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Chapter 1

Introduction

Remark 1.1. Contents of the bachelor thesis. To solve differential equations
numerically, the finite element method (FEM) is widely employed. Choosing an
appropriate set of basis functions is important for the finite element method.
Normally one takes so-called Lagrange polynomials, such as continuous and
piecewise linear functions. However, Bernstein basis polynomials can also be
used as a set of basis functions. For higher degree, Bernstein basis polynomials
take only non-negative values, in contrast to Lagrange polynomials.

Chapter 2 first gives a brief introduction of the biography of the Russian
mathematician Sergei Bernstein. Then we will introduce the Bernstein basis
polynomials, the Bernstein polynomials and their properties. The Bernstein
polynomials were used in a constructive proof of the Weierstrass approximation
theorem, which will be shown at the end of this chapter.

In Chapter 3 we will introduce the model problem and investigate the solu-
tion of the model problem by analyzing linear homogeneous and inhomogeneous
differential equations respectively. Main parts of this chapter follow the lecture
notes of Prof. Dr. Volker John, see [4].

Chapter 4 presents the weak formulation and the minimization problem of a
somewhat simplified model problem, namely the Poisson equation with homo-
geneous Dirichlet boundary conditions. The weak formulation and the mini-
mization problem are more general than the strong formulation in Chapter 3.

Based on the weak formulation, the finite element method is used to solve
the simplified model problem. Chapter 5 gives derivations and examples of the
matrix-vector form for hat functions, piecewise quadratic basis functions and
Bernstein basis polynomials. The bachelor thesis ends with the Mathematica
programming of the Ritz method for a one-dimensional example.
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Chapter 2

Bernstein Polynomials

The idea of Bernstein polynomials is named after the Russian mathematician
Sergei Bernstein. Let us first take a look at the biography of this reowned figure
(see also [11] for full details).

2.1 The Biography of Sergei Bernstein
Sergei Natanowitsch Bernstein (Russian: Сергей Натанович Бернштейн) was
born into a family of doctors in Odessa, nowadays a port city in southern
Ukraine, in March 1880. His family was of Jewish origin. After graduating
from high school education in 1898, he moved to Paris and studied mathe-
matics at the Sorbonne. During his studies, he spent three semesters at the
University of Göttingen, where he conducted his studies under the supervision
of David Hilbert1, who was one of the most influential German mathematicians
of the nineteenth century. In 1904, he submitted and defended his doctoral dis-
sertation about Hilbert’s 19th Problem, which considers the analytic solutions
of elliptic differential equations.

However, since Russia did not recognise European academic qualifications,
Bernstein went to St. Petersburg and started his second mathematical doc-
toral program. Accordingly, in 1906 he earned his first Russian master’s degree
there. Afterwards, he moved to Kharkov in 1908 and obtained another master’s
degree for his thesis Investigation and Solution of Elliptic Partial Differential
Equations of Second Degree. Following his studies, he became a lecturer at the
Kharkov University and eventually received his doctorate from the institution
for his thesis titled About the Best Approximation of Continuous Functions by
Polynomials of Given Degree in 1913.

For about 25 years Bernstein taught at the Kharkov University. He became
a professor at the Kahrkov University in 1920. In 1933, he left to work at
the Mathematical Institute of the USSR Academy of Sciences in Leningrad.
Unfortunately, life was not smooth sailing for him. In the summer of 1941,

1David Hilbert (1862 - 1943)
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Figure 2.1: Sergei Natanovich Bernstein (1880–1968)3

the rapid encroachment of German armies upon Leningrad caused Bernstein
to flee his home and escape to Moscow. Then he taught at the University of
Moscow, and in the years that followed, he devoted much time to the editing
and publication of P.L. Chebyshev’s2 remaining works, see [6].

During his life, he made significant contributions to partial differential equa-
tions, differential geometry, probability theory and approximation theory.

2.2 Definition and Properties
As far back as 1911, Bernstein had already introduced the concept of now called
the Bernstein polynomials in his paper Démonstration du théoréme de Weier-
strass fondée sur le calcul des probabilités[1].

Definition 2.1. Bernstein basis polynomials. For 0 ≤ k ≤ n, the n + 1
Bernstein basis polynomials of degree n on x ∈ [0, 1] are defined as

bnk (x) :=

(
n

k

)
(1− x)n−kxk, (2.1)

where
(
n
k

)
= n!

k!(n−k)! and n, k ∈ N0.
For k < 0 and k > n, it is defined that bnk (x) ≡ 0.

Remark 2.2. Domain of the Bernstein basis polynomials. The Bernstein basis
polynomials can be defined on any interval [a, b]. One replaces x by t−a

b−a , which

2Pafnuty Lvovich Chebyshev (1821 - 1894)
3Portrait collected from the Russian Academy of Sciences (RAS) - see http://www.ras.ru
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maps t ∈ [a, b] to x ∈ [0, 1]. Then

bnk

(
t− a
b− a

)
=

(
n

k

)(
t− a
b− a

)k (
1− t− a

b− a

)n−k
=

(
n

k

)(
t− a
b− a

)k (
b− t
b− a

)n−k
=

(
n

k

)(
1

b− a

)k (
1

b− a

)n−k
(t− a)k(b− t)n−k

=

(
1

b− a

)n(
n

k

)
(t− a)k(b− t)n−k.

Hence, one can consider the Bernstein basis polynomials on x ∈ [0, 1] in this
thesis without loss of generality.

Example 2.3. Bernstein basis polynomials. Consider the Bernstein basis poly-
nomials on x ∈ [0, 1].

• n = 0. The Bernstein basis polynomial of degree 0 is given by

b00(x) = 1.

• n = 1. The two Bernstein basis polynomials of degree 1 are given by

b10(x) = 1− x, b11(x) = x.

• n = 2. The three Bernstein basis polynomials of degree 2 are given by

b20(x) = (1− x)2, b21(x) = 2(1− x)x, b22(x) = x2.

• n = 3. The four Bernstein basis polynomials of degree 3 (see Figure 2.2)
are given by

b30(x) = (1− x)3, b31(x) = 3(1− x)2x,
b32(x) = 3(1− x)x2, b33(x) = x3.

• n = 4. The five Bernstein basis polynomials of degree 4 (see Figure 2.2)
are given by

b40(x) = (1− x)4, b41(x) = 4(1− x)3x,
b42(x) = 6(1− x)2x2, b43(x) = 4(1− x)x3, b44(x) = x4.
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Figure 2.2: The four Bernstein basis polynomials of degree 3 (up) and the five
Bernstein basis polynomials of degree 4 (down).

Remark 2.4. A recursive definition of the Bernstein basis polynomials. A Bern-
stein basis polynomial of degree n can be defined by blending together two
Bernstein basis polynomials of degree n− 1, i.e.,

bnk (x) := (1− x)bn−1k (x) + xbn−1k−1(x). (2.2)

Using (2.1) and (2.2) yields

(1− x)bn−1k (x) + xbn−1k−1(x) = (1− x)
(
n− 1

k

)
(1− x)(n−1)−kxk

+ x

(
n− 1

k − 1

)
(1− x)(n−1)−(k−1)xk−1

=

(
n− 1

k

)
(1− x)n−kxk +

+

(
n− 1

k − 1

)
(1− x)n−kxk

=

(
n

k

)
(1− x)n−kxk =: bnk (x).
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Lemma 2.5. Properties of the Bernstein basis polynomials. The Bern-
stein basis polynomials have the following properties:

i) The n + 1 Bernstein basis polynomials of degree n are non-negative on x
∈ [0, 1].

ii) The Bernstein basis polynomials bnk (x) and bnn−k(x) of degree n are sym-
metrical about x = 1

2 , i.e.,

bnk (x) = bnn−k(1− x).

iii) The n+1 Bernstein basis polynomials of degree n form a partition of unity.
The sum of them of degree n at x is 1, i.e.,

n∑
k=0

bnk (x) = 1.

iv) The Bernstein basis polynomials of degree n satisfy

bnk (0) =

{
1 if k = 0

0 otherwise
and bnk (1) =

{
1 if k = n

0 otherwise.

v) The Bernstein basis polynomials of degree n can be written as a linear
combination of the polynomials of degree n+ 1, i.e.,

bnk (x) =
n+ 1− k
n+ 1

bn+1
k (x) +

k + 1

n+ 1
bn+1
k+1(x).

vi) Derivatives of the Bernstein basis polynomials of degree n can be written
as a linear combination of the polynomials of degree n− 1, i.e.,

d

dx
bnk (x) = n

(
bn−1k−1(x)− b

n−1
k (x)

)
.

vii) The maximum of the Bernstein basis polynomials of degree n occurs when
x = k

n .

viii) Definite integrals of the Bernstein basis polynomials of degree n are 1
n+1 ,

i.e.,[3] ∫ 1

0

bnk (x) dx =
1

n+ 1
.

ix) The n+1 Bernstein basis polynomials of degree n are linearly independent,
i.e., if

λ0b
n
0 (x) + λ1b

n
1 (x) + · · ·+ λnb

n
k (x) = 0,

where the coefficients λ0, λ1, . . . , λn ∈ R, then λ0 = λ1 = · · · = λn = 0.
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Proof. i) It is trivial that b00(x) = 1, b10(x) = 1 − x and b11(x) = x are non-
negative for 0 ≤ x ≤ 1. Using (2.2), one obtains that bnk (x) := (1 −
x)bn−1k (x)+xbn−1k−1(x). Then, it follows by induction that all the Bernstein
basis polynomials of degree n are non-negative.

ii) Using the symmetric identity of binomial coefficients and (2.1), it follows
that

bnn−k(1− x) =
(

n

n− k

)
(1− (1− x))n−(n−k)(1− x)n−k

=

(
n

k

)
xk(1− x)n−k = bnk (x).

iii) It follows directly from the fact that the n+1 Bernstein basis polynomials
are the n+ 1 terms in the binomial expansion of ((1− x) + x)n. Hence,

n∑
k=0

bnk (x) = ((1− x) + x)n = 1n = 1.

iv) It is easily obtained by bnk (0) =
(
n
k

)
1n−k0k, bnk (1) =

(
n
k

)
0n−k1k and

(
n
0

)
=(

n
n

)
= 1 for all integers n ≥ 0.

v) It holds that

bnk (x) = ((1− x) + x)

(
n

k

)
(1− x)n−kxk

= (1− x)
(
n

k

)
(1− x)n−kxk + x

(
n

k

)
(1− x)n−kxk

=

(
n

k

)
(1− x)(n+1)−kxk +

(
n

k

)
(1− x)n−kxk+1

=
n+ 1− k
n+ 1

n!(n+ 1)

k!(n+ 1− k)(n− k)!
(1− x)(n+1)−kxk

+
k + 1

n+ 1

n!(n+ 1)

k!(k + 1)((n+ 1)− (k + 1))!
(1− x)(n+1)−(k+1)xk+1

=
n+ 1− k
n+ 1

(
n+ 1

k

)
(1− x)(n+1)−kxk

+
k + 1

n+ 1

(
n+ 1

k + 1

)
(1− x)(n+1)−(k+1)xk

=
n+ 1− k
n+ 1

bn+1
k (x) +

k + 1

n+ 1
bn+1
k+1(x).

vi) Using the chain rule and the product rule, one obtains that

d

dx
bnk (x) =

(
n

k

)(
(n− k)(1− x)n−k−1(−1)xk + (1− x)n−kkxk−1

)
= k

(
n

k

)
(1− x)n−kxk−1 − (n− k)

(
n

k

)
(1− x)(n−1)−kxk.
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Since

k

(
n

k

)
=

n!

(k − 1)!(n− k)!
= n

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
= n

(
n− 1

k − 1

)
and

(n− k)
(
n

k

)
=

n!

k!(n− k − 1)!
= n

(n− 1)!

k!((n− 1)− k)!
= n

(
n− 1

k

)
,

it follows that

d

dx
bnk (x) = n

(
n− 1

k − 1

)
(1− x)(n−1)−(k−1)xk−1

− n
(
n− 1

k

)
(1− x)(n−1)−kxk

= n
(
bn−1k−1(x)− b

n−1
k (x)

)
.

vii) By setting the derivative from vi) to zero, one gets

d

dx
bnk (x) = k

(
n

k

)
(1− x)n−kxk−1 − (n− k)

(
n

k

)
(1− x)(n−1)−kxk

=

(
n

k

)
(k(1− x)− (n− k)x) (1− x)n−k−1xk−1

=

(
n

k

)
(k − nx) (1− x)n−k−1xk−1

= 0.

Hence, one obtains with i) and iv) that the maximum of the Bernstein
basis polynomials occurs when x = k

n .

viii) From vi) one knows that d
dxb

n+1
k+1(x) = (n+1)(bnk (x)− bnk+1(x)). If k 6= n,∫ 1

0

(
d

dx
bn+1
k+1

)
dx = bn+1

k+1(x)
∣∣1
0

=

(
n+ 1

k + 1

)(
0n−k1k+1 − 1n−k0k+1

)
= 0

= (n+ 1)

∫ 1

0

(
bnk (x)− bnk+1(x)

)
dx

= (n+ 1)

(∫ 1

0

bnk (x) dx−
∫ 1

0

bnk+1(x) dx

)
.

Hence,∫ 1

0

bn0 (x) dx =

∫ 1

0

bn1 (x) dx = · · · =
∫ 1

0

bn(n−1)+1(x) dx =

∫ 1

0

bnn(x) dx.
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Combining with iii) and the linearity of the integral yields∫ 1

0

bnk (x) dx =
1

n+ 1
.

ix) Using (2.1) and applying the binomial theorem to expand the term (1 −
x)n−k, one can write any Bernstein basis polynomial of degree n in terms
of the monomial basis {1, x, x2, . . . , xn}, which spans the space of polyno-
mials of degree ≤ n, such that,

bnk (x) =

(
n

k

)
(1− x)n−kxk

=

(
n

k

)
xk

n−k∑
i=0

(
n− k
i

)
1n−k−i(−x)i

=

n−k∑
i=0

(
n

k

)(
n− k
i

)
(−1)ixi+k

=

n∑
i=k

(−1)i−k
(
n

k

)(
n− k
i− k

)
xi

=

n∑
i=k

(−1)i−k
(
n

i

)(
i

k

)
xi.

It follows that

0 = λ0b
n
0 (x) + λ1b

n
1 (x) + · · ·+ λnb

n
n(x)

= λ0

n∑
i=0

(−1)i
(
n

i

)(
i

0

)
xi + λ1

n∑
i=1

(−1)i−1
(
n

i

)(
i

1

)
xi + . . .

+ λn

n∑
i=n

(−1)i−n
(
n

i

)(
i

n

)
xi

= λ0 +

(
1∑
i=0

(−1)1−iλi
(
n

1

)(
1

i

))
x1 + . . .

+

(
n∑
i=0

(−1)n−iλi
(
n

n

)(
n

i

))
xn.

One gets with the linear independence of the monomial basis

λ0 = 0,

1∑
i=0

(−1)1−iλi
(
n

1

)(
1

i

)
= 0, . . . ,

n∑
i=0

(−1)n−iλi
(
n

n

)(
n

i

)
= 0.

By inserting λ0 = 0 into the second equation and so on, one can easily
obtain that λ0 = λ1 = · · · = λn = 0.
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2.3 Weierstrass Approximation Theorem
In 1911 Bernstein gave a constructive proof of the Weierstrass4 approximation
theorem in his paper Démonstration du théoréme de Weierstrass fondée sur le
calcul des probabilités[1], which states that every continuous function defined
on a compact interval [a, b] can be uniformly approximated as closely as desired
by a polynomial function. He sent his simple proof to the Belgium Academy of
Science and was awarded a prize.

Definition 2.6. Bernstein polynomials. Consider a continuous function f
on [0, 1] without loss of generality (see Remark 2.2), the Bernstein polynomial
of degree n associated with f is defined by

Bn(f)(x) :=
n∑
k=0

f

(
k

n

)
bnk (x). (2.3)

Lemma 2.7. Properties of the Bernstein polynomials. The Bernstein
polynomials have the following properties, also see [9]:

i) If f(x) = x and x ∈ [0, 1], it holds for all n ≥ 1 that Bn(f)(x) = x.

ii) If f(x) = x(1− x) and x ∈ [0, 1], then it holds

Bn(f)(x) =

(
1− 1

n

)
x(1− x).

Hence, for all n ≥ 2,

0 ≤
n∑
k=0

(
x− k

n

)2

bnk (x) =
x(1− x)

n
≤ 1

4n
.

Proof. i) Using Lemma 2.5 iii), one obtains that for all n ≥ 1

Bn(f)(x) =

n∑
k=0

k

n

(
n

k

)
(1− x)n−kxk

=

n∑
k=1

(
n− 1

k − 1

)
(1− x)(n−1)−(k−1)x(k−1)x

= x

n−1∑
k=0

(
n− 1

k

)
(1− x)(n−1)−kxk

= x

n−1∑
k=0

bn−1k (x) = x.

4Karl Weierstrass (1815 - 1897)
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ii) Similarly, using Lemma 2.5 iii) again, one obtains that for all n ≥ 2

Bn(f)(x) =

n∑
k=0

k

n

(
1− k

n

)(
n

k

)
(1− x)n−kxk

=
n− 1

n

n−1∑
k=1

(
n− 2

k − 1

)
(1− x)n−kxk

=
n− 1

n

n−2∑
k=0

(
n− 2

k

)
(1− x)n−(k+1)xk+1

=

(
1− 1

n

)
x(1− x)

n−2∑
k=0

(
n− 2

k

)
(1− x)(n−2)−kxk

=

(
1− 1

n

)
x(1− x).

Hence, if follows with Lemma 2.7 i) that for all n ≥ 2 and x ∈ [0, 1]

n∑
k=0

(
x− k

n

)2

bnk (x) =

n∑
k=0

(
x2 − 2x

k

n
+
k2

n2

)
bnk (x)

=

n∑
k=0

(
x2 + (1− 2x)

k

n
− k(n− k)

n2

)
bnk (x)

= x2
n∑
k=0

bnk (x) + (1− 2x)

n∑
k=0

k

n
bnk (x)

−
n∑
k=0

k(n− k)
n2

bnk (x)

= x2 + (1− 2x)x−
(
1− 1

n

)
x(1− x)

=
x(1− x)

n
≤ 1

4n
.

Lemma 2.8. Uniform continuity on a compact set. A continuous function
f on a compact set K is uniformly continuous, i.e., if any ε > 0 is given, there
exists a δ > 0 such that for all x, y ∈ K with |x− y| < δ

|f(x)− f(y)| < ε.

Proof. This lemma was proved in the basic module Analysis II, see [10].

Theorem 2.9. Weierstrass Approximation Theorem. If f is a continuous
function on the compact interval [0, 1] and if any ε > 0 is given, then there exists
a polynomial pn(x) of sufficiently high degree n such that for all x ∈ [0, 1]

|f(x)− pn(x)| < ε.

12



Proof. Consider (2.3) as the polynomial to approximate a given continuous func-
tion f(x), i.e.,

pn(x) = Bn(f)(x) =

n∑
k=0

f

(
k

n

)
bnk (x). (2.4)

Since [0, 1] is a closed and bounded interval, one gets by Lemma 2.8 that f(x)
is uniformly continuous, more precisely, for a given ε > 0, there exists a δ > 0
such that for all x, y ∈ [0, 1] with |x− y| < δ

|f(x)− f(y)| < ε.

For the space C ([0, 1]), one denotes that the function ‖·‖max : C ([0, 1]) →
R, which is defined through

‖f‖max := max
x∈[0,1]

|f(x)| ,

maximum norm. The maximum norm is well defined on the basis of the extreme
value theorem, which ensures the existence of the maximum, see [17].

Using the triangle inequality and the uniform continuity of f(x), with Lemma
2.5 i) and Lemma 2.7, one obtains for a fix x that

|f(x)−Bn(f)(x)| =

∣∣∣∣∣
n∑
k=0

(
f(x)− f

(
k

n

))
bnk (x)

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f (kn
)∣∣∣∣ bnk (x)

=
∑

|x− k
n |<δ

∣∣∣∣f(x)− f (kn
)∣∣∣∣ bnk (x)

+
∑

|x− k
n |≥δ

∣∣∣∣f(x)− f (kn
)∣∣∣∣ bnk (x)

≤ ε

2

∑
|x− k

n |<δ

bnk (x) + 2‖f‖max
∑

|x− k
n |≥δ

bnk (x)

≤ ε

2

∑
|x− k

n |<δ

bnk (x) + 2
‖f‖max
δ2

∑
|x− k

n |≥δ

(
x− k

n

)2

bnk (x)

≤ ε

2

n∑
k=0

bnk (x) + 2
‖f‖max
δ2

n∑
k=0

(
x− k

n

)2

bnk (x)

≤ ε

2
+
‖f‖max
2nδ2

< ε for all n >
‖f‖max
εδ2

.
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Corollary 2.10. Bounds of a one-dimensional polynomial. Let pn(x) be a
one-dimensional polynomial of degree n on [0, 1], let f be a continuous function
on [0, 1], then pn(x) is uniformly bounded by the largest and smallest Bernstein
coefficients.

Proof. Using (2.4) and Lemma 2.5 iii), also see [7], one obtains

pn(x) = Bn(f)(x)

=

n∑
k=0

f

(
k

n

)
bnk (x)

≤ max
0≤k≤n

f

(
k

n

) n∑
k=0

bnk (x)

≤ max
0≤k≤n

f

(
k

n

)
,

where f
(
k
n

)
are Bernstein coefficients. Similarly, one gets

pn(x) = Bn(f)(x) ≥ min
0≤k≤n

f

(
k

n

)
.
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Chapter 3

Linear Two-point Boundary
Value Problems

Remark 3.1. Motivation. In this chapter we will discuss linear two-point bound-
ary value problems and introduce the model problem. After that, we will inves-
tigate the solution of the model problem by analyzing linear homogeneous and
inhomogeneous differential equations separately. Then the boundary conditions
will be taken into account.

For more detailed derivations, it is referred to [4].

3.1 The Model Problem
Definition 3.2. Linear two-point boundary value problems. A linear
two-point second order boundary value problem has the form

− εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (d, e), (3.1)

with the boundary conditions

αdu(d)− βdu′(d) = γd,

αeu(e)− βeu′(e) = γe,
(3.2)

where αd, αe, βd, βe, γd, γe are given constants, and b, c, f ∈ C ([e, d]), 0 < ε ∈ R.

Definition 3.3. Boundary conditions. Let γd, γe ∈ R, αd, αe ∈ R \ {0}.

1. The most common boundary condition is to specify the value of the func-
tion on the boundary; this type of constraint is called Dirichlet1 boundary
conditions, i.e.,

u(d) = γd, u(e) = γe.

1Johann Peter Gustav Lejeune Dirichlet (1805 - 1859)
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2. A second type of boundary condition is to specify the derivative of the
unknown function on the boundary; this type of constraint is called Neu-
mann2 boundary conditions, i.e.,

u′(d) = γd, u′(e) = γe.

3. A third type of boundary condition is to specify a weighted combination of
the function value and its derivative at the boundary; this is called Robin3

or mixed boundary conditions, i.e.,

αdu(d) + u′(d) = γd, αeu(e) + u′(e) = γe.

Remark 3.4. Normalization of a linear two-point boundary value problem.

• One can consider a linear two-point boundary value problem on x ∈ [0, 1]
without loss of generality. Similarly, see Remark 2.2, one replaces x by
x−d
e−d .

• By subtracting from u(x) a smooth function ψ(x), which also satisfies the
original boundary conditions, one can consider a linear two-point second
order boundary value problem with homogeneous boundary conditions
γd = γe = 0 without loss of generality.
Let the Dirichlet boundary conditions be

u(d) = γd, u(e) = γe,

and one sets
ψ(x) = γd

x− e
d− e

+ γe
x− d
e− d

,

and
v(x) = u(x)− ψ(x).

It can be easily verified that v(d) = v(e) = 0. Then v(x) is the solution of a
linear two-point second order boundary value problem with homogeneous
boundary conditions.

• For linear two-point boundary value problems, a well-known approach to
find the solution depends on whether it is possible to evaluate integrals
analytically. Generally, it is not possible to find the analytical solution
of a linear second order elliptic boundary value problem in higher dimen-
sions. In this thesis we will restrict our investigations to one dimension
for reducing the complexity.

2Carl Gottfried Neumann (1832 - 1925)
3Victor Gustave Robin (1855 - 1897)
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Figure 3.1: The solutions for ε = 0.1, 0.01 and 0.001.

Definition 3.5. The model problem. The model problem has the form

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (0, 1), (3.3)

with the boundary conditions

u(0) = u(1) = 0, (3.4)

where b, c, f ∈ C ([0, 1]), 0 < ε ∈ R.

Definition 3.6. Differential operator. A operator is a map between two
function spaces. A linear operator is a linear map A on a linear space X, so
that

A(αu+ βv) = αAu+ βAv

for all scalars α, β ∈ R and all u, v ∈ X. A differential operator is an operator
defined as a function of the differentiation operator. For example, in (3.3), L is
a linear differential operator.

Example 3.7. Consider the boundary value problem

−εu′′ + u′ = 1 for x ∈ (0, 1),

with
u(0) = u(1) = 0.

Then the solution is

u(x) = x−
exp

(
− 1−x

ε

)
− exp

(
− 1
ε

)
1− exp

(
− 1
ε

) .

The smaller the parameter ε is, the steeper the solution will be near the right-
hand edge, see Figure 3.1. This steep part of the solution is called boundary
layer. The dramatic change in a very small area will lead to difficulties for the
numerical approximation of the solution.

17



3.2 Solutions to the Model Problem
Remark 3.8. Solvability. In order to investigate if the model problem (3.3),
(3.4) is solvable, one can consider the problem (3.5), (3.6) under the condition
of 0 < ε ∈ R. By dividing (3.3) by ε, one obtains the problem

Lu := −u′′ + b(x)u′ + c(x)u = f(x) for x ∈ (0, 1), (3.5)

with the boundary conditions

u(0) = u(1) = 0, (3.6)

where b, c, f ∈ C ([0, 1]). First we will discuss the existence and uniqueness of
the solution of the model problem.

Definition 3.9. Well-posedness. A boundary value problem is called well-
posed, if

i) a solution exists,

ii) the solution is unique, and

iii) the solution changes continuously with changes in the data.

The problems that are not well-posed are termed ill-posed.

Definition 3.10. The trivial solution. If a boundary value problem has
only constant zero solution, then it is called a trivial solution, i.e., u(x) ≡ 0 is
a trivial solution.

Definition 3.11. The general solution. The general solution includes all
possible solutions and typically includes arbitrary constants.

Definition 3.12. The classical solution. A function u(x) is called a classical
solution of (3.5), (3.6), if

i) u ∈ C2(0, 1) ∩ C ([0, 1]),

ii) u(x) satisfies the equation (3.5) and

iii) u(x) satisfies the boundary conditions (3.6).

3.2.1 Linear homogeneous differential equations
Remark 3.13. Homogeneous equation. To study the solution of the problem
(3.5), (3.6), we will analyze the homogeneous problem (right-hand side of (3.5)
vanishes) and the inhomogeneous problem separately. We will start with linear
homogeneous second order differential equations, since homogeneous equations
are much easier to solve compared to their inhomogeneous counterparts. Con-
sider first only the equation (3.5) with homogeneous right-hand side,

Lu := −u′′ + b(x)u′ + c(x)u = 0 for x ∈ (0, 1), (3.7)

where b, c ∈ C ([0, 1]).
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Theorem 3.14. Principle of superposition. Consider the linear homoge-
neous second order differential equation (3.7). Let u1(x), u2(x) ∈ C2([0, 1]) be
two linear independent solutions to the linear homogeneous differential equation
(3.7), then the general solution can be expressed as a linear combination of the
solutions u1(x), u2(x).

Proof. Suppose that u1(x), u2(x) are both solutions to (3.7). Then it holds that

−u′′1 + b(x)u′1 + c(x)u1 = 0 and − u′′2 + b(x)u′2 + c(x)u2 = 0 for x ∈ (0, 1).

Let α, β ∈ R. Since L is a linear differential operator, one obtains

Lu = 0

= α(−u′′1 + b(x)u′1 + c(x)u1) + β(−u′′2 + b(x)u′2 + c(x)u2)

= −αu′′1 − βu′′2 + b(x)αu1′+ b(x)βu′2 + c(x)αu1 + c(x)βu2

= −(αu1 + βu2)
′′ + b(x)(αu1 + βu2)

′ + c(x)(αu1 + βu2).

Thus, the general solution can be expressed as u(x) = αu1(x)+βu2(x), α, β ∈ R,
which satisfies (3.7).

Example 3.15. Non-existence or non-uniqueness of the solution of a linear ho-
mogeneous differential equation. So far we have only considered linear homo-
geneous differential equations without the boundary conditions. However, a
classical solution also needs to satisfy the boundary conditions. Consider the
linear homogeneous differential equation

−u′′(x)− u(x) = 0 for x ∈ (0, π),

with the boundary conditions

u(0) = u(π) = 1.

Following Theorem 3.14, the general solution of this linear homogeneous differ-
ential equation is

u(x) = α cosx+ β sinx, α, β ∈ R.
Then it has no solution, because α cannot be equal to 1 and −1 simultaneously.
In another case, if the boundary conditions are

u(0) = 1, u(π) = −1.

It follows that α = 1, and β can be any real number, i.e., the equation has
infinitely many solutions, see Figure 3.2. So this problem is ill-posed.

Theorem 3.16. Existence and uniqueness of the solution of the model
problem with homogeneous right-hand side. Consider the linear homo-
geneous second order differential equation (3.7) with the homogeneous Dirichlet
boundary conditions (3.6), where b ∈ C1([0, 1]), c ∈ C([0, 1]). If it holds for all
x ∈ (0, 1) that

c̃(x) :=
1

4
b2(x)− 1

2
b′(x) + c(x) ≥ 0,

then it has only the trivial solution.

19



Figure 3.2: Different solutions to Example 3.15, which satisfy the boundary
conditions u(0) = 1, u(π) = −1.

Proof. Obviously, u(x) ≡ 0 is a solution of (3.7), (3.6).
Assume that v(x) 6= 0 is another solution. Define

ũ(x) := v(x) exp

(
−1

2

∫ x

0

b(ξ) dξ

)
, x ∈ [0, 1],

so that (3.7), (3.6) can be transformed into a symmetric problem

−ũ′′(x) + c̃(x)ũ(x) = 0 for x ∈ (0, 1),

with the boundary conditions

ũ(0) = ũ(1) = 0,

whose solution is ũ(x) ≡ 0. Assume that ũ(x) 6= 0 is another solution of this
symmetric problem. By multiplying the equation by ũ(x) and then integrating
it by parts, one gets

0 =

∫ 1

0

(
−ũ′′(x)ũ(x) + c̃(x)ũ2(x)

)
dx

= −ũ′′(x)ũ(x)
∣∣∣1
0
+

∫ 1

0

(ũ′(x))
2
dx+

∫ 1

0

c̃(x)ũ2(x) dx

=

∫ 1

0

(
(ũ′(x))

2
+ c̃(x)ũ2(x)

)
dx.

Since all terms in the integral are non-negative, it follows that (ũ′(x))2 = 0, i.e.,
ũ′(x)2 = 0. According to the boundary conditions and the continuity of ũ(x),
one gets ũ(x) ≡ 0. Consequently, it follows also that

v(x) = ũ(x) exp

(
1

2

∫ x

0

b(ξ) dξ

)
≡ 0,

which is a contradiction to the assumption. Hence, u(x) ≡ 0.

20



Corollary 3.17. Another criterion for the uniqueness of the model
problem with homogeneous right-hand side. Consider the linear ho-
mogeneous second order differential equation (3.7) with homogeneous Dirichlet
boundary conditions (3.6), where b ∈ C1([0, 1]), c ∈ C([0, 1]). Suppose that
u1(x), u2(x) are two linear independent solutions to (3.7), (3.6), denote

R := det

(
u1(0) u2(0)
u1(1) u2(1)

)
,

then the solution is unique if and only if R 6= 0.

Proof. Following Theorem 3.14, the general solution of linear homogeneous sec-
ond order differential equations is

u(x) = αu1(x) + βu2(x), α, β ∈ R.

Since the solution has to satisfy the boundary conditions (3.6), one has

u(0) = αu1(0) + βu2(0) = 0, u(1) = αu1(1) + βu2(1) = 0,

which can be transformed into a system of linear equations(
u1(0) u2(0)
u1(1) u2(1)

)(
α
β

)
=

(
0
0

)
.

From Linear Algebra, one knows that the system has a unique solution (the
trivial solution) if and only if the determinant of its coefficient matrix is non-
zero, i.e., R 6= 0.

3.2.2 Linear inhomogeneous differential equations
Remark 3.18. Inhomogeneous equation. Consider the linear equation (3.5) with
inhomogeneous right-hand side. Now we will examine the conditions under
which a solution of this linear inhomogeneous differential equation (3.5) with
the boundary conditions (3.6) exists and is unique.

Definition 3.19. The particular solution. A particular solution up(x) of a
differential equation is a solution that contains no arbitrary constants.

Theorem 3.20. The general solution of a linear inhomogeneous differ-
ential equations. Consider the linear inhomogeneous second order differential
equation (3.5) with b, c, f ∈ C([0, 1]). Let up(x) be a particular solution of the
linear inhomogeneous equation (3.5), and let u1(x), u2(x) be two linear indepen-
dent solutions to the corresponding linear homogeneous equation (3.7), then the
general solution can be expressed as

u(x) = αu1(x) + βu2(x) + up(x), α, β ∈ R.

21



Proof. To prove that u(x) is the general solution, one must first show that it
solves the linear inhomogeneous equation (3.5). Substituting the expression of
u(x) into (3.5), one obtains

−u′′ + b(x)u′ + c(x)u = −(αu1 + βu2 + up)
′′ + b(x)(αu1 + βu2 + up)

′

+ c(x)(αu1 + βu2 + up)

= α(−u′′1 + b(x)u′1 + c(x)u1) + β(−u′′2 + b(x)u′2 + c(x)u2)

+ (−u′′p + b(x)u′p + c(x)up)

= f(x).

Secondly, let u(x) be an arbitrary solution and up(x) be a particular solution.
Now one has to show that any solution of (3.5) can be written in that form. It
holds that
−(u− up)′′ + b(x)(u− up)′ + c(x)(u− up) = (−u′′ + b(x)u′ + c(x)u)

− (−u′′p + b(x)u′p + c(x)up)

= f(x)− f(x)
= 0.

Thus, u(x)− up(x) is a solution of the corresponding linear homogeneous equa-
tion (3.7). It follows from Theorem 3.14 that

u(x)− up(x) = αu1(x) + βu2(x), α, β ∈ R.

Hence, the general solution can be expressed as

u(x) = αu1(x) + βu2(x) + up(x), α, β ∈ R.

Example 3.21. Non-existence or non-uniqueness of the solution of a linear in-
homogeneous differential equation. At this point, there are still the boundary
conditions that we have to take into account. Consider the linear inhomogeneous
differential equation

−u′′(x)− u(x) = −x for x ∈ (0, π),

with the boundary conditions

u(0) = u(π) = 0.

Following Example 3.15 and Theorem 3.20, a particular solution of this linear
homogeneous differential equation is up(x) = x, and the general solution is

u(x) = α cosx+ β sinx+ x, α, β ∈ R.

Then it has no solution, although one has α = 0, u(π) = −π 6= 0.
In another case, if the boundary conditions are

u(0) = 0, u(π) = π.

It follows that α = 0, and β can be any real number, i.e., the equation has
infinitely many solutions, see Figure 3.3. So this problem is ill-posed.
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Figure 3.3: Different solutions to Example 3.21, which satisfy the boundary
conditions u(0) = 0, u(π) = π.

To examine the conditions under which a solution of this linear inhomo-
geneous differential equation (3.5) with the boundary conditions (3.6) exists
and is unique, it is necessary to introduce the Wronskian4 determinant and the
Green5’s function.

Definition 3.22. The Wronskian determinant. Consider the linear inho-
mogeneous differential equation (3.5) with the boundary conditions (3.6). Let
u1(x), u2(x) be two linearly independent solutions to the corresponding linear
homogeneous equation (3.7). The Wronskian determinant (or simply the Wron-
skian) is the determinant of the square matrix

W (x) := det

(
u1(x) u2(x)
u′1(x) u′2(x)

)
.

Since u1(x), u2(x) are linear independent, the Wronskian determinant is not
equal to zero for x ∈ [0, 1], i.e., W (x) 6= 0.

Definition 3.23. Green’s function. The function G(x, ξ) is called a Green’s
function for the linear homogeneous second order differential equation (3.7)
with homogeneous Dirichlet boundary conditions (3.6), where b ∈ C1([0, 1]),
c ∈ C([0, 1]), if

i) G(x, ξ) is continuous on the square Q := {(x, ξ)| x, ξ ∈ [0, 1]},

ii) there are continuous partial derivatives Gx(x, ξ) and Gxx(x, ξ) in both of
the domains

Q1 := {(x, ξ)| 0 < ξ < x < 1}, Q1 := {(x, ξ)| 0 < x < ξ < 1},

iii) for a fixed ξ ∈ (0, 1), G(x, ξ) as a function of x is a solution of LG = 0 for
x 6= ξ, x ∈ (0, 1),

4Józef Maria Hoëné-Wroński (1776 - 1853)
5George Green (1793 - 1841)
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iv) the first partial derivative ofG(x, ξ) has a "jump" of the form for x ∈ (0, 1)

Gx(x+ 0, x)−Gx(x− 0, x) = −1,

v) and G(0, ξ) = G(1, ξ) = 0 for all ξ ∈ (0, 1).

Theorem 3.24. Existence and uniqueness of the solution of the model
problem with inhomogeneous right-hand side. Consider the linear inho-
mogeneous second order differential equation (3.5) with the homogeneous Dirich-
let boundary conditions (3.6), where b, c, f ∈ C([0, 1]). If the corresponding lin-
ear homogeneous equation (3.7) has only the trivial solution, then (3.5), (3.6)
has exactly one classical solution, which has the form

u(x) =

∫ 1

0

G(0, ξ)f(ξ) dξ

with the Green’s function

G(x, ξ) =
1

RW (ξ)

{
A(ξ)B(x), if x ∈ Q1,

A(x)B(ξ), if x ∈ Q2,

where

A(x) := det

(
u1(0) u2(0)
u1(x) u2(x)

)
, B(x) := det

(
u1(x) u2(x)
u1(1) u2(1)

)
.

Proof. Only a sketch proof of this theorem will be given here, since the idea
of this proof is similar to those of Theorem 3.14, Theorem 3.16, Theorem 3.20.
The According to Definition 3.23, one can first show that G(x, ξ) is a Green’s
function. To show the existence of the solution, one substitutes u(x) into (3.5),
then it shows that u(x) solves (3.5). One proves the uniqueness of the solution
by contradiction. Assume that there is another solution v(x), then one finds out
that the difference of two solutions u(x)− v(x) solves (3.7) as well. Since (3.7)
has only the trivial solution, both solutions are actually the same, which is a
contradiction to the assumption. Hence, the classical solution is unique.

Corollary 3.25. The converse of Theorem 3.24. Under the assumptions
of Theorem 3.24, if (3.5), (3.6) has exactly one classical solution, then the
corresponding linear homogeneous equation (3.7) has only the trivial solution.

Proof. One proves the corollary by contradiction. Suppose that uinh(x) is the
unique classical solution of (3.5), (3.6) and assume that uhom(x) is a nontrivial
solution of the corresponding linear homogeneous equation (3.7). It follows
from Theorem 3.20 that uinh(x)+uhom(x) is another solution of (3.5), which is
a contradiction to the assumption. Hence, (3.7) has only the trivial solution.

Corollary 3.26. Existence and uniqueness of the solution of the model
problem with arbitrary Dirichlet boundary conditions. Consider the lin-
ear inhomogeneous second order differential equation (3.5) with arbitrary Dirich-
let boundary conditions u(d) = γd, u(e) = γe, γd, γe ∈ R, where b ∈ C1([0, 1]),
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c ∈ C([0, 1]). Similarly, see Theorem 3.16, if it holds for all x ∈ (0, 1) that

c̃(x) :=
1

4
b2(x)− 1

2
b′(x) + c(x) ≥ 0,

then the model problem with arbitrary Dirichlet boundary conditions has exactly
one classical solution.

Proof. It follows from Remark 3.4, Theorem 3.16, Theorem 3.24.

Remark 3.27. Well-posedness of the linear two-point second order boundary
value problems. Until now, we have shown that under the certain conditions, a
linear two-point second order boundary value problem has exactly one classical
solution, which also means that, the linear two-point second order boundary
value problem is well-posed, see Definition 3.9. It tells us that the unique solu-
tion of the model problem varies continuously with the boundary data.
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Chapter 4

Weak Formulation of the
Model Problem

Remark 4.1. Motivation. In fact, there does not always exist a classical solution
of the model problem (3.5), (3.6), because many solutions are not sufficiently
smooth, which does not satisfy the first condition of the classical solution, see
Definition 3.12. The so-called weak solutions are much easier to describe in
terms of linear algebra and its infinite-dimensional analogues than classical so-
lutions are, see [13].

In this chapter we will show the existence and uniqueness of the weak so-
lution. Several functional analysis tools might be used here. Lebesgue1 spaces
are introduced in the basic module Analysis III, see [5]. Some inequalities,
e.g. Young2’s inequality, Cauchy3-Schwarz4 inequality, Hölder5’s inequality and
Poincaré6-Friedrichs7 inequality, can be found in the literature, see [16]. Be-
sides, Sobolev8 spaces are required in the theory of weak formulations. A brief
introduction to Sobolev spaces will be given here and we will introduce the weak
derivative, which is also required for weak formulations.

1Henri Léon Lebesgue (1875 - 1941)
2William Henry Young (1863 - 1942)
3Baron Augustin-Louis Cauchy (1789 - 1857)
4Hermann Schwarz (1843 - 1921)
5Otto Hölder (1859 - 1937)
6Jules Henri Poincaré (1854 - 1912)
7Kurt Otto Friedrichs (1901 - 1982)
8Sergei Sobolev (1908 - 1989)
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4.1 Weak Derivative and Sobolev Spaces
Definition 4.2. Weak derivative. Let u ∈ L1

loc(a, b). A function v ∈
L1
loc(a, b) is a weak derivative of u if it holds that∫ b

a

u(x)ϕ′(x) dx = −
∫ b

a

v(x)ϕ(x) dx

for all ϕ ∈ C∞0 (a, b) ⊂ C∞(a, b), i.e., for all infinitely differentiable functions
with compact support in (a, b). We also write u′(x) = v(x).

Lemma 4.3. Fundamental lemma of calculus of variations. Let u ∈
L1
loc(a, b) and suppose that ∫ b

a

u(x)ϕ′(x) dx = 0

for all ϕ ∈ C∞0 (a, b). Then u(x) = 0 almost everywhere.

Proof. For the proof, it is referred to the literature, see [15].

Lemma 4.4. Uniqueness of the weak derivative. Let u ∈ L1
loc(a, b). Then

the weak derivative u′(x) of u(x) is uniquely determined.

Proof. Assume that ũ(x) 6= 0 is another weak derivative of u(x). It holds for all
ϕ ∈ C∞0 (a, b) that∫ b

a

(ũ′(x)− u′(x))ϕ(x) dx =

∫ b

a

(−u(x) + u(x))ϕ′(x) dx = 0.

Then it follows from the fundamental lemma of calculus of variations that
ũ′(x) = u′(x), which is a contradiction to the assumption.

Lemma 4.5. Linearity of the weak derivative. Let u1, u2 ∈ L1
loc(a, b) and

suppose that there exist weak derivatives v1 = u′1, v2 = u′2. Then there exists
(αu1 + βu2)′, α, β ∈ R, and

(αu1 + βu2)
′ = αv1 + βv2.

Proof. Using Definition 4.2, one obtains∫ b

a

(αu1(x) + βu2(x))ϕ
′(x) dx = α

∫ b

a

u1(x)ϕ
′(x) dx+ β

∫ b

a

u2(x)ϕ
′(x) dx

= −α
∫ b

a

v1(x)ϕ(x) dx− β
∫ b

a

v2(x)ϕ(x) dx

= −
∫ b

a

(αv1(x) + βv2(x))ϕ(x) dx

for all ϕ ∈ C∞0 (a, b). Hence, (αu1 + βu2)
′ = αv1 + βv2.
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Remark 4.6. Weak derivative and classical derivative. Each classical derivative
is also a weak derivative. But a derivative can exist in the weak sense without
existing in the classical sense.
Example 4.7. The absolute value function. Consider the absolute value function
u(x) = |x|, which is not differentiable at x = 0. But it has a weak derivative

v(x) =

{
−1, if x < 0,

1, if x > 0,

since it holds for all ϕ ∈ C∞0 (a, b) that∫
R
u(x)ϕ′(x) dx =

∫ 0

−∞
−xϕ′(x) dx+

∫ ∞
0

xϕ′(x) dx

= −xϕ(x)
∣∣∣0
−∞
−
∫ 0

−∞
−ϕ(x) dx+ xϕ(x)

∣∣∣∞
0

+−
∫ ∞
0

ϕ(x) dx

=

∫ 0

−∞
ϕ(x) dx−

∫ ∞
0

ϕ(x) dx

= −
∫
R
v(x)ϕ(x) dx.

Definition 4.8. Sobolev spaces Hk(a, b). Let k ∈ N0. The Sobolev space
Hk(a, b) consists of all u ∈ L2(a, b) such that weak derivatives u(i) ∈ L2(a, b)
for i ∈ N, 1 ≤ i ≤ k, i.e.,

Hk(a, b) =W k,2(a, b) :=
{
u ∈ L2(a, b)

∣∣ u(i) ∈ L2(a, b), i = 1, . . . , k
}
.

Obviously, it holds H0(a, b) = L2(a, b), which is also a Lebesgue space.
The scalar product of H1(a, b) is defined by

(u1, u2)H1 :=

∫ b

a

(u1(x)u2(x) + u′1(x)u
′
2(x)) dx,

and the norm is then given by

||u||H1 := (u, u)
1/2
H1 .

Definition 4.9. The Sobolev space H1
0 (a, b). The Sobolev space H1

0 (a, b) is
defined by

H1
0 (a, b) :=

{
u ∈ H1(a, b)

∣∣ u(a) = u(b) = 0
}
.

It is equipped with the scalar product

(u1, u2)H1
0
:=

∫ b

a

u′1(x)u
′
2(x) dx,
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and with the norm
‖u‖H1

0
:= (u, u)

1/2

H1
0
.

The boundary values are defined in the sense of traces here. Using Poincaré’s
inequality, one can show that (u1, u2)H1

0
is a scalar product in H1

0 (a, b).

Definition 4.10. The dual space H−1(a, b) of H1
0 (a, b). The dual space

H−1(a, b) ofH1
0 (a, b) consists of all continuous linear functionals onH1

0 (a, b).

Remark 4.11. On the different spaces.

• The Lebesgue spaces Lp(a, b), p ∈ [1,∞) are complete normed spaces,
i.e., Banach9 spaces. Hilbert spaces are a subset of Banach spaces. For
example, the Lebesgue space L2(a, b), which is equipped with the scalar
product

(u1, u2)L2 =

∫ b

a

u1(x)u2(x) dx, u1, u2 ∈ L2(a, b),

and with the norm
‖u‖L2 = ‖u‖2 = (u, u)

1/2
L2 ,

is a Hilbert space.

• The Sobolev spaces Hk(a, b), k ∈ N0 are Hilbert spaces.

• Generally, H−k(a, b), k ∈ N is the dual space of Hk
0 (a, b). It is H−k(a, b) =(

Hk
0 (a, b)

)′. In particular, it is H−1(a, b) =
(
H1

0 (a, b)
)′.

• H1
0 (a, b) ⊂ L2(a, b) ⊂ H−1(a, b) is a so-called Gelfand10 triple.

Before we get into the weak formulation, we will introduce the bilinear form
in this section, which will be used later.

Definition 4.12. Bilinear form. A bilinear form on a Banach space V is a
mapping B(·, ·) : V × V → R, which is linear in each argument:

B(u, v1 + λv2) = B(u, v1) + λB(u, v2), u, v1, v2 ∈ V, λ ∈ R,
B(u1 + λu2, v) = B(u1, v) + λB(u2, v), u1, u2, v ∈ V, λ ∈ R.

The bilinear form B(·, ·) is called
i) symmetric, if B(u, v) = B(v, u), u, v ∈ V ,

ii) positive, if B(u, u) ≥ 0, u ∈ V ,

iii) coercive, if there is a constant µ > 0, such that for all u ∈ V ,

B(u, u) ≥ µ‖u‖2V ,

iv) bounded, if there is a constant δ > 0, such that for all u, v ∈ V ,

|B(u, v)| ≤ δ‖u‖V ‖v‖V .

9Stefan Banach (1892 - 1945)
10Israel Moiseevich Gelfand (1913 - 2009)
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4.2 Weak Formulation and Weak Solution
Remark 4.13. The Poisson11 equation with homogeneous Dirichlet boundary
conditions. Consider the simplified model problem (3.3), (3.4) with ε = 1,
b(x) = c(x) = 0, i.e.,

− u′′ = f(x) for x ∈ (0, 1), (4.1)

with homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0.

The differential equation (4.1) is a so-called Poisson equation. Next, we
will concentrate on the Poisson equation with homogeneous Dirichlet boundary
conditions for investigation of the weak solution’s behaviour.

Remark 4.14. Derivation of the weak formulation. Consider the Poisson equa-
tion (4.1) with homogeneous Dirichlet boundary conditions. By multiplying
(4.1) with a so-called test function v(x), v(0) = v(1) = 0, then integrating the
equation by parts over (0, 1), one obtains∫ 1

0

−u′′(x)v(x) dx = u′(x)v(x)
∣∣∣1
0
−
∫ 1

0

−u′(x)v′(x) dx

=

∫ 1

0

u′(x)v′(x) dx

=

∫ 1

0

f(x)v(x) dx.

This transformation only makes sense when a proper space is chosen, such that
all integrals are well defined. The Sobolev space H1

0 (0, 1) and L2(0, 1) will be
considered in this chapter and we denote

a(u, v) := (u′, v′)L2 = (u, v)H1
0
=

∫ 1

0

u′(x)v′(x) dx.

Let f ∈ H−1(0, 1). Then one gets

f(v) := (f, v)H−1,H1
0
=

∫ 1

0

f(x)v(x) dx,

where f(v) is a linear functional f acting on v ∈ H1
0 (0, 1), and (·, ·)H−1,H1

0
is

the dual pairing of the spaces H−1(0, 1) and H1
0 (0, 1).

Example 4.15. A bilinear form a(·, ·). Consider the Sobolev space H1
0 (0, 1) and

let u, v ∈ H1
0 (0, 1). It follows directly from the linearity of differentiation and

integration that a(·, ·) is a bilinear form on H1
0 (0, 1). The bilinear form a(·, ·) is

i) symmetric, since a(u, v) = a(v, u),
11Siméon Denis Poisson (1781 - 1840)
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ii) positive, since a(u, u) = (u′, u′)L2 = ‖u‖22 ≥ 0,

iii) coercive, since a(u, u) = (u, u)H1
0
= ‖u‖2

H1
0
,

iv) bounded. Using the Cauchy-Schwarz inequality yields

|a(u, v)| = |(u, v)H1
0 (0,1)

| ≤ ‖u‖H1
0 (0,1)

‖v‖H1
0 (0,1)

.

Definition 4.16. Weak formulation and weak solution. Let f ∈ L2(0, 1)⊂
H−1(0, 1). The weak formulation of the Poisson equation (4.1) with homoge-
neous Dirichlet boundary conditions is to find u ∈ H1

0 (0, 1) ⊂ L2(0, 1), such
that

a(u, v) = f(v) ∀ v ∈ H1
0 (0, 1). (4.2)

The functions v(x) are called test functions. A solution of (4.2) is called a weak
solution.

Remark 4.17. Weak solution and classical solution. Each classical solution is
also a weak solution. The corresponding space of the weak solution is called
ansatz space or solution space. Compared to the classical solution in C2(0, 1)∩
C ([0, 1]), only the first weak derivative of the weak solution is required.

Theorem 4.18. Riesz12 representation theorem. Let H be a Hilbert space
and H ′ be the dual space of H. Then for each continuous linear functional
f ∈ H ′ there exists a unique u ∈ H such that

(u, v)H = f(v) ∀ v ∈ H.

Proof. Let ker(f) := {v ∈ H| f(v) = 0}, which is a linear subspace of H. Let
{vk}k∈N be a sequence in ker(f) with vk → v for k → ∞. In fact, since f is
continuous and linear, it is also bounded. Using the continuity, linearity and
boundedness of f , it holds for all k ∈ N that

|f(v)| = |f(v)− f(vk)| = |f(v − vk)| ≤ ‖f‖H′‖v − vk‖H .

Hence, |f(v)| = 0. If f = 0, then H = ker(f). Since (v, v)H = ‖v‖2H > 0 for all
v 6= 0, it follows that u = 0 is the unique solution.

If f 6= 0, then H 6= ker(f). Let (ker(f))⊥ be the orthogonal complement of
ker(f), i.e., H ∼= ker(f)⊕ (ker(f))⊥. Consider z ∈ (ker(f))⊥ with f(z) = 1. It
follows from the linearity of f that

f(v − f(v)z) = f(v)− f(v)f(z) = 0 ∀v ∈ H,

i.e., (v − f(v)z) ∈ ker(f). So it holds for all v ∈ H that

0 = (z, v − f(v)z)H = (z, v)H − f(v)(z, z)H .
12Frigyes Riez (1880 - 1956)
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Thus, (u, v) = f(v) for u = (‖z‖2H)−1z.
Until now we have shown the existence of u. At last, the uniqueness of u

will be proved. Assume ũ is another solution. It holds

(u− ũ, v)H = (u, v)H − (ũ, v)H = f(v)− f(v) = 0 ∀v ∈ H.

Hence, u = ũ, which is a contradiction to the assumption.

Lemma 4.19. Lax13-Milgram14 Theorem. Let H be a Hilbert space and
B(·, ·) be a bounded and coercive bilinear form on H. Then, for each bounded
linear functional f ∈ H ′ there exists a unique u ∈ H such that

B(u, v) = f(v) ∀v ∈ H.

Proof. One can prove the Lax-Milgram theorem with the help of the Riesz
representation theorem. For the proof, it is referred to the literature, see [4].

Corollary 4.20. Existence and Uniqueness of the weak solution of the
weak formulation. Let f ∈ L2(0, 1) ⊂ H−1(0, 1). Then there exists a unique
weak solution of (4.2).

Proof. It follows from Remark 4.14, Example 4.15 and Theorem 4.18.

Remark 4.21. Well-posedness of the weak formulation (4.2). According to Corol-
lary 4.20, the weak formulation (4.2) admits a unique solution. Setting the test
function v = u and using the Cauchy-Schwarz inequality for the right-hand side
of (4.2), one gets ‖u‖H1

0
≤ ‖f‖H−1 , which implies that u changes continuously

with f . Thus, the weak formulation (4.2) is well-posed.

Remark 4.22. The Lax-Milgram theorem for non-symmetric bilinear forms. The
Lax-Milgram theorem is a generalization of the Riesz representation theorem.
The main interest of the Lax-Milgram theorem is that it also works without the
bilinear form a(·, ·) being symmetric.

Example 4.23. Consider a Poisson equation (4.1) with homogeneous Dirichlet
boundary conditions, where

f(x) =

{
16, if 0 < x < 1

2 ,

−16, if 1
2 ≤ x < 1.

Since f(x) is discontinuous at x = 1
2 , this problem does not have a classical

solution. However, this problem has a weak solution

u(x) =

{
8x2 − 4x, if 0 < x < 1

2 ,

−8x2 + 12x− 4, if 1
2 ≤ x < 1,

13Peter David Lax (1926 - )
14Arthur Norton Milgram (1912 - 1961)
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Figure 4.1: The weak solution of Example 4.21 and its first derivative.

and its first derivative is

u′(x) =

{
16x− 4, if 0 < x < 1

2 ,

−16x+ 12, if 1
2 ≤ x < 1,

see Figure 4.1.
The weak formulation of this problem is to find u ∈ H1

0 (0, 1), such that

a(u, v) = f(v) ∀ v ∈ H1
0 (0, 1),

since it holds for all v ∈ H1
0 (0, 1) that

a(u, v) =

∫ 1

0

u′(x)v′(x) dx

=

∫ 1
2

0

u′(x)v′(x) dx+

∫ 1

1
2

u′(x)v′(x) dx

= u′(x)v(x)
∣∣ 12
0
−
∫ 1

2

0

u′′(x)v(x) dx+ u′(x)v(x)
∣∣1
1
2

−
∫ 1

1
2

u′′(x)v(x) dx

=

∫ 1

0

f(x)v(x) dx

= f(v).
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4.3 The Minimization Problem
Remark 4.24. Another weak formulation. The Poisson equation with homoge-
neous Dirichlet boundary conditions can be interpreted as a so-called minimiza-
tion problem, which is equivalent to the weak formulation (4.2).

Definition 4.25. The minimization problem. Let f ∈ L2(0, 1)⊂ H−1(0, 1).
The minimization problem of the Poisson equation (4.1) with homogeneous
Dirichlet boundary conditions is to find u ∈ H1

0 (0, 1), which minimizes the
so-called energy functional

F (v) :=
1

2
a(v, v)− f(v) ∀v ∈ H1

0 (0, 1), (4.3)

i.e.,
F (u) ≤ F (v) ∀ v ∈ H1

0 (0, 1).

Lemma 4.26. The solution of (4.3). Under the assumptions of Definition
4.16, u ∈ H1

0 (0, 1) is the solution of (4.2) if and only if u minimizes (4.3).

Proof. Suppose that u ∈ H1
0 (0, 1) is the solution of (4.2). Using the bilinearity

and positiveness of a(·, ·) and the linearity of f , one obtains

F (v) = F (u) +
1

2
a(v − u, v − u) + a(u, v − u)− f(v − u)

= F (u) +
1

2
a(v − u, v − u) ≥ F (u) ∀v ∈ H1

0 (0, 1).

The bilinear form a(v − u, v − u) is equal to zero here if and only if u = v.
Now suppose that u minimizes (3.3). Let v ∈ H1

0 (0, 1) be arbitrary, and
λ ∈ (0, 1). Using the bilinearity of a(·, ·) and the linearity of f again, one
obtains

F (u+ λv)− F (u) =
(
1

2
a(u+ λv, u+ λv)− f(u+ λv)

)
−
(
1

2
a(u, u)− f(u))

)
=

1

2
λ2a(v, v) + λ(a(u, v)− f(v)) ≥ 0 ∀v ∈ H1

0 (0, 1).

Dividing the above mentioned inequality by λ and then setting λ→ 0 yields

a(u, v) ≥ f(v) ∀ v ∈ H1
0 (0, 1).

Similarly, let λ ∈ (−1, 0) and after a direct calculation, one gets the equality.

Remark 4.27. Well-posedness of the minimization problem (4.3). Since the weak
formulation (4.2) and the minimization problem (4.3) are equivalent, it follows
from Corollary 4.20, Remark 4.21 and Lemma 4.26 that the minimization prob-
lem (4.3) is also well-posed.
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Chapter 5

Finite Element Method

Remark 5.1. Idea. It is widely known that the three classical methods to obtain
the numerical solution of differential equations are the finite difference method,
the finite element method and the finite volume method. The most frequently
used finite element method is the so-called the Ritz1 method, which is commonly
called the Rayleigh2-Ritz method or the Ritz-Galerkin3 method according to
different assumptions.

The Ritz method is based on the weak formulation that we have constructed
in Chapter 4. The idea is to reduce the problem to finite-dimensional subspaces
and then numerically compute the solution as a finite linear combination of the
basis vectors in the subspaces.

5.1 The Ritz Method
Definition 5.2. The Ritz approximation. Let H be a separable Hilbert
space, which has a countable orthonormal basis. There are finite-dimensional
subspaces Hk ⊂ H, k = 1, . . . , n, such that, for each u ∈ H and ε ≥ 0 there is
a N ∈ N and a uk ∈ Hk with

‖u− uk‖H ≤ ε ∀ k ≥ N. (5.1)

The Ritz approximation of (4.2) is to find uk ∈ Hk such that

a(uk, vk) = f(vk) ∀ vk ∈ Hk. (5.2)

Note that the bilinear form a(·, ·) is symmetric here and the inclusion of the
subspaces Hk ⊂ Hk+1 is not required.

Lemma 5.3. Existence and uniqueness of the solution of (5.2). Under
the assumptions of Definition 5.2, there exists a unique solution of (5.2).

1Walther Ritz (1878 - 1909)
2John William Strutt, 3rd Baron Rayleigh (1842 - 1919)
3Boris Grigoryevich Galerkin (1871 - 1945)
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Proof. Since the subspaces Hk ⊂ H are still Hilbert spaces, one can apply the
Riesz representation theorem to (5.2), which implies that there exists a unique
solution of (5.2).

Lemma 5.4. Consistency of the Ritz approximation, Galerkin orthog-
onality. Let u and uk be the solutions of (4.2) and (5.2) respectively. Then the
error εk := u− uk is orthogonal to the subspace Hk, i.e.,

a(εk, vk) := a(u− uk, vk) = 0 ∀ vk ∈ Hk.

Proof. Using the linearity of a(·, ·) and Definition 5.2, one obtains

a(u− uk, vk) = a(u, vk)− a(uk, vk) = f(vk)− f(vk) = 0.

Hence, The error εk is orthogonal to Hk, i.e., εk⊥Hk.

Lemma 5.5. Best approximation property, convergence of the Ritz
approximation. Let u and uk be the solutions of (4.2) and (5.2) respectively.
Then uk is the best approximation of u in Hk, i.e.,

‖u− uk‖H ≤ ‖u− vk‖H ∀ vk ∈ Hk.

Hence, the sequence of the Ritz approximation (uk) converges to u with respect
to the norm in H, i.e.,

lim
k→∞

‖u− uk‖H = 0.

Proof. Obviously, if ‖u− uk‖H = 0, then uk is the best approximation of u.
Suppose that ‖u− uk‖H 6= 0. Let vk = uk −wk with an arbitrary wk ∈ Hk.

Using the linearity of a(·, ·), the Galerkin orthogonality and the Cauchy–Schwarz
inequality yields

‖u− uk‖2H = a(u− uk, u− uk)
= a(u− uk, u− (vk + wk))

= a(u− uk, u− vk)− a(u− uk, wk)
= a(u− uk, u− vk) ≤ ‖u− uk‖H‖u− vk‖H .

Dividing the above mentioned inequality by ‖u − uk‖H gives the statement of
the best approximation.

Then it follows from the best approximation property and (5.1) that

‖u− uk‖H ≤ ‖u− vk‖H ≤ ε ∀ vk ∈ Hk,

which implies that
lim
k→∞

‖u− uk‖H = 0.
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Remark 5.6. Well-posedness of the Ritz approximation (4.2), stability of the
Ritz approximation. Since the subspaces Hk ⊂ H are still Hilbert spaces, the
properties of the bilinear form a(·, ·) on Hk can be inherited from them on
H. From Lemma 5.3 we know that there exists a unique solution of (5.2). In
addition, the proof of stability on the data for the discrete problem is analog as
for the continuous problem, see Remark 4.21. Hence, the Ritz approximation is
well-posed.

Remark 5.7. Matrix-vector form of the Ritz method. One can reformulate the
Ritz method as a linear system of equations, which can be used to compute the
numerical solution of the Ritz approximation (5.2) algorithmically. Let {φi}ki=1

be a set of basis functions of Hk and assume that f ∈ L2(0, 1). Then vk ∈ Hk

can be represented as a linear combination of the basis functions {φi}ki=1 in Hk,
i.e., vk =

∑k
i=1 λiφi, λi ∈ R. Since a(·, ·) is a bilinear form and f is a linear

functional, it is sufficient to test (5.2) with these basis functions, i.e.,

a(uk, vk) = a

(
uk,

k∑
i=1

λiφi

)

=

k∑
i=1

λia(uk, φi)

=

k∑
i=1

λif(φi)

= f

(
k∑
i=1

λiφi

)
= f(vk),

where a(uk, φi) = f(φi) for i = 1, . . . , k, see Definition 5.2. Expanding uk with
respect to these basis functions, i.e., uk =

∑k
j=1 ζjφj , ζj ∈ R, and then inserting

it into the equation above, one obtains

a(uk, φi) = a

 k∑
j=1

ζjφj , φi

 =

k∑
j=1

ζja(φj , φi) = f(φi) = (f, φi)L2

for i = 1, . . . , k, where the coefficients ζj ∈ R, j = 1, . . . , k are to be determined
for the numerical solution uk. This previous equation gives the matrix-vector
form Au = f, where

Aij = a(φj , φi), u = (ζ1, . . . , ζk)
T , f = (f(φ1), . . . , f(φk))

T
,

The matrix A is called stiffness matrix, and the right-hand side vector f is called
load vector. The symmetry and positive definiteness of the stiffness matrix A
follow directly from the symmetry and positiveness of the bilinear form a(·, ·).
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5.2 Mesh and Basis Functions
Remark 5.8. Goal. In the last section, we have introduced how the Ritz method
solves the Poisson equation (4.1) with homogeneous Dirichlet boundary condi-
tions in the weak formulation (4.2). Now we need to generate a mesh on which
a set of basis functions based.

Definition 5.9. Mesh, node, mesh cell, and step size. For the model
problem, a mesh is a decomposition Ih of the interval I = [0, 1]

Ih = {x0 = 0, x1, . . . , xN = 1}

with x0 < x1 < · · · < xN . Here, xi, i = 0, . . . , N, is called a node, or nodal
point, and (x0, x1), . . . , (xN−1, xN ) are called mesh cells. The differences be-
tween neighboring nodes hi = xi+1−xi are called step sizes. For an equidistant
mesh on I = [0, 1], we denote

xi = ih, i = 0, . . . , N, h = hi =
1

N
.

Remark 5.10. Choices of the basis functions. Let the solution be in the separable
Hilbert space H, which is H1

0 (0, 1) in the model problem. Then there are finite-
dimensional spaces Hk ⊂ H, k = 1, . . . , n based on the grid, see Definition 5.2.
It is worth mentioning that different finite-dimensional spaces generate different
finite element solutions. Hence, it is important to choose appropriate linearly
independent basis functions {φi}ki=1, which can span these finite-dimensional
spaces, i.e.,

Hk =

{
vk

∣∣∣∣∣vk =

k∑
i=1

λiφi, λi ∈ R

}
.

From the numerical point of view, the stiffness matrix A should be sparse.
Otherwise, the computation of integrals in the matrix A would be very costly.
So we should choose a set of basis functions, which

• is simple so that the integrals can be computed easily,

• is zero in most mesh cells so that the stiffness matrix A can be sparse,

• and is continuous and differentiable except at nodes.

Next, the piecewise linear basis functions, the piecewise quadratic basis func-
tions and the Bernstein basis polynomials will be considered and discussed sep-
arately.
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Figure 5.1: Hat functions for N = 4.

5.2.1 Piecewise linear basis functions
Definition 5.11. Hat functions. The simplest piecewise linear basis functions
are so-called hat functions. They have the form for i = 1, . . . , N − 1

φi(x) =


x−xi−1

xi−xi−1
= x−xi−1

hi
, if x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

= xi+1−x
hi+1

, if x ∈ [xi, xi+1],

0, otherwise.

Note that

φi(xj) = δij =

{
1, if i = j,

0, otherwise,
i, j = 1, . . . , N − 1,

when xj is a node in the mesh with global node number j. The spanned finite
element space span{φi(x)}N−1i=1 has the finite dimensionN−1. For an equidistant
mesh on I = [0, 1], see Figure 5.1 for examples for N = 4.

Remark 5.12. Derivation of the matrix-vector form for hat functions. According
to Definition 5.9, the interval I = [0, 1] can be divided into non-overlapping mesh
cells (x0, x1), . . . , (xN−1, xN ). We denote (x0, x1), . . . , (xN−1, xN ) as elements.
For the model problem, the stiffness matrix entries Aij = a(φj , φi) =

∫ 1

0
φ′jφ

′
i dx,

i, j = 1, . . . , N − 1 can be split up element by element, i.e.,

A =


∫ x1

x0
(φ′1)

2
dx

∫ x1

x0
φ′1φ

′
2 dx . . .

∫ x1

x0
φ′1φ

′
N−1 dx∫ x1

x0
φ′2φ

′
1 dx

∫ x1

x0
(φ′2)

2
dx . . .

∫ x1

x0
φ′2φ

′
N−1 dx

...
...

. . .
...∫ x1

x0
φ′2φ

′
1 dx

∫ x1

x0
(φ′2)

2
dx . . .

∫ x1

x0

(
φ′N−1

)2
dx

+ . . .

+


∫ xN

xN−1
(φ′1)

2
dx

∫ xN

xN−1
φ′1φ

′
2 dx . . .

∫ xN

xN−1
φ′1φ

′
N−1 dx∫ xN

xN−1
φ′2φ

′
1 dx

∫ xN

xN−1
(φ′2)

2
dx . . .

∫ xN

xN−1
φ′2φ

′
N−1 dx

...
...

. . .
...∫ xN

xN−1
φ′2φ

′
1 dx

∫ xN

xN−1
(φ′2)

2
dx . . .

∫ xN

xN−1

(
φ′N−1

)2
dx

 .
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In each element, since there are not more than two neighboring hat functions,
then each row has at most two nonzero entries, i.e.,

A =


∫ x1

x0
(φ′1)

2
dx 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

+


∫ x2

x1
(φ′1)

2
dx

∫ x2

x1
φ′1φ

′
2 dx . . . 0∫ x2

x1
φ′2φ

′
1 dx

∫ x2

x1
(φ′2)

2
dx . . . 0

...
...

. . .
...

0 0 . . . 0



+ · · ·+


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . .

∫ xN

xN−1

(
φ′N−1

)2
dx

 .

For i = 1, . . . , N − 2, in the element (xi, xi+1), there are exactly two nonzero
hat functions. A straightforward calculation gives∫ xi+1

xi

(φ′i)
2
dx =

∫ xi+1

xi

1

h2i
dx =

1

hi
,

∫ xi+1

xi

(
φ′i+1

)2
dx =

∫ xi+1

xi

1

h2i
dx =

1

hi
,∫ xi+1

xi

φ′iφ
′
i+1 dx =

∫ xi+1

xi

φ′i+1φ
′
i dx =

∫ xi+1

xi

− 1

h2i
dx = − 1

hi
.

In the elements (x0, x1) and (xN−1, xN ), there is only one nonzero hat function,
then one has ∫ x1

x0

(φ′1)
2
dx =

1

h0
,

∫ xN

xN−1

(
φ′N−1

)2
dx =

1

hN−1
.

Finally, we can add elementwise contributions together, which is called as-
semble finite elements. Then one gets a tridiagonal stiffness matrix A, i.e.,

A =



1
h0

+ 1
h1

− 1
h1

− 1
h1

1
h1

+ 1
h2

− 1
h2

. . . . . . . . .
− 1
hN−3

1
hN−3

+ 1
hN−2

− 1
hN−2

− 1
hN−2

1
hN−2

+ 1
hN−1

 .

This process of adding elementwise contributions together is called finite element
assembly or simply assembly. Notice that the stiffness matrix A is sparse.

Similarly, the load vector f can also be assembled element by element, i.e.,

f =



∫ x1

x0
fφ1 dx

0
...
0
0

+



∫ x2

x1
fφ1 dx∫ x2

x1
fφ2 dx
...
0
0

+ · · ·+


0
0
...
0∫ xN

xN−1
fφN−1 dx

 .
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Figure 5.2: Piecewise quadratic basis functions for N = 2.

Example 5.13. The stiffness matrix A for hat functions. For an equidistant
mesh on I = [0, 1], one has h = hi = 1/N. Then one obtains the stiffness matrix

A =
1

h


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ R(N−1)×(N−1).

5.2.2 Piecewise quadratic basis functions
Definition 5.14. Piecewise quadratic basis functions. The typical piece-
wise quadratic basis functions are Lagrange basis polynomials of second order.
They have the form for i = 1, . . . , N − 1

ψi(x) =


2(x−xi−1)(x−xi−1/2)

(xi−xi−1)
2 = 2

h2
i
(x− xi−1)

(
x− xi−1/2

)
, if x ∈ [xi−1, xi],

2(xi+1−x)(xi+1/2−x)
(xi+1−xi)

2 = 2
h2
i+1

(xi+1 − x)
(
xi+1/2 − x

)
, if x ∈ [xi, xi+1],

0, otherwise,

together with the bubble functions for i = 1, . . . , N

ψi−1/2(x) =

{
4(x−xi−1)(xi−x)

(xi−xi−1)
2 = 4

h2
i
(x− xi−1) (xi − x) , if x ∈ [xi−1, xi],

0, otherwise,

where xi−1/2, i = 1, . . . , N is the midpoint of the two neighboring nodes xi−1
and xi. Note that for i, j = 1, . . . , N

ψi(xj) = ψi−1/2(xj−1/2) = δij and ψi(xj−1/2) = ψi−1/2(xj) = 0.

The spanned finite element space span{ψ1/2(x), ψ1(x), . . . , ψN−1(x), ψN−1/2(x)}
has the finite dimension 2N−1. For an equidistant mesh on I = [0, 1], see Figure
5.2 for examples for N = 2.
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Example 5.15. The stiffness matrix A for piecewise quadratic basis functions.
The derivation of the matrix-vector form for piecewise quadratic basis functions
is referred to the literature, e.g., see [14]. The Lagrange basis polynomials of
second order as polynomials are still relatively simple so that the integrals can
be computed easily. Another advantage is that they are zero in most mesh cells,
and the corresponding stiffness matrix A is sparse. For example, when N = 3,
one gets the stiffness matrix

A =


16 −8 0 0 0
−8 14 −8 1 0
0 −8 16 −8 0
0 1 −8 14 −8
0 0 0 −8 16

 ∈ R5×5.

There are more nonzero entries in the matrix, and the linear system of equations
in the same grid is larger for the same dimension. Although the computation of
the stiffness matrix A is more costly compared to the hat functions, one gets a
more accurate numerical solution.

5.2.3 Bernstein basis polynomials
Remark 5.16. Bernstein basis polynomials as a set of basis functions. Based on
the weak formulation, theoretically a lot of different sets of basis functions can
be chosen to solve the model problem. The n + 1 Bernstein basis polynomials
of degree n are continuous and differentiable except at nodes, however, from
Lemma 2.5 iv) we know that bn0 (0) = 1 and bnn(1) = 1. These two Bernstein
basis polynomials are nonzero at the boundaries, which are not in the Sobolev
space H1

0 (0, 1).
In the proof of Lemma 2.5 ix), we have shown that the n + 1 Bernstein

basis polynomials bn0 (x), . . . , bnn(x) of degree n are linearly independent. Because
of the linearly independence of the n + 1 Bernstein basis polynomials, after
dropping bn0 (x) and bnn(x), the remaining n − 1 Bernstein basis polynomials
bn1 (x), . . . , b

n
n−1(x) of degree n are still linearly independent. These can be a

appropriate basis for the finite-dimensional spaces.
Example 5.17. The stiffness matrix A for Bernstein basis polynomials. The
Bernstein basis polynomials are not zero in most mesh cells on x ∈ (0, 1), see
Lemma 2.5 i) and iv). Consequently, the stiffness matrix A is not sparse in
this case. Hence, there is no need to assemble element by element to form the
stiffness matrix A for Bernstein basis polynomials. For example, if the Bernstein
basis polynomials b41(x), b42(x), b43(x) of degree 4 are chosen to be a set of basis
functions, see Figure 5.3. A direct calculation gives the stiffness matrix

A =

 48
35

12
35 − 8

35
12
35

24
35

12
35

− 8
35

12
35

48
35

 ∈ R3×3.

Generally, the spanned finite element space span{bni (x)}
n−1
i=1 has the finite di-

mension n− 1.
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Figure 5.3: The Bernstein basis polynomials b41(x), b42(x), b43(x) of degree 4 as a
set of basis functions.

5.3 A One-dimensional Example
Example 5.18. One-dimensional Poisson equation with homogeneous Dirichlet
boundary conditions. Consider the following one-dimensional Poisson equation

−u′′ = f(x) for x ∈ (0, 1),

where f(x) := 4e2x, with homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0.

The analytical solution of this problem is

u(x) = −e2x + e2x− x+ 1.

The weak formulation of this problem is to find u ∈ H1
0 (0, 1), such that

a(u, v) = f(v) ∀ v ∈ H1
0 (0, 1).

Let H = H1
0 (0, 1). Let Hk ⊂ H, k = 1, . . . , N − 1 be finite-dimensional sub-

spaces. The Ritz approximation of this problem is to find uk ∈ Hk such that

a(uk, vk) = f(vk) ∀vk ∈ Hk.

The Mathematica code is mainly referred to [8], which can be found in the
appendix. The equidistant mesh will be used here. The code for this problem
includes the following steps:

i) Set up the mesh and the basis functions;

ii) Compute the stiffness matrices A and load vectors f for different sets of
basis functions;

iii) Define the right-hand side of the equation, then solve the problem analyt-
ically and numerically;
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iv) Plot the solutions and generate a log plot of the errors respectively.

The solutions and logarithmic errors are shown on the next two pages, see
Figure 5.4 and Figure 5.5. For better comparison, the results are presented in the
finite element space with the same dimension respectively. uH is the numerical
solution by using hat functions, uQ is the numerical solution by using piecewise
quadratic basis functions, uB is the numerical solution by using Bernstein basis
polynomials, and uExact is the analytical solution of this problem. Moreover,
errH, errQ or errB are the differences between uH, uQ or uB and uExact.

Remark 5.19. Comparison between hat functions, piecewise quadratic basis func-
tions and Bernstein basis polynomials. Figure 5.5 shows that, for the same finite
dimension, the Ritz method by using Bernstein basis polynomials performs gen-
erally better than by using hat functions and piecewise quadratic basis functions.
As the finite dimension increases, the errors by using the Bernstein basis poly-
nomials gets smaller much faster than for the other two sets of basis functions.

However, the stiffness matrices for the Bernstein basis polynomials are not
sparse, whereas those for the hat functions and piecewise quadratic basis func-
tions are sparse. On the one hand, the sparse matrices are much cheaper to
store. On the other hand, sometimes the integration by using the Bernstein ba-
sis polynomials is complicated and the resulting stiffness matrices are not sparse
which makes the computation much more costly.
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Figure 5.4: From top to bottom: the solutions in the three-dimensional, five-
dimensional and seven-dimensional finite element space.
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Figure 5.5: From top to bottom: the logarithmic errors in the three-dimensional,
five-dimensional and seven-dimensional finite element space.
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Chapter 6

Outlook

Remark 6.1. hp−finite element method. If the numerical solution is not accurate
enough, then we can refine it by the hp−finite element method (hp-FEM). The
hp−FEM is more general than the finite element method. h−refinements means
dividing elements into smaller ones and p−refinements means increasing the
polynomial degree. Since the pioneering works on the hp−finite element method
by Gui, Babuška1 in the 1980s, where it was shown that for one-dimensional
problems hp−refinement leads to exponential convergence with respect to the
number of degrees of freedom on a priori adapted meshes, there has been a great
amount of work devoted to developing adaptive hp−refinement strategies based
on a posteriori errors estimates, e.g., see [2].

Remark 6.2. Other applications of the Bernstein polynomials. The Bernstein
polynomials have been implemented for solving differential, integro-differential
and fractional differential equations. The Bernstein polynomials are also used
for important applications in many branches of mathematics and the other sci-
ences, for instance, approximation theory, probability theory, statistic theory,
number theory, numerical analysis, constructing Bézier curves, q-calculus, op-
erator theory and applications in computer graphics, see [12].

Remark 6.3. Finite element method with local Bernstein basis polynomials. One
can apply the approach from Section 5.2.3 for each mesh cell [xi, xi+1], i =
1, . . . , N − 2. For the first mesh cell [x0, x1] one can drop bn0 and then use the
remaining n Bernstein basis polynomials bn1 , . . . , bnn as local basis functions. Sim-
ilarly, for the last mesh cell [xN−1, xN ], one can drop bnn and then use remaining
n Bernstein basis polynomials bn0 , . . . , bnn−1 as local basis functions. For other
mesh cells, one uses all the n+ 1 Bernstein basis polynomials of degree n.

1Ivo M. Babuška (1926 - )
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Appendix A

Mathematica Code of the
Ritz Method
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