K , ‖·‖L∞(K), ‖·‖m,K , |·|m,K , (·, ·)K , respectively, and are defined equivalently by
replacing Ω by K in the according integral. /
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Definition A.3 (Bochner spaces). Let Y be a Banach space with the norm ‖ · ‖Y ,
and let (t0, t1) denote a time interval. For 1 ≤ p ≤ ∞, the Bochner space denoted by
Lp(t0, t1;X) is defined by

Lp(t0, t1;X) =
{
f(t,x) : ‖f‖Lp(t0,t1;X) <∞

}
,

where the norm reads

‖f‖Lp(t0,t1;X) =





(∫ t1
t0
‖f(t)‖pX dt

)1/p
, if 1 ≤ p <∞,

ess supt0≤t≤t1 ‖f‖X , if p =∞.
(A.9)

Lemma A.1. (Cauchy–Schwarz inequality). Let X be an inner product space with the
inner product (·, ·)X , which induces the norm ‖·‖X . Then the so-called Cauchy-Schwarz
inequality holds

|(f, g)X | ≤ ‖f‖X‖g‖X ∀f, g ∈ X. (A.10)

Lemma A.2. (Young’s inequality for convolutions). Let 1 ≤ p, q ≤ ∞ and 1
r = 1

p + 1
q −

1 ≥ 0. For f ∈ Lp(Ω) and g ∈ Lq(Ω), it holds f ∗ g ∈ Lr(Ω), and the so-called Young’s
inequality holds

‖f ∗ g‖Lr(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω). (A.11)

Lemma A.3. (Young’s inequality for real numbers). Let a, b ∈ R, then the following
Young’s inequality holds

ab ≤ t

p
ap +

t−q/p

q
bq,

1

p
+

1

q
= 1, 1 < p, q <∞, t > 0. (A.12)
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Kurzzusammenfassung

Diese Dissertation beschäftigt sich mit projektionsbasierten ordnungsreduzierten Mod-
ellen (ROMs) im Rahmen der numerischen Strömungsmechanik. Proper Orthogonal
Decomposition (POD) wird zur Berechnung der ordnungsreduzierten Basis aus den so-
genannten Schnappschüssen eingesetzt. Es wird angenommen, dass die Schnappschüsse
die Finite-Elemente-Lösung einer partiellen Differentialgleichung darstellen. Der Beitrag
der vorliegenden Dissertation besteht aus drei Teilen.

Erstens wird ein Streamline-Upwind Petrov–Galerkin ordnungsreduziertes Modell,
bezeichnet als SUPG-ROM, für konvektionsdominante Konvektions-Diffusions-Reakti-
ons-Gleichungen sowohl theoretisch als auch numerisch untersucht. Mittels numerischer
Analyse wird die Skalierung der Stabilisierungsparameter für SUPG-ROMs vorgeschla-
gen. Dabei werden zwei Ansätze verwendet: Der eine basiert auf der zugrundeliegen-
den Finite-Elemente-Diskretisierung und der andere auf der räumlichen Auflösung im
Zusammenhang mit POD. Die resultierenden SUPG-ROMs und das übliche Galerkin
ROM werden mittels mehrerer konvektionsdominanter Testbeispiele untersucht.

Zweitens wird ein alternativer Ansatz für die Berechnung der ROM-Anfangsbedingung
für Probleme entwickelt, bei welchen der Standard-Ansatz, der in der Regel in der
Literatur verwendet wird, eine durch Störschwingungen verfälschte Anfangsbedingung
erzeugt. Die Grundidee des Verfahrens besteht darin, die herkömmliche ordnungsre-
duzierte Anfangsbedingung in einem Nachbearbeitungsschritt durch ein Filterverfahren
zu modifizieren. Der Einfluss der gefilterten ROM-Anfangsbedingung auf die ROM-
Ergebnisse wird numerisch untersucht. In Bezug auf die Minimal- und Maximalwerte
der ordnungsreduzierten Lösung, die als Maß für Unter- und Überschwingungen dienen,
konnten die ROM-Ergebnisse im Vergleich zu denen mit üblichen ROM-Anfangsbedin-
gungen zum Teil deutlich verbessert werden.

Drittens werden drei ordnungsreduzierte Modelle für Geschwindigkeit und Druck (vp-
ROMs) für inkompressible Strömungen numerisch untersucht. Eines dieser Verfahren
berechnet den ROM-Druck allein auf der Grundlage der POD-Moden für die Geschwin-
digkeit, während die beiden anderen vp-ROMs auch die POD-Basiselemente für den
Druck verwenden. Eine der letztgenannten Methoden, bezeichnet als SM-ROM, wurde
im Rahmen dieser Arbeit entwickelt. Des Weiteren wird die Auswirkung der Genauigkeit
der Schnappschüsse sowie verschiedener Linearisierungsansätze auf die ROM-Ergebnisse
numerisch untersucht. Für die im schwachen Sinne divergenzfreien Geschwindigkeits-
Schnappschüsse konnte SM-ROM die Ergebnisse der Finite-Elemente-Simulationen in
vielen Fällen am besten approximieren. Unter Berücksichtigung, dass SM-ROM im
Gegensatz zu den anderen vp-ROMs keine Angabe zusätzlicher Druckrandbedingungen
benötigt, lässt sich hieraus ableiten, dass SM-ROM im Vergleich zu den zwei anderen
untersuchten vp-ROMs am besten zur Berechnung des POD-Drucks geeignet ist.
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