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5.3 Gleichmäßig konvergente Verfahren . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Geeignete künstliche Diffusion . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Shishkin-Gitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Ausblick 48

A Quellcode (Python) 50

iv





Kapitel 1

Einleitung

Differentialgleichungen spielen bei der Modellierung vieler Prozesse in der Physik ei-
ne wichtige Rolle. Man betrachte beispielsweise einen Fluss mit starker, gleichmäßiger
Strömung. An einer bestimmten Stelle fließt ein flüssiger Schadstoff in das Wasser. Wir
stellen die Frage, welche Form die entstehende Verschmutzungsfahne auf der Wasserober-
fläche annimmt.
Das Verhalten wird durch zwei Prozesse bestimmt: Der Stoff diffundiert langsam durch das
Wasser; der dominante Prozess ist jedoch die Strömung des Flusses, welche den Stoff we-
sentlich schneller flussabwärts transportiert (konvektiert). Durch Konvektion allein würde
sich der Stoff entlang einer eindimensionalen Kurve an der Oberfläche bewegen. Die Dif-
fusion führt jedoch zu einer allmählichen Ausbreitung um diese Kurve herum, sodass
schließlich eine langgezogene, schmale, keilförmige Verteilung entsteht.
Mathematisch führt dies auf ein Konvektions-Diffusions-Problem, bei dem Diffusion und
Konvektion gleichzeitig auftreten, die Konvektion aber wie im Beispiel dominiert. Man
kann diesen Prozess mithilfe eines linearen Zwei-Punkt-Randwertproblems der Form

−εu′′(x) + b(x)u′(x) + σ(x)u(x) = f(x), 0 < x < 1,

mit Randbedingungen
u(0) = u(1) = 0,

modellieren. Dabei ist ε > 0 ein Parameter und b, σ und f sind gegebene Funktionen .
Der Term u′′ modelliert die Diffusion mit kleinem Diffusionskoeffizienten ε. Der Term u′

steht für die Konvektion, während σu als Reaktionsterm die lokale Zu- oder Abnahme
von u ohne Transport beschreibt. Der Term f wirkt als Quellenterm und modelliert eine
äußere Zuführung oder Entnahme, die nicht aus dem System selbst entsteht.
Dominiert die Konvektion, entstehen in der Lösung oft sogenannte Grenzschichten. Das
sind Bereiche, auf denen die Lösung auf einem kleinen Intervall starke Änderungen zeigt.
Für diesen Fall wollen wir die numerische Approximation genauer untersuchen.
In dieser Arbeit betrachten wir ausschließlich eindimensionale lineare Zwei-Punkt-Rand-
wertprobleme. Diese treten beispielsweise in der Wärmeleitung, in der Strömungsmechanik,
in chemischen Reaktionen, in elektrischen Netzwerken oder auch in Transportprozessen
auf.
Ziel dieser Arbeit ist es, das analytische Verhalten solcher singulär gestörten Randwert-
probleme zu untersuchen. Dabei werden numerische Verfahren betrachtet, um auch im
konvektionsdominanten Fall stabile und genaue Approximationen zu erhalten.
Dazu wird in Kapitel 2 zunächst das stetige Problem eingeführt und das Verhalten der
Lösung analysiert. Kapitel 3 behandelt Finite-Differenzen-Methoden und die damit ver-
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bundene Fehleranalyse. In Kapitel 4 wird explizit der konvektionsdominante Fall unter-
sucht, in dem Grenzschichten besonders stark ausgeprägt sind. In Kapitel 5 werden sta-
bile numerische Verfahren wie M -Matrizen, das Upwind-Verfahren und gleichmäßig kon-
vergente Methoden vorgestellt. Ziel dieser Arbeit ist es, sowohl theoretische Einsichten
als auch praktische numerische Methoden für singulär gestörte Konvektions-Diffusions-
Probleme zu vermitteln.
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Kapitel 2

Stetiges Problem

2.1 Allgemeine lineare Zwei-Punkt-Randwertprobleme

Wir folgen der Definition aus [5, p. 3].
Seien x ∈ (α, β) sowie b, σ, f ∈ C([α, β]) und ε ∈ R mit ε > 0.

Wir betrachten das allgemeine lineare Zwei-Punkt-Randwertproblem der Form

−εu′′(x) + b(x)u′(x) + σu(x) = f(x), (2.1)

versehen mit verallgemeinerten linearen Randbedingungen

λαu(α)− µαu
′(α) = να, (2.2)

λβu(β)− µβu
′(β) = νβ. (2.3)

Bemerkung 2.1.1 (Randbedingungen) [4, p. 5–6]
Für να, νβ ∈ R und λα, λβ ∈ R \ {0} unterscheidet man zwischen folgenden Randbedin-
gungen:

1. Dirichlet-Randbedingungen (1. Art):

u(α) = να, u(β) = νβ.

2. Neumann-Randbedingungen (2. Art):

u′(α) = να, u′(β) = νβ.

3. Robin-Randbedingungen (3. Art):

λαu(α) + u′(α) = να, λβu(β) + u′(β) = νβ.

Bemerkung 2.1.2 (Homogene Randbedingungen) [2, p. 1]
Eine Randbedingung heißt homogen, wenn sie auf dem Rand eines Gebietes Ω ⊆ Rn den
Wert 0 annimmt. Sonst heißt sie inhomogen.

Bemerkung 2.1.3 (Normierung) [5, p. 4-5]
Zur Vereinfachung transformieren wir das Randwertproblem in eine Standardform:
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1. Ohne Beschränkung der Allgemeinheit sei x ∈ [0, 1]. Das wird erreicht durch die
lineare Transformation

T (x) =
x− α

β − α
.

2. Seien die Randbedingungen o.B.d.A homogen, also να = 0 und νβ = 0. Dies erhält
man durch die Substitution u 7→ u − g, wobei g eine glatte Funktion ist, die die
ursprünglichen Randbedingungen erfüllt.

Definition 2.1.4 (Standardproblem) [5, p. 5]
Seien x ∈ (0, 1) und b(x), σ(x), f(x) ∈ C([0, 1]) sowie ε ∈ R mit ε > 0. Dann lautet das
Standardproblem:

Lu := −εu′′ + bu′ + σu = f in Ω = (0, 1) (2.4)

mit den Randbedingungen
u(0) = u(1) = 0. (2.5)

Bemerkung 2.1.5 (Zum Operatorbegriff) [4, p. 7]
In (2.4) bezeichnet L einen Differentialoperator. Unter einem Operator versteht man im
Allgemeinen eine Abbildung zwischen zwei (Funktionen-)Räumen.
Ein linearer Operator ist eine lineare Abbildung A auf einem Vektorraum X mit der
Eigenschaft

A(λu+ µv) = λAu+ µAv,

wobei λ, µ beliebige Skalare und u, v ∈ X beliebige Elemente sind.
Ein Differentialoperator erzeugt bei Anwendung Ableitungen. Zu seiner vollständigen De-
finition gehört stets die Angabe des Definitionsbereiches.

Definition 2.1.6 (Reduziertes Problem) [4, p. 8]
Um das reduzierte Problem zu erhalten, setzt man ε = 0. Damit ergibt sich die Differen-
tialgleichung

L0u0 := b(x)u′
0(x) + σ(x)u0(x) = f(x), x ∈ (0, 1).

Die Randbedingung wird an der Einströmkante gesetzt:

• Ist b(x) > 0 für alle x ∈ [0, 1], so wird die Randbedingung wird bei x = 0 gesetzt:

u0(0) = 0.

• Ist b(x) < 0 für alle x ∈ [0, 1], so wird die Randbedingung bei x = 1 gesetzt:

u0(1) = 0.

Die Lösung u0 dieses Problems wird reduzierte Lösung genannt.

2.2 Analytisches Verhalten der Lösung

Definition 2.2.1 [3, p. 13]
Die folgenden Funktionenräume werden benötigt:

4



• Der Raum C(a, b) umfasst alle Funktionen

u : (a, b) → R,

die auf dem offenen Intervall (a, b) stetig sind.

• Der Raum C[a, b] umfasst alle Funktionen

u : [a, b] → R,

die auf dem abgeschlossenen Intervall [a, b] stetig sind.

• Der Raum C2(a, b) umfasst alle Funktionen

u : (a, b) → R,

die zweimal stetig differenzierbar sind, d. h.

u, u′, u′′ sind stetig auf (a, b).

Bemerkung 2.2.2 (Standardproblem) [4, p. 8]
Die Lösbarkeit des Problems (2.4)-(2.5) ist unabhängig von ε > 0. Durch Division durch
ε und geeignete Umbenennung der Koeffizienten erhält man

Lu := −u′′(x) + b(x)u′(x) + σ(x)u(x) = f(x), x ∈ (0, 1), (2.6)

mit den Randbedingungen
u(0) = u(1) = 0. (2.7)

Definition 2.2.3 (Klassische Lösung eines Randwertproblems) [3, p. 13]
Wir betrachten ein Randwertproblem mit Dirichlet-Randbedingungen für eine Differen-
tialgleichung zweiter Ordnung auf dem Intervall (a, b). Eine klassische Lösung ist eine
Funktion

u ∈ C2(a, b) ∩ C[a, b],

die sowohl die Differentialgleichung als auch die Randbedingungen erfüllt.

Definition 2.2.4 (Wronski-Determinante) [3, p. 14]
Für zwei Funktionen u1, u2 auf einem Intervall I ist die Wronski-Determinante definiert
durch

W (x) =

∣∣∣∣u1(x) u2(x)
u′
1(x) u′

2(x)

∣∣∣∣ , x ∈ I.

Definition 2.2.5 (Lineare Unabhängigkeit) [3, p. 14]
Zwei Funktionen u1(x) und u2(x) heißen linear unabhängig, wenn aus

c1u1(x) + c2u2(x) = 0 für alle x ∈ (a, b) (2.8)

folgt, dass
c1 = c2 = 0.

Sind sie nicht linear unabhängig, so heißen sie linear abhängig.
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Bemerkung 2.2.6 [3, p. 14]
Seien u1, u2 auf (a, b) linear abhängig und stetig differenzierbar. Dann folgt aus (2.8), dass

c1u
′
1(x) + c2u

′
2(x) = 0, x ∈ (a, b). (2.9)

Damit sind auch u′
1 und u′

2 linear abhängig. Folglich besitzt das Gleichungssystem aus (2.8)
und (2.9) eine nichttriviale Lösung, und die Wronski-DeterminanteW (x) ist identisch null.

Satz 2.2.7 (Superpositionsprinzip) [3, p. 16]
Für die homogene lineare Differentialgleichung

−u′′(x) + b(x)u′(x) + σ(x)u(x) = 0, x ∈ (0, 1),

mit b, σ ∈ C([0, 1]), existieren zwei linear unabhängige Lösungen in C2([0, 1]). Jede klas-
sische Lösung lässt sich als Linearkombination dieser beiden Funktionen darstellen.

Satz 2.2.8 (Klassische Lösung der inhomogenen, linearen Differentialgleichung)
[3, p. 17]
Für die inhomogene lineare Differentialgleichung

−u′′(x) + b(x)u′(x) + σ(x)u(x) = f(x), x ∈ (0, 1),

mit b, σ, f ∈ C([0, 1]), existiert eine klassische partikuläre Lösung up. Jede klassische
Lösung hat die Darstellung

u(x) = c1u1(x) + c2u2(x) + up(x), c1, c2 ∈ R,

wobei u1, u2 ein Fundamentalsystem der zugehörigen homogenen Gleichung bilden, also
eine Basis des Lösungsraums der zugehörigen homogenen linearen Differentialgleichung.

Satz 2.2.9 (Existenz und Eindeutigkeit der Lösung des Modellproblems mit
homogener rechter Seite) [4, p. 12]
Für das Randwertproblem (2.6), (2.7) mit

b ∈ C1([0, 1]), σ ∈ C([0, 1]), f(x) ≡ 0,

gilt: Ist für alle x ∈ (0, 1)

σ̃(x) :=
1

4
b2(x)− 1

2
b′(x) + σ(x) ≥ 0,

dann besitzt das Problem (2.6), (2.7) nur die triviale Lösung, also

u(x) ≡ 0.

Bemerkung 2.2.10 (Konstante Koeffizienten) [4, p. 13]
Für konstante Koeffizienten vereinfacht sich die Bedingung σ̃(x) ≥ 0 zu

D :=
b2

4
+ σ ≥ 0.
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Definition 2.2.11 (Invers-monotoner Operator) [9, p. 10]
Sei M : C2(0, 1) → C(0, 1) ein Differentialoperator und w ∈ C2(0, 1) ∩ C[0, 1]. Der
Operator M heißt invers-monoton, wenn aus

Mw(x) ≥ 0 für alle x ∈ (0, 1), w(0) ≥ 0, w(1) ≥ 0

folgt, dass
w(x) ≥ 0 für alle x ∈ [0, 1].

Das bedeutet: Ein Operator ist invers-monoton, wenn aus der Nichtnegativität des Ope-
ratorausdrucks und der Randwerte folgt, dass die Funktion auf dem gesamten Intervall
nichtnegativ ist.

Bemerkung 2.2.12 [9, p. 10]
Für σ(x) ≥ 0 für alle x ∈ [0, 1] ist der Operator L aus (2.4), (2.5) invers-monoton.

Definition 2.2.13 (Maximumprinzip) [9, p. 10]
Ein Differentialoperator M : C2(0, 1) → C(0, 1) erfüllt ein Maximumprinzip, wenn für
jede Funktion u ∈ C2(0, 1) ∩ C[0, 1] aus

Mu(x) = 0 für alle x ∈ (0, 1)

folgt, dass

min{u(0), u(1), 0} ≤ u(x) ≤ max{u(0), u(1), 0} für alle x ∈ [0, 1].

Bemerkung 2.2.14 [9, p. 10]
Ist der Operator L invers-monoton, so erfüllt er auch das Maximumprinzip und das fol-
gende Vergleichsprinzip.

Definition 2.2.15 (Vergleichsprinzip) [9, p. 10]
Seien v, w ∈ C2(0, 1) ∩ C[0, 1]. Es gelte

Lw(x) ≥ Lv(x) für alle x ∈ (0, 1) und w(0) ≥ v(0), w(1) ≥ v(1).

Dann gilt
w(x) ≥ v(x) für alle x ∈ [0, 1].

Wir nennen w eine Barrierefunktion für v.

2.3 Lineare Probleme zweiter Ordnung ohne Wende-

punkte

Dieser Abschnitt folgt [9, p. 11-16].
Wir betrachten das Randwertproblem

Lu := −εu′′(x) + b(x)u′ + σ(x)u = f(x), x ∈ (0, 1), σ(x) ≥ 0 (2.10)

mit den Randbedingungen
u(0) = u(1) = 0. (2.11)

Für hinreichend glatte Funktionen b, σ, f existiert eine eindeutige klassische Lösung. Unser
Ziel ist es, das Verhalten dieser Lösung für kleine ε > 0 zu untersuchen.
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2.3.1 Asymptotische Entwicklungen

Wir wollen nun untersuchen, wie wir u aus (2.10), (2.11) durch eine einfache Funkti-
on approximieren können. Die Methode der matched asymptotic expansions liefert eine
systematische Approximation von u.

Definition 2.3.1 (Asymptotische Entwicklung)
Eine Funktion uas heißt asymptotische Entwicklung der Ordnung m von der Lösung u (in
der Maximumsnorm), wenn eine Konstante C > 0 existiert, sodass

|u(x)− uas(x)| ≤ Cεm+1

für alle x ∈ [0, 1] und alle hinreichend kleinen ε > 0.

Dabei ist C unabhängig von ε und b, σ, f sind ausreichend glatt auf [0, 1].

Globale Erweiterung

Wir versuchen zunächst, eine globale Erweiterung ug zu finden. Diese Funktion wird eine
gute Näherung von u außerhalb der Grenzschicht(en) sein, d. h. auf fast dem gesamten
Intervall [0, 1]. Wir setzen

ug(x) =
m∑

ν=0

ενuν(x),

wobei uν(x) noch bestimmt werden müssen.

Definition 2.3.2 (Reduzierter Operator)
Durch formales Setzen von ε = 0 in L erhalten wir den Operator

L0v := bv′ + σv.

Als nächstes setzen wir ug in die Gleichung (2.10), (2.11) ein. Durch Gleichsetzen der
Koeffizienten gleicher Potenzen von ε erhalten wir die folgenden Gleichungen:

L0u0 = f, (2.12)

L0uν = u′′
ν−1, ν = 1, . . . ,m. (2.13)

Definition 2.3.3 (Wendepunkt)
Ein Punkt x0 ∈ [0, 1] heißt Wendepunkt, wenn

b(x0) = 0.

Bemerkung 2.3.4
Hat b einen Wendepunkt, entstehen Schwierigkeiten bei der Definition der Koeffizienten
uν . Wir betrachten hier also nur den Fall

b(x) ̸= 0 für alle x ∈ [0, 1].
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Wahl der Randbedingung für das reduzierte Problem
Eine der Randbedingungen aus (2.11) sollte verwendet werden, um u0 zu berechnen. Es
stellt sich die Frage, welche Randbedingung wegzulassen ist.

Theorem 2.3.5 (Cancellation Law)

• Ist b > 0 auf [0, 1], so liegt die Grenzschicht bei x = 1 und man lässt die Randbe-
dingung bei x = 1 unberücksichtigt.

• Ist b < 0, so liegt die Grenzschicht bei x = 0 und man lässt die Randbedingung bei
x = 0 unberücksichtigt.

Da die Transformation x 7→ 1 − x den Fall b < 0 in b > 0 überführt, ist es ausreichend,
den Fall b > 0 genauer zu betrachten.
Für b > 0 gilt

L0u0 = f, u0(0) = 0, (2.14)

L0uν = u′′
ν−1, uν(0) = 0, ν = 1, ...m. (2.15)

Wir nennen (2.14) - (2.15) das reduzierte Problem mit der reduzierten Lösung u0.

Lokale (innere) Korrektur
Das Ziel der asymptotischen Entwicklung ist, eine Näherung von u zu finden, die für alle
x ∈ [0, 1] gilt. Die Näherung ug erfüllt die Randbedingung an der Stelle x = 1 nicht.
Deshalb führen wir eine lokale Korrektur von ug in der Nähe von x = 1 ein.
Wir setzen

w := u− ug.

Dann erfüllt w
Lw = εm+1u′′

m,

w(0) = 0, w(1) = −
m∑

ν=0

ενuν(1).

Streckung der unabhängigen Variablen
Wir können L schreiben als L = εL1 + L0. Da die Grenzschicht bei x = 1 liegt, strecken
wir die Skala dort in x-Richtung durch die Variable

ξ =
1− x

δ
,

wobei δ klein und noch unbestimmt ist. Wir wählen die Grenzschichtskalierung δ so, dass
L0 und εL1 nach der Transformation von x nach ξ formal von derselben Ordnung bezüglich
ε sind. Wir setzen

ε δ−2 ≈ δ−1.

Das führt zur Wahl
δ = ε.

Wir entwickeln die Koeffizientenfunktionen b und σ bzgl. ξ mittels Taylorreihen um x = 1:
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b(1− εξ) =
∞∑
ν=0

bνε
νξν , b0 = b(1),

σ(1− εξ) =
∞∑
ν=0

σνε
νξν , σ0 = σ(1).

Damit lässt sich L für jede hinreichend differenzierbare Funktion g in der Variablen ξ
darstellen als

εL1g + L0g =
1

ε

∞∑
ν=0

ενL∗
νg,

wobei

L∗
0 := − d2

dξ2
− b0

d

dξ
, L∗

1 := − b1ξ
d

dξ
+ c0,

usw.
Als lokale Korrektur verwenden wir

vloc(ξ) =
m+1∑
µ=0

εµvµ(ξ).

Damit vloc die Differenz
w = u− ug

approximiert, müssen die Terme vµ die Bedingungen

L∗
0v0 = 0, (2.16)

L∗
0vµ = −

µ∑
κ=1

L∗
κ vµ−κ, µ = 1, . . . ,m+ 1 (2.17)

erfüllen.
Um die richtige Randbedingung bei x = 1 zu erhalten, wählen wir

vκ(0) = −uκ(1), κ = 0, 1, . . . ,m.

Da die Gleichungen (2.16) und (2.17) zweiter Ordnung sind, brauchen wir eine weitere
Bedingung. Wir fordern

lim
ξ→∞

vµ(ξ) = 0.

Mit diesen beiden Randbedingungen besitzt das Problem (2.16), (2.17) eine eindeutige
Lösung. Wir erhalten z.B. für die Korrektur erster Ordnung

v0(ξ) = −u0(1) e
− b(1) ξ.

Bemerkung 2.3.6
Grenzschichten werden entsprechend der zugehörigen Grenzschichtgleichungen klassifi-
ziert. Die einfachsten Schichten sind exponentielle Grenzschichten (auch gewöhnliche
Grenzschichten genannt), bei denen die Lösungen der Grenzschichtgleichungen abfallende
Exponentialfunktionen sind. Die Lösung von (2.10), (2.11) hat normalerweise eine Grenz-
schicht dieses Typs bei x = 1, wenn b > 0 auf [0, 1].
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Theorem 2.3.7
Sind die Koeffizienten sowie die rechte Seite des Randwertproblems (2.10), (2.11) hinrei-
chend glatt und gilt zudem b(x) > β > 0 auf [0, 1], so hat die Lösung u eine asymptotische
Entwicklung der Form

uas(x) =
m∑

ν=0

ενuν(x) +
m∑

µ=0

εµvµ

(
1− x

ε

)
,

sodass für jede hinreichend kleine Konstante ε0 > 0 gilt:

|u(x)− uas(x)| ≤ C εm+1 für alle x ∈ [0, 1] und ε ≤ ε0.

Dabei ist C unabhängig von x und ε.

Beweis. Der Beweis folgt [9, p. 15].

Beispiel 2.3.8
Wir wollen nun das Verfahren der asymptotischen Entwicklung an einem Beispiel näher
betrachten. Wir betrachten das Randwertproblem

−εu′′(x) + u′(x) = 1, x ∈ (0, 1), (2.18)

mit den Randbedingungen
u(0) = u(1) = 0. (2.19)

Nach Theorem 2.3.5 liegt eine Grenzschicht bei x = 1 vor, da b(x) = 1 > 0 gilt.

Reduziertes Problem

Wir setzen in (2.18) ε = 0 und erhalten somit

L0u0 = u′
0 = 1.

Mit der nach Theorem 2.3.5 gewählten Randbedingung u0(0) = 0 folgt

u0(x) = x. (2.20)

Globale Erweiterung

Wir setzen
ug(x) = u0(x) + εu1(x) + · · · .

Die Gleichung für u1 ist nach (2.15)

L0u1 = u′′
0 = 0, u1(0) = 0.

Damit folgt
u1(x) = 0. (2.21)

Bis zur Ordnung O(ε) gilt daher
ug(x) = x. (2.22)
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Lokale Grenzschicht bei x = 1

Da b(1) = 1 > 0 gilt, liegt eine Grenzschicht bei x = 1. Wir führen die gestreckte Variable

ξ =
1− x

ε

ein. Die lokale Korrektur schreiben wir in der Form

vloc(ξ) = v0(ξ) + εv1(ξ) + · · · .

Die Gleichung für v0 ergibt sich aus (2.16):

−v′′0(ξ)− v′0(ξ) = 0 (2.23)

mit den Randbedingungen

v0(0) = −u0(1) = −1, lim
ξ→∞

v0(ξ) = 0.

Gleichung (2.23) hat die Lösung
v0(ξ) = −e−ξ. (2.24)

Asymptotische Gesamtlösung

Durch Addition der globalen und lokalen Anteile erhält man die asymptotische Lösung

uas(x) = ug(x) + v0

(
1− x

ε

)
= x− e−(1−x)/ε.

Vergleich mit der exakten Lösung

Das Randwertproblem (2.18)–(2.19) besitzt die exakte Lösung

u(x) = x− 1− e−x/ε

1− e−1/ε
. (2.25)

Für ε → 0 gilt
1− e−x/ε

1− e−1/ε
= e−(1−x)/ε +O

(
e−1/ε

)
,

und somit folgt
u(x) = x− e−(1−x)/ε +O

(
e−1/ε

)
.

Damit stimmt die asymptotische Lösung mit der exakten Lösung bis auf einen exponentiell
kleinen Fehler überein.
Wir betrachten die exakte und asymptotische Lösung für verschiedene Werte von ε. Der
Fehler ist kaum sichtbar.
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Abbildung 2.1: Exakte und asymptotische Lösung für verschiedene Werte von ε.
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Wir betrachten zusätzlich den Fehler

|uexakt(x)− uas(x)|

auf logarithmischer Skala.

Abbildung 2.2: Absoluter Fehler der asymptotischen Lösung auf logarithmischer Skala.
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Kapitel 3

Finite-Differenzen-Methoden

Die zentrale Idee der Finite-Differenzen-Methoden lautet wie folgt: Wir wollen das Gebiet,
auf dem die Differentialgleichung definiert ist, diskretisieren, d. h. das Gebiet in kleine
Abschnitte, in diesem Falle Gitterzellen, aufteilen. Auf jedem Gitterpunkt werden die
Ableitungen durch Näherungen ersetzt, unter Nutzung der Werte der benachbarten Git-
terpunkte. Man erhält ein Gleichungssystem für die Werte in den Gitterpunkten. Dieses
wird anschließend gelöst. Damit erhält man eine Näherung für die Lösung des Zwei-Punkt-
Randwertproblems.

3.1 Bestimmung der Näherungen

3.1.1 Numerische Differenzierung

Definition 3.1.1 (Ableitung von u) [6, p. 2]
Die Ableitung von u ist definiert als

u′(x) = lim
h→0

u(x+ h)− u(x)

h
. (3.1)

Definition 3.1.2 (Differenzenoperatoren) [6, p. 2]
Bei ausreichend kleinem h kann die rechte Seite ohne den Grenzwert als Näherung für
u′(x) genutzt werden. Häufig genutzte Näherungen, sogenannte Differenzenoperatoren,
lauten:

Vorwärtsdifferenz: ∂+u(x) :=
u(x+ h)− u(x)

h
,

Rückwärtsdifferenz: ∂−u(x) :=
u(x)− u(x− h)

h
,

Zentrale Differenz: ∂◦u(x) :=
u(x+ h)− u(x− h)

2h
=

1

2

(
∂+u(x) + ∂−u(x)

)
.

Eine häufig verwendete Näherung der zweiten Ableitung ist:

∂+∂−u(x) :=
u(x+ h)− 2u(x) + u(x− h)

h2
.
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Abbildung 3.1: Verschiedene Näherungen an die Ableitung u′(x̄), dargestellt über die
Steigungen zugehöriger Sekanten, in Anlehnung an [7, p. 4].

3.1.2 Fehleranalyse

Definition 3.1.3 (Gitterfunktion) [1, p. 500]
Ein Vektor v⃗h = (v0, . . . , vN)

T ∈ RN+1, der jedem Gitterpunkt einen Wert zuordnet, heißt
Gitterfunktion.
Die Restriktion einer Funktion v ∈ C([0, 1]) auf eine Gitterfunktion wird definiert als:

Rhv :=
(
v(x0), v(x1), . . . , v(xN)

)
.

Definition 3.1.4 (Diskrete Maximumsnorm im Raum der Gitterfunktionen) [7,
p. 16]
Sei wh = {xi | i = 0, . . . , N} ein Gitter, und sei u : wh → R eine Gitterfunktion.
Dann ist die diskrete Maximumsnorm von u definiert als:

∥u∥∞,h = max
x∈wh

|u(x)|.

Definition 3.1.5 (Diskrete L2-Norm)
Sei u : wh → R eine Gitterfunktion und wh = {xi | i = 0, . . . , N} ein Gitter mit
Schrittweite h = 1

N
.

Dann ist die diskrete L2-Norm von u definiert als:

∥u∥2,h =

(
h

N∑
i=0

|u(xi)|2
)1/2

.

Definition 3.1.6 (Konsistenz von Differenzenoperatoren) [1, p. 501]
Sei L ein Differentialoperator. Der Finite-Differenzenoperator Lh : Rn → Rn heißt zu L
konsistent mit Ordnung k, wenn für alle ausreichend glatte Funktionen u gilt:

max
1≤i≤n

|(Lu)(xi)− (LhRhu)i| =: ∥Lu− LhRhu∥∞,h = O(hk).
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Die Konsistenzordnung eines Finite-Differenzenoperators wird in der Regel mit der Taylor-
Entwicklung bestimmt.

Bemerkung 3.1.7 (Fehler der Standard-Differenzenoperatoren) [6, p. 4-5]
Zur Fehleranalyse der Näherungen nutzt man eine Taylor-Entwicklung des Fehlers um x.
Wir nehmen an, dass die Funktionen ausreichend glatt sind.

Vorwärtsdifferenz:

e(x, h) = u′(x)− u(x+ h)− u(x)

h
= u′(x)−

u(x) + u′(x)h+ 1
2
u′′(ζ)h2 − u(x)

h

= −h

2
u′′(ζ), ζ ∈ (x, x+ h).

Rückwärtsdifferenz:

e(x, h) = u′(x)− u(x)− u(x− h)

h
=

h

2
u′′(ζ), ζ ∈ (x− h, x).

Zentrale Differenz:

e(x, h) = u′(x)− u(x+ h)− u(x− h)

2h
= −h2

6
u′′′(ζ), ζ ∈ (x− h, x+ h).

Näherung der zweiten Ableitung:

e(x, h) =
u(x+ h)− 2u(x) + u(x− h)

h2
− u′′(x) =

h2

12
u(4)(ζ), ζ ∈ (x− h, x+ h).

Bemerkung 3.1.8 (Konsistenz der Standard-Differenzenoperatoren) [4, p. 21]
Wir können für die Näherungen erkennen:

∂+u(x) = u′(x) +O(h),

∂−u(x) = u′(x) +O(h),

∂◦u(x) = u′(x) +O(h2),

∂+∂−u(x) = u′′(x) +O(h2).

Die Differenzenoperatoren ∂+u(x) und ∂−u(x) sind damit konsistent zu L = d
dx

mit
Ordnung 1, ∂◦u(x) mit Ordnung 2. Der Operator ∂+∂−u(x) ist von zweiter Ordnung
konsistent zu L = d2

dx2 .

3.2 Zentrales Differenzenverfahren

Dieser Abschnitt folgt [6, p. 10-11].
Wir betrachten erneut das in Definition 2.1.4 eingeführte Standardproblem

Lu := −u′′ + bu′ + σu = f in Ω = (0, 1), (3.2)

mit Randbedingungen
u(0) = u(1) = 0. (3.3)
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1. Diskretisierung des Intervalls
Auf dem Intervall [c, d] = [0, 1] wählen wir ein N ∈ N und definieren die Schrittweite

d− c

N
=

1

N
=: h.

Die Stützstellen lauten
xi = ih, i ∈ {0, . . . , N},

wir bezeichnen das Gitter mit

wh = {xi | i = 0, . . . , N }.

2. Ersetzen der Ableitungen
Für jede innere Stützstelle xi, i = 1, ..., N − 1, ersetzen wir die Ableitungen durch
Näherungen aus Definition 3.1.2. Wir setzen

−ε (∂+∂−u)(xi) + b(xi) (∂
◦u)(xi) + σ(xi)u(xi) +O(h2) = f(xi).

Dadurch erhalten wir

− ε
u(xi + h)− 2u(xi) + u(xi − h)

h2
+ b(xi)

u(xi + h)− u(xi − h)

2h
+ σ(xi)u(xi) + O(h2) = f(xi).

(3.4)

3. Numerische Approximation
Wir definieren

ui ≈ u(xi), i = 0, . . . , N,

als numerische Approximation der exakten Lösung an den Gitterpunkten. Durch Ver-
nachlässigung des Fehlerterms O(h2) erhalten wir das zentrale Differenzensystem

−ε
ui+1 − 2ui + ui−1

h2
+ b(xi)

ui+1 − ui−1

2h
+ σ(xi)ui = f(xi). (3.5)

4. Randbedingungen
Die Randwerte werden durch

u0 = u(0) = 0, uN = u(1) = 0

direkt in das Gleichungssystem übertragen.

5. Lineares Gleichungssystem
Nach Multiplikation von (3.5) mit h2 erhält man

(−ui+1 + 2ui − ui−1)ε +
h b(xi)

2
(ui+1 − ui−1) + h2σ(xi)ui = h2f(xi). (3.6)

Wir definieren die Koeffizienten

gi = −ε− h

2
b(xi), hi = 2ε+ h2σ(xi), ji = −ε+

h

2
b(xi).
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Damit ergibt sich das lineare System Au = F der Größe (N + 1)× (N + 1):

A =



1 0 · · ·
g1 h1 j1 · · ·
0 g2 h2 j2 · · ·
0 0 g3

. . . . . .
...

... 0
. . .

gN−1 hN−1 jN−1

0 1


, u =


u0

u1
...

uN−1

uN

 , F =


0

h2f(x1)
...

h2f(xN−1)
0

 .

(3.7)

Beispiel 3.2.1 (Finite-Differenzen-Methode) In diesem Beispiel wird die Finite-
Differenzen-Methode zur Lösung der Differentialgleichung

−u′′(x) + b(x)u′(x) + σ(x)u(x) = f(x), x ∈ (0, 1),

mit Randbedingungen u(0) = 0 und u(1) = 0 genutzt.
Wir wählen die Funktionen b(x) = 0, σ(x) = 0 und f(x) = π2 sin(πx) mit bekannter
exakter Lösung

u(x) = sin(πx).

Das Intervall [0, 1] wird in N gleich große Teilintervalle unterteilt, und für N = 4, 8, 16
wird das resultierende lineare Gleichungssystem numerisch gelöst.
Wir vergleichen die numerischen Lösungen mit den exakten und berechnen die Fehler in
der L2-Norm und in der Maximumsnorm.

Abbildung 3.2: Numerische Lösung für N = 4
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Abbildung 3.3: Numerische Lösung für N = 8

Abbildung 3.4: Numerische Lösung für N = 16
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Mit zunehmender Gitterfeinheit nähert sich die numerische Lösung immer mehr der ex-
akten Lösung an. In den berechneten Fehlernormen kann man das ebenfalls erkennen:

N ∥e∥2,h ∥e∥∞,h

4 3.75 · 10−2 5.30 · 10−2

8 9.16 · 10−3 1.30 · 10−2

16 2.28 · 10−3 3.22 · 10−3

Tabelle 3.1: Diskrete Fehlernormen für das zentrale Differenzenverfahren.

3.3 Fehleranalyse

3.3.1 Globaler Fehler

Definition 3.3.1 (Globaler Fehler) [8, p. 22]
Seien u = (u0, . . . , uN)

⊤ die Näherungslösung aus Kapitel 3.2 und u(xi) die exakte Lösung
ausgewertet an den Gitterpunkten xi. Dann ist der globale Fehlervektor definiert als

E = (u0 − u(x0), . . . , uN − u(xN))
⊤.

Wir suchen eine obere Schranke für den Fehler, häufig gemessen in

• der 1 - Norm ∥E∥1 =
∑

i hi|ei|, wobei hi = xi+1 − xi,

• der 2 - Norm ∥E∥2 =
(∑N

i=0 hi|ei|2
)1/2

,

• der Maximumsnorm.

Definition 3.3.2 (Genauigkeit von Ordnung p) [8, p. 22]
Wir sagen, dass eine Finite-Differenzen-Methode Genauigkeit von Ordnung p hat,
wenn

∥E∥ ≤ Chp, p > 0.

Definition 3.3.3 (Konvergenz) [8, p. 22]
Wir betrachten die Normen aus Definition 3.3.1. Ein Finite-Differenzen-Verfahren heißt
konvergent in einer dieser Normen, wenn

lim
h→0

∥E∥ = 0.

3.3.2 Lokaler Fehler

Der lokale Diskretisierungsfehler bezeichnet die Differenz zwischen der ursprünglichen
Differentialgleichung und der Finite-Differenzen-Diskretisierung an den Gitterpunkten.
Er misst, wie gut die Finite-Differenzen-Diskretisierung die Differentialgleichung approxi-
miert (vgl. [8, p. 22]).
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Definition 3.3.4 (Konsistenz eines Differenzenschemas) [1, p. 501]
Wir betrachten nun die lineare partielle Differentialgleichung Lu = f und eine lineare
Finite-Differenzen-Näherung der Form

Lhuh = Rh(Lu) = Rhf = fh

auf einem äquidistanten Gitter. Dieses Schema heißt konsistent von Ordnung k in der
diskreten Maximumsnorm, wenn für alle ausreichend glatte v gilt:

∥LhRhv −Rh(Lv)∥∞,h = O(hk),

wobei k > 0 unabhängig von h ist.

Definition 3.3.5 (Stabilität) [1, p. 502]
Ein Finite-Differenzen-Schema (bzw. ein Finite-Differenzenoperator) heißt stabil in der
diskreten Maximumsnorm, wenn es eine von h unabhängige Konstante CS gibt, sodass

∥vh∥∞,h ≤ CS∥Lhvh∥∞,h

für alle Gitterfunktionen vh gilt.

Definition 3.3.6 (Konvergenz eines Differenzenschemas) [1, p. 502]
Das Differenzenverfahren

Lhuh = Rh(Lu) = Rhf = fh

heißt konvergent von Ordnung k in der diskreten Maximumsnorm, wenn es eine von h
unabhängige positive Konstante k gibt, so dass

∥Rhu− uh∥∞,h = O(hk).

Theorem 3.3.7 (Konsistenz + Stabilität ⇒ Konvergenz) [1, p. 502]
Ein konsistentes und stabiles Finite-Differenzen-Schema ist konvergent. Die Ordnungen
der Konvergenz und Konsistenz sind identisch.
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Kapitel 4

Konvektions-dominanter Fall

Im Folgenden wird untersucht, wie sich die Lösung für kleine Werte von ε verhält. Wird
ε sehr klein und ist b(x) vergleichsweise groß, so dominiert der Term b(x)u′(x) gegenüber
dem Term−εu′′(x). In diesem Fall treten sogenannteGrenzschichten auf, also Bereiche na-
he den Randpunkten, in denen die Lösung auf sehr kleinen Intervallen starke Änderungen
zeigt.

4.1 Grenzschicht

Definition 4.1.1 (Grenzschicht) [10, p. 4]
Sei v = v(x, ε) für (x, ε) ∈ [0, 1]× (0, 1]. Es wird angenommen, dass

v′(x, ε) :=
∂v(x, ε)

∂x

für alle (x, ε) ∈ [0, 1]× (0, 1] existiert. Wir sagen, dass v für ε → 0+ eine Grenzschicht an
einem Punkt z ∈ [0, 1] besitzt, wenn die folgenden Bedingungen erfüllt sind:

1. limε→0+ v′(z, ε) = ±∞,

2. limε→0+ v′(x, ε) existiert und ist endlich für alle Punktex ∈ [0, 1], die

0 < |x− z| < k

für eine positive Konstante k erfüllen, wobei k von z, aber nicht von ε abhängen
darf.

Beispiel 4.1.2 (Beispiel mit konstanten Koeffizienten b und σ)
Wir betrachten die Differentialgleichung

−εu′′(x) + u′(x) = 0, x ∈ (0, 1), (4.1)

mit Randbedingungen
u(0) = 0, u(1) = 1.

Dies entspricht dem Fall der Modellgleichung mit b(x) = 1, σ = 0. Da ε > 0, erhalten wir

u′′(x)− 1

ε
u′(x) = 0. (4.2)
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Das ist eine homogene lineare Differentialgleichung 2. Ordnung. Durch Substitution v(x) =
u′(x) und damit v′(x) = u′′(x) erhalten wir eine Differentialgleichung 1. Ordnung:

v′(x)− 1

ε
v(x) = 0 ⇔ v′(x) =

1

ε
v(x). (4.3)

Diese Gleichung besitzt eine Lösung der Form

v(x) = αe
1
ε
x (4.4)

für ein α ∈ R.
Es wird eine Rücksubstitution durchgeführt. Sei C ∈ R. Dann gilt

u(x) =

∫
v(x) dx =

∫
αe

1
ε
x dx = α

∫
e

1
ε
x dx

= α
(
εe

1
ε
x + C

)
= α′e

1
ε
x + C ′,

(4.5)

wobei α′ := αε und C ′ := αC erneut Konstanten sind. Jetzt können wir unsere Randbe-
dingungen nutzen, um C ′ und α′ zu bestimmen.

1. Aus der ersten Randbedingung folgt

u(0) = 0 ⇒ α′e0 + C ′ = 0 ⇒ α′ = −C ′. (4.6)

2. Mit (4.6) und der zweiten Randbedingung erhalten wir

u(1) = 1 ⇒ α′e
1
ε + C ′ = 1

⇒ α′e
1
ε − α′ = 1

α′ ̸=0⇒ e
1
ε − 1 =

1

α′

⇒ α′ =
1

e
1
ε − 1

⇒ C ′ = − 1

e
1
ε − 1

.

Damit folgt insgesamt:

u(x) =
e

1
ε
x − 1

e
1
ε − 1

. (4.7)

Grafik

Die folgenden Abbildungen illustrieren das Verhalten der Lösung für kleine Werte von ε.
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Abbildung 4.1: Lösungsverlauf u(x) für verschiedene Werte von ε. Für kleine ε erkennt
man eine deutliche Grenzschicht nahe x = 1.

Wir betrachten noch einmal explizit die Grenzschicht:
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Abbildung 4.2: Vergrößerung der Grenzschichtregion bei x = 1 für kleine Werte von ε.
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Beispiel 4.1.3 (Beispiel mit nicht-konstanten Koeffizienten b und σ)

Betrachtet wird das Randwertproblem

−εu′′(x) + b(x)u′(x) + σ(x)u(x) = f(x), x ∈ (0, 1),

mit Randbedingungen
u(0) = 0, u(1) = 1.

1. Als exakte Lösung wählen wir u(x) = x. Zudem setzen wir

b(x) = 1 + x, σ(x) = 1, ε = 0,1.

2. Aus u′(x) = 1 und u′′(x) = 0 folgt für die rechte Seite

f(x) = −εu′′(x) + b(x)u′(x) + σ(x)u(x)

= −0,1 · 0 + (1 + x) · 1 + x

= 1 + 2x.

(4.8)

3. Damit ergibt sich die vollständige Aufgabe

−0,1u′′(x) + (1 + x)u′(x) + u(x) = 1 + 2x, u(0) = 0, u(1) = 1,

für welche u(x) = x eine Lösung ist.

4. Eindeutigkeit der Lösung
Seien u und v zwei beliebige Lösungen des Randwertproblems, und es sei

w(x) := u(x)− v(x).

Dann erfüllt w die Gleichung

−εw′′(x) + b(x)w′(x) + σ(x)w(x) = 0, w(0) = w(1) = 0.

Multiplikation mit w(x) und Integration über (0, 1) liefert∫ 1

0

(−εw′′ + bw′ + σw)w dx = 0.

Erster Term
Partielle Integration ergibt∫ 1

0

−εw′′(x)w(x) dx = ε

∫ 1

0

(w′(x))2 dx.

Zweiter Term
Aus der Produktregel folgt

w′(x)w(x) = 1
2
(w2(x))′,
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sodass ∫ 1

0

b(x)w′(x)w(x) dx = −1

2

∫ 1

0

b′(x)w2(x) dx.

Zusammenfassung
Daraus folgt

ε

∫ 1

0

(w′)2 dx− 1

2

∫ 1

0

b′(x)w2 dx+

∫ 1

0

σ(x)w2 dx = 0.

Die beiden letzten Integrale lassen sich zusammenfassen. Wir erhalten

ε

∫ 1

0

(w′)2 dx+

∫ 1

0

(
σ(x)− 1

2
b′(x)

)
w2(x) dx = 0.

Für die hier verwendeten Koeffizienten gilt

b′(x) = 1, σ(x) = 1,

sodass
σ − 1

2
b′ = 1

2
> 0.

Damit erhält man

ε

∫ 1

0

(w′)2 dx+
1

2

∫ 1

0

w2(x) dx = 0.

Beide Integrale sind nichtnegativ, sodass sie also beide verschwinden müssen. Daraus
folgt zunächst w′(x) ≡ 0, also ist w konstant; aufgrund der Randbedingungen w(0) =
w(1) = 0 ergibt sich schließlich w ≡ 0.

Somit ist die Lösung des Randwertproblems eindeutig.

4.2 Supremumsnorm

Die Supremumsnorm einer Funktion f : D → R ist definiert als

∥f∥∞ := sup
x∈D

|f(x)|,

vgl. [10, p. 7].

4.3 Ausblick: Konvektions-dominanter Fall

Wir betrachten in Zukunft den Fall ∥b∥L∞(Ω) ≫ ε, d. h. Konvektion dominiert gegenüber
Diffusion.
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Kapitel 5

Stabile und gleichmäßig konvergente
Verfahren

5.1 M-Matrizen

Definition 5.1.1 (Natürliche Ordnung von Vektoren und Matrizen) [4, p. 24]
Seien x, y ∈ Rn. Es gilt

x ≤ y :⇔ xi ≤ yi für alle i = 1, . . . , n.

Analog gilt x ≥ 1, falls xi ≥ 1 für alle i = 1, . . . , n.
Für eine Matrix A = (aij) ∈ Rn×n gilt

A ≥ 0 :⇔ aij ≥ 0 für alle i, j = 1, . . . , n.

Definition 5.1.2 (Invers-monotone Matrix) [4, p. 24]
Eine Matrix A heißt invers–monoton, falls A−1 existiert und

A−1 ≥ 0.

Lemma 5.1.3 (Diskretes Vergleichsprinzip) [4, p. 24]
Sei A ∈ Rn×n invers–monoton. Dann gilt für beliebige Vektoren v, w ∈ Rn:

Av ≤ Aw ⇒ v ≤ w.

Beweis.
Av ≤ Aw ⇒ A(v − w) ≤ 0

·A−1

⇒ v − w = A−1(A(v − w)) ≤ 0.

A ist invers-monoton. Daraus folgt
v ≤ w.

Definition 5.1.4 (M-Matrix) [10, p. 45]
Eine quadratische Matrix A = (Aij) wird M -Matrix genannt, falls

1. Aij ≤ 0 für alle i ̸= j und

2. A−1 existiert mit A−1 ≥ 0.
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Die zweite Bedingung für eine M -Matrix - dass A−1 existiert mit (A−1)ij ≥ 0 für alle i
und j - ist in der Praxis nicht leicht zu überprüfen. Man nutzt daher alternative Kriterien,
die leichter verifizierbar sind.

Definition 5.1.5 (Strikte Diagonaldominanz) [10, p. 45]
Eine quadratische Matrix A = (Aij) heißt strikt diagonaldominant, wenn für alle i gilt:

Aii >
∑
j ̸=i

|Aij|.

Lemma 5.1.6 [10, p. 45]
Sei A = (Aij) eine quadratische Matrix, für die gilt:

Aij ≤ 0 für alle i ̸= j.

Sei A zudem strikt diagonaldominant. Damit erfüllen alle Diagonaleinträge

Aii > 0.

Dann existiert A−1 und es gilt

(A−1)ij ≥ 0 für alle i, j.

Satz 5.1.7 (M-Matrix-Kriterium) [4, p. 24]
Sei A = (aij) ∈ Rn×n mit

aij ≤ 0 für i ̸= j.

Dann ist A genau dann eine M-Matrix, wenn ein Vektor

w ∈ Rn, w > 0,

existiert, so dass
Aw > 0.

In diesem Fall gilt für die Zeilensummennorm

∥A−1∥∞ ≤ ∥w∥∞,d

min
k

(Aw)k
. (5.1)

Der Vektor w wird majorisierendes Element genannt.

Bemerkung 5.1.8 (Zum M-Matrix-Kriterium) [1, p. 502-503]
Es sei eine Familie von Finite-Differenzen-Gittern über einem Gebiet Ω mit Gitterpara-
metern h > 0 gegeben, wobei h → 0 gelte. Angenommen, es existiere ein H > 0, so dass
das zugehörige Finite-Differenzen-Verfahren für alle h ≤ H zu einer M -Matrix A führt.
Für jedes h ≤ H sei wh ∈ Rn ein majorisierendes Element, d. h.

wh > 0 und Awh > 0.

Dann ist das Finite-Differenzen-Verfahren für alle h ≤ H stabil und es gilt

CS ≤ sup
h∈(0,H]

∥wh∥∞,h

min
j=1,...,n

(Awh)j
, (5.2)

sofern der Ausdruck auf der rechten Seite endlich ist.
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Beweis. Der Beweis folgt Barrenechea, John und Knobloch [1].

Lemma 5.1.9 (Stabilität des zentralen Differenzenschemas für hinreichend fei-
ne Gitter) [4, p. 25]
Für ε = 1 und hinreichend kleine Gitterweiten h ist das zentrale Differenzenschema 3.5 für
das Randwertproblem (3.2), (3.3) in der diskreten Maximumsnorm stabil. Die zugehörige
Koeffizientenmatrix ist eine M–Matrix.

Lemma 5.1.10 (Diskretes Maximumprinzip) [10, p. 46]
Sei A eine M -Matrix. Gilt für einen Vektor w ∈ Rn

Aw ≥ 0,

so folgt daraus
w ≥ 0.

Beweis. Da A eine M -Matrix ist, existiert A−1 und es gilt A−1 ≥ 0. Damit folgt

w = A−1(Aw) ≥ 0,

da sowohl A−1 ≥ 0 als auch Aw ≥ 0.

Lemma 5.1.11 (Diskrete Barrierefunktion) [10, p. 46]
Sei A eine M -Matrix. Wenn w, z Vektoren sind mit

|Aw| ≤ Az,

dann gilt
|w| ≤ z.

Beweis. Sei A eine M -Matrix und |Aw| ≤ Az,

⇒ −Az ≤ Aw ≤ Az.

Daraus ergeben sich folgende Gleichungen:

Az − Aw ≥ 0 und Az + Aw ≥ 0.

Wir nutzen Lemma 5.1.10:

• A(z − w) = Az − Aw ≥ 0
5.1.10
=⇒ z − w ≥ 0 ⇒ w ≤ z.

• A(z + w) = Az + Aw ≥ 0
5.1.10
=⇒ z + w ≥ 0 ⇒ −w ≤ z.

Aus beiden Ungleichungen folgt dann

|w| ≤ z.
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5.2 Upwind-Verfahren

Bemerkung 5.2.1 (Motivation) [10, p. 45-47]

Wir betrachten nun, ob die Matrix

A =



1 0 · · ·
g1 h1 j1 · · ·
0 g2 h2 j2 · · ·
0 0 g3

. . . . . .
...

... 0
. . .

gN−1 hN−1 jN−1

0 1


aus (3.7) das M-Matrix-Kriterium erfüllt, wobei

gi = −1− h

2
b(xi),

hi = 2 + h2σ(xi),

ji = −1 +
h

2
b(xi)

gilt. Dazu prüfen wir die Bedingung Aij ≤ 0 für alle i ̸= j.
Es müssen also die beiden Nebendiagonalen mit Einträgen ungleich 0 geprüft werden:

• Nebendiagonale gi = −1− h
2
b(xi) ≤ 0 für alle i, wenn h > 0 und b(xi) ≥ 0, was für

die Standard-Konvektions-Diffusionsgleichung oft gilt. → Die linke Nebendiagonale
erfüllt das M-Matrix-Kriterium.

• Nebendiagonale ji = −1 + h
2
b(xi) ≥ 0, falls h

2
b(xi) > 1. Die rechte Nebendiagonale

könnte also positiv sein → Problem für das M-Matrix-Kriterium.

Dieses positive Vorzeichen auf der rechten Nebendiagonale stammt aus der zentralen Dif-
ferenz

u′(x) ≈ u(x+ h)− u(x− h)

2h
.

Um dieses Problem zu lösen, führen wir das Upwind-Verfahren ein.

Bemerkung 5.2.2 [4, p. 26]
Wir betrachten ab jetzt Finite-Differenzen-Verfahren für das Randwertproblem

Lu := −εu′′ + b(x)u′ + σ(x)u = f(x) für x ∈ (0, 1), (5.3)

mit den Randbedingungen
u(0) = u(1) = 0, (5.4)

unter den Voraussetzungen
ε > 0,

b(x) ̸= 0 für alle x ∈ [0, 1],
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σ(x) ≥ 0 für alle x ∈ [0, 1],

wobei die Funktionen b(x), σ(x) und f(x) hinreichend glatt seien.
Gemäß [10, p. 47] wollen wir nun statt der zentralen Differenz die einseitige Differenz
nutzen:

u′(xi) ≈
ui − ui−1

h
⇒ Ai,i+1 = − ε

h2
≤ 0.

Damit bleiben alle Nebendiagonal-Einträge nichtpositiv, was mit demM -Matrix-Kriterium
verträglich ist.

Definition 5.2.3 (Einfaches Upwind-Verfahren) [4, p. 28]
Das einfache Upwind-Verfahren für das singulär gestörte Randwertproblem (5.3), (5.4)
besitzt die Form

−ε∂+∂−ui + bi∂
Nui + σiui = fi, i = 1, . . . , N − 1, (5.5)

mit Randbedingungen
u0 = uN = 0,

wobei

∂N :=

∂+, falls b < 0,

∂−, falls b > 0.

Lemma 5.2.4 [9, p. 48]
Die Koeffizientenmatrix Lh des einfachen Upwind-Schemas ist eine M -Matrix, und das
Schema ist gleichmäßig stabil in Bezug auf den Störparameter. Es gilt

∥uh∥∞,h ≤ CS∥Lhuh∥∞,h,

wobei die Stabilitätskonstante CS unabhängig von ε und h ist.

Beweis. Der Beweis folgt [9, p. 49].

Beispiel 5.2.5
Wir vergleichen nun die exakte Lösung mit der Lösung des zentralen Differenzenschemas
und der Lösung des Upwind-Verfahrens. Dazu betrachten wir wieder die Differentialglei-
chung

−ϵu′′(x) + u′(x) = 0 (5.6)

für x ∈ (0, 1), mit u(0) = 0, u(1) = 1 aus Beispiel 4.1.2 mit bekannter Lösung

u(x) =
e

1
ϵ
x − 1

e
1
ϵ − 1

.

Wir implementieren nun die exakte Lösung und die beiden Näherungslösungen in Python:
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Abbildung 5.1: Vergleich exakte Lösung – zentrales Differenzenverfahren – Upwind-
Verfahren
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Lemma 5.2.6 (Abschätzung der Norm der Lösung und ihrer Ableitungen) [9,
p. 21]
Seien b(x) ≥ β > 0 und b(x), σ(x), f(x) hinreichend glatt. Dann erfüllt die Lösung u(x)
des Problems (5.3), (5.4)∣∣u(i)(x)

∣∣ ≤ C

(
1 + ε−i exp

(
−β(1− x)

ε

))
, i = 1, 2, . . . , q,

für alle x ∈ [0, 1]. Die maximale Ordnung q hängt von der Glattheit der Daten ab.

Beweis. Der Beweis folgt [9, p. 21]

Satz 5.2.7 (Konsistenz des einfachen Upwind-Verfahrens) [4, p. 30]
Unter den Voraussetzungen von Bemerkung 5.2.2 mit b(x) > 0 und b(x) ≥ β > 0 existiert
eine positive Konstante β∗, sodass für den Fehler des einfachen Upwind-Verfahrens (5.5)
in den inneren Gitterpunkten {xi : i = 1, . . . , N − 1}

|u(xi)− ui| ≤


C h

(
1 + ε−1 exp

(
−β∗(1− xi)

ε

))
, falls h < ε,

Ch+ C exp

(
−β∗(1− xi+1)

ε

)
, falls h > ε,

gilt.

Korollar 5.2.8 (Konvergenz des einfachen Upwind-Verfahrens außerhalb von
Grenzschichten) [4, p. 31]
Unter den Voraussetzungen von Lemma 5.2.4 und Satz 5.2.7 konvergiert das einfache
Upwind-Verfahren auf dem Intervall [0, 1 − δ] für ein festes δ > 0 von erster Ordnung.
Dabei ist die Konvergenzkonstante unabhängig von ε.

Bemerkung 5.2.9 (Fehlerverhalten beim Upwind-Verfahren) [10, p. 53]
Das in Satz 5.2.7 beschriebene Verhalten des einfachen Upwind-Verfahrens kann in nu-
merischen Experimenten zu unerwarteten Ergebnissen führen.
Wird ein äquidistantes Gitter mit h ≫ ε verwendet, liegen alle Knotenpunkte xi ∈ (0, 1)
außerhalb der Grenzschicht, und die Näherung zeigt eine hohe Genauigkeit. Bei sukzes-
siver Verfeinerung des Gitters wandern zunehmend Punkte in die Grenzschicht, wo die
Näherung nur eine Genauigkeit von Ordnung O(1) hat. Der maximale Knotenfehler in
der diskreten Maximumsnorm kann sich also bei weiterer Gitterverfeinerung vergrößern.
Wir betrachten dieses Phänomen in einigen Beispielen genauer.

Beispiel 5.2.10 (Vergleich: Upwind- und Zentraldifferenzenverfahren)

Wir betrachten das Randwertproblem

−εu′′(x) + u′(x) = 0, x ∈ (0, 1), u(0) = 0, u(1) = 1,

aus Beispiel 4.1.2 mit der Lösung

u(x) =
ex/ε − 1

e1/ε − 1
.

Für kleine ε > 0 besitzt u eine starke Grenzschicht bei x = 1.
Wir diskretisieren das Problem auf einem äquidistanten Gitter mit N Teilintervallen (h =
1/N) mithilfe von
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(a) dem einfachen Upwind-Verfahren

−ε
ui+1 − 2ui + ui−1

h2
+

ui − ui−1

h
= 0,

(b) dem Zentraldifferenzenverfahren

−ε
ui+1 − 2ui + ui−1

h2
+

ui+1 − ui−1

2h
= 0,

unter den Randbedingungen u0 = 0, uN = 1.

Numerische Ergebnisse für ε = 10−3

Wir bestimmen den maximalen Fehler

E∞ = max
i

|u(xi)− ui|.

Die in den folgenden Tabellen angegebenen Werte für h und E∞ wurden (jeweils in der
Mantisse) auf zwei Dezimalstellen gerundet.

(a) Einfaches Upwind-Verfahren:

N h = 1/N E∞
20 5.00× 10−2 1.96× 10−2

40 2.50× 10−2 3.85× 10−2

80 1.25× 10−2 7.41× 10−2

160 6.25× 10−3 1.36× 10−1

320 3.13× 10−3 1.98× 10−1

640 1.56× 10−3 1.81× 10−1

(b) Zentraldifferenzenverfahren:

N h = 1/N E∞
20 5.00× 10−2 1.41× 100

40 2.50× 10−2 8.55× 10−1

80 1.25× 10−2 7.24× 10−1

160 6.25× 10−3 5.17× 10−1

320 3.13× 10−3 2.63× 10−1

640 1.56× 10−3 8.68× 10−2
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Abbildung 5.2: Fehlerverhalten: Upwind vs. Zentraldifferenzen (ε = 10−3).

Interpretation
Die Ergebnisse zeigen, dass das einfache Upwind-Verfahren numerisch stabil ist. Allerdings
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hat es auch bei feinem Gitter einen Fehler in der Größenordnung 10−1. Das Zentraldiffe-
renzenverfahren liefert deutlich größere Fehler.

Bemerkung 5.2.11 (Interpretation des Upwind-Verfahrens als künstliche Dif-
fusion) [4, p. 32-33]
Singulär gestörte Konvektions-Diffusions-Probleme sind numerisch schwierig zu lösen, da
die Diffusion ε sich oft um mehrere Größenordnungen von der Konvektion unterscheidet.
Das führt zu dünnen Grenzschichten. Das Verhalten des Upwind-Verfahrens lässt sich
dabei als Einführung einer künstlichen Diffusion verstehen.

Für b > 0 gilt:

bi∂
Nui = bi

ui − ui−1

h
= bi

ui+1 − ui−1

2h
− bi

ui+1 − 2ui + ui−1

2h
.

Damit kann das einfache Upwind-Verfahren (5.5) in der Form

−
(
ε+

bih

2

)
∂+∂−ui + bi∂

0ui + ciui = fi, i = 1, . . . , N − 1, (5.7)

mit den Randwerten u0 = uN = 0 geschrieben werden.

Wie in Roos, Stynes und Tobiska [9, p. 52] beschrieben, kann das einfache Upwind-
Verfahren als zentrales Differenzenverfahren interpretiert werden, bei dem der Diffusions-
koeffizient von ε zu

ε = ε+
bih

2

geändert wurde. Für ε > bih
2

ist die dominante Diffusion weiterhin O(ε), während für

ε < bih
2

die künstliche Diffusion O(bih) überwiegt.

Dieses Verhalten in (5.7) wird als künstliche Diffusion oder künstliche Viskosität bezeich-
net. Die Grundidee dieser Methode besteht darin, durch Hinzufügen eines künstlichen
Diffusionsterms die numerische Lösung zu stabilisieren.

Eine zu große künstliche Diffusion hat einen Nebeneffekt: die Grenzschichten der Lösung
werden

”
verschmiert“, d.h. sie erscheinen breiter als in der exakten Lösung, da die Schicht-

breite direkt vom Diffusionskoeffizienten abhängt
Wir definieren im Folgenden die künstliche Diffusion direkt.

Definition 5.2.12 (Verfahren mit künstlicher Diffusion) [9, p. 52]
Wir definieren ein Finite-Differenzen-Verfahren mit künstlicher Diffusion durch

−ε ρ(q(xi)) ∂
+∂−ui + bi∂

◦ui + σiui = fi, i = 1, . . . , N − 1, (5.8)

mit den Randbedingungen
u0 = uN = 0. (5.9)

Es gilt

q(x) :=
b(x)h

2ε
. (5.10)

Dabei wird ρ Fitting-Faktor genannt.

Dieses Verfahren wird auch angepasstes Upwind-Verfahren genannt.
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Bemerkung 5.2.13 [9, p. 52]
Für ρ(q) = 1+q erhält man das einfache Upwind-Verfahren. Wir wollen nun untersuchen,
welche Wahl von ρ gute Upwind-Verfahren liefert.

Satz 5.2.14 (Stabilität des angepassten Upwind-Verfahrens) [9, p. 52]
Seien

b(x) > β > 0, σ ≥ 0, und ρ(q) > q.

Dann gilt:

1. Die Koeffizientenmatrix des angepassten Upwind-Verfahrens 5.8, 5.9, 5.10 ist eine
M -Matrix.

2. Das Verfahren ist stabil in der diskreten Maximumsnorm.

3. Die Stabilitätskonstante hängt nicht von ε ab.

Satz 5.2.15 (Konsistenz des angepassten Upwind-Verfahrens) [4, p. 34]
Seien die Voraussetzungen von Satz 5.2.14 erfüllt, sei u ∈ C4([0, 1]) und es gelte

|ρ(q)− 1| ≤ min{q,Mq2}

für eine Konstante M > 0.
Dann ist der Konsistenzfehler des Verfahrens mit künstlicher Diffusion 5.8, 5.9, 5.10 für
festes ε von zweiter Ordnung.

Beweis. Der Beweis folgt John [4].

5.3 Gleichmäßig konvergente Verfahren

Bemerkung 5.3.1 (Motivation) [4, p. 36]
Wir wollen nun Verfahren entwickeln, die im gesamten Intervall [0, 1] gleichmäßig konver-
gieren, auch innerhalb der Grenzschicht.
Wir betrachten dazu die folgenden beiden Methoden:

• Verfahren durch eine geeignete Wahl der künstlichen Diffusion ρ(q) in (5.8),

• Verfahren durch die Wahl geeigneter Gitter.

Bei sehr kleiner Diffusion müssen numerische Verfahren trotzdem zuverlässig bleiben. Das
ist schwierig, weil sich beim Grenzübergang ε → 0 die Ordnung der Differentialgleichung
und damit die Anzahl der nötigen Randbedingungen ändern.

Definition 5.3.2 (Gleichmäßig konvergentes Differenzenschema) [4, p. 36]
Ein Verfahren zur Lösung von (5.3), (5.4) heißt gleichmäßig konvergent von der Ordnung
p > 0 bezüglich ε in der diskreten Maximumsnorm, wenn es eine Konstante C unabhängig
von ε gibt, sodass

∥u− uh∥∞,d ≤ Chp

gilt.
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5.3.1 Geeignete künstliche Diffusion

Bemerkung 5.3.3
Wir wollen nun eine geeignete künstliche Diffusion ρ(q) wählen. Dazu betrachten wir die
Lösung von (5.3), (5.4) für ε → 0. Wir nutzen das reduzierte Problem (vgl. Definiti-
on 2.1.6).

Lemma 5.3.4 (Konvergenz gegen reduzierte Lösung) [4, p. 36]
Sei u(x, ε) die Lösung von (5.3), (5.4), wobei b(x) ≥ β > 0 und σ(x) ≥ 0 gelte. Sei u0(x)
die Lösung des reduzierten Problems.
Dann gilt für alle x ∈ [0, x0) mit x0 < 1:

lim
ε→0

u(x, ε) = u0(x).

Beweis. Der Beweis folgt John [4].

Lemma 5.3.5 [4, p. 37]
Unter den Voraussetzungen von Lemma 5.3.4 existiert eine von x und ε unabhängige
Konstante C > 0, so dass für die Lösung von (5.3), (5.4) gilt:∣∣∣∣u(x, ε)− (u0(x)− u0(1) exp

(
−b(1)(1− x)

ε

))∣∣∣∣ ≤ C ε, x ∈ [0, 1].

Bemerkung 5.3.6 (Notwendige Bedingung für eine geeignete künstliche Diffu-
sion ρ(q)) [4, p. 37]
Seien ρ∗ := h/ε und i fest. Das bedeutet, dass für h → 0 auch ε → 0 gilt. Ziel ist es, unter
diesen Bedingungen eine geeignete Funktion ρ(q) zu bestimmen.
Aus Lemma 5.3.5 folgt für ε → 0 (wenn h → 0):

lim
h→0

u(1− ih) = lim
h→0

[
u0(1− ih)− u0(1− ih) exp

(
−b(1)(1− (1− ih))

ε

)]

= u0(1)− u0(1) lim
h→0

exp
(
−b(1)ih

ε

)
= u0(1)

(
1− exp(−ib(1)ρ∗)

)
= u0(1)

(
1− exp(−2iq(1))

)
. (5.11)

Das angepasste Upwind-Verfahren hat die Form

−ερ(q(bi))
ui+1 − 2ui + ui−1

h2
+ bi

ui+1 − ui−1

2h
= fi − σiui,

oder nach Erweiterung mit h2/ε:

−ρ(q(bi))(ui+1 − 2ui + ui−1) + q(bi)(ui+1 − ui−1) = hρ∗(fi − σiui).

Für den rechten Rand (i = N − 1) gilt:

lim
h→0

(
− ρ(qN−1)(uN − 2uN−1 + uN−2) + qN−1(uN − uN−2)

)
= 0.

Einsetzen von (5.11) (mit i ∈ {0, 1, 2}) und der Annahme u0(1) ̸= 0) ergibt:

0 = −ρ(q(1))
(
− e0 + 2e−2q(1) − e−4q(1)

)
+ q(1)

(
− e0 + e−4q(1)

)
.
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Aus

−1 + e−4x

−1 + 2e−2x − e−4x
=

(e−2x − 1)(e−2x + 1)

−(e−2x − 1)2
=

1 + e−2x

1− e−2x
=

ex + e−x

ex − e−x
= coth(x)

folgt

ρ(q(1)) = q(1)
1− e−4q(1)

1− 2e−2q(1) + e−4q(1)
= q(1) coth(q(1)).

Eine passende Wahl, die diesen Grenzwert erfüllt, ist daher

ρ(q) = q coth(q).

Diese Funktion erfüllt auch die Bedingungen für die Konsistenz von Verfahren mit künstlicher
Diffusion gemäß Satz 5.2.15.

Für kleine Werte von q gilt ρ(q) ≈ 1, sodass in diesem Bereich keine zusätzliche Diffusion
eingebracht wird. Für große Werte von q gilt näherungsweise ρ(q) ≈ q. Dadurch wird
der Diffusionsterm im Differenzenschema verstärkt.Auf diese Weise wird die künstliche
Diffusion nur dort eingesetzt, wo sie für die numerische Stabilität erforderlich ist.
Die folgende Abbildung zeigt das Verhalten der künstlichen Diffusion ρ(q) = q coth(q) im
Vergleich zum Upwind-Verfahren mit ρ(q) = 1 + q.

Abbildung 5.3: Künstliche Diffusion

Theorem 5.3.7 (Zwei notwendige Bedingungen für gleichmäßige Konvergenz
auf einem äquidistanten Gitter) [10, p. 56]
Angenommen, wir haben ein äquidistantes Gitter mit Schrittweite h = 1/N für eine
positive ganze Zahl N . Wir nehmen an, dass ein Differenzenschema für das Problem

−εu′′ + au = f, u(0) = g0, u(1) = g1, mit positiver Konstante a,

in folgender Form geschrieben werden kann:

θ−ui−1 + θ0ui + θ+ui+1 = hfi, i = 1, . . . , N − 1, (5.12a)

u0 = g0, uN = g1. (5.12b)
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Dabei hängt jedes θ = θ(h, ε) nur vom Verhältnis h/ε ab. Falls das Schema für ein β > 0
gleichmäßig konvergent ist, so gilt:

θ− + θ0 + θ+ = 0 und e−ah/εθ− + θ0 + eah/εθ+ = 0. (5.13)

Beweis. Der Beweis folgt Stynes und Stynes [10, p. 56-57].

Beispiel 5.3.8 (Das Il’in–Allen–Southwell-Differenzschema) [4, p. 38]
Das Verfahren

−h

2
bi coth

(
µh

2ε
bi

)
)∂+∂−ui + bi∂

◦ui + σiui = fi, i = 1, . . . , N − 1,

mit Randbedingungen
u0 = uN = 0

wird Il’in-Verfahren bzw. Il’in-Allen-Southwell-Verfahren genannt.

Theorem 5.3.9 (Uniforme Konvergenz des Il’in-Allen-Southwell-Schemas) [9,
p. 60]
Sei b(x) > β > 0. Dann ist das Il’in-Allen-Southwell-Schema gleichmäßig konvergent von
erster Ordnung in der diskreten Maximums-Norm:

∥u− uh∥∞,d ≤ Ch.

Beweis. Der Beweis folgt Theorem 11.34 aus [1, p. 535].

Bemerkung 5.3.10 [9, p. 61]
Falls σ(x) ≡ 0 und b(x) sowie f(x) konstant sind, ist das Il’in-Allen-Southwell-Schema
exakt, d.h. ui = u(xi) für alle i.

Bemerkung 5.3.11 [9, p. 60]
Eine Untersuchung des Verhaltens des Il’in-Allen-Southwell-Schemas bei Anwendung auf
das Beispiel

−εu′′ + u′ = x, u(0) = u(1) = 0,

zeigt, dass außerhalb der Randschicht die Ordnung der gleichmäßigen Konvergenz nur
eins ist.

Beispiel 5.3.12 (Vergleich von Upwind-, Zentral- und Il’in-Allen-Southwell-Verfahren)

Dieses Beispiel wird in Anlehnung an [4, p. 39] betrachtet. Gegeben ist das Randwertpro-
blem

−εu′′(x) + u′(x) = 1 auf (0, 1), u(0) = u(1) = 0,

mit ε = 10−3. Wir betrachten nun wieder den Fehler

E∞ = max
i

|u(xi)− ui|.
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N h = 1/N Einf. Upwind Zentral IAS

2 0.50000 0.00199 124.50000 0.0

4 0.25000 0.00398 31.00400 0.0

8 0.12500 0.00794 7.71502 0.0

16 0.06250 0.01575 2.02352 0.0

20 0.05000 0.01961 1.40904 1.11× 10−16

40 0.02500 0.03846 0.85489 4.11× 10−15

80 0.01250 0.07407 0.72414 1.11× 10−16

160 0.00625 0.13600 0.51708 2.22× 10−16

320 0.00313 0.19849 0.26345 2.89× 10−15

640 0.00156 0.18063 0.08680 5.20× 10−14

Abbildung 5.4: Fehler E∞ für ε = 10−3.

Man kann erkennen, dass das Il’in–Allen–Southwell-Verfahren die geringsten Fehler auf-
weist und für große Schrittweiten exakte Ergebnisse in den Knoten liefert.

5.3.2 Shishkin-Gitter

Bemerkung 5.3.13 [10, p. 60]
Zur numerischen Lösung von Konvektions–Diffusionsproblemen kann anstelle eines äquidistanten
Gitters ein Gitter verwendet werden, das die Gitterpunkte in der Grenzschicht bei x = 1
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verdichtet. Wir betrachten das Problem (2.1) und setzen

τ = min

{
1
2
,
2

α
ε lnN

}
.

Da der Fall τ = 1
2
nur auftritt, wenn N im Verhältnis zu ε exponentiell groß ist und daher

in der Praxis kaum vorkommt, setzt man gewöhnlich

τ =
2

α
ε lnN.

Der Übergangspunkt des Shishkin-Gitters, welcher den groben vom feinen Gitterbereich
trennt, ist somit 1 − τ und liegt typischerweise nahe bei 1. Für eine gerade Zahl N
unterteilt man sowohl das Intervall [0, 1− τ ] als auch das Intervall [1− τ, 1] jeweils in N/2
äquidistante Teilintervalle.
Der grobe Teil des Shishkin-Gitters hat Schrittweite

H :=
2(1− τ)

N
,

woraus aufgrund 0 ≤ τ ≤ 1
2
folgt, dass

N−1 ≤ H ≤ 2N−1.

Im feinen Teil ist die Schrittweite

h :=
2τ

N
=

4

α
ε
lnN

N
,

so dass h ≪ ε gilt. Die Gitterpunkte sind damit

xi = iH, i = 0, . . . , N
2

für den groben Bereich, sowie

xi = 1− (N − i)h, i = N
2
+ 1, . . . , N

für den feinen Bereich. Wir setzen für alle i

hi = xi − xi−1.

Satz 5.3.14 (Shishkin-Zerlegung von u) [10, p. 40]
Sei q eine positive ganze Zahl und sei u die Lösung von (2.1). Wir nehmen an, dass die
Funktionen σ, b und f hinreichend glatt sind. Dann existiert eine Zerlegung

u = S + E,

sodass

∥S(j)∥∞ ≤ C, (5.14)

|E(j)(x)| ≤ C ε−je−α(1−x)/ε, 0 ≤ x ≤ 1, (5.15)

für 0 ≤ j ≤ q, wobei die Konstante C = C(q) ist und α > 0 eine von ε unabhängige
Konstante darstellt. Zusätzlich gilt

LS(x) = f(x) und LE(x) = 0 für 0 ≤ x ≤ 1.
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Beweis. Der Beweis folgt Stynes und Stynes [10].

Bemerkung 5.3.15 (Upwind-Verfahren auf dem Shishkin-Gitter) [10, p. 61]

Wir analysieren nun das einfache Upwind-Verfahren auf einem Shishkin-Gitter.
Für jede Gitterfunktion vh = (v0, . . . , vN)

⊤ definieren wir:

∂−vi =
vi − vi−1

hi

, δ2vi =
2

hi + hi+1

(
∂−vi+1 − ∂−vi

)
.

Das ist eine Standard-Diskretisierung von v′′i (xi) auf einem nicht-äquidistanten Gitter.
Unser einfaches Upwind-Differenzenschema lautet:

−ε δ2ui + ai∂
−ui + biui = fi, i = 1, . . . , N − 1, (5.16)

u0 = uN = 0. (5.17)

Die zugehörige Matrix LN ist eine M-Matrix.
Wir zerlegen die exakte Lösung u nach Satz 5.3.14:

u = S + E.

Analog zerlegen wir die diskrete Lösung ui in

ui = Si + Ei,

wobei

LNSi = (LS)i, i = 1, . . . , N − 1, S0 = S(0), SN = S(1), (5.18)

LNEi = (LE)i = 0, i = 1, . . . , N − 1, E0 = E(0), EN = E(1). (5.19)

Der Gesamtfehler lässt sich aufteilen:

|u(xi)− ui| = |(S + E)(xi)− (Si + Ei)| ≤ |S(xi)− Si|+ |E(xi)− Ei|.

Lemma 5.3.16 [10, p. 61]
Es existiert eine Konstante C0 so, dass

|S(xi)− Si| ≤ C0N
−1 für i = 0, . . . , N.

Beweis. Der Beweis folgt Stynes und Stynes [10].

Lemma 5.3.17 [10, p. 63]
Es existiert eine Konstante C derart, dass

|Ei| ≤ C N−1 für i = 0, . . . ,
N

2
.

Beweis. Der Beweis folgt Stynes und Stynes [10].

Korollar 5.3.18 [10, p. 63]
Es existiert eine Konstante C so, dass

|E(xi)− Ei| ≤ C N−1 für i = 0, . . . ,
N

2
.
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Beweis. Der Beweis folgt Stynes und Stynes [10].

Lemma 5.3.19 [10, p. 64]
Es existiert eine Konstante C so, dass

|E(xi)− Ei| ≤ C N−1 lnN für i =
N

2
+ 1, . . . , N.

Beweis. Der Beweis folgt Stynes und Stynes [10].

Theorem 5.3.20 (Gleichmäßige Konvergenz des einfachen Upwind-Verfahrens
auf einem Shishkin-Gitter) [10, p. 64]
Es existiert eine Konstante C, so dass für die Lösung des einfachen Upwind-Verfahrens
auf einem Shishkin-Gitter gilt:

∥u(xi)− ui∥∞,d ≤ C N−1 lnN für i = 0, . . . , N.

Beweis. Der Beweis folgt Stynes und Stynes [10].

Bemerkung 5.3.21 [10, p. 65]
Die genaue Wahl des Übergangspunktes 1−τ im Shishkin-Gitter ist aus theoretischer und
aus numerischer Sicht von Bedeutung. Eine Betrachtung des Beweises von Theorem 5.3.20
zeigt, dass τ die Form

τ =
k

α
ε ϕ(N)

haben sollte, wobei ϕ(N) → ∞ und N−1ϕ(N) → 0 für N → ∞ gilt, und k eine Konstante
ist. Die einfachste Wahl für ϕ(N) ist lnN .

Bemerkung 5.3.22 [10, p. 65]
Für das Zentrale-Differenzen-Verfahren auf einem Shishkin-Gitter genügt die berechnete
Lösung ui der Abschätzung

|u(xi)− ui| ≤ CN−2(lnN)2 für alle i.

Der Beweis erfordert Geschicklichkeit, da die zugehörige Matrix keine M-Matrix ist und
das Verfahren kein diskretes Maximumprinzip erfüllt.

Beispiel 5.3.23 (Numerisches Beispiel zum einfachen Upwind-Verfahren auf
einem Shishkin-Gitter)
Wir betrachten das Randwertproblem

−εu′′(x) + u′(x) = 0, x ∈ (0, 1), (5.20)

mit den Randbedingungen
u(0) = 0, u(1) = 1. (5.21)

Für ε = 10−2 ist die exakte Lösung gegeben durch

u(x) =
ex/ε − 1

e1/ε − 1
, (5.22)

und besitzt bei x = 1 eine Grenzschicht.

Zur numerischen Lösung von (5.20)–(5.21) nutzen wir das einfache Upwind-Verfahren.
Dabei werden zwei unterschiedliche Gitter betrachtet:
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• ein äquidistantes Gitter mit Schrittweite h = 1/N ,

• ein Shishkin-Gitter mit

τ = min

{
1

2
, 2ε lnN

}
und Übergangspunkt

x = 1− τ.

Die zugehörigen Schrittweiten sind

H =
2(1− τ)

N
und h =

2τ

N
.

Der Fehler
E∞ = max

i
|u(xi)− ui|. (5.23)

wird in der diskreten Maximmumsnorm für verschiedene Werte von N berechnet.

Zusätzlich wird die numerische Lösung in einem vergrößerten Ausschnitt nahe der Grenz-
schicht bei x = 1 dargestellt.

N τ E∞ (uniform) E∞ (Shishkin)

8 4.16 · 10−2 7.41 · 10−2 1.61 · 10−1

16 5.55 · 10−2 1.36 · 10−1 1.06 · 10−1

32 6.93 · 10−2 1.98 · 10−1 6.84 · 10−2

64 8.32 · 10−2 1.81 · 10−1 4.35 · 10−2

128 9.70 · 10−2 1.06 · 10−1 2.63 · 10−2

256 1.11 · 10−1 6.21 · 10−2 1.54 · 10−2

512 1.25 · 10−1 3.32 · 10−2 8.79 · 10−3

1024 1.39 · 10−1 1.73 · 10−2 4.93 · 10−3

Tabelle 5.1: Maximaler Fehler E∞ für das Upwind-Verfahren auf äquidistantem und
Shishkin-Gitter (ε = 10−2).

Abbildung 5.5: Zoom der Lösung in die Grenzschicht bei x = 1 für ε = 10−2 und N = 256.
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Abbildung 5.6: Zoom der Lösung in die Grenzschicht bei x = 1 für ε = 10−2 und N = 256.

Man kann erkennen, dass der maximale Fehler E∞ auf dem Shishkin-Gitter für wachsendes
N deutlich geringer ist als auf dem äquidistanten Gitter.
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Kapitel 6

Ausblick

Die Ergebnisse in dieser Arbeit zeigen die Schwierigkeiten der numerischen Lösung von
konvektionsdominanten Randwertproblemen auf. Für kleine Diffusionsparameter ε treten
ausgeprägte Grenzschichten auf, in denen sich die Lösung auf sehr kurzen Intervallen stark
ändert, während sie außerhalb dieser Bereiche glatt verläuft. Dadurch erhalten wir mit
Zentralen-Differenzen-Verfahren auf äquidistanten Gittern häufig keine zufriedenstellen-
den Resultate.
Das Upwind-Verfahren, das eine zugehörige M -Matrix besitzt, erweist sich als stabil, lie-
fert aber zu ungenaue Werte, da es eine Konsistenzordnung von 1 hat. Die Grenzschichten
werden verschmiert.
Weitere Untersuchungen haben gezeigt, dass durch künstliche Diffusion (hier durch das
Il’in-Allen-Southwell-Schema) sehr genaue Werte erzielt werden können.
Shishkin-Gitter bieten hierfür eine andere Möglichkeit und erlauben es, eine gleichmäßige
Konvergenz zu erhalten.
Als Weiterführung bieten sich Untersuchungen zu Verfahren höherer Ordnung an. Hier
kann man betrachten, inwiefern sich die hier vorgestellten Konzepte auf höherdimensionale
Probleme übertragen lassen.
Darüber hinaus stellt die Finite-Elemente-Methode (FEM) einen weiteren Ansatz zur
Lösung konvektionsdominanter Randwertprobleme dar. Durch geeignete Verfahren können
numerische Oszillationen reduziert und Grenzschichten zuverlässiger abgebildet werden.
Insgesamt verdeutlicht diese Arbeit, dass eine Kombination des analytischen Verhaltens
der Lösung, stabiler Diskretisierung und geeigneter Gitter- und Diffusionswahl wesentlich
für eine zuverlässige numerische Lösung konvektionsdominanter Probleme ist.
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Anhang A

Quellcode (Python)

Python-Code zur Erzeugung von Abbildungen 2.1 und

2.2

1 import numpy as np

2 import matplotlib.pyplot as plt

3 plt.rcParams['font.size'] = 18

4 plt.rcParams['axes.titlesize'] = 18

5 plt.rcParams['axes.labelsize'] = 18

6 plt.rcParams['xtick.labelsize'] = 16

7 plt.rcParams['ytick.labelsize'] = 16

8 plt.rcParams['legend.fontsize'] = 16

9

10 def u_exact(x, eps): return x - (np.exp(-(1-x)/eps) - np.exp(-1/eps)) / (1 -

np.exp(-1/eps))↪→

11

12 def u_asym(x, eps): return x - np.exp(-(1-x)/eps)

13

14 x = np.linspace(0, 1, 1200)

15 eps_list = [0.2, 0.1, 0.05]

16 plt.figure(figsize=(9, 5.5))

17 for eps in eps_list:

18 plt.plot(x, u_exact(x, eps), label=f"exakt, ={eps:g}")

19 plt.plot(x, u_asym(x, eps), linestyle="--", label=f"asympt., ={eps:g}")

20

21 plt.xlabel("x")

22 plt.ylabel("u(x)")

23 plt.title("Exakte vs. asymptotische Lösung")

24 plt.legend()

25 plt.tight_layout()

26 plt.show()

27

28 plt.figure(figsize=(9, 5.5))

29 for eps in eps_list:

30 error = np.abs(u_exact(x, eps) - u_asym(x, eps))

31 plt.semilogy(x, error, label=f"={eps:g}")

32 plt.xlabel("x")

33 plt.ylabel(r"$|u_{\mathrm{exakt}} - u_{\mathrm{as}}|$")
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34 plt.title("Fehler der asymptotischen Lösung")

35 plt.legend()

36 plt.tight_layout()

37 plt.show()

Python-Code zur Erzeugung von Abbildungen 3.2, 3.3,

3.4 und Tabelle 3.1

1 import numpy as np

2 from scipy.linalg import solve

3 import matplotlib.pyplot as plt

4

5 plt.rcParams.update({

6 "font.size": 14,

7 "axes.labelsize": 14,

8 "xtick.labelsize": 12,

9 "ytick.labelsize": 12,

10 "legend.fontsize": 12,

11 "figure.figsize": (7, 4),

12 "savefig.dpi": 300

13 })

14

15 def b_func(x):

16 return 0.0

17

18 def sigma_func(x):

19 return 0.0

20

21 def f_func(x):

22 #-u'' = f

23 return np.pi**2 * np.sin(np.pi * x)

24

25 def u_exact(x):

26 return np.sin(np.pi * x)

27

28 N_values = [4, 8, 16]

29

30 for N in N_values:

31 h = 1.0 / N

32 x = np.linspace(0.0, 1.0, N+1) #Gitterpunkte

33

34

35 A = np.zeros((N+1, N+1))

36 rhs = np.zeros(N+1)

37

38 #Randbedingungen

39 A[0, 0] = 1.0

40 A[N, N] = 1.0

41 rhs[0] = 0.0

42 rhs[N] = 0.0
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43

44 for i in range(1, N):

45 bi = b_func(x[i])

46 sigma_i = sigma_func(x[i])

47

48 g_i = -1.0 - 0.5 * h * bi

49 h_i = 2.0 + (h**2) * sigma_i

50 j_i = -1.0 + 0.5 * h * bi

51

52 A[i, i-1] = g_i

53 A[i, i] = h_i

54 A[i, i+1] = j_i

55

56 rhs[i] = (h**2) * f_func(x[i])

57

58 U = solve(A, rhs)

59 U_exact = u_exact(x)

60

61 error = U - U_exact

62 error_L2 = np.sqrt(np.sum(error**2) * h) #L2-Norm

63 error_max = np.max(np.abs(error)) #Diskrete Maximumsnorm

64

65 print(f"N={N}, L2-Fehler={error_L2:.3e}, Max-Fehler={error_max:.3e}")

66

67 plt.figure()

68 plt.plot(x, U, 'o-', label='Numerisch', markersize=6)

69 plt.plot(x, U_exact, '--', label='Exakt')

70

71 plt.xlabel(r"$x$")

72 plt.ylabel(r"$u(x)$")

73 plt.title(f"Numerische vs. exakte Lösung, N={N}")

74 plt.legend()

75 plt.grid(True)

76

77 plt.savefig(f"FDM_N_{N}.png", bbox_inches='tight')

78 plt.show()

79

Python-Code zur Erzeugung von Abbildungen 4.1 und

4.2

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib as mpl

4

5 mpl.rcParams.update({

6 "figure.figsize": (6, 4),

7 "figure.dpi": 300,

8 "font.size": 11,

9 "axes.titlesize": 11,

52



10 "axes.labelsize": 11,

11 "xtick.labelsize": 10,

12 "ytick.labelsize": 10,

13 "legend.fontsize": 10,

14 "lines.linewidth": 1.2,

15 "axes.linewidth": 0.8,

16 "grid.alpha": 0.25,

17 "grid.linestyle": ":",

18 })

19

20 x = np.linspace(0, 1, 600)

21 epsilon = [1, 0.1, 0.01]

22 linestyles = ["-", "--", "-."]

23 color = "black"

24

25 fig1, ax1 = plt.subplots()

26

27 for eps, ls in zip(epsilon, linestyles):

28 u = (np.exp(x/eps) - 1) / (np.exp(1/eps) - 1)

29 ax1.plot(x, u, linestyle=ls, color=color, label=fr"$\varepsilon = {eps}$")

30

31 ax1.set_title(r"Lösung $u(x)$ für verschiedene $\varepsilon$")

32 ax1.set_xlabel(r"$x$")

33 ax1.set_ylabel(r"$u(x)$")

34

35 ax1.yaxis.grid(True)

36 ax1.xaxis.grid(False)

37 ax1.legend(loc="best", frameon=False)

38

39 fig1.tight_layout()

40 fig1.savefig(save_path + r"\loesung_gesamt.pdf", bbox_inches="tight")

41 plt.close(fig1)

42

43 fig2, ax2 = plt.subplots()

44

45 for eps, ls in zip(epsilon, linestyles):

46 u = (np.exp(x/eps) - 1) / (np.exp(1/eps) - 1)

47 ax2.plot(x, u, linestyle=ls, color=color, label=fr"$\varepsilon = {eps}$")

48

49

50 ax2.set_xlim(0.9, 1.0)

51 ax2.set_ylim(0, 1.05)

52

53 ax2.set_title(r"Grenzschicht bei $x = 1$")

54 ax2.set_xlabel(r"$x$")

55 ax2.set_ylabel(r"$u(x)$")

56

57 ax2.yaxis.grid(True)

58 ax2.xaxis.grid(False)

59 ax2.legend(loc="best", frameon=False)

60
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61 fig2.tight_layout()

62 fig2.savefig(save_path + r"\grenzschicht_rechts.pdf", bbox_inches="tight")

63 plt.close(fig2)

Python-Code zur Erzeugung von Abbildung 5.1

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def exact_solution(x, eps, b):

5 with np.errstate(over='ignore', invalid='ignore'):

6 num = np.exp(b * x / eps) - 1.0

7 den = np.exp(b / eps) - 1.0

8 return num / den

9

10 def build_central_matrix(eps, b, h, M):

11 A = np.zeros((M, M), dtype=float)

12 for i in range(M):

13 A[i,i] = 2*eps / h**2

14 if i > 0:

15 A[i,i-1] = -eps / h**2 - b / (2*h)

16 if i < M-1:

17 A[i,i+1] = -eps / h**2 + b / (2*h)

18 return A

19

20 def build_upwind_matrix(eps, b, h, M):

21 A = np.zeros((M, M), dtype=float)

22 for i in range(M):

23 A[i,i] = (2*eps + b*h) / h**2

24 if i > 0:

25 A[i,i-1] = -(eps + b*h) / h**2

26 if i < M-1:

27 A[i,i+1] = -eps / h**2

28 return A

29

30 def solve_fd(eps=0.01, b=1.0, N=200):

31 h = 1.0 / N

32 x = np.linspace(0.0, 1.0, N+1)

33 M = N - 1

34

35 u_exact = exact_solution(x, eps, b)

36

37 #Zentrale Differenzen

38 A_c = build_central_matrix(eps, b, h, M)

39 rhs_c = np.zeros(M)

40 coeff_uN_c = -eps / h**2 + b / (2*h)

41 rhs_c[-1] = -coeff_uN_c * 1.0

42 u_interior_c = np.linalg.solve(A_c, rhs_c)

43 u_c = np.zeros(N+1)

44 u_c[0] = 0.0
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45 u_c[1:N] = u_interior_c

46 u_c[N] = 1.0

47

48 #Upwind

49 A_u = build_upwind_matrix(eps, b, h, M)

50 rhs_u = np.zeros(M)

51 coeff_uN_u = -eps / h**2

52 rhs_u[-1] = -coeff_uN_u * 1.0

53 u_interior_u = np.linalg.solve(A_u, rhs_u)

54 u_u = np.zeros(N+1)

55 u_u[0] = 0.0

56 u_u[1:N] = u_interior_u

57 u_u[N] = 1.0

58

59 return x, u_exact, u_c, u_u, A_c, A_u

60

61 def error_norms(u, u_ex):

62 e = np.abs(u - u_ex)

63 return np.max(e), np.sqrt(np.mean(e**2))

64

65 if __name__ == "__main__":

66 eps = 1e-2

67 b = 1.0

68 N = 400

69

70 x, u_ex, u_c, u_u, A_c, A_u = solve_fd(eps=eps, b=b, N=N)

71 err_c = error_norms(u_c, u_ex)

72 err_u = error_norms(u_u, u_ex)

73

74 cond_c = np.linalg.cond(A_c)

75 cond_u = np.linalg.cond(A_u)

76

77 print(f"Zentrale FD: $\\infty$-Fehler = {err_c[0]:.3e}, L2-Fehler =

{err_c[1]:.3e}, Kond(A)={cond_c:.3e}")↪→

78 print(f"Upwind-Verf.: $\\infty$-Fehler = {err_u[0]:.3e}, L2-Fehler =

{err_u[1]:.3e}, Kond(A)={cond_u:.3e}")↪→

79

80 #Plot

81 fig, ax = plt.subplots(figsize=(10,5))

82 ax.plot(x, u_ex, '-', lw=2.0, label='Exakte Lösung')

83 ax.plot(x, u_c, '--', lw=1.2, label='Zentrale FD')

84 ax.plot(x, u_u, '-.', lw=1.2, label='Upwind')

85 ax.set_xlabel('x')

86 ax.set_ylabel('u(x)')

87 ax.set_title(f'Vergleich ($\\epsilon$={eps}, b={b}, N={N})')

88 ax.grid(alpha=0.4, ls='--')

89 ax.legend(loc='upper left')

90

91 #Zoom:

92 left, right = 0.92, 1.0

93 ix = np.where((x >= left) & (x <= right))[0]
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94 from mpl_toolkits.axes_grid1.inset_locator import inset_axes

95 axins = inset_axes(ax, width="40%", height="60%", loc='lower right',

borderpad=1.0)↪→

96 axins.plot(x[ix], u_ex[ix], '-', lw=2.0)

97 axins.plot(x[ix], u_c[ix], '--', lw=1.2)

98 axins.plot(x[ix], u_u[ix], '-.', lw=1.2)

99 axins.set_xlim(left, right)

100 axins.set_title('Zoom: Grenzschicht', fontsize=9)

101 axins.grid(alpha=0.4, ls='--')

102

103 plt.tight_layout()

104 plt.show()

Python-Code zur Erzeugung von Abbildung 5.1

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.rcParams.update({

5 "font.size": 14,

6 "axes.labelsize": 16,

7 "axes.titlesize": 18,

8 "legend.fontsize": 14,

9 "xtick.labelsize": 14,

10 "ytick.labelsize": 14

11 })

12

13

14 def exact_solution(x, eps):

15 #stabile Form von u(x) = (exp(x/eps)-1)/(exp(1/eps)-1)

16 alpha = np.exp(-1.0 / eps)

17 return (np.exp((x - 1.0) / eps) - alpha) / (1.0 - alpha)

18

19 def solve_upwind(N, eps):

20 h = 1.0 / N

21 n = N - 1

22

23 A = np.zeros((n, n), dtype=float)

24 b = np.zeros(n, dtype=float)

25

26 low = (-eps / h**2) - (1.0 / h)

27 mid = (2.0 * eps / h**2) + (1.0 / h)

28 up = (-eps / h**2)

29

30 #Matrix füllen

31 for i in range(n):

32 A[i, i] = mid

33 if i - 1 >= 0:

34 A[i, i-1] = low
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35 if i + 1 < n:

36 A[i, i+1] = up

37

38 u0, uN = 0.0, 1.0

39 b[0] -= low * u0

40 b[-1] -= up * uN

41

42 u_inner = np.linalg.solve(A, b)

43

44 u = np.zeros(N + 1)

45 u[0] = u0

46 u[1:N] = u_inner

47 u[N] = uN

48 return u

49

50 def solve_central(N, eps):

51 h = 1.0 / N

52 n = N - 1

53

54 A = np.zeros((n, n), dtype=float)

55 b = np.zeros(n, dtype=float)

56

57 low = (-eps / h**2) - (1.0 / (2.0 * h))

58 mid = (2.0 * eps / h**2)

59 up = (-eps / h**2) + (1.0 / (2.0 * h))

60

61 for i in range(n):

62 A[i, i] = mid

63 if i - 1 >= 0:

64 A[i, i-1] = low

65 if i + 1 < n:

66 A[i, i+1] = up

67

68 u0, uN = 0.0, 1.0

69 b[0] -= low * u0

70 b[-1] -= up * uN

71

72 u_inner = np.linalg.solve(A, b)

73

74 u = np.zeros(N + 1)

75 u[0] = u0

76 u[1:N] = u_inner

77 u[N] = uN

78 return u

79

80 def einfty_error(u_num, x, eps):

81 u_ex = exact_solution(x, eps)

82 return np.max(np.abs(u_ex - u_num))

83

84 def main():

85 eps = 1e-3
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86 Ns = [20, 40, 80, 160, 320, 640]

87

88 hs, err_up, err_ce = [], [], []

89 rows = []

90

91 for N in Ns:

92 h = 1.0 / N

93 x = np.linspace(0.0, 1.0, N + 1)

94

95 u_up = solve_upwind(N, eps)

96 u_ce = solve_central(N, eps)

97

98 e_up = einfty_error(u_up, x, eps)

99 e_ce = einfty_error(u_ce, x, eps)

100

101 hs.append(h)

102 err_up.append(e_up)

103 err_ce.append(e_ce)

104 rows.append((N, h, e_up, e_ce))

105

106 print("\nFehlervergleich (epsilon = 1e-3)")

107 header = f"{'N':>6} {'h=1/N':>12} {'E_inf Upwind':>16} {'E_inf

Zentral':>16}"↪→

108 print(header)

109 print("-" * len(header))

110 for N, h, e_up, e_ce in rows:

111 print(f"{N:6d} {h:12.5e} {e_up:16.5e} {e_ce:16.5e}")

112

113 #Plot

114 hs = np.array(hs, dtype=float)

115 err_up = np.array(err_up, dtype=float)

116 err_ce = np.array(err_ce, dtype=float)

117

118 plt.figure()

119 plt.loglog(hs, err_up, marker="o", linewidth=1.5, label="Upwind:

$E_\\infty$")↪→

120 plt.loglog(hs, err_ce, marker="s", linewidth=1.5, label="Zentral:

$E_\\infty$")↪→

121

122 plt.gca().invert_xaxis()

123 plt.xticks(hs, [f"{h:.4f}" for h in hs])

124 plt.xlabel("$h=1/N$")

125 plt.ylabel("$E_\\infty = \\max_i |u(x_i)-u_i|$")

126 plt.title("Upwind vs. Zentraldifferenzen für $-\\varepsilon u'' + u' = 0$,

$\\varepsilon=10^{-3}$")↪→

127 plt.grid(True, which="both")

128 plt.legend()

129 plt.tight_layout()

130 plt.savefig("Einf_plot_epsilon1e-3.png", dpi=300)

131 plt.show()

132

58



133 if __name__ == "__main__":

134 main()

135

Python-Code zur Erzeugung von Abbildung 5.3

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.rcParams.update({

5 "font.size": 16,

6 "axes.labelsize": 18,

7 "axes.titlesize": 20,

8 "legend.fontsize": 16,

9 "xtick.labelsize": 15,

10 "ytick.labelsize": 15

11 })

12

13 def rho(q):

14 q = np.asarray(q, dtype=float)

15 out = np.empty_like(q)

16

17 small = np.abs(q) < 1e-8

18 out[small] = 1.0

19

20 qs = q[~small]

21 out[~small] = qs * (np.cosh(qs) / np.sinh(qs))

22 return out

23

24 def main():

25 q = np.linspace(0.0, 6.0, 800)

26

27 plt.figure(figsize=(4.8, 6.0))

28

29 plt.plot(q, rho(q), linewidth=2.5,

30 label=r"$\rho(q)=q\,\coth(q)$")

31

32 plt.plot(q, q, ":", linewidth=2.0,

33 label=r"Asymptotik: $\rho(q)\sim q$")

34

35 plt.plot(q, 1 + q**2 / 3, "--", linewidth=2.0,

36 label=r"$q\ll1$: $1+\frac{q^2}{3}$")

37

38 plt.plot(q, 1 + q, "-.", linewidth=2.0,

39 label=r"Vergleich: $\rho(q)=1+q$")

40

41 plt.xlabel(r"$q$")

42 plt.ylabel(r"$\rho(q)$")

43 plt.title(r"Asymptotisches Verhalten der künstlichen Diffusion $\rho(q)$")
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44

45 plt.grid(True)

46 plt.legend()

47 plt.tight_layout()

48

49 plt.savefig("rho_asymptotik.png", dpi=300, bbox_inches="tight")

50 plt.show()

51

52 if __name__ == "__main__":

53 main()

54

Python-Code zur Erzeugung von Abbildung 5.4

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib.ticker as mticker

4

5 plt.rcParams.update({

6 "font.size": 14,

7 "axes.labelsize": 16,

8 "axes.titlesize": 18,

9 "legend.fontsize": 14,

10 "xtick.labelsize": 14,

11 "ytick.labelsize": 14

12 })

13

14 def exact_solution(x, eps):

15 alpha = np.exp(-1.0 / eps)

16 return x - (np.exp(-(1.0 - x) / eps) - alpha) / (1.0 - alpha)

17

18 def solve_upwind(N, eps):

19 h = 1.0 / N

20 n = N - 1

21

22 A = np.zeros((n, n))

23 b = np.ones(n)

24

25 low = -eps / h**2 - 1.0 / h

26 mid = 2.0 * eps / h**2 + 1.0 / h

27 up = -eps / h**2

28

29 for i in range(n):

30 A[i, i] = mid

31 if i > 0:

32 A[i, i-1] = low

33 if i < n-1:

34 A[i, i+1] = up

35
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36 u = np.zeros(N + 1)

37 u[1:N] = np.linalg.solve(A, b)

38 return u

39

40 def solve_central(N, eps):

41 h = 1.0 / N

42 n = N - 1

43

44 A = np.zeros((n, n))

45 b = np.ones(n)

46

47 low = -eps / h**2 - 1.0 / (2*h)

48 mid = 2.0 * eps / h**2

49 up = -eps / h**2 + 1.0 / (2*h)

50

51 for i in range(n):

52 A[i, i] = mid

53 if i > 0:

54 A[i, i-1] = low

55 if i < n-1:

56 A[i, i+1] = up

57

58 u = np.zeros(N + 1)

59 u[1:N] = np.linalg.solve(A, b)

60 return u

61

62 def solve_ilin_allen_southwell(N, eps, mu=1.0):

63 h = 1.0 / N

64 n = N - 1

65

66 def coth(z):

67 if abs(z) < 1e-12:

68 return 1.0 / z + z / 3.0

69 return 1.0 / np.tanh(z)

70

71 theta = mu * h / (2.0 * eps)

72 alpha = (1.0 / (2.0 * h)) * coth(theta)

73

74 low = -(alpha + 1.0 / (2.0 * h))

75 mid = 2.0 * alpha

76 up = -(alpha - 1.0 / (2.0 * h))

77

78 A = np.zeros((n, n))

79 b = np.ones(n)

80

81 for i in range(n):

82 A[i, i] = mid

83 if i > 0:

84 A[i, i-1] = low

85 if i < n-1:

86 A[i, i+1] = up
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87

88 u = np.zeros(N + 1)

89 u[1:N] = np.linalg.solve(A, b)

90 return u

91

92 def einfty_error(u_num, x, eps):

93 return np.max(np.abs(u_num - exact_solution(x, eps)))

94

95 def main():

96 eps = 1e-3

97 Ns = [2, 4, 8, 16, 20, 40, 80, 160, 320, 640]

98

99 hs, err_up, err_ce, err_ias = [], [], [], []

100 rows = []

101

102 for N in Ns:

103 h = 1.0 / N

104 x = np.linspace(0.0, 1.0, N + 1)

105

106 e_up = einfty_error(solve_upwind(N, eps), x, eps)

107 e_ce = einfty_error(solve_central(N, eps), x, eps)

108 e_ias = einfty_error(solve_ilin_allen_southwell(N, eps), x, eps)

109

110 hs.append(h)

111 err_up.append(e_up)

112 err_ce.append(e_ce)

113 err_ias.append(e_ias)

114 rows.append((N, h, e_up, e_ce, e_ias))

115

116 print("\nFehlervergleich für -eps u'' + u' = 1, u(0)=u(1)=0 (epsilon =

0.001)")↪→

117 header = f"{'N':>6} {'h=1/N':>12} {'Upwind':>14} {'Zentral':>14}

{'IAS':>14}"↪→

118 print(header)

119 print("-" * len(header))

120 for N, h, e_up, e_ce, e_ias in rows:

121 print(f"{N:6d} {h:12.5e} {e_up:14.5e} {e_ce:14.5e} {e_ias:14.5e}")

122

123 hs = np.array(hs)

124 err_up = np.array(err_up)

125 err_ce = np.array(err_ce)

126 err_ias = np.array(err_ias)

127

128 plt.figure(figsize=(7.0, 5.0))

129

130 plt.loglog(hs, err_up, "-o", color="black", linewidth=1.5, markersize=6,

label="Upwind")↪→

131 plt.loglog(hs, err_ce, "--s", color="black", linewidth=1.5, markersize=6,

label="Zentral")↪→

132 plt.loglog(hs, err_ias, ":^", color="black", linewidth=1.5, markersize=6,

133 label="Il'in--Allen--Southwell")
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134

135 ax = plt.gca()

136 ax.invert_xaxis()

137

138 ax.xaxis.set_major_locator(mticker.LogLocator(base=10))

139 ax.yaxis.set_major_locator(mticker.LogLocator(base=10))

140 ax.xaxis.set_major_formatter(mticker.LogFormatterMathtext())

141 ax.yaxis.set_major_formatter(mticker.LogFormatterMathtext())

142

143 ax.grid(True, which="major", linestyle="--", linewidth=0.6, alpha=0.6)

144

145 plt.xlabel(r"$h=1/N$")

146 plt.ylabel(r"$E_\infty$")

147 plt.legend(frameon=False)

148 plt.tight_layout()

149

150 plt.savefig("Einf_plot_eps1e-3_rhs1.pdf")

151 plt.savefig("Einf_plot_eps1e-3_rhs1.png", dpi=300)

152 plt.show()

153

154 if __name__ == "__main__":

155 main()

156

Python-Code zur Erzeugung von Tabelle 5.1 und Ab-

bildungen 5.5 und 5.5

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def u_exact(x, eps):

5 return (np.exp(x / eps) - 1.0) / (np.exp(1.0 / eps) - 1.0)

6

7 def grid_uniform(N):

8 return np.linspace(0.0, 1.0, N + 1)

9

10 def grid_shishkin(N, eps):

11 if N % 2 != 0:

12 raise ValueError("N muss gerade sein (Shishkin-Gitter).")

13 tau = min(0.5, 2.0 * eps * np.log(N))

14 H = 2.0 * (1.0 - tau) / N

15 h = 2.0 * tau / N

16

17 x = np.zeros(N + 1)

18 for i in range(N // 2 + 1):

19 x[i] = i * H

20 for i in range(N // 2 + 1, N + 1):

21 x[i] = 1.0 - (N - i) * h

22 return x, tau
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23

24 def solve_upwind_nonuniform(x, eps):

25 N = len(x) - 1

26 h = np.diff(x)

27

28 u0, uN = 0.0, 1.0

29 A = np.zeros((N - 1, N - 1))

30 b = np.zeros(N - 1)

31

32 for i in range(1, N)

33 him = h[i - 1]

34 hip = h[i]

35 fac = 2.0 * eps / (him + hip)

36

37 cim1 = -(fac / him + 1.0 / him)

38 ci = (fac / hip + fac / him + 1.0 / him)

39 cip1 = -(fac / hip)

40

41 row = i - 1

42

43 if i == 1:

44 b[row] -= cim1 * u0

45 else:

46 A[row, row - 1] += cim1

47

48 A[row, row] += ci

49

50 if i == N - 1:

51 b[row] -= cip1 * uN

52 else:

53 A[row, row + 1] += cip1

54

55 u = np.zeros(N + 1)

56 u[0], u[N] = u0, uN

57 u[1:N] = np.linalg.solve(A, b)

58 return u

59

60 def einf_error(x, uh, eps):

61 return np.max(np.abs(u_exact(x, eps) - uh))

62

63 def make_error_table(eps, Ns):

64 rows = []

65 for N in Ns:

66 xU = grid_uniform(N)

67 uhU = solve_upwind_nonuniform(xU, eps)

68 EU = einf_error(xU, uhU, eps)

69

70 xS, tau = grid_shishkin(N, eps)

71 uhS = solve_upwind_nonuniform(xS, eps)

72 ES = einf_error(xS, uhS, eps)

73
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74 ratio = EU / ES if ES != 0 else np.inf

75 rows.append((N, tau, EU, ES, ratio))

76 return rows

77

78

79 def print_error_table(rows):

80 wN, wT, wEU, wES, wR = 8, 14, 18, 18, 14

81

82 print(f"{'N':>{wN}} {'tau':>{wT}} {'E_inf uniform':>{wEU}} {'E_inf

Shishkin':>{wES}} {'ratio(U/S)':>{wR}}")↪→

83 print("-" * (wN + 1 + wT + 1 + wEU + 1 + wES + 1 + wR))

84

85 for N, tau, EU, ES, ratio in rows:

86 print(f"{N:{wN}d} {tau:{wT}.6e} {EU:{wEU}.6e} {ES:{wES}.6e}

{ratio:{wR}.6e}")↪→

87

88

89 def save_table_csv(rows, filename="error_table.csv"):

90 with open(filename, "w", encoding="utf-8") as f:

91 f.write("N,tau,E_inf_uniform,E_inf_shishkin,ratio_U_over_S\n")

92 for N, tau, EU, ES, ratio in rows:

93 f.write(f"{N},{tau:.16e},{EU:.16e},{ES:.16e},{ratio:.16e}\n")

94 print(f"saved: {filename}")

95

96 def set_thesis_style():

97 plt.rcParams.update({

98 "figure.figsize": (8.5, 5.5),

99 "figure.dpi": 120,

100 "savefig.dpi": 400,

101 "font.size": 18,

102 "axes.titlesize": 22,

103 "axes.labelsize": 20,

104 "legend.fontsize": 16,

105 "xtick.labelsize": 16,

106 "ytick.labelsize": 16,

107 "lines.linewidth": 2.6,

108 "axes.grid": True,

109 "grid.alpha": 0.25,

110 })

111

112

113 def save_fig(name):

114 plt.tight_layout()

115 plt.savefig(name + ".pdf", bbox_inches="tight")

116 plt.savefig(name + ".png", bbox_inches="tight")

117 print(f"saved: {name}.pdf / {name}.png")

118

119 def zoom_window(eps, N, tau):

120 width = max(6.0 * eps, 4.0 * eps * np.log(N))

121 xl = min(1.0 - width, 1.0 - 1.2 * tau)

122 return max(0.0, xl), 1.0
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123

124

125 def plot_solution_zoom(N, eps):

126 xU = grid_uniform(N)

127 uU = solve_upwind_nonuniform(xU, eps)

128 uE = u_exact(xU, eps)

129

130 xS, tau = grid_shishkin(N, eps)

131 uS = solve_upwind_nonuniform(xS, eps)

132

133 xl, xr = zoom_window(eps, N, tau)

134

135 plt.figure()

136 plt.plot(xU, uE, label="exakt")

137 plt.plot(xU, uU, "--", label="Upwind (uniform)")

138 plt.plot(xS, uS, "-.", label="Upwind (Shishkin)")

139 plt.xlim(xl, xr)

140 plt.xlabel(r"$x$")

141 plt.ylabel(r"$u(x)$")

142 plt.title(rf"Grenzschicht-Zoom bei $x=1$ ($\varepsilon={eps:g}$, $N={N}$)")

143 plt.legend(loc="best")

144 save_fig(f"solution_zoom_N{N}")

145

146 def plot_einf_convergence(rows, eps):

147 Ns = np.array([r[0] for r in rows], dtype=float)

148 EU = np.array([r[2] for r in rows], dtype=float)

149 ES = np.array([r[3] for r in rows], dtype=float)

150

151 plt.figure()

152 plt.loglog(Ns, EU, "o--", label=r"$E_\infty$ (uniform)")

153 plt.loglog(Ns, ES, "o-", label=r"$E_\infty$ (Shishkin)")

154 plt.xlabel(r"$N$")

155 plt.ylabel(r"$E_\infty$")

156 plt.title(rf"Maximaler Fehler $E_\infty(N)$ ($\varepsilon={eps:g}$)")

157 plt.legend(loc="best")

158 save_fig(f"einf_convergence_eps{eps:g}")

159

160 def main():

161 set_thesis_style()

162

163 eps = 1e-2

164 Ns = [8, 16, 32, 64, 128, 256, 512, 1024] # gerade

165 N_show = 256

166

167 # (2) Fehlertabelle

168 rows = make_error_table(eps, Ns)

169 print_error_table(rows)

170 save_table_csv(rows, "error_table.csv")

171

172 # (1) Grenzschicht-Zoom-Plot der Lösung

173 plot_solution_zoom(N_show, eps)
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174

175 # (3) Plot des maximalen Fehlers E_inf(N)

176 plot_einf_convergence(rows, eps)

177

178 plt.show()

179

180

181 if __name__ == "__main__":

182 main()
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