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Kapitel 1

Einleitung

Differentialgleichungen spielen bei der Modellierung vieler Prozesse in der Physik ei-
ne wichtige Rolle. Man betrachte beispielsweise einen Fluss mit starker, gleichméfBiger
Stromung. An einer bestimmten Stelle fliefit ein fliissiger Schadstoff in das Wasser. Wir
stellen die Frage, welche Form die entstehende Verschmutzungsfahne auf der Wasserober-
flache annimmt.

Das Verhalten wird durch zwei Prozesse bestimmt: Der Stoff diffundiert langsam durch das
Wasser; der dominante Prozess ist jedoch die Stromung des Flusses, welche den Stoff we-
sentlich schneller flussabwiéirts transportiert (konvektiert). Durch Konvektion allein wiirde
sich der Stoff entlang einer eindimensionalen Kurve an der Oberfliche bewegen. Die Dif-
fusion fiithrt jedoch zu einer allméhlichen Ausbreitung um diese Kurve herum, sodass
schliefllich eine langgezogene, schmale, keilférmige Verteilung entsteht.

Mathematisch fiihrt dies auf ein Konvektions-Diffusions-Problem, bei dem Diffusion und
Konvektion gleichzeitig auftreten, die Konvektion aber wie im Beispiel dominiert. Man
kann diesen Prozess mithilfe eines linearen Zwei-Punkt-Randwertproblems der Form

—eu”(z) + b(z)u' (x) + o(z)u(z) = f(x), 0<z<l,

mit Randbedingungen
u(0) = u(l) =0,

modellieren. Dabei ist € > 0 ein Parameter und b, 0 und f sind gegebene Funktionen .
Der Term u” modelliert die Diffusion mit kleinem Diffusionskoeffizienten . Der Term o’
steht fiir die Konvektion, wiahrend ou als Reaktionsterm die lokale Zu- oder Abnahme
von u ohne Transport beschreibt. Der Term f wirkt als Quellenterm und modelliert eine
auBere Zufithrung oder Entnahme, die nicht aus dem System selbst entsteht.

Dominiert die Konvektion, entstehen in der Losung oft sogenannte Grenzschichten. Das
sind Bereiche, auf denen die Losung auf einem kleinen Intervall starke Anderungen zeigt.
Fiir diesen Fall wollen wir die numerische Approximation genauer untersuchen.

In dieser Arbeit betrachten wir ausschliellich eindimensionale lineare Zwei-Punkt-Rand-
wertprobleme. Diese treten beispielsweise in der Wéarmeleitung, in der Stromungsmechanik,
in chemischen Reaktionen, in elektrischen Netzwerken oder auch in Transportprozessen
auf.

Ziel dieser Arbeit ist es, das analytische Verhalten solcher singulér gestorten Randwert-
probleme zu untersuchen. Dabei werden numerische Verfahren betrachtet, um auch im
konvektionsdominanten Fall stabile und genaue Approximationen zu erhalten.

Dazu wird in Kapitel 2 zunéchst das stetige Problem eingefiihrt und das Verhalten der
Losung analysiert. Kapitel 3 behandelt Finite-Differenzen-Methoden und die damit ver-
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bundene Fehleranalyse. In Kapitel 4 wird explizit der konvektionsdominante Fall unter-
sucht, in dem Grenzschichten besonders stark ausgepragt sind. In Kapitel 5 werden sta-
bile numerische Verfahren wie M-Matrizen, das Upwind-Verfahren und gleichméfig kon-
vergente Methoden vorgestellt. Ziel dieser Arbeit ist es, sowohl theoretische Einsichten
als auch praktische numerische Methoden fiir singulér gestorte Konvektions-Diffusions-
Probleme zu vermitteln.



Kapitel 2

Stetiges Problem

2.1 Allgemeine lineare Zwei-Punkt-Randwertprobleme

Wir folgen der Definition aus [5, p. 3].
Seien x € (a, B) sowie b, o, f € C([a, B]) und € € R mit € > 0.

Wir betrachten das allgemeine lineare Zwei-Punkt-Randwertproblem der Form
—eu"(x) + b(x)u' (z) + ou(x) = f(x), (2.1)
versehen mit verallgemeinerten linearen Randbedingungen
Aatt(@) — pot (@) = vy, (2.2)
Agu(B) — ppu'(B) = vp. (2.3)

Bemerkung 2.1.1 (Randbedingungen) [4, p. 5-6]
Fir v,,v5 € R und A\,, \g € R\ {0} unterscheidet man zwischen folgenden Randbedin-
gungen:

1. Dirichlet-Randbedingungen (1. Art):
u(a) = Va, u(B) = vg.
2. Neumann-Randbedingungen (2. Art):
U (@) = Va, u'(B) = vg.
3. Robin-Randbedingungen (3. Art):
Aata) + (@) = v, Agu(B) + u(B) = v,
Bemerkung 2.1.2 (Homogene Randbedingungen) |2, p. 1]

Eine Randbedingung heifit homogen, wenn sie auf dem Rand eines Gebietes {2 C R" den
Wert 0 annimmt. Sonst heifit sie inhomogen.

Bemerkung 2.1.3 (Normierung) [5} p. 4-5]
Zur Vereinfachung transformieren wir das Randwertproblem in eine Standardform:
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1. Ohne Beschréankung der Allgemeinheit sei x € [0, 1]. Das wird erreicht durch die

lineare Transformation
T — «

B—a
2. Seien die Randbedingungen 0.B.d.A homogen, also v, = 0 und vz = 0. Dies erhélt

man durch die Substitution u +— uw — g, wobei g eine glatte Funktion ist, die die
urspriinglichen Randbedingungen erfiillt.

T(z) =

Definition 2.1.4 (Standardproblem) [5, p. 5]
Seien z € (0,1) und b(z),o(x), f(x) € C([0,1]) sowie € € R mit € > 0. Dann lautet das
Standardproblem:

Lu:=—eu"+bu/ +ou=f in Q=(0,1) (2.4)
mit den Randbedingungen
u(0) = u(1) = 0. (2.5)

Bemerkung 2.1.5 (Zum Operatorbegriff) [4, p. 7]
In bezeichnet L einen Differentialoperator. Unter einem Operator versteht man im
Allgemeinen eine Abbildung zwischen zwei (Funktionen-)Réumen.
Ein linearer Operator ist eine lineare Abbildung A auf einem Vektorraum X mit der
Eigenschaft

A(Au + pw) = NAu + pAv,

wobei A, i1 beliebige Skalare und u,v € X beliebige Elemente sind.
Ein Differentialoperator erzeugt bei Anwendung Ableitungen. Zu seiner vollstdndigen De-
finition gehort stets die Angabe des Definitionsbereiches.

Definition 2.1.6 (Reduziertes Problem) [4] p. 8]
Um das reduzierte Problem zu erhalten, setzt man ¢ = 0. Damit ergibt sich die Differen-
tialgleichung

Loug := b(z) ug(z) + o(x) up(x) = f(z), z € (0,1).

Die Randbedingung wird an der Einstromkante gesetzt:
e Ist b(x) > 0 fiir alle x € [0, 1], so wird die Randbedingung wird bei z = 0 gesetzt:

e Ist b(x) < 0 fiir alle x € [0, 1], so wird die Randbedingung bei = = 1 gesetzt:

Die Losung ug dieses Problems wird reduzierte Losung genannt.

2.2 Analytisches Verhalten der L6sung

Definition 2.2.1 [3, p. 13]
Die folgenden Funktionenrdume werden benétigt:



e Der Raum C/(a, b) umfasst alle Funktionen
u: (a,b) - R,
die auf dem offenen Intervall (a,b) stetig sind.

e Der Raum Ca, b] umfasst alle Funktionen
w: [a,b] = R,
die auf dem abgeschlossenen Intervall [a, b] stetig sind.

e Der Raum C?(a,b) umfasst alle Funktionen
u: (a,b) = R,
die zweimal stetig differenzierbar sind, d. h.

u, u', u” sind stetig auf (a,b).

Bemerkung 2.2.2 (Standardproblem) [4, p. §]
Die Losbarkeit des Problems (2.4))-(2.5) ist unabhéngig von € > 0. Durch Division durch
¢ und geeignete Umbenennung der Koeflizienten erhélt man

Lu = —u"(z) + b(z)u' (z) + o(z)u(z) = f(x), xz € (0,1), (2.6)

mit den Randbedingungen
u(0) =u(1) =0. (2.7)

Definition 2.2.3 (Klassische Losung eines Randwertproblems) [3, p. 13]
Wir betrachten ein Randwertproblem mit Dirichlet-Randbedingungen fiir eine Differen-
tialgleichung zweiter Ordnung auf dem Intervall (a,b). Eine klassische Lésung ist eine

Funktion
u € C*(a,b) N Cla,b],

die sowohl die Differentialgleichung als auch die Randbedingungen erfiillt.
Definition 2.2.4 (Wronski-Determinante) |3, p. 14]

Fiir zwei Funktionen u;, us auf einem Intervall I ist die Wronski-Determinante definiert
durch

Definition 2.2.5 (Lineare Unabhingigkeit) (3| p. 14]
Zwei Funktionen u;(z) und us(x) heilen linear unabhdngig, wenn aus

cruy(x) + cqua(xz) =0 fur alle x € (a,b) (2.8)

folgt, dass
Cl = Cy = 0.

Sind sie nicht linear unabhéngig, so heiflen sie linear abhdingig.



Bemerkung 2.2.6 (3] p. 14]
Seien g, up auf (a,b) linear abhéingig und stetig differenzierbar. Dann folgt aus ([2.8)), dass

) (z) + couy(z) =0,  x € (a,b). (2.9)

Damit sind auch ) und u} linear abhéingig. Folglich besitzt das Gleichungssystem aus ([2.8))
und ([2.9) eine nichttriviale Losung, und die Wronski-Determinante W (x) ist identisch null.

Satz 2.2.7 (Superpositionsprinzip) [3, p. 16]
Fiir die homogene lineare Differentialgleichung

—u"(z) + b(z)u' (z) + o(z)u(z) = 0, z € (0,1),

mit b, o € C([0,1]), existieren zwei linear unabhiingige Losungen in C?([0,1]). Jede klas-
sische Losung lasst sich als Linearkombination dieser beiden Funktionen darstellen.

Satz 2.2.8 (Klassische Losung der inhomogenen, linearen Differentialgleichung)
3} p. 17]
Fiir die inhomogene lineare Differentialgleichung

—u"(x) + b(x)u' (z) + o(x)u(z) = f(x), z € (0,1),

mit b,0, f € C([0,1]), existiert eine klassische partikulére Losung wu,. Jede klassische
Losung hat die Darstellung

u(z) = crur(x) + cous() + upy(z), c1, 0 € R,

wobei uq, us ein Fundamentalsystem der zugehorigen homogenen Gleichung bilden, also
eine Basis des Losungsraums der zugehorigen homogenen linearen Differentialgleichung.

Satz 2.2.9 (Existenz und Eindeutigkeit der Lésung des Modellproblems mit
homogener rechter Seite) [4, p. 12]

Fiir das Randwertproblem ({2.6)), (2.7)) mit
be (1)), oeC(0,1),  flz)=0,

gilt: Ist fiir alle z € (0,1)

- I L,

o(zr) = Zb (x) — §b (x) +o(z) >0,
dann besitzt das Problem ({2.6)), (2.7)) nur die triviale Losung, also

Bemerkung 2.2.10 (Konstante Koeffizienten) [4, p. 13]
Fiir konstante Koeffizienten vereinfacht sich die Bedingung 6(z) > 0 zu

b2
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Definition 2.2.11 (Invers-monotoner Operator) [9, p. 10]
Sei M : C?%(0,1) — C(0,1) ein Differentialoperator und w € C?(0,1) N C0,1]. Der
Operator M heifit invers-monoton, wenn aus

Mw(z) >0 fiir alle z € (0, 1), w(0) >0, w(l)>0

folgt, dass
w(z) >0 fiir alle z € [0,1].

Das bedeutet: Ein Operator ist invers-monoton, wenn aus der Nichtnegativitdt des Ope-
ratorausdrucks und der Randwerte folgt, dass die Funktion auf dem gesamten Intervall
nichtnegativ ist.

Bemerkung 2.2.12 [9, p. 10]
Fiir o(z) > 0 fiir alle x € [0, 1] ist der Operator L aus (2.4)), (2.5]) invers-monoton.

Definition 2.2.13 (Maximumprinzip) [9, p. 10]
Ein Differentialoperator M : C%(0,1) — C(0,1) erfiillt ein Mazimumprinzip, wenn fiir
jede Funktion u € C%(0,1) N C0, 1] aus

Mu(x) =0 fiir alle z € (0,1)
folgt, dass
min{u(0),u(1),0} < wu(z) < max{u(0),u(1),0} fiir alle xz € [0, 1].

Bemerkung 2.2.14 [9, p. 10]
Ist der Operator L invers-monoton, so erfiillt er auch das Maximumprinzip und das fol-
gende Vergleichsprinzip.

Definition 2.2.15 (Vergleichsprinzip) [9, p. 10]
Seien v,w € C?%(0,1) N C|0,1]. Es gelte

Lw(x) > Lv(z) fiir alle z € (0, 1) und w(0) > v(0), w(l)>v(1).

Dann gilt
w(x) > wv(x) fir alle z € [0, 1].

Wir nennen w eine Barrierefunktion fir v.

2.3 Lineare Probleme zweiter Ordnung ohne Wende-
punkte

Dieser Abschnitt folgt |9, p. 11-16].
Wir betrachten das Randwertproblem

Lu := —eu"(z) + b(x)u' + o(2)u = f(z), re(0,1), o(x)>0 (2.10)

mit den Randbedingungen
u(0) = u(1) = 0. (2.11)

Fiir hinreichend glatte Funktionen b, o, f existiert eine eindeutige klassische Losung. Unser
Ziel ist es, das Verhalten dieser Losung fiir kleine € > 0 zu untersuchen.
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2.3.1 Asymptotische Entwicklungen
Wir wollen nun untersuchen, wie wir u aus (2.10)), (2.11) durch eine einfache Funkti-

on approximieren konnen. Die Methode der matched asymptotic expansions liefert eine
systematische Approximation von u.

Definition 2.3.1 (Asymptotische Entwicklung)
Eine Funktion u,s heifit asymptotische Entwicklung der Ordnung m von der Losung u (in
der Maximumsnorm), wenn eine Konstante C' > 0 existiert, sodass

[u(x) — uas(z)| < Ce™ !
fir alle z € [0, 1] und alle hinreichend kleinen ¢ > 0.

Dabei ist C' unabhéngig von € und b, o, f sind ausreichend glatt auf [0, 1].

Globale Erweiterung

Wir versuchen zunéchst, eine globale Erweiterung u, zu finden. Diese Funktion wird eine
gute Néherung von u auBerhalb der Grenzschicht(en) sein, d. h. auf fast dem gesamten
Intervall [0, 1]. Wir setzen

m
ug(x) = D e uy (),
v=0
wobei u, (z) noch bestimmt werden miissen.

Definition 2.3.2 (Reduzierter Operator)
Durch formales Setzen von € = 0 in L erhalten wir den Operator

Lov := ' + ov.

Als néchstes setzen wir u, in die Gleichung (2.10), (2.11) ein. Durch Gleichsetzen der

Koeffizienten gleicher Potenzen von ¢ erhalten wir die folgenden Gleichungen:

LQUO = f, (212)

Lou, = u, 4, v=1,...,m. (2.13)

Definition 2.3.3 (Wendepunkt)
Ein Punkt zy € [0, 1] heit Wendepunkt, wenn

Bemerkung 2.3.4
Hat b einen Wendepunkt, entstehen Schwierigkeiten bei der Definition der Koeffizienten
u, . Wir betrachten hier also nur den Fall

b(z) #0  fiir alle z € [0, 1].



Wahl der Randbedingung fiir das reduzierte Problem
Eine der Randbedingungen aus (2.11]) sollte verwendet werden, um wg zu berechnen. Es
stellt sich die Frage, welche Randbedingung wegzulassen ist.

Theorem 2.3.5 (Cancellation Law)

e Ist b > 0 auf [0, 1], so liegt die Grenzschicht bei x = 1 und man lidsst die Randbe-
dingung bei z = 1 unberiicksichtigt.

e Ist b < 0, so liegt die Grenzschicht bei x = 0 und man lédsst die Randbedingung bei
x = 0 unberiicksichtigt.

Da die Transformation z +— 1 — x den Fall b < 0 in b > 0 iiberfiihrt, ist es ausreichend,
den Fall b > 0 genauer zu betrachten.
Fiir b > 0 gilt

Louo = f, UO(O) = 0, (214)
Lou, = u,,_y, u,(0) =0, v=1,..m, (2.15)

Wir nennen ((2.14]) - (2.15)) das reduzierte Problem mit der reduzierten Losung uy.

Lokale (innere) Korrektur
Das Ziel der asymptotischen Entwicklung ist, eine Naherung von u zu finden, die fiir alle
z € [0,1] gilt. Die Néherung u, erfiillt die Randbedingung an der Stelle z = 1 nicht.
Deshalb fithren wir eine lokale Korrektur von u, in der Néhe von o = 1 ein.
Wir setzen

W= U — Uy

Dann erfillt w

Lw =™t
w(0) =0,  wl)=-> u/(l)
v=0

Streckung der unabhingigen Variablen
Wir kénnen L schreiben als L = Ly + Ly. Da die Grenzschicht bei x = 1 liegt, strecken
wir die Skala dort in z-Richtung durch die Variable

-z

=+,

wobei d klein und noch unbestimmt ist. Wir wihlen die Grenzschichtskalierung § so, dass
Lo und €L nach der Transformation von x nach £ formal von derselben Ordnung beziiglich

e sind. Wir setzen
ed 2 ~ 6L

Das fiihrt zur Wahl
6 =c¢.

Wir entwickeln die Koeffizientenfunktionen b und o bzgl. £ mittels Taylorreihen um x = 1:



b(1 —e€) = st by = b(1),

o(l1—¢f) = Zal,s £, oo = o(1).

Damit lasst sich L fiir jede hlnrelchend differenzierbare Funktion g in der Variablen ¢
darstellen als

1 o
elig+ Log = — e"L’g,
19 09 c Z yg

v=0
wobei » g
L= —— — by— Ly — b E—
0 e Odf’ 15 dé + co,
usw.
Als lokale Korrektur verwenden wir
m+1

Uloc(f) = Z 5“Uu(£)

Damit v, die Differenz
w=1u—1u,

approximiert, miissen die Terme v,, die Bedingungen

Livg = 0, (2.16)

I
Lavu:—ZL’;vu_m p=1....m+1 (2.17)

erfiillen.
Um die richtige Randbedingung bei x = 1 zu erhalten, wahlen wir

0.(0) = —u,(1), k=0,1,...,m

Da die Gleichungen (2.16)) und (2.17)) zweiter Ordnung sind, brauchen wir eine weitere
Bedingung. Wir fordern
lim v, (£) = 0.

E—o0

Mit diesen beiden Randbedingungen besitzt das Problem ([2.16]), (2.17) eine eindeutige
Losung. Wir erhalten z.B. fiir die Korrektur erster Ordnung

vo(€) = —ug(1) e tWE,

Bemerkung 2.3.6

Grenzschichten werden entsprechend der zugehorigen Grenzschichtgleichungen klassifi-
ziert. Die einfachsten Schichten sind exponentielle Grenzschichten (auch gewdhnliche
Grenzschichten genannt), bei denen die Losungen der Grenzschichtgleichungen abfallende
Exponentialfunktionen sind. Die Losung von , hat normalerweise eine Grenz-
schicht dieses Typs bei x = 1, wenn b > 0 auf [0, 1].
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Theorem 2.3.7

Sind die Koeffizienten sowie die rechte Seite des Randwertproblems , hinrei-
chend glatt und gilt zudem b(x) > 3 > 0 auf [0, 1], so hat die Losung u eine asymptotische
Entwicklung der Form

sodass fiir jede hinreichend kleine Konstante ¢y > 0 gilt:
[u(z) — uas(x)] < Ce™ fiir alle x € [0,1] und ¢ < &.
Dabei ist C' unabhéngig von x und e.
Beweis. Der Beweis folgt [9, p. 15]. O

Beispiel 2.3.8
Wir wollen nun das Verfahren der asymptotischen Entwicklung an einem Beispiel nidher
betrachten. Wir betrachten das Randwertproblem

—eu'(z) + ' (x) = 1, z € (0,1), (2.18)

mit den Randbedingungen
u(0) = u(1) = 0. (2.19)

Nach Theorem liegt eine Grenzschicht bei x = 1 vor, da b(z) =1 > 0 gilt.

Reduziertes Problem

Wir setzen in (2.18) € = 0 und erhalten somit
L()U() = UE) =1.
Mit der nach Theorem [2.3.5 gewéihlten Randbedingung uo(0) = 0 folgt

up(z) = . (2.20)
Globale Erweiterung

Wir setzen
ug(x) = up(x) +euq(x) +-- - .

Die Gleichung fiir u; ist nach (2.15))
L()U,l = U,g = 0, U1<0) =0.

Damit folgt
uy(z) = 0. (2.21)

Bis zur Ordnung O(e) gilt daher
uy(z) = . (2.22)
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Lokale Grenzschicht bei z =1

Da b(1) =1 > 0 gilt, liegt eine Grenzschicht bei z = 1. Wir fiihren die gestreckte Variable

_1—:1;

&=

€

ein. Die lokale Korrektur schreiben wir in der Form
vioc(§) = vo(&) +eva(§) + -+
Die Gleichung fiir vy ergibt sich aus :
—vp(§) = vp(§) =0 (2.23)
mit den Randbedingungen

v9(0) = —up(1) = —1, lim vy(§) = 0.

E—o0

Gleichung ([2.23) hat die Losung
vo(€) = —e7¢. (2.24)

Asymptotische Gesamtlosung

Durch Addition der globalen und lokalen Anteile erhélt man die asymptotische Losung

1—
Uas () = uy(z) + UO< z) = — e (Ima)/e,
£

Vergleich mit der exakten Losung

Das Randwertproblem (2.18)—(2.19)) besitzt die exakte Losung

1 — e/

o " (2.25)

u(z) =x
Fiir ¢ — 0 gilt
1— efm/s
l—e ™ _a-ay =y
i = “+0(e77),

und somit folgt
u(z) =z — e 179/E 4 O(e_l/g).

Damit stimmt die asymptotische Losung mit der exakten Losung bis auf einen exponentiell
kleinen Fehler iiberein.

Wir betrachten die exakte und asymptotische Losung fiir verschiedene Werte von e. Der
Fehler ist kaum sichtbar.
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Abbildung 2.1: Exakte und asymptotische Losung fiir verschiedene Werte von e.
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Wir betrachten zusétzlich den Fehler

‘U’exakt (ilf) - uas<x) |

auf logarithmischer Skala.

Fehler der asymptotischen Losung

10_2§
10734
10—4g

1054
] — e=02
10771 £=0.1

10-71 — €=0.05

|Uexa|<t - Uasl

1078

107°1
10-10]

0.0 0.2 0.4 0.6 0.8 1.0

Abbildung 2.2: Absoluter Fehler der asymptotischen Losung auf logarithmischer Skala.
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Kapitel 3

Finite-Differenzen-Methoden

Die zentrale Idee der Finite-Differenzen-Methoden lautet wie folgt: Wir wollen das Gebiet,
auf dem die Differentialgleichung definiert ist, diskretisieren, d. h. das Gebiet in kleine
Abschnitte, in diesem Falle Gitterzellen, aufteilen. Auf jedem Gitterpunkt werden die
Ableitungen durch Nédherungen ersetzt, unter Nutzung der Werte der benachbarten Git-
terpunkte. Man erhélt ein Gleichungssystem fiir die Werte in den Gitterpunkten. Dieses
wird anschliefend gelost. Damit erhélt man eine Naherung fiir die Losung des Zwei-Punkt-
Randwertproblems.

3.1 Bestimmung der Nidherungen

3.1.1 Numerische Differenzierung

Definition 3.1.1 (Ableitung von u) [6, p. 2]
Die Ableitung von wu ist definiert als

u(x +h) — u(as) (3.1)

/ — 1
w(z) = Jim
Definition 3.1.2 (Differenzenoperatoren) [0, p. 2]
Bei ausreichend kleinem A kann die rechte Seite ohne den Grenzwert als Nédherung fiir
u'(x) genutzt werden. Haufig genutzte Ndherungen, sogenannte Differenzenoperatoren,
lauten:

Vorwirtsdifferenz: 0" u(z) := u(z +h) — u(x)’

h
Riickwirtsdifferenz: 0 u(z) := u) = Z(x — 1) ,
Zentrale Differenz: 0°u(x) := uz + h)2—hu(x —h) = % (0% u(z) + 0 u(x)) .

Eine haufig verwendete Ndherung der zweiten Ableitung ist:

w(x 4+ h) — 2u(z) + u(x — h).

0T 0 u(z) := 2

15



Riickwartsdifferenz

Zentrale Differenz

Vorwartsdifferenz

Abbildung 3.1: Verschiedene Nidherungen an die Ableitung u'(z), dargestellt iiber die
Steigungen zugehoriger Sekanten, in Anlehnung an [7, p. 4].

3.1.2 Fehleranalyse

Definition 3.1.3 (Gitterfunktion) [l p. 500]

Ein Vektor @, = (vo, ...,vy)T € RV der jedem Gitterpunkt einen Wert zuordnet, heifit
Gitterfunktion.

Die Restriktion einer Funktion v € C([0, 1]) auf eine Gitterfunktion wird definiert als:

Ry = (v(mp),v(z1),...,v(zN)).
Definition 3.1.4 (Diskrete Maximumsnorm im Raum der Gitterfunktionen) [7,
p. 16]
Sei w, = {x; |i=0,...,N} ein Gitter, und sei u : w, — R eine Gitterfunktion.
Dann ist die diskrete Maximumsnorm von u definiert als:

[[tfloo.n = max fu(z)].
rEWh

Definition 3.1.5 (Diskrete L?-Norm)

Sei u : wp, — R eine Gitterfunktion und wy, = {x; | i = 0,..., N} ein Gitter mit
Schrittweite h = +-.

Dann ist die diskrete L?-Norm von u definiert als:

N 1/2
[uf|2,n = <hz IU(%)F) :
i=0

Definition 3.1.6 (Konsistenz von Differenzenoperatoren) (1, p. 501]
Sei L ein Differentialoperator. Der Finite-Differenzenoperator L; : R” — R"™ heifit zu L
konsistent mit Ordnung £, wenn fiir alle ausreichend glatte Funktionen u gilt:

max |(Lu)(z;) — (LpRyu);| =: || Lu — Ly Rpul|son, = O(RF).

1<i<n
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Die Konsistenzordnung eines Finite-Differenzenoperators wird in der Regel mit der Taylor-
Entwicklung bestimmt.

Bemerkung 3.1.7 (Fehler der Standard-Differenzenoperatoren) [6] p. 4-5]
Zur Fehleranalyse der Ndaherungen nutzt man eine Taylor-Entwicklung des Fehlers um =z.
Wir nehmen an, dass die Funktionen ausreichend glatt sind.

Vorwirtsdifferenz:
. / h 1, n h2 _
ez, ) = o (x) — uw(x + h) — u(z) () u(z) +u'(z)h + 50" () u(x)
h h
_ _h "
Riickwirtsdifferenz:
— —h h
el h) = /(@) - T Py e o on)
Zentrale Differenz:
h) — —h h?
e(w,h) =w(z) - LEFR W@ Zh) Moy e o hath).
2h 6
Niherung der zweiten Ableitung:
h) —2 —h h?
(. h) = u(z + h) 12(2x)+u(x ) —U/'(f)zﬁu(4)(C)a Ce(@—hath)

Bemerkung 3.1.8 (Konsistenz der Standard-Differenzenoperatoren) [4, p. 21]
Wir koénnen fiir die Naherungen erkennen:

O u(z) =o' (x) + O(h),

0 u(x) = u'(z) + O(h),

O°u(z) = u'(z) + O(h?),
0T u(z) = u”"(x) + O(h?)

Die Differenzenoperatoren 9% u(z) und 9~ u(z) sind damit konsistent zu L = - mit
Ordnung 1, 9°u(z) mit Ordnung 2. Der Operator 0T9 u(zr) ist von zweiter Ordnung
2

konsistent zu L = j?.

3.2 Zentrales Differenzenverfahren

Dieser Abschnitt folgt |6, p. 10-11].
Wir betrachten erneut das in Definition eingefithrte Standardproblem

Lu:=—u"4+b/+ocu=f in Q=(0,1), (3.2)

mit Randbedingungen
u(0) = u(1) = 0. (3.3)
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1. Diskretisierung des Intervalls
Auf dem Intervall [¢,d] = [0, 1] wihlen wir ein N € N und definieren die Schrittweite

d—c_ 1

Die Stiitzstellen lauten
ZL‘Z:lh, iG{O,...,N},

wir bezeichnen das Gitter mit

wp,=4z;|i=0,...,N}.

2. Ersetzen der Ableitungen
Fiir jede innere Stiitzstelle z;, i = 1,...,N — 1, ersetzen wir die Ableitungen durch
Néherungen aus Definition [3.1.2 Wir setzen

—e (010 u) (@) + b(w:) (0°u) (2:) + o(@:) u(w:) + O(h?) = f(@:).

Dadurch erhalten wir

u(z; + h) —u(z; — h)
2 (3.4)

u(z; + h) — 2u(x;) +u(z; — h)
—e 2 + b(:cl)

+ o(xz;)ulz;) + O = f(ay).

3. Numerische Approximation
Wir definieren
u; =~ u(x;), i=0,...,N,

als numerische Approximation der exakten Losung an den Gitterpunkten. Durch Ver-
nachliissigung des Fehlerterms O(h?) erhalten wir das zentrale Differenzensystem

Uip1 — 2U; + Uj—q Uigp1 — Ui
—e 1+ 7 7 +b([E) 1+ 7

2 i 5 + o (x;)u; = f(2;). (3.5)

4. Randbedingungen
Die Randwerte werden durch

up = u(0) =0, uy =u(l)=0

direkt in das Gleichungssystem iibertragen.

5. Lineares Gleichungssystem
Nach Multiplikation von (3.5)) mit h? erhilt man

5 (ip1 — ui1) + RPo(z)u; = b2 f(2;). (3.6)

(—Uig1 + 2u; — u;—1)e +

Wir definieren die Koeflizienten

h h
gi=-e-35 b(x;), hi = 2 + W20 (), Ji=—e+ 9 b(xi).

18



Damit ergibt sich das lineare System Au = F' der Gréfle (N + 1) x (N + 1):

1 0

g hiog1 - Ug 0
0 g2 hy Jo - w h%f(z1)

A=110 0 g3 . . , u = : , F= :
: : 0o . UN-1 h2f($N—1)

gn-1 hy-1 Jn-1 Un 0

0 1

(3.7)

Beispiel 3.2.1 (Finite-Differenzen-Methode) In diesem Beispiel wird die Finite-
Differenzen-Methode zur Losung der Differentialgleichung

—u"(x) + b(x)u' (z) + o(x)u(z) = f(x), =x€(0,1),

mit Randbedingungen «(0) = 0 und u(1) = 0 genutzt.
Wir wihlen die Funktionen b(z) = 0, o(z) = 0 und f(z) = 7?sin(7z) mit bekannter
exakter Losung

u(z) = sin(mx).

Das Intervall [0, 1] wird in N gleich grofle Teilintervalle unterteilt, und fiir N = 4,8,16
wird das resultierende lineare Gleichungssystem numerisch gelost.

Wir vergleichen die numerischen Losungen mit den exakten und berechnen die Fehler in
der L?>-Norm und in der Maximumsnorm.

Numerische vs. exakte Losung, N=4

1.0 —e— Numerisch
Exakt
0.8 -
— 06 T
X
S
0.4 -
0.2 -
0.01+ @ o
0.0 0.2 0.4 0.6 0.8 1.0
X

Abbildung 3.2: Numerische Losung fiir N = 4
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Numerische vs. exakte Losung, N=8

1.0 1 —e— Numerisch
Exakt
0.8 -
__0.6-
x
3
0.4 -
0.2 -
004 ¢ %
0.0 0.2 0.4 0.6 0.8 1.0
X
Abbildung 3.3: Numerische Losung fiir N = 8
Numerische vs. exakte Losung, N=16
1.0 1 —e— Numerisch
Exakt
0.8 -
__ 0.6
x
3
0.4 - :
024 & AN
001 €& 'S
0.0 0.2 0.4 0.6 0.8 1.0

X

Abbildung 3.4: Numerische Losung fiir N = 16
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Mit zunehmender Gitterfeinheit ndhert sich die numerische Losung immer mehr der ex-
akten Losung an. In den berechneten Fehlernormen kann man das ebenfalls erkennen:

N lellzn | Dellson
4 3751072 5.30- 102
8 [9.16-1073 | 1.30 - 102
16 | 2.28-107% | 3.22- 1072

Tabelle 3.1: Diskrete Fehlernormen fiir das zentrale Differenzenverfahren.

3.3 Fehleranalyse

3.3.1 Globaler Fehler

Definition 3.3.1 (Globaler Fehler) [8, p. 22]
Seien u = (ug, . ..,uy)' die Niherungslosung aus Kapitel |3.2 und u(z;) die exakte Losung
ausgewertet an den Gitterpunkten x;. Dann ist der globale Fehlervektor definiert als

E = (up — u(wo), ..., uy —u(zy))’.
Wir suchen eine obere Schranke fiir den Fehler, hdufig gemessen in

e der 1 - Norm ||EH1 = Zz hi‘ez’|, wobei hz = Tj+1 — Ty,

N 1/2
e der 2 - Norm ||E||; = (Zi:o hi|ei|2> :
e der Maximumsnorm.

Definition 3.3.2 (Genauigkeit von Ordnung p) [8 p. 22]
Wir sagen, dass eine Finite-Differenzen-Methode Genauigkeit von Ordnung p hat,

wenn
|E|| < Ch?, p>0.

Definition 3.3.3 (Konvergenz) |8, p. 22]
Wir betrachten die Normen aus Definition 3.3.1l Ein Finite-Differenzen-Verfahren heif3t
konvergent in einer dieser Normen, wenn

lim ||E|| = 0.
h—0

3.3.2 Lokaler Fehler

Der lokale Diskretisierungsfehler bezeichnet die Differenz zwischen der urspriinglichen
Differentialgleichung und der Finite-Differenzen-Diskretisierung an den Gitterpunkten.
Er misst, wie gut die Finite-Differenzen-Diskretisierung die Differentialgleichung approxi-
miert (vgl. [8, p. 22]).
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Definition 3.3.4 (Konsistenz eines Differenzenschemas) [1, p. 501]
Wir betrachten nun die lineare partielle Differentialgleichung Lu = f und eine lineare
Finite-Differenzen-Nédherung der Form

Lyup, = Ryp(Lu) = Rpf = fa

auf einem &quidistanten Gitter. Dieses Schema heifit konsistent von Ordnung £ in der
diskreten Maximumsnorm, wenn fiir alle ausreichend glatte v gilt:

HLthU - Rh(Lv)”oo,h == O(hk),
wobei k > 0 unabhéngig von h ist.

Definition 3.3.5 (Stabilitét) [1, p. 502]
Ein Finite-Differenzen-Schema (bzw. ein Finite-Differenzenoperator) heifit stabil in der
diskreten Maximumsnorm, wenn es eine von h unabhéngige Konstante C's gibt, sodass

VR lloo,n < Cs||Lavnloon
fiir alle Gitterfunktionen v, gilt.

Definition 3.3.6 (Konvergenz eines Differenzenschemas) |1, p. 502]
Das Differenzenverfahren

Lhuh = Rh(LU> = Rhf = fh

heilt konvergent von Ordnung k in der diskreten Maximumsnorm, wenn es eine von h
unabhéngige positive Konstante k£ gibt, so dass

||Rhu — Uh”oo,h = O(hk)

Theorem 3.3.7 (Konsistenz 4 Stabilitit = Konvergenz) |1, p. 502]
Ein konsistentes und stabiles Finite-Differenzen-Schema ist konvergent. Die Ordnungen
der Konvergenz und Konsistenz sind identisch.
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Kapitel 4

Konvektions-dominanter Fall

Im Folgenden wird untersucht, wie sich die Lésung fiir kleine Werte von e verhélt. Wird
e sehr klein und ist b(z) vergleichsweise grof}, so dominiert der Term b(z)u'(z) gegeniiber
dem Term —eu”(z). In diesem Fall treten sogenannte Grenzschichten auf, also Bereiche na-
he den Randpunkten, in denen die Losung auf sehr kleinen Intervallen starke Anderungen
zeigt.

4.1 Grenzschicht

Definition 4.1.1 (Grenzschicht) [10, p. 4]
Sei v = v(x,¢) fiir (x,¢) € [0,1] x (0,1]. Es wird angenommen, dass

ov(x,e)
ox

V'(x,e) =
fir alle (x,¢) € [0, 1] x (0, 1] existiert. Wir sagen, dass v fiir ¢ — 07 eine Grenzschicht an
einem Punkt z € [0, 1] besitzt, wenn die folgenden Bedingungen erfiillt sind:

1. lim, g+ v/(2,€) = £o0,
2. lim o+ v'(x, €) existiert und ist endlich fiir alle Punktex € [0, 1], die
O0<|z—2z<k

fiir eine positive Konstante £ erfiillen, wobei k£ von z, aber nicht von ¢ abhédngen
darf.

Beispiel 4.1.2 (Beispiel mit konstanten Koeffizienten b und o)
Wir betrachten die Differentialgleichung

—eu"(x) +u'(x) =0, z € (0,1), (4.1)

mit Randbedingungen
u(0) =0, u(l) = 1.
Dies entspricht dem Fall der Modellgleichung mit b(z) = 1, 0 = 0. Da ¢ > 0, erhalten wir

u'(z) — %u'(x) = 0. (4.2)
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Das ist eine homogene lineare Differentialgleichung 2. Ordnung. Durch Substitution v(z) =
v (x) und damit v'(z) = u”(x) erhalten wir eine Differentialgleichung 1. Ordnung:

1
V'(z) — gv(x) =0 & J(x)= gv(x) (4.3)
Diese Gleichung besitzt eine Losung der Form
(4.4)

v(x) = aes?

fiir ein o € R.
Es wird eine Riicksubstitution durchgefiihrt. Sei C' € R. Dann gilt

u(x) = /v(z) dx = /aei‘” dx = a/ei”” dx
(4.5)
1 1
=« <5e€” + C’) =de:" + (',
wobei o := ae und C’ := aC erneut Konstanten sind. Jetzt konnen wir unsere Randbe-

dingungen nutzen, um C” und o' zu bestimmen.

1. Aus der ersten Randbedingung folgt
u(0)=0=ade+C' =0=d =-C". (4.6)

2. Mit (4.6) und der zweiten Randbedingung erhalten wir
wl)=1=de:+C' =1

;) L /
=aes —ao =1

o 1
:;io 6% —1= -
o
1 1
=a = — = (C'=——
e —1 e —1
Damit folgt insgesamt:
1
e —1
u(z) = — : (4.7)
e —1

Grafik

Die folgenden Abbildungen illustrieren das Verhalten der Losung fiir kleine Werte von &
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Losung u(x) far verschiedene ¢

Abbildung 4.1: Losungsverlauf u(z) fiir verschiedene Werte von e. Fiir kleine ¢ erkennt
man eine deutliche Grenzschicht nahe x = 1.
Wir betrachten noch einmal explizit die Grenzschicht:

Grenzschicht bei x=1

u(x)

0.96 0.98 1.00

Abbildung 4.2: Vergroflerung der Grenzschichtregion bei x = 1 fiir kleine Werte von ¢.
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Beispiel 4.1.3 (Beispiel mit nicht-konstanten Koeffizienten b und o)

Betrachtet wird das Randwertproblem
—eu”(z) + b(z) v (z) + o(x)u(z) = f(z),  z€(0,1),

mit Randbedingungen

2. Aus v/(x) = 1 und u”(x) = 0 folgt fiir die rechte Seite
f(x) = —eu"(z) + b(z)u(x) + o(x)u(x)
=—01-04+(142)- 142z
=1+ 2.
3. Damit ergibt sich die vollstéindige Aufgabe
—0,1u"(z) + (1 + z)u'(z) + u(x) = 1 + 2z, u(0) =0, u(l) =1,
fiir welche u(z) = = eine Losung ist.

4. Eindeutigkeit der Losung
Seien u und v zwei beliebige Losungen des Randwertproblems, und es sei

w(z) = u(x) —v(x).
Dann erfiillt w die Gleichung

—ew"(z) + b(z) W' (z) + o(z) w(z) = 0, w(0) =w(l) =0.
Multiplikation mit w(x) und Integration iiber (0,1) liefert

1
/ (—ew” + bw' + ow) wdx = 0.
0

Erster Term
Partielle Integration ergibt

/0 ! wyw(e) dr = < /O (! (2))? d.

Zweiter Term
Aus der Produktregel folgt

(4.8)



sodass

/ ! (ule) de -~ [ o (o) do.

Zusammenfassung
Daraus folgt

1 1 1
8/ (w')?dx — = / V(r)w? dw + / o(z)w? dx = 0.
0 2 Jo 0

Die beiden letzten Integrale lassen sich zusammenfassen. Wir erhalten
1 1
6/ (w')? dx +/ (o(z) — V' (z)) w?(z) dz = 0.
0 0

Fiir die hier verwendeten Koeffizienten gilt

sodass

Damit erhélt man . .
1
a/ (w')? dx + —/ w?(x)dz = 0.
0 2 Jo
Beide Integrale sind nichtnegativ, sodass sie also beide verschwinden miissen. Daraus

folgt zundchst w’(z) = 0, also ist w konstant; aufgrund der Randbedingungen w(0) =
w(1) = 0 ergibt sich schlielich w = 0.

Somit ist die Losung des Randwertproblems eindeutig.

4.2 Supremumsnorm

Die Supremumsnorm einer Funktion f: D — R ist definiert als
1 flloo := sup [ f(z)],
xzeD

vgl. [10, p. 7].

4.3 Ausblick: Konvektions-dominanter Fall

Wir betrachten in Zukunft den Fall ||b|| =) > €, d. h. Konvektion dominiert gegeniiber
Diffusion.
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Kapitel 5

Stabile und gleichméflig konvergente
Verfahren

5.1 M-Matrizen

Definition 5.1.1 (Natiirliche Ordnung von Vektoren und Matrizen) [4, p. 24]
Seien z,y € R". Es gilt

r<y & g yfirallei=1,... n

Analog gilt x > 1, falls z; > 1 fiir allei = 1,...,n.
Fiir eine Matrix A = (a;;) € R™*" gilt

A>0 & ay>0firalled,j=1,...,n.

Definition 5.1.2 (Invers-monotone Matrix) [4, p. 24]
Eine Matrix A heifit invers—monoton, falls A~! existiert und

A7t > 0.

Lemma 5.1.3 (Diskretes Vergleichsprinzip) |4, p. 24]
Sei A € R™™ invers—monoton. Dann gilt fiir beliebige Vektoren v, w € R"™:

Av< Aw = v<w.

Beweis.
Av < Aw = Alv —w) <0

—1

Lov—w=A A —w)) <0

A ist invers-monoton. Daraus folgt
v < w.

Definition 5.1.4 (M-Matrix) |10, p. 45]
Eine quadratische Matrix A = (A4;;) wird M-Matrix genannt, falls

1. A;; <0 fiir alle 7 # j und

2. A1 existiert mit A=t > 0.
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Die zweite Bedingung fiir eine M-Matrix - dass A™! existiert mit (A™');; > 0 fiir alle ¢
und j - ist in der Praxis nicht leicht zu {iberpriifen. Man nutzt daher alternative Kriterien,
die leichter verifizierbar sind.

Definition 5.1.5 (Strikte Diagonaldominanz) [10, p. 45]
Eine quadratische Matrix A = (A;;) heifit strikt diagonaldominant, wenn fiir alle 7 gilt:

J#i
Lemma 5.1.6 [10, p. 45]
Sei A = (A;;) eine quadratische Matrix, fiir die gilt:

A;; <0 fir alle ¢ # 5.
Sei A zudem strikt diagonaldominant. Damit erfiillen alle Diagonaleintriage
A;; > 0.
Dann existiert A~! und es gilt
(A1) >0 fiir alle 4, 5.

Satz 5.1.7 (M-Matrix-Kriterium) [4, p. 24]
Sei A = (aij) € R™™ mit
Dann ist A genau dann eine M-Matrix, wenn ein Vektor

weR" w>0,

existiert, so dass
Aw > 0.

In diesem Fall gilt fiir die Zeilensummennorm

N ] |
471 < ZETh (51)

Der Vektor w wird majorisierendes Element genannt.

Bemerkung 5.1.8 (Zum M-Matrix-Kriterium) [1, p. 502-503]

Es sei eine Familie von Finite-Differenzen-Gittern iiber einem Gebiet 2 mit Gitterpara-
metern h > 0 gegeben, wobei h — 0 gelte. Angenommen, es existiere ein H > 0, so dass
das zugehorige Finite-Differenzen-Verfahren fiir alle h < H zu einer M-Matrix A fiihrt.
Fiir jedes h < H sei wy, € R" ein majorisierendes Element, d. h.

wyp, >0 und Aw, > 0.
Dann ist das Finite-Differenzen-Verfahren fiir alle h < H stabil und es gilt

Cs < sup _Mwnlloon (5.2)

he(0,H] jflli?,n(flwh)j ’

)

sofern der Ausdruck auf der rechten Seite endlich ist.
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Beweis. Der Beweis folgt Barrenechea, John und Knobloch [1]. []

Lemma 5.1.9 (Stabilitit des zentralen Differenzenschemas fiir hinreichend fei-
ne Gitter) [4, p. 25]

Fiir ¢ = 1 und hinreichend kleine Gitterweiten h ist das zentrale Differenzenschema [3.5] fiir
das Randwertproblem (3.2)), in der diskreten Maximumsnorm stabil. Die zugehérige

Koeflizientenmatrix ist eine M—Matrix.

Lemma 5.1.10 (Diskretes Maximumprinzip) [10, p. 46]
Sei A eine M-Matrix. Gilt fiir einen Vektor w € R”

Aw > 0,

so folgt daraus
w > 0.

Beweis. Da A eine M-Matrix ist, existiert A™! und es gilt A=! > 0. Damit folgt
w= A" (Aw) >0,
da sowohl A= > 0 als auch Aw > 0. O

Lemma 5.1.11 (Diskrete Barrierefunktion) [10, p. 46]
Sei A eine M-Matrix. Wenn w, z Vektoren sind mit

|Aw| < Az,

dann gilt
lw| < z.

Beweis. Sei A eine M-Matrix und |Aw| < Az,
= —Az < Aw < Az.
Daraus ergeben sich folgende Gleichungen:
Az —Aw >0 und Az+ Aw > 0.

Wir nutzen Lemma [5.1.10

° A(z—w):Az—AwZ()@z—wEOéwgz.

o A(z4+w) = Az + Aw 20@z+w20:> —w < z.
Aus beiden Ungleichungen folgt dann

lw| < z.
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5.2 Upwind-Verfahren

Bemerkung 5.2.1 (Motivation) [10, p. 45-47]

Wir betrachten nun, ob die Matrix

1 0
g hi g1 :
0 g2 ha Jo

A= 0 0 gs
. . 0

gn—1 hn—1 JNn-1
0 1

aus (3.7) das M-Matrix-Kriterium erfiillt, wobei
h
gi=—1— 55(%)7
hz‘ =2 + hQO'(QZZ‘),

h
Ji = =1+ 5blxi)

gilt. Dazu priifen wir die Bedingung A;; < 0 fiir alle ¢ # j.
Es miissen also die beiden Nebendiagonalen mit Eintragen ungleich 0 gepriift werden:

e Nebendiagonale g; = —1 — 2b(z;) < 0 fiir alle ¢, wenn h > 0 und b(z;) > 0, was fiir
die Standard-Konvektions-Diffusionsgleichung oft gilt. — Die linke Nebendiagonale
erfiillt das M-Matrix-Kriterium.

e Nebendiagonale j; = —1 + 2b(x;) > 0, falls 2b(z;) > 1. Die rechte Nebendiagonale
konnte also positiv sein — Problem fiir das M-Matrix-Kriterium.

Dieses positive Vorzeichen auf der rechten Nebendiagonale stammt aus der zentralen Dif-
ferenz

ooy u(@+h) —u(r—h)
u'(x) ~ o :

Um dieses Problem zu l6sen, fiihren wir das Upwind-Verfahren ein.

Bemerkung 5.2.2 [4, p. 26]
Wir betrachten ab jetzt Finite-Differenzen-Verfahren fiir das Randwertproblem

Lu := —eu” + b(2)u' + o(z)u = f(z) fir z € (0,1), (5.3)
mit den Randbedingungen
u(0) = u(1) =0, (5.4)
unter den Voraussetzungen
e >0,

b(z) # 0 fiir alle z € [0, 1],
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o(z) > 0 fir alle z € [0, 1],

wobei die Funktionen b(x), o(x) und f(z) hinreichend glatt seien.
GeméB [10, p. 47] wollen wir nun statt der zentralen Differenz die einseitige Differenz
nutzen:

U; — Uj—1 g
Gim Wil o A= —= <.
L 4,041 h2 =

Damit bleiben alle Nebendiagonal-Eintrage nichtpositiv, was mit dem M-Matrix-Kriterium
vertraglich ist.

U (z;) &

Definition 5.2.3 (Einfaches Upwind-Verfahren) [4, p. 28]
Das einfache Upwind-Verfahren fiir das singulédr gestorte Randwertproblem (/5.3), (5.4))
besitzt die Form

—5(‘9+(‘9_ui + blaNUZ —+ o;u; = f,', 1= 1, ce ,N — 1, (55)

mit Randbedingungen
up = uy =0,

wobei

I ot, fallsb <0,
"o, falsb>o.

Lemma 5.2.4 |9, p. 48]
Die Koeffizientenmatrix L; des einfachen Upwind-Schemas ist eine M-Matrix, und das
Schema ist gleichméflig stabil in Bezug auf den Storparameter. Es gilt

unlloon < CsllLntnlloo,n,
wobei die Stabilitdtskonstante C's unabhéngig von € und h ist.
Beweis. Der Beweis folgt [9, p. 49]. O

Beispiel 5.2.5
Wir vergleichen nun die exakte Losung mit der Losung des zentralen Differenzenschemas
und der Losung des Upwind-Verfahrens. Dazu betrachten wir wieder die Differentialglei-
chung

—eu(z) +u'(z) =0 (5.6)

fir z € (0,1), mit w(0) = 0,u(1) = 1 aus Beispiel mit bekannter Losung

Wir implementieren nun die exakte Losung und die beiden Ndherungslosungen in Python:
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Lemma 5.2.6 (Abschitzung der Norm der Lésung und ihrer Ableitungen) [9,
p. 21]
Seien b(z) > > 0 und b(z), o(z), f(z) hinreichend glatt. Dann erfiillt die Losung u(x)

des Problems ((5.3)), (5.4
. . 1-—
‘u(l)(ﬂv)’SC(leeZexp(—ﬁ(—x))>, 1=1,2,....,q,

€
fiir alle € [0, 1]. Die maximale Ordnung ¢ héngt von der Glattheit der Daten ab.
Beweis. Der Beweis folgt [9, p. 21] O

Satz 5.2.7 (Konsistenz des einfachen Upwind-Verfahrens) [4, p. 30]

Unter den Voraussetzungen von Bemerkung mit b(x) > 0 und b(z) > B > 0 existiert
eine positive Konstante %, sodass fiir den Fehler des einfachen Upwind-Verfahrens
in den inneren Gitterpunkten {z; :i=1,..., N — 1}

Ch (1 +elexp (—M>) , falls h < e,

E
u(;) — ug) <

Ch+ Cexp (—M) , falls h > €,

gilt.

Korollar 5.2.8 (Konvergenz des einfachen Upwind-Verfahrens auflerhalb von
Grenzschichten) [4, p. 31]

Unter den Voraussetzungen von Lemma und Satz konvergiert das einfache
Upwind-Verfahren auf dem Intervall [0, 1 — ¢] fiir ein festes 6 > 0 von erster Ordnung.
Dabei ist die Konvergenzkonstante unabhéngig von ¢.

Bemerkung 5.2.9 (Fehlerverhalten beim Upwind-Verfahren) [10, p. 53]

Das in Satz beschriebene Verhalten des einfachen Upwind-Verfahrens kann in nu-
merischen Experimenten zu unerwarteten Ergebnissen fithren.

Wird ein dquidistantes Gitter mit h > e verwendet, liegen alle Knotenpunkte x; € (0, 1)
auBerhalb der Grenzschicht, und die Naherung zeigt eine hohe Genauigkeit. Bei sukzes-
siver Verfeinerung des Gitters wandern zunehmend Punkte in die Grenzschicht, wo die
Néherung nur eine Genauigkeit von Ordnung O(1) hat. Der maximale Knotenfehler in
der diskreten Maximumsnorm kann sich also bei weiterer Gitterverfeinerung vergréfiern.
Wir betrachten dieses Ph&nomen in einigen Beispielen genauer.

Beispiel 5.2.10 (Vergleich: Upwind- und Zentraldifferenzenverfahren)

Wir betrachten das Randwertproblem
—eu"(x) +u'(x) =0, z € (0,1), u(0)=0, u(l) =1,
aus Beispiel mit der Losung
e”lf — 1
u(z) = YA

Fiir kleine € > 0 besitzt u eine starke Grenzschicht bei z = 1.
Wir diskretisieren das Problem auf einem dquidistanten Gitter mit N Teilintervallen (h =
1/N) mithilfe von
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(a) dem einfachen Upwind-Verfahren

St — 2u; + ui

(b) dem Zentraldifferenzenverfahren

=0
h? h ’
Uip1 — 2U; + Uj—1  Ujp1 — Uiy
_ —0
© B2 2h ’

unter den Randbedingungen uy = 0, uy = 1.

Numerische Ergebnisse fiir ¢ = 1073
Wir bestimmen den maximalen Fehler

Eo = max |u(z;) — w.
K3

Die in den folgenden Tabellen angegebenen Werte fiir A und E,, wurden (jeweils in der

Mantisse) auf zwei Dezimalstellen gerundet.

(a) Einfaches Upwind-Verfahren:

N

h=1/N

Eo

20
40
30
160
320
640

5.00 x 1072
2.50 x 1072
1.25 x 1072
6.25 x 1073
3.13 x 1073
1.56 x 1073

(b) Zentraldifferenzenverfahren:

N

h=1/N

1.96 x 1072
3.85 x 1072
7.41 x 1072
1.36 x 107!
1.98 x 107!
1.81 x 107!

Eos

20
40
80
160
320
640

5.00 x 1072
2.50 x 1072
1.25 x 1072
6.25 x 1073
3.13 x 1073
1.56 x 1073
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Abbildung 5.2: Fehlerverhalten: Upwind vs. Zentraldifferenzen (¢ = 1073).

Interpretation
Die Ergebnisse zeigen, dass das einfache Upwind-Verfahren numerisch stabil ist. Allerdings
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hat es auch bei feinem Gitter einen Fehler in der Gréfienordnung 1071, Das Zentraldiffe-
renzenverfahren liefert deutlich groflere Fehler.

Bemerkung 5.2.11 (Interpretation des Upwind-Verfahrens als kiinstliche Dif-
fusion) [4, p. 32-33]

Singuldr gestorte Konvektions-Diffusions-Probleme sind numerisch schwierig zu 16sen, da
die Diffusion ¢ sich oft um mehrere GroBenordnungen von der Konvektion unterscheidet.
Das fiihrt zu diinnen Grenzschichten. Das Verhalten des Upwind-Verfahrens lédsst sich
dabei als Einfithrung einer kiinstlichen Diffusion verstehen.

Fiir b > 0 gilt:

T Uio1 g Uikl —Uic1 o Uil — 2u; + iy
p— l - ,i .

h 2h 2h
Damit kann das einfache Upwind-Verfahren (5.5)) in der Form

b;h )
— (s + 5 ) 00" u; + b;0%; + cu; = fi, i=1,...,N—1, (5.7)

mit den Randwerten ug = uy = 0 geschrieben werden.

Wie in Roos, Stynes und Tobiska [9, p. 52] beschrieben, kann das einfache Upwind-
Verfahren als zentrales Differenzenverfahren interpretiert werden, bei dem der Diffusions-

koeffizient von € zu
b;h

2
geéindert wurde. Fiir ¢ > %" ist die dominante Diffusion weiterhin O(e), wéhrend fiir
e < Y die kiinstliche Diffusion O(b;h) iiberwiegt.
Dieses Verhalten in (5.7) wird als kiinstliche Diffusion oder kiinstliche Viskositét bezeich-

net. Die Grundidee dieser Methode besteht darin, durch Hinzufiigen eines kiinstlichen
Diffusionsterms die numerische Losung zu stabilisieren.

E=¢€+

Eine zu grofe kiinstliche Diffusion hat einen Nebeneffekt: die Grenzschichten der Losung
werden ,,verschmiert“, d.h. sie erscheinen breiter als in der exakten Losung, da die Schicht-
breite direkt vom Diffusionskoeffizienten abhéangt

Wir definieren im Folgenden die kiinstliche Diffusion direkt.

Definition 5.2.12 (Verfahren mit kiinstlicher Diffusion) |9, p. 52]
Wir definieren ein Finite-Differenzen-Verfahren mit kiinstlicher Diffusion durch

—e p(q(x;)) 0T 0wy + b;0°u; + ogu; = fi, i=1,...,N—1, (5.8)
mit den Randbedingungen
up = uy = 0. (5.9)
Es gilt
b(x)h
= . 1
o) := 12 (5.10)

Dabei wird p Fitting-Faktor genannt.

Dieses Verfahren wird auch angepasstes Upwind-Verfahren genannt.
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Bemerkung 5.2.13 |9, p. 52]
Fiir p(q) = 1+ ¢ erhélt man das einfache Upwind-Verfahren. Wir wollen nun untersuchen,
welche Wahl von p gute Upwind-Verfahren liefert.

Satz 5.2.14 (Stabilitit des angepassten Upwind-Verfahrens) [9, p. 52]
Seien
b(x) > >0, >0, und p(q) >q.

Dann gilt:

1. Die Koeflizientenmatrix des angepassten Upwind-Verfahrens ist eine
M-Matrix.

2. Das Verfahren ist stabil in der diskreten Maximumsnorm.

3. Die Stabilitdtskonstante hangt nicht von € ab.

Satz 5.2.15 (Konsistenz des angepassten Upwind-Verfahrens) [4, p. 34]
Seien die Voraussetzungen von Satz [5.2.14] erfiillt, sei u € C*([0,1]) und es gelte

Ip(q) — 1| < min{q, M¢*}

fiir eine Konstante M > 0.
Dann ist der Konsistenzfehler des Verfahrens mit kiinstlicher Diffusion [5.8] fur

festes € von zweiter Ordnung.

Beweis. Der Beweis folgt John [4]. O

5.3 Gleichmiflig konvergente Verfahren

Bemerkung 5.3.1 (Motivation) [4, p. 36]

Wir wollen nun Verfahren entwickeln, die im gesamten Intervall [0, 1] gleichméBig konver-
gieren, auch innerhalb der Grenzschicht.

Wir betrachten dazu die folgenden beiden Methoden:

e Verfahren durch eine geeignete Wahl der kiinstlichen Diffusion p(g) in (5.8)),
e Verfahren durch die Wahl geeigneter Gitter.

Bei sehr kleiner Diffusion miissen numerische Verfahren trotzdem zuverlissig bleiben. Das
ist schwierig, weil sich beim Grenziibergang ¢ — 0 die Ordnung der Differentialgleichung
und damit die Anzahl der nétigen Randbedingungen &ndern.

Definition 5.3.2 (GleichméfBlig konvergentes Differenzenschema) [4, p. 36|
Ein Verfahren zur Losung von (5.3), heiBt gleichmiBig konvergent von der Ordnung
p > 0 beziiglich € in der diskreten Maximumsnorm, wenn es eine Konstante C' unabhéngig
von ¢ gibt, sodass

lu = unl[co,a < CHP

gilt.
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5.3.1 Geeignete kiinstliche Diffusion

Bemerkung 5.3.3
Wir wollen nun eine geeignete kiinstliche Diffusion p(q) wihlen. Dazu betrachten wir die
Losung von (5.3)), (5.4) fiir ¢ — 0. Wir nutzen das reduzierte Problem (vgl. Definiti-

Lemma 5.3.4 (Konvergenz gegen reduzierte Losung) |4, p. 36]

Sei u(z, ) die Losung von (5.3), (5.4), wobei b(z) > 3 > 0 und o(z) > 0 gelte. Sei uo(z)
die Losung des reduzierten Problems.

Dann gilt fiir alle x € [0, zo) mit z < 1:

ll_r)% u(z,€) = up(x).

Beweis. Der Beweis folgt John [4]. O

Lemma 5.3.5 [4, p. 37]
Unter den Voraussetzungen von Lemma [5.3.4] existiert eine von x und e unabhéngige
Konstante C' > 0, so dass fiir die Losung von (j5.3)), (5.4) gilt:

u(z, ) — <u0(3:) ~up(1) exp (_WM <Ce  aelo1].

Bemerkung 5.3.6 (Notwendige Bedingung fiir eine geeignete kiinstliche Diffu-
sion p(q)) [4, p. 37]

Seien p* := h/e und i fest. Das bedeutet, dass fiir h — 0 auch € — 0 gilt. Ziel ist es, unter
diesen Bedingungen eine geeignete Funktion p(q) zu bestimmen.

Aus Lemma folgt fir e — 0 (wenn h — 0):

h—0 h—0 £

lim u(1 — ¢h) = lim [uo(l —ih) — ug(1 —ih) exp( b(1)(1—(1— zh))>]

up(1) — up(1 )lir%exp(—@)

)
= u0<1>(1 — exp(—ib(1)p"))
= up(1)(1 — exp(—2ig(1))). (5.11)

Das angepasste Upwind-Verfahren hat die Form

Uip1 — 2U; + Uiy Uir1 — Ui
—ep(a(b) =3 + b= = i o,

oder nach Erweiterung mit h?/e:
—p(q(bi)) (wis = 2ui + 1) + q(bi) (wirs — wiz1) = hp*(fi — oiw;).
Fiir den rechten Rand (i = N — 1) gilt:
}lg% ( — plan-1)(uy —2un_1 +uy_2) + qnv_1(uy — UN—z)) =0.

Einsetzen von (5.11)) (mit ¢ € {0,1,2}) und der Annahme wuy(1) # 0) ergibt:

0= —p(q(1))(— e +2e721) — 1MW) 4 g(1)( — e* 4 e~4W).
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-1 —A4x —2r 1 —2z 1 1 —2x T —x
+e :(e )(e = + ): fe ™ _e'te _ coth(z)
-1+ Ye—2r _ -4z _(e—Za: _ 1)2 1 —e2 e — o~
folgt
1 — %)

PlaD)) = a5 = o aam — 2(1) coth(g(1)).

Eine passende Wahl, die diesen Grenzwert erfiillt, ist daher

p(q) = q coth(q).

Diese Funktion erfiillt auch die Bedingungen fiir die Konsistenz von Verfahren mit kiinstlicher
Diffusion gemé&fl Satz |5.2.15]

Fiir kleine Werte von ¢ gilt p(q) ~ 1, sodass in diesem Bereich keine zusétzliche Diffusion
eingebracht wird. Fiir groe Werte von ¢ gilt ndherungsweise p(q) ~ ¢. Dadurch wird
der Diffusionsterm im Differenzenschema verstéirkt.Auf diese Weise wird die kiinstliche
Diffusion nur dort eingesetzt, wo sie fiir die numerische Stabilitét erforderlich ist.

Die folgende Abbildung zeigt das Verhalten der kiinstlichen Diffusion p(q) = ¢ coth(q) im
Vergleich zum Upwind-Verfahren mit p(q) =1+ q.

Asymptotisches Verhalten der kinstlichen Diffusion p(q)

1l p(g) = g coth(q) 1
Asymptotik: p(q) ~q s
107 . g«1: 1+“:!3—2 jne
g4 —— Vergleich: p(q)=1+q ,/’
G
Q 61
4
2_
0,
0 1 2 3 4 5 6
q

Abbildung 5.3: Kiinstliche Diffusion

Theorem 5.3.7 (Zwei notwendige Bedingungen fiir gleichméflige Konvergenz
auf einem #Aquidistanten Gitter) [10, p. 56]

Angenommen, wir haben ein dquidistantes Gitter mit Schrittweite h = 1/N fiir eine
positive ganze Zahl N. Wir nehmen an, dass ein Differenzenschema fiir das Problem

—eu” +au=f, u(0)=go, u(l)= gy, mit positiver Konstante a,
in folgender Form geschrieben werden kann:
Q_U,i_l + HQUZ' + 9+Ui+1 = hfz, 1= ]_, ey N — 1, (512&)
Ug = Go, UN = 1. (5.12b)
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Dabei héngt jedes 8 = 0(h,€) nur vom Verhéltnis h/e ab. Falls das Schema fiir ein 5 > 0
gleichméBig konvergent ist, so gilt:

0_+0y+60,.=0 und e MeO_ 40, + ™0, = 0. (5.13)
Beweis. Der Beweis folgt Stynes und Stynes [10, p. 56-57]. O

Beispiel 5.3.8 (Das II’in—Allen—Southwell-Differenzschema) [4, p. 38]
Das Verfahren

h h
—§b2 coth(';—gbi))@Jr@_ui + b,;@ou,- + ou; = fz', 1= 1,...,N— 1,

mit Randbedingungen
U =uy =0

wird II'in-Verfahren bzw. II'in-Allen-Southwell-Verfahren genannt.

Theorem 5.3.9 (Uniforme Konvergenz des II’in-Allen-Southwell-Schemas) [9,
p. 60

Sei b(x) > > 0. Dann ist das II'in-Allen-Southwell-Schema gleichméfig konvergent von
erster Ordnung in der diskreten Maximums-Norm:

llu — upllood < Ch.
Beweis. Der Beweis folgt Theorem 11.34 aus [1, p. 535]. O

Bemerkung 5.3.10 |9, p. 61]
Falls o(z) = 0 und b(z) sowie f(x) konstant sind, ist das Il'in-Allen-Southwell-Schema
exakt, d.h. u; = u(x;) fir alle i.

Bemerkung 5.3.11 [9, p. 60]
Eine Untersuchung des Verhaltens des II'in-Allen-Southwell-Schemas bei Anwendung auf
das Beispiel

—eu’ +u' =z, u(0)=u(l)=0,

zeigt, dass auflerhalb der Randschicht die Ordnung der gleichméfiigen Konvergenz nur
eins ist.

Beispiel 5.3.12 (Vergleich von Upwind-, Zentral- und Il’in- Allen-Southwell-Verfahren)

Dieses Beispiel wird in Anlehnung an [4, p. 39] betrachtet. Gegeben ist das Randwertpro-
blem
—eu"(z) + /() =1 auf (0,1), u(0) = u(1) =0,

mit € = 1073, Wir betrachten nun wieder den Fehler

Eo = max |u(z;) — u4].
(2
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N h=1/N Einf. Upwind Zentral IAS

2 0.50000 0.00199 124.50000 0.0
4 0.25000 0.00398  31.00400 0.0
8 0.12500 0.00794 7.71502 0.0
16 0.06250 0.01575 2.02352 0.0
20 0.05000 0.01961 1.40904 1.11 x 1016
40 0.02500 0.03846 0.85489 4.11 x 10715
80  0.01250 0.07407 0.72414 1.11 x 10716
160 0.00625 0.13600 0.51708 2.22 x 10716
320 0.00313 0.19849 0.26345 2.89 x 10715
640 0.00156 0.18063 0.08680 5.20 x 10714
.
101 S T
."""-——i-—-——l——--....___,__
10—2 . M’F—'
_5_ .
10 —e— Upwind
LLEI -w- Zentral
10781 --&  |I'in--Allen--Southwell
10—11 _
FF‘.
—-14 |
10 e Y o
..l : PRIRCTILIY ra
1071 102

h=1/N

Abbildung 5.4: Fehler E, fiir ¢ = 1073,

Man kann erkennen, dass das Il'in-Allen—Southwell-Verfahren die geringsten Fehler auf-
weist und fiir groe Schrittweiten exakte Ergebnisse in den Knoten liefert.

5.3.2 Shishkin-Gitter

Bemerkung 5.3.13 [10, p. 60]
Zur numerischen Losung von Konvektions—Diffusionsproblemen kann anstelle eines dquidistanten
Gitters ein Gitter verwendet werden, das die Gitterpunkte in der Grenzschicht bei x = 1
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verdichtet. Wir betrachten das Problem ({2.1)) und setzen

2
T :min{%, —glnN}.
o

Da der Fall 7 = % nur auftritt, wenn N im Verhéltnis zu € exponentiell grof3 ist und daher
in der Praxis kaum vorkommt, setzt man gewdhnlich

7T=—InN.
«Q

Der Ubergangspunkt des Shishkin-Gitters, welcher den groben vom feinen Gitterbereich
trennt, ist somit 1 — 7 und liegt typischerweise nahe bei 1. Fiir eine gerade Zahl N
unterteilt man sowohl das Intervall [0, 1 — 7] als auch das Intervall [1 — 7, 1] jeweils in N/2
dquidistante Teilintervalle.
Der grobe Teil des Shishkin-Gitters hat Schrittweite
2(1—-1)
H . T,

woraus aufgrund 0 < 7 < % folgt, dass
N < H <2N %

Im feinen Teil ist die Schrittweite

27
N a N’
so dass h < ¢ gilt. Die Gitterpunkte sind damit

é In N

B _
x; = iH, i=0,....,%
fiir den groben Bereich, sowie
z;=1— (N —1i)h, i=%4+1,...,N
fiir den feinen Bereich. Wir setzen fiir alle ¢
hi =x; — x;_1.

Satz 5.3.14 (Shishkin-Zerlegung von u) [10, p. 40]
Sei ¢ eine positive ganze Zahl und sei v die Losung von (2.1). Wir nehmen an, dass die
Funktionen o, b und f hinreichend glatt sind. Dann existiert eine Zerlegung

u=5+F,
sodass

1SV || < C, (5.14)
|[ED(z)| < Cedeea/e 0<z <1, (5.15)

fir 0 < j < ¢, wobei die Konstante C' = C(q) ist und @ > 0 eine von ¢ unabhingige
Konstante darstellt. Zusétzlich gilt

LS(z)=f(z) und LE(z)=0 fuir0<z<I1.
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Beweis. Der Beweis folgt Stynes und Stynes [10].

Bemerkung 5.3.15 (Upwind-Verfahren auf dem Shishkin-Gitter) [10, p. 61]

Wir analysieren nun das einfache Upwind-Verfahren auf einem Shishkin-Gitter.
Fiir jede Gitterfunktion v, = (vg,...,vy)" definieren wir:
— Vi — Vi1 2
O v =—"""= vy=-—""
' h; " hi+hia
Das ist eine Standard-Diskretisierung von v/ (x;) auf einem nicht-dquidistanten Gitter.
Unser einfaches Upwind-Differenzenschema lautet:

(8_vi+1 — 8_2)1') .

—652ui+ai8_ui+biui :fz'7 1= 1,...,N— 1, (516)

up = uy = 0. (5.17)

Die zugehorige Matrix Ly ist eine M-Matrix.
Wir zerlegen die exakte Losung v nach Satz [5.3.14;

u=S+F.

Analog zerlegen wir die diskrete Losung w; in

wobei
LyE;=(LE); =0, i=1,...,N—1, Ey=EFE(0), Eyx=EQ). (5.19)

Der Gesamtfehler lasst sich aufteilen:
[u(r;) — wi| = [(S + E)(w:) — (Si + Ei)| < |S(2) — S| + |E(z:) — Eil.

Lemma 5.3.16 [10, p. 61]
Es existiert eine Konstante Cj so, dass

|S(£L‘Z) _Sz| S C()N_l fir i = 0,...,N.
Beweis. Der Beweis folgt Stynes und Stynes [10].

Lemma 5.3.17 |10, p. 63]
Es existiert eine Konstante C' derart, dass

|E;| <CN™' firi=0,...,

.e

Beweis. Der Beweis folgt Stynes und Stynes [10].

Korollar 5.3.18 [10, p. 63]
Es existiert eine Konstante C' so, dass

N
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Beweis. Der Beweis folgt Stynes und Stynes [10]. O

Lemma 5.3.19 |10, p. 64]
Es existiert eine Konstante C' so, dass

N
|E(z;) — B <CN 'InN fiiri= E—i—l,...,N.
Beweis. Der Beweis folgt Stynes und Stynes [10]. O

Theorem 5.3.20 (Gleichmiflige Konvergenz des einfachen Upwind-Verfahrens
auf einem Shishkin-Gitter) |10, p. 64]

Es existiert eine Konstante C, so dass fiir die Losung des einfachen Upwind-Verfahrens
auf einem Shishkin-Gitter gilt:

lu(zi) = Uillooa <CN'InN fiiri=0,...,N.
Beweis. Der Beweis folgt Stynes und Stynes [10]. O

Bemerkung 5.3.21 [10, p. 65]

Die genaue Wahl des Ubergangspunktes 1 — 7 im Shishkin-Gitter ist aus theoretischer und
aus numerischer Sicht von Bedeutung. Eine Betrachtung des Beweises von Theorem [5.3.20]
zeigt, dass 7 die Form

T = gsgb(N)

haben sollte, wobei ¢(N) — oo und N~'¢(N) — 0 fiir N — oo gilt, und k eine Konstante
ist. Die einfachste Wahl fiir ¢(NV) ist In V.

Bemerkung 5.3.22 |10, p. 65]
Fiir das Zentrale-Differenzen-Verfahren auf einem Shishkin-Gitter geniigt die berechnete
Losung u; der Abschétzung

lu(r;) —u) < CN?(InN)* fiir alle i.

Der Beweis erfordert Geschicklichkeit, da die zugehorige Matrix keine M-Matrix ist und
das Verfahren kein diskretes Maximumprinzip erfiillt.

Beispiel 5.3.23 (Numerisches Beispiel zum einfachen Upwind-Verfahren auf
einem Shishkin-Gitter)
Wir betrachten das Randwertproblem

—eu"(x) +u'(x) =0, z € (0,1), (5.20)
mit den Randbedingungen
u(0) =0, u(l) = 1. (5.21)
Fiir ¢ = 1072 ist die exakte Losung gegeben durch
x/e _ 1
e
u(®) = (5.22)

und besitzt bei x = 1 eine Grenzschicht.

Zur numerischen Losung von (5.20)—(5.21]) nutzen wir das einfache Upwind-Verfahren.
Dabei werden zwei unterschiedliche Gitter betrachtet:
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e cin dquidistantes Gitter mit Schrittweite h = 1/N,
e cin Shishkin-Gitter mit .
T = min{a, 251nN}

und Ubergangspunkt

r=1-—71
Die zugehorigen Schrittweiten sind
2(1 — 2
H= (NT) und h =22
Der Fehler
Eo = max|u(z;) — ul. (5.23)

wird in der diskreten Maximmumsnorm fiir verschiedene Werte von N berechnet.

Zusétzlich wird die numerische Losung in einem vergroferten Ausschnitt nahe der Grenz-
schicht bei x = 1 dargestellt.

N T E (uniform) FE. (Shishkin)
8 4.16-1072 7.41-1072 1.61-1071
16 5.55-1072 1.36-1071 1.06 - 1071
32 6.93-1072 1.98-1071 6.84 - 1072
64 8.32-1072 1.81-107¢ 4.35-1072
128 9.70-107%  1.06-10"" 2.63- 1072
256 1.11-1071 6.21-1072 1.54-1072
512 1.25-1071 3.32-1072 8.79-1073
1024 1.39-107! 1.73-1072 4.93-1073

Tabelle 5.1: Maximaler Fehler E,, fiir das Upwind-Verfahren auf aquidistantem und
Shishkin-Gitter (¢ = 1072).

Grenzschicht-Zoom bei x=1 (¢ =0.01, N =256)

L0 —— exakt
Upwind (uniform)
0.87 .. Upwind (Shishkin)
__0.61
Lo
S
0.4 1
0.2
L e O B S

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
X

Abbildung 5.5: Zoom der Losung in die Grenzschicht bei z = 1 fiir e = 1072 und N = 256.
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Maximaler Fehler E,.(N) (¢ =0.01)

”’,—0--—___.\\\ —e- E, (uniform)
~o —o— F (Shishkin)

P e ~

10714 5 -

10—2-

101 102 103
N

Abbildung 5.6: Zoom der Losung in die Grenzschicht bei z = 1 fiir e = 1072 und N = 256.

Man kann erkennen, dass der maximale Fehler E, auf dem Shishkin-Gitter fiir wachsendes
N deutlich geringer ist als auf dem &dquidistanten Gitter.
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Kapitel 6

Ausblick

Die Ergebnisse in dieser Arbeit zeigen die Schwierigkeiten der numerischen Lésung von
konvektionsdominanten Randwertproblemen auf. Fiir kleine Diffusionsparameter ¢ treten
ausgeprigte Grenzschichten auf, in denen sich die Losung auf sehr kurzen Intervallen stark
andert, wihrend sie auflerhalb dieser Bereiche glatt verlauft. Dadurch erhalten wir mit
Zentralen-Differenzen-Verfahren auf dquidistanten Gittern héufig keine zufriedenstellen-
den Resultate.

Das Upwind-Verfahren, das eine zugehorige M-Matrix besitzt, erweist sich als stabil, lie-
fert aber zu ungenaue Werte, da es eine Konsistenzordnung von 1 hat. Die Grenzschichten
werden verschmiert.

Weitere Untersuchungen haben gezeigt, dass durch kiinstliche Diffusion (hier durch das
II'in-Allen-Southwell-Schema) sehr genaue Werte erzielt werden kénnen.

Shishkin-Gitter bieten hierfiir eine andere Moglichkeit und erlauben es, eine gleichméflige
Konvergenz zu erhalten.

Als Weiterfithrung bieten sich Untersuchungen zu Verfahren hoherer Ordnung an. Hier
kann man betrachten, inwiefern sich die hier vorgestellten Konzepte auf hoherdimensionale
Probleme iibertragen lassen.

Dariiber hinaus stellt die Finite-Elemente-Methode (FEM) einen weiteren Ansatz zur
Losung konvektionsdominanter Randwertprobleme dar. Durch geeignete Verfahren kénnen
numerische Oszillationen reduziert und Grenzschichten zuverldssiger abgebildet werden.
Insgesamt verdeutlicht diese Arbeit, dass eine Kombination des analytischen Verhaltens
der Losung, stabiler Diskretisierung und geeigneter Gitter- und Diffusionswahl wesentlich
fiir eine zuverldssige numerische Losung konvektionsdominanter Probleme ist.
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Anhang A
Quellcode (Python)

Python-Code zur Erzeugung von Abbildungen 2.1/ und

2.2

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.size'] = 18

plt.rcParams['axes.titlesize'] = 18
plt.rcParams['axes.labelsize'] = 18
plt.rcParams['xtick.labelsize'] = 16
plt.rcParams['ytick.labelsize'] = 16

plt.rcParams['legend.fontsize'] = 16

def u_exact(x, eps): return x - (np.exp(-(1-x)/eps) - np.exp(-1/eps)) / (1 -
< np.exp(-1/eps))

def u_asym(x, eps): return x - np.exp(-(1-x)/eps)

x = np.linspace(0, 1, 1200)
eps_list = [0.2, 0.1, 0.05]
plt.figure(figsize=(9, 5.5))
for eps in eps_list:
plt.plot(x, u_exact(x, eps), label=f"exakt, ={eps:g}")
plt.plot(x, u_asym(x, eps), linestyle="--", label=f"asympt., ={eps:g}")

plt.xlabel("x")

plt.ylabel("u(x)")

plt.title("Exakte vs. asymptotische Ldsung")
plt.legend ()

plt.tight_layout()

plt.show()

plt.figure(figsize=(9, 5.5))
for eps in eps_list:
error = np.abs(u_exact(x, eps) - u_asym(x, eps))
plt.semilogy(x, error, label=f"={eps:g}")
plt.xlabel("x")
plt.ylabel(r"$|u_{\mathrm{exakt}} - u_{\mathrm{as}}|$")
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plt.title("Fehler der asymptotischen L&sung")
plt.legend ()

plt.tight_layout ()

plt.show()

Python-Code zur Erzeugung von Abbildungen 3.2],(3.3],
3.4 und Tabelle 3.1

import numpy as np
from scipy.linalg import solve
import matplotlib.pyplot as plt

plt.rcParams.update ({
"font.size": 14,
"axes.labelsize": 14,
"xtick.labelsize": 12,
"ytick.labelsize": 12,
"legend.fontsize": 12,
"figure.figsize": (7, 4),
"savefig.dpi": 300

b

def b_func(x):
return 0.0

def sigma_func(x):
return 0.0

def f_func(x):
#-u'' = f
return np.pi**2 * np.sin(op.pi * x)

def u_exact(x):
return np.sin(np.pi * x)

N_values = [4, 8, 16]
for N in N_values:

h=1.0/N
X = np.linspace(0.0, 1.0, N+1) #Gitterpunkte

A = np.zeros((N+1, N+1))
rhs = np.zeros(N+1)

#Randbedingungen
Af0, 0] = 1.0
A[N, N] = 1.0
rhs[0] = 0.0
rhs[N] = 0.0
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64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

for i in range(l, N):
bi = b_func(x[i])
sigma_i = sigma_func(x[i])

-1.0 - 0.5 * h * bi
2.0 + (h**2) * sigma_ i
i =-1.0+ 0.5 % h * bi

g-
h_
j-

R H
[

A[l, 1_1]
Ali, il
Ali, i+1]

g
h_
Jo

e M

rhs[i] = (h**2) * f_func(x[i])

U = solve(A, rhs)
U_exact = u_exact(x)

error = U - U_exact
error_L2 np.sqrt(np.sum(error**2) * h) #L2-Norm
error_max = np.max(np.abs(error)) #Diskrete Mazimumsnorm

print (£"N={N}, L2-Fehler={error_L2:.3e}, Max-Fehler={error_max:.3el}")

plt.figure()
plt.plot(x, U, 'o-', label='Numerisch', markersize=6)
plt.plot(x, U_exact, '--', label='Exakt')

plt.xlabel(r"$x$")

plt.ylabel(r"$u(x)$")

plt.title(f"Numerische vs. exakte Losung, N={N}")
plt.legend()

plt.grid(True)

plt.savefig(£"FDM_N_{N}.png", bbox_inches='tight')
plt.show()

Python-Code zur Erzeugung von Abbildungen 4.1] und
4.2

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

mpl.rcParams.update ({
"figure.figsize": (6, 4),
"figure.dpi": 300,
"font.size": 11,
"axes.titlesize": 11,
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D

X =

"axes.labelsize": 11,
"xtick.labelsize": 10,
"ytick.labelsize": 10,
"legend.fontsize": 10,
"lines.linewidth": 1.2,
"axes.linewidth": 0.8,
"grid.alpha": 0.25,
"grid.linestyle": ":",

np.linspace(0, 1, 600)

epsilon = [1, 0.1, 0.01]
1inestyles = ["_U’ H__H’ "_."]
color = "black"

figl, axl = plt.subplots()

for eps, 1s in zip(epsilon, linestyles):

axl.
axl.
axl.

axl.
axl.
axl.

u = (np.exp(x/eps) - 1) / (np.exp(l/eps) - 1)

axl.plot(x, u, linestyle=ls, color=color, label=fr'"$\varepsilon =

set_title(r"Losung $u(x)$ fir verschiedene $\varepsilon$")

set_xlabel(r"$x$")
set_ylabel(r"$u(x)$")

yaxis.grid(True)
xaxis.grid(False)
legend(loc="best", frameon=False)

figl.tight_layout()

figl.savefig(save_path + r'"\loesung_gesamt.pdf",
plt.

close(figl)

fig2, ax2 = plt.subplots()

for eps, 1s in zip(epsilon, linestyles):

ax2.
ax2.

ax2.
ax2.
ax2.

ax2.
ax2.
ax2.

u = (np.exp(x/eps) - 1) / (np.exp(l/eps) - 1)

bbox_inches="tight")

ax2.plot(x, u, linestyle=ls, color=color, label=fr"$\varepsilon =

set_x1im(0.9, 1.0)
set_ylim(0, 1.05)

set_title(r"Grenzschicht bei $x = 1$")

set_xlabel (r"$x$")
set_ylabel(r"$u(x)$")

yaxis.grid(True)
xaxis.grid(False)
legend(loc="best", frameon=False)

23

{eps}$")

{eps}$")



61

62

63

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

fig2.tight_layout()
fig2.savefig(save_path + r'"\grenzschicht_rechts.pdf", bbox_inches="tight")
plt.close(fig2)

Python-Code zur Erzeugung von Abbildung 5.1

import numpy as np
import matplotlib.pyplot as plt

def exact_solution(x, eps, b):
with np.errstate(over='ignore', invalid='ignore'):
num = np.exp(b * x / eps) - 1.0
den = np.exp(b / eps) - 1.0
return num / den

def build_central_matrix(eps, b, h, M):
A = np.zeros((M, M), dtype=float)
for i in range(M):

Ali,i] = 2*eps / h*x2

if i > 0:
Afi,i-1] = -eps / h**2 - b / (2*h)
if i < M-1:
A[i,i+1] = -eps / h**2 + b / (2*h)
return A

def build_upwind_matrix(eps, b, h, M):
A = np.zeros((M, M), dtype=float)
for i in range(M):

A[i,i] = (2*eps + b*h) / h*x2

if 1 > 0:
Ali,i-1] = -(eps + bxh) / h*x*2
if 1 < M-1:
Ali,i+1] = -eps / h*x2
return A

def solve_fd(eps=0.01, b=1.0, N=200):

h=1.0/N
X = np.linspace(0.0, 1.0, N+1)
M=N-1

u_exact = exact_solution(x, eps, b)

#Zentrale Differenzen

A_c = build_central_matrix(eps, b, h, M)
rhs_c = np.zeros(M)

coeff_uN_c = -eps / h**2 + b / (2xh)
rhs_c[-1] = -coeff_uN_c * 1.0
u_interior_c = np.linalg.solve(A_c, rhs_c)
u_c = np.zeros(N+1)

u_cl[0] = 0.0
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45 u_c[1:N] = u_interior_c

46 u_c[N] = 1.0

47

48 #Upwind

49 A_u = build_upwind_matrix(eps, b, h, M)
50 rhs_u = np.zeros(M)

51 coeff_uN_u = -eps / h**2

52 rhs_u[-1] = -coeff_uN_u * 1.0

53 u_interior_u = np.linalg.solve(A_u, rhs_u)
54 u_u = np.zeros(N+1)

55 u_ul0] = 0.0

56 u_ul[1:N] = u_interior_u

57 u_ul[N] = 1.0

58

59 return x, u_exact, u_c, u_u, A_c, A_u

60

61 def error_norms(u, u_ex):

62 e = np.abs(u - u_ex)

63 return np.max(e), np.sqrt(np.mean(e*x*2))

64

65 1if __name__ == "__main__":

66 eps = le-2

67 b =1.0

68 N = 400

69

70 X, u_ex, u_c, u_u, A_c, A_u = solve_fd(eps=eps, b=b, N=N)

71 err_c = error_norms(u_c, u_ex)

72 err_u = error_norms(u_u, u_ex)

73

74 cond_c = np.linalg.cond(A_c)

75 cond_u = np.linalg.cond(A_u)

76

77 print(f"Zentrale FD:  $\\infty$-Fehler = {err_c[0]:.3e}, L2-Fehler
« {err_c[1]:.3e}, Kond(A)={cond_c:.3e}")

78 print (f"Upwind-Verf.: $\\infty$-Fehler = {err_ul0]:.3e}, L2-Fehler

«  {err_ul1]:.3e}, Kond(A)={cond_u:.3e}")

79

80 #Plot

81 fig, ax = plt.subplots(figsize=(10,5))

82 ax.plot(x, u_ex, '-', lw=2.0, label='Exakte Losung')
83 ax.plot(x, u_c, '--', lw=1.2, label='Zentrale FD')
84 ax.plot(x, u_u, '-.', lw=1.2, label='Upwind')

85 ax.set_xlabel('x')

86 ax.set_ylabel('u(x)')

87 ax.set_title(f'Vergleich ($\\epsilon$={eps}t, b={b}, N={N})')
88 ax.grid(alpha=0.4, 1ls='--")

89 ax.legend(loc='upper left')

90

91 #Zoom:

92 left, right = 0.92, 1.0

93 ix = np.where((x >= left) & (x <= right)) [0]
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from mpl_toolkits

.axes_gridl.inset_locator import inset_axes
axins = inset_axes(ax, width="40%", height="60%", loc='lower right',

< borderpad=1.0)

axins.plot(x[ix],
axins.plot(x[ix],
axins.plot(x[ix],

u_ex[ix], '-', 1lw=2.0)
u_clix], '--', lw=1.2)
u_ulix], '-.', lw=1.2)

axins.set_xlim(left, right)
axins.set_title('Zoom: Grenzschicht', fontsize=9)
axins.grid(alpha=0.4, ls='--"')

plt.tight_layout ()

plt.show()

Python-Code zur Erzeugung von Abbildung

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams.update ({
"font.size": 14,
"axes.labelsize":
"axes.titlesize":

"legend.fontsize":
"xtick.labelsize":
"ytick.labelsize":

b

def exact_solution(x,
#stabile Form von
alpha = np.exp(-1
return (np.exp((x

eps) :

u(z) = (exp(z/eps)-1)/(exp(1/eps)-1)
.0 / eps)

- 1.0) / eps) - alpha) / (1.0 - alpha)

def solve_upwind(N, eps):

h=1.0/N
n=N-1
A:

np.zeros((n, n), dtype=float)

b = np.zeros(n, dtype=float)

low = (-eps / h**2) - (1.0 / h)

mid
up

#Matriz fillen

(2.0 * eps / h**2) + (1.0 / h)
(-eps / h*x2)

for i in range(n):

Ali, i] = mid

if i -1 >= 0:

Afli, i-1]

= low
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58
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61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

def

def

def

if i + 1 < n:

Ali, i+1] =
u0, uN = 0.0, 1.0
b[0] -= low * u0

b[-1] -= up * uN
u_inner = np.linalg

u = np.zeros(N + 1)
ul[0] = u0

ul[1:N] = u_inner
u[N] = uN

return u

up

.solve(A, b)

solve_central (N, eps):

h
n

1.0/ N
N -1

A = np.zeros((n, n)

, dtype=float)

b = np.zeros(n, dtype=float)

- (1.0 / (2.0 * h))

low = (-eps / h*x*2)
mid = (2.0 * eps / h*x2)
up = (-eps / h*x2)

for i in range(n):
Ali, i] = mid
if 1 -1 >= 0:
Afi, i-1]
if i+ 1 < n:
Ali, i+1]

u0, uN = 0.0, 1.0
b[0] -= low * u0
b[-1] -= up * uN

u_inner = np.linalg

u = np.zeros(N + 1)
ul0] = u0

ul[1:N] = u_inner
ul[N] = uN

return u

einfty_error (u_num,

+ (1.0 / (2.0 * h))

low

up

.solve(A, b)

X, eps):

u_ex = exact_solution(x, eps)

return np.max(np.abs(u_ex - u_num))

main():
eps = le-3



86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Ns = [20, 40, 80, 160, 320, 640]

hs, err_up, err_ce = [1, [, [
rows = []

for N in Ns:
h 1.0/ N
x = np.linspace(0.0, 1.0, N + 1)

solve_upwind (N, eps)
solve_central(N, eps)

u_up
u_ce

e_up = einfty_error(u_up, x, eps)
einfty_error(u_ce, x, eps)

e_ce

hs.append (h)
err_up.append(e_up)
err_ce.append(e_ce)
rows.append((N, h, e_up, e_ce))

print("\nFehlervergleich (epsilon = 1e-3)")
header = f"{'N':>6} {'h=1/N':>12} {'E_inf Upwind':>16} {'E_inf
< Zentral':>161}"
print (header)
print("-" * len(header))
for N, h, e_up, e_ce in rows:
print (£"{N:6d} <{h:12.5e} {e_up:16.5e} {e_ce:16.5e}")

#Plot

hs = np.array(hs, dtype=float)

err_up = np.array(err_up, dtype=float)
err_ce = np.array(err_ce, dtype=float)

plt.figure()

plt.loglog(hs, err_up, marker="o", linewidth=1.5, label="Upwind:
<  $E_\\infty$")

plt.loglog(hs, err_ce, marker="s", linewidth=1.5, label="Zentral:
<  $E_\\infty$")

plt.gca() .invert_xaxis()

plt.xticks(hs, [f"{h:.4f}" for h in hs])
plt.xlabel("$h=1/N$")

plt.ylabel("$E_\\infty = \\max_i [u(x_i)-u_il$")
plt.title("Upwind vs. Zentraldifferenzen fiir $-\\varepsilon u'' + u' = 0%,
« $\\varepsilon=10"{-3}$")

plt.grid(True, which="both")

plt.legend()

plt.tight_layout()
plt.savefig("Einf_plot_epsilonle-3.png", dpi=300)
plt.show()
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36

37

38

39

40

41

42

43

if

_name == "__main_

main()

Python-Code zur Erzeugung von Abbildung

import numpy as np
import matplotlib.pyplot as plt

plt.

b

def

def

rcParams.update ({
"font.size": 16,
"axes.labelsize": 18,
"axes.titlesize": 20,
"legend.fontsize": 16,
"xtick.labelsize": 15,
"ytick.labelsize": 15

rho(q):
q = np.asarray(q, dtype=float)
out = np.empty_like(q)

small = np.abs(q) < 1e-8
out[small] = 1.0

gs = ql["small]

out[“small] = gs * (np.cosh(gs) / np.sinh(gs))

return out

main():
g = np.linspace(0.0, 6.0, 800)

plt.figure(figsize=(4.8, 6.0))

plt.plot(q, rho(q), linewidth=2.5,

label=r"$\rho(q)=q\,\coth(q)$")

plt.plot(q, q, ":", linewidth=2.0,

label=r"Asymptotik: $\rho(q)\sim g$")

plt.plot(q, 1 + g**2 / 3, "--", linewidth=2.0,
label=r"$q\111$: $1+\frac{q 2}{3}$")

plt.plot(q, 1 + q, "-.", linewidth=2.0,
label=r"Vergleich: $\rho(q)=1+q$")

plt.xlabel(r"$q$")
plt.ylabel(r"$\rho(q)$")

plt.title(r"Asymptotisches Verhalten der kiinstlichen Diffusion $\rho(q)$")
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16

17

18
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21
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35

if

__name == "__main__

plt.grid(True)
plt.legend()
plt.tight_layout ()

plt.savefig("rho_asymptotik.png",
plt.show()

main()

dpi=300, bbox_inches="tight")

Python-Code zur Erzeugung von Abbildung

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

plt.

b

def

def

rcParams.update ({
"font.size": 14,
"axes.labelsize": 16,
"axes.titlesize": 18,
"legend.fontsize": 14,
"xtick.labelsize": 14,
"ytick.labelsize": 14

exact_solution(x, eps):
alpha = np.exp(-1.0 / eps)

return x - (np.exp(-(1.0 - x) / eps) - alpha) / (1.0 - alpha)

solve_upwind(N, eps):
h=1.0/NXN
n=N-1

A = np.zeros((n, n))
b = np.ones(n)

low = -eps / h**2 - 1.0 / h
mid = 2.0 * eps / h**2 + 1.0 / h
up = -eps / hx*2

for i in range(n):
Afi, i] = mid

if i > 0O:

Ali, i-1] = low
if i < n-1:

Ali, i+1] = up
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65

66

67

68

69

70
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7

78

79

80

81

82

83

84

85

86

def

def

u =

ull:

np.zeros(N + 1)

N] = np.linalg.solve(A, b)

return u

solve_central (N, eps):

h=10/N
n=N-1
A = np.zeros((n, n))
b = np.ones(n)
low = -eps / h*x2 - 1.0 / (2xh)
mid = 2.0 * eps / h*x*2
up = -eps / h**2 + 1.0 / (2xh)
for i in range(n):
Ali, i] = mid
if i > 0:
Ali, i-1] = low
if i < n-1:
Ali, i+1] = up
u = np.zeros(N + 1)
ul[1:N] = np.linalg.solve(A, b)
return u

solve_ilin_allen_southwell(N, eps, mu=1.0):

h=10/N
n=N-1
def coth(z):
if abs(z) < le-12:
return 1.0 / z + z / 3.0
return 1.0 / np.tanh(z)
theta = mu * h / (2.0 * eps)
alpha = (1.0 / (2.0 * h)) * coth(theta)
low = -(alpha + 1.0 / (2.0 * h))
mid = 2.0 * alpha
up = -(alpha - 1.0 / (2.0 * h))
A = np.zeros((n, n))
b = np.ones(n)
for i in range(n):
Ali, i] = mid
if i > O:
Af[i, i-1] = low
if i < n-1:
Ali, i+1] = up
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104

106

107

108

109

110

111

112

113

114

115

116

117

118
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120

121
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124
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126

127

128

129

130

131

132

133

def

def

u =

ull:

np.zeros(N + 1)
N] = np.linalg.solve(A, b)

return u

einfty_error(u_num, x, eps):
return np.max(np.abs(u_num - exact_solution(x, eps)))

main() :

eps

= 1e-3

Ns = [2, 4, 8, 16, 20, 40, 80, 160, 320, 640]

hs,

Irows

for

err_up, err_ce, err_ias = [1, [1, [1, [

=[]

N in Ns:
h=1.0/N
x = np.linspace(0.0, 1.0, N + 1)

e_up = einfty_error(solve_upwind(N, eps), x, eps)
e_ce einfty_error(solve_central(N, eps), x, eps)
e_ias = einfty_error(solve_ilin_allen_southwell(N, eps), x, eps)

hs.append (h)
err_up.append(e_up)
err_ce.append(e_ce)
err_ias.append(e_ias)

rows.append((N, h, e_up, e_ce, e_ias))

print("\nFehlervergleich fiir -eps u'' + u' = 1, u(0)=u(1)=0 (epsilon =

—

0.001)")

header = f"{'N':>6} {'h=1/N':>12} {'Upwind':>14} {'Zentral':>14}

—

{'IAS' :>14}"

print (header)
print("-" * len(header))

for

N, h, e_up, e_ce, e_ias in rows:
print (f"{N:6d} {h:12.5e} {e_up:14.5e} {e_ce:14.5e} {e_ias:14.5e}")

hs = np.array(hs)

err_
err_
err_

plt.

plt.

—

plt.

—

plt.

up = np.array(err_up)
ce = np.array(err_ce)
ias = np.array(err_ias)

figure(figsize=(7.0, 5.0))

loglog(hs, err_up, "-o", color="black", linewidth=1.5, markersize=6,
label="Upwind")
loglog(hs, err_ce, "--s", color="black", linewidth=1.5, markersize=6,
label="Zentral")
loglog(hs, err_ias, ":”", color="black", linewidth=1.5, markersize=6,

label="I1'in--Allen--Southwell")
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135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

10

11

12

13

14

15

16

17

18

19

20

21

22

ax = plt.gca()
ax.invert_xaxis()

ax.xaxis.set_major_locator (mticker.Loglocator(base=10))
ax.yaxis.set_major_locator(mticker.LogLocator(base=10))
ax.xaxis.set_major_formatter(mticker.LogFormatterMathtext())
ax.yaxis.set_major_formatter(mticker.LogFormatterMathtext())

ax.grid(True, which="major", linestyle="--", linewidth=0.6, alpha=0.6)

plt.xlabel(r"$h=1/N$")
plt.ylabel(r"$E_\infty$")
plt.legend(frameon=False)
plt.tight_layout ()

plt.savefig("Einf_plot_epsle-3_rhsl.pdf")
plt.savefig("Einf_plot_epsle-3_rhsl.png", dpi=300)
plt.show()

if __name == "__main__

main()

Python-Code zur Erzeugung von Tabelle 5.1 und Ab-
bildungen und

import numpy as np
import matplotlib.pyplot as plt

def u_exact(x, eps):
return (np.exp(x / eps) - 1.0) / (up.exp(1.0 / eps) - 1.0)

def grid_uniform(N):
return np.linspace(0.0, 1.0, N + 1)

def grid_shishkin(N, eps):
if N % 2 !=0:
raise ValueError ("N muss gerade sein (Shishkin-Gitter).")
= min(0.5, 2.0 * eps * np.log(N))
0% (1.0 - taw) / N
h=2.0%*tau / N

o ot
)
e
N

x = np.zeros(N + 1)
for i in range(N // 2 + 1):
x[i] =i * H
for i in range(N // 2 + 1, N + 1):
x[i] = 1.0 - (N - i) *h
return x, tau
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73

def

def

def

solve_upwind_nonuniform(x, eps):
N = len(x) - 1
h = np.diff(x)

u0, uN = 0.0, 1.0
np.zeros((N - 1, N - 1))
b = np.zeros(N - 1)

=
Il

for i in range(1l, N)

him = h[i - 1]

hip = h[i]

fac = 2.0 * eps / (him + hip)
ciml = -(fac / him + 1.0 / him)
ci =

cipl = -(fac / hip)

row = i - 1

if 1 ==

blrow] -= ciml * u0
else:

Alrow, row - 1] += ciml

Alrow, row] += ci

if i == N - 1:

blrow] -= cipl * ulN
else:

Alrow, row + 1] += cipl

u = np.zeros(N + 1)

ul0], ulN] = u0, uN

ul[1:N] = np.linalg.solve(A, b)
return u

einf_error(x, uh, eps):

return np.max(np.abs(u_exact(x, eps) - uh))

make_error_table(eps, Ns):
rows = []
for N in Ns:

xU = grid_uniform(N)

uhU = solve_upwind_nonuniform(xU, eps)

EU = einf_error(xU, uhU, eps)

(fac / hip + fac / him + 1.0 / him)

xS, tau = grid_shishkin(N, eps)

uhS = solve_upwind_nonuniform(xS, eps)

ES = einf_error(xS, uhS, eps)
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97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116
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118

119

120

121

122

def

def

def

def

def

ratio = EU / ES if ES != 0 else np.inf
rows.append ((N, tau, EU, ES, ratio))
return rows

print_error_table(rows):
wN, wT, wEU, wES, wR = 8, 14, 18, 18, 14

print(£"{'N':>{wN}} {'tau':>{wT}} {'E_inf uniform':>{wEU}} {'E_inf
— Shishkin':>{wES}} {'ratio(U/S)':>{wR}}")
print("-" * (wN + 1 + wT + 1 + wEU + 1 + wES + 1 + wR))

for N, tau, EU, ES, ratio in rows:
print (£"{N:{wN}d} {tau:{wT}.6e} {EU:{wEU}.6e} {ES:{wES}.6e}
— A{ratio:{wR}.6e}")

save_table_csv(rows, filename="error_table.csv"):
with open(filename, "w", encoding="utf-8") as f:
f.write("N,tau,E_inf_uniform,E_inf_shishkin,ratio_U_over_S\n")
for N, tau, EU, ES, ratio in rows:
f.write(f"{N},{tau:.16e},{EU:.16e},{ES:.16e},{ratio:.16e}\n")
print(f"saved: {filenamel}")

set_thesis_style(Q):

plt.rcParams.update ({
"figure.figsize": (8.5, 5.5),
"figure.dpi": 120,
"savefig.dpi": 400,
"font.size": 18,
"axes.titlesize": 22,
"axes.labelsize": 20,
"legend.fontsize": 16,
"xtick.labelsize": 16,
"ytick.labelsize": 16,
"lines.linewidth": 2.6,
"axes.grid": True,
"grid.alpha": 0.25,

b

save_fig(name) :

plt.tight_layout()

plt.savefig(name + ".pdf", bbox_inches="tight")
plt.savefig(name + ".png", bbox_inches="tight")
print(f"saved: {name}.pdf / {namel}.png")

zoom_window(eps, N, tau):

width = max(6.0 * eps, 4.0 * eps * np.log(N))
x1 = min(1.0 - width, 1.0 - 1.2 * tau)

return max(0.0, x1), 1.0
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123
124
125 def plot_solution_zoom(N, eps):

126 xU = grid_uniform(N)

127 uU = solve_upwind_nonuniform(xU, eps)

128 uE = u_exact(xU, eps)

129

130 xS, tau = grid_shishkin(N, eps)

131 uS = solve_upwind_nonuniform(xS, eps)

132

133 xl, xr = zoom_window(eps, N, tau)

134

135 plt.figure()

136 plt.plot(xU, uE, label="exakt")

137 plt.plot(xU, uU, "--", label="Upwind (uniform)")
138 plt.plot(xS, uS, "-.", label="Upwind (Shishkin)")
139 plt.xlim(xl, XT)

140 plt.xlabel (r"$x$")

141 plt.ylabel(r"$u(x)$")

142 plt.title(rf"Grenzschicht-Zoom bei $x=1$ ($\varepsilon={eps:g}$, $N={N}$)")
143 plt.legend(loc="best")

144 save_fig(f"solution_zoom_N{N}")

145

146 def plot_einf_convergence(rows, eps):

147 Ns = np.array([r[0] for r in rows], dtype=float)

148 EU = np.array([r[2] for r in rows], dtype=float)

149 ES = np.array([r[3] for r in rows], dtype=float)

150

151 plt.figure()

152 plt.loglog(Ns, EU, "o--", label=r"$E_\infty$ (uniform)")
153 plt.loglog(Ns, ES, "o-", 1label=r"$E_\infty$ (Shishkin)")
154 plt.xlabel(r"$N$")

155 plt.ylabel(r"$E_\infty$")

156 plt.title(rf"Maximaler Fehler $E_\infty(N)$ ($\varepsilon={eps:g}$)")
157 plt.legend(loc="best")

158 save_fig(f"einf_convergence_eps{eps:g}")

159
160 def main():

161 set_thesis_style()

162

163 eps = le-2

164 Ns = [8, 16, 32, 64, 128, 256, 512, 1024] # gerade
165 N_show = 256

166

167 # (2) Fehlertabelle

168 rows = make_error_table(eps, Ns)

169 print_error_table(rows)

170 save_table_csv(rows, "error_table.csv")
171

172 # (1) Grenzschicht-Zoom-Plot der Losung
173 plot_solution_zoom(N_show, eps)
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174

175

177

178

179

180

181

182

if

__name__ == "__main__

# (3) Plot des mazimalen Fehlers E_inf(N)

plot_einf_convergence(rows, eps)

plt.show()

main()
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