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Abstract Mathematical optimization techniques are on their way to becoming a standard
tool in chemical process engineering. While such approaches are usually based on deter-
ministic models, uncertainties such as external disturbances play a significant role in many
real-life applications. The present article gives an introduction to practical issues of process
operation and to basic mathematical concepts required for the explicit treatment of uncertain-
ties by stochastic optimization.

1 OPERATING CHEMICAL PROCESSES

Chemical industry plays an essential role in the daily life of our society. The purpose
of a chemical process is to transfer some (cheap) materials into other (desired) ma-
terials. Those materials include any sorts of solids, liquids and gas and can be single
components or multicomponent mixtures. Common examples of chemical processes
are reaction, separation and crystallization processes usually composed of operation
units like reactors, distillation columns, heat exchangers and so on. Based on mar-
ket demands, those processes are designed, set up and put into operation. From the
design, the process is expected to be run at a predefined operating point, i.e., with a
certain flow rate, temperature, pressure and composition [22].

Distillation is one of the most common separation processes which consumes
the largest part of energy in chemical industry. Figure 1 shows an industrial distil-
lation process to separate a mixture of methanol and water to high purity products
(methanol composition in the distillate and the bottom should be xD ≥ 99.5 mol%
and xB ≤ 0.5 mol%, respectively). The feed flow F to the column is from outflows
of different upstream plants. These streams are first accumulated in a tank (a middle
buffer) and then fed to the column. The column is operated at atmospheric pressure.
From the design, the diameter of the column, the number of trays, the reboiler duty
Q and the reflux flow L will be defined for the given product specifications.

For an existing chemical process, it is important to develop flexible operating
policies to improve its profitability and reducing its effect of pollution. The ever-
changing market conditions demand a high flexibility for chemical processes un-
der different product specifications and different feedstocks. On the other hand,
the increasingly stringent limitations to process emissions (e.g., xB ≤ 0.5 mol% in
the above example) require suitable new operating conditions satisfying these con-
straints. Moreover, the properties of processes themselves change during process
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Figure 1. An industrial distillation column with a feed tank

operation, e.g., tray efficiencies and fouling of the equipment, which leads to reduc-
tion of product quality if the operating point remains unchanged. Therefore, keeping
a constant operating point given by the process design is nowadays an out-dated con-
cept. That is to say, optimal and robust operating policies should be searched for and
implemented online, corresponding to the real-time process situations.

In the past, heuristic rules were used for improving process operation in chemi-
cal industry. However, since most chemical processes behave nonlinear, time-depen-
dent and possess a large number of variables, it was impossible to find the optimal
solutions or even feasible solutions by heuristic rules. Therefore, systematic meth-
ods including modeling, simulation and optimization have been developed in the
last two decades for process operation. These methods are model-based determinis-
tic approaches and have been more and more used in chemical industry [10].

1.1 Process Modeling

Conservation laws are used for modeling chemical processes. A balance space is
first chosen, for which model equations will be established by balancing mass, mo-
mentum and energy input into and output from the space [3]. Thus variables of a
space can be classified into independent and dependent variables. Independent vari-
ables are input variables including manipulated variables and disturbance variables.
For instance, the reflux flow and the reboiler duty are usually manipulated vari-
ables for a distillation column, while the feed flow and composition are disturbance
variables. Dependent variables are output variables (usually called state variables)
which depend on the input variables. The compositions and temperatures on the
trays inside the column are dependent variables. Besides conservation laws, cor-
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relation equations based on physical and chemical principles are used to describe
relations between state variables. These principles include vapor-liquid equilibrium
if two phases exist in the space, reaction kinetics if a reaction takes place and fluid
dynamics for describing the hydraulics influenced by the structure of the equipment.

Let us consider modeling a general tray of a distillation column, as shown in
Figure 2, where i and j are the indexes of components (i = 1,NK) and trays (from
the condenser to the reboiler), respectively. The dependent variables on each tray
are the vapor and liquid compositions yi,j, xi,j, vapor and liquid flow rate Vj, Lj,
liquid molar holdup Mj, temperature Tj and pressure Pj. The independent variables
are the feed flow rate and composition Fj, zFi,j, heat flow Qj and the flows and
compositions from the upper as well as lower tray. The model equations include
component and energy balances, vapor-liquid equilibrium equations, a liquid holdup
equation as well as a pressure drop equation (hydraulics) for each tray of the column:

– Component balance:

d(Mjxi,j)

dt
= Lj−1xi,j−1 + Vj+1yi,j+1 − Ljxi,j − Vjyi,j + FjzFi,j (1)

– Phase equilibrium:

yi,j = ηjKi,j(xi,j, Tj, Pj)xi,j + (1 − ηj)yi,j+1 (2)

– Summation equation:

NK∑
i=1

xi,j = 1,

NK∑
i=1

yi,j = 1 (3)

– Energy balance:

d(MjH
L
j )

dt
= Lj−1H

L
j−1 + Vj+1H

V
j+1 − LjH

L
j − VjH

V
j + FjH

L
F,j + Qj (4)

– Holdup correlation:
Mj = ϕj(xi,j, Tj, Lj) (5)

– Pressure drop equation:

Pj = Pj−1 + ψ(xi,j−1, yi,j, Lj−1, Vj, Tj) (6)

In addition to the equations (1)–(6), there are auxiliary relations to describe the va-
por and liquid enthalpy HV

j , HL
j , phase equilibrium constant Ki,j, holdup correlation

ϕj and pressure drop correlation ψj which are functions of the dependent variables.
Parameters in these correlations can be found in chemical engineering handbooks
like [9, 19]. Murphree tray efficiency ηj is introduced to describe the nonequilib-
rium behavior. This is a parameter that can be verified by comparing the simulation
results with the operating data.
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Figure 2. A general tray of the distillation column

Equations of all trays in the column lead to a complicated nonlinear DAE sys-
tem. Moreover, some dependent variables are required to be kept at a predefined
value (e.g., the bottom liquid level of the column). This will be realized by feed-
back control loops usually with PID (proportional-integral-derivative) controllers.
Thus controller equations have to be added to the model equation system, if closed
loop behaviors will be studied. Process simulation means, with given independ-
ent variables, to solve the DAE so as to gain the profiles of the dependent vari-
ables. In the framework of optimization, an objective function will be defined (e.g.,
minimizing the energy consumption during the operation). The above DAE system
will be the equality constraints. The inequality constraints consist of the distillate
and bottom product specifications as well as the physical limitations of vapor and
liquid flow rates. Thus a dynamic nonlinear optimization problem is formulated.
Approaches to solve dynamic optimization problems use a discretization method
(either multiple-shooting or orthogonal collocation) to transform the dynamic sys-
tem to a NLP problem. They can be classified into simultaneous approaches, where
all discretized variables are included in a huge NLP problem, and sequential ap-
proaches, where a simulation step is used to compute the dependent variables and
thus only the independents will be solved by NLP. Solution approaches to such
problems can be found in [15, 23]. As a result, optimal operating policies for the
manipulated variables can be achieved. It should be noted that some processes may
have zero degree of freedom. In the above example, when the product specifications
become equalities, it implies that the independent variables at the steady state must
be fixed for fulfilling these specifications.

1.2 Uncertainties in Process Operation

Although deterministic approaches have been successfully applied to many complex
chemical processes, their results are only applicable if the real operating conditions
are included in the problem formulation. To deal with the unknown operating re-
ality a priori, optimization under uncertainty has to be considered [13]. From the
viewpoint of process operation there are two general types of uncertainties.
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Internal Uncertainties

These uncertainties represent the unavailability of the knowledge of a process. The
process model is only an approximation and thus can not describe the real behav-
ior of the process exactly. Internal uncertainties include the model structure and the
parameter uncertainty. For the description of a chemical or a thermodynamic phe-
nomenon several representations always exist. The selection of a representation for
the model leads to a structure uncertainty. Model parameters (such as parameters of
reaction kinetics and vapor-liquid equilibrium) are usually estimated from a limited
number of experimental data and hence the model may not be able to predict the
actual process [28].

External Uncertainties

These uncertainties, mainly affected by market conditions, are from outside but have
impacts on the process. These can be the flow rate and composition of the feedstock,
product specifications as well as the supply of utilities. The outlet stream from an
upstream unit and the recycle stream from a downstream unit are usually uncertain
streams of the considered operating unit. For some processes which are sensitive
to the surrounding conditions, the atmospheric temperature and pressure will be
considered as external uncertain variables.

While some uncertain variables are treated as constants during the process op-
eration, there are some time-dependent uncertain variables which are dependent on
the process operating conditions. For instance, the tray efficiency of a distillation
column often changes with its vapor and liquid load. Another example is the uncer-
tainty of the feed streams coming from the upstream plants. In these cases a dynamic
stochastic optimization problem will be formulated. For such problems, rather than
individual stochastic parameters, continuous stochastic processes should be consid-
ered. Approximately, most of them can be considered as normal distributed stochas-
tic processes. There may exist correlation between these variables. Operation data
from historic records can be used to estimate these stochastic properties.

In deterministic optimization approaches the expected values of uncertain vari-
ables are usually employed. In the reality the uncertain variables will deviate from
their expected values. Based on the realized uncertain variables a reoptimization can
be carried out to correct the results from the last iteration. For dynamic optimiza-
tion, a moving horizon with N time intervals will be introduced. Figure 3 shows
the implementation of the three consecutive paces of the moving horizon. At the
current horizon k only the values of the available policies for the first time interval
u1 which were developed in the past horizon k − 1, will be realized to the process.
During this time interval a reoptimization is carried out to develop the operating
policies for the future horizon k + 1. The method in which the expected values of
the uncertainties are used in the problem formulation is the so-called wait-and-see
strategy. The shortcoming of this strategy is that it can not guarantee holding in-
equality constraints.
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Figure 3. Reoptimization over a moving horizon

1.3 Distillation Column Operation under Uncertain Feed Streams

Now we consider again the industrial distillation process. The flows from the up-
stream plants often change considerably due to the varying upstream operation. We
may have high flow rates of the feed during the main working hours and decreased
flow rates during the night hours or at the weekend. Figure 4 shows the measured
profiles of the total feed flow, composition and temperature for 24 hours. Here we
only focus on the impact of the variation of the flow rate. One consequence resulted
from the fluctuating feed streams is that the tank level l may exceed the upper bound
lmax (then a part of the liquid must be pumped out to an extra tank) or fall below
the lower bound lmin (then a redundant feed stream must be added to the feed flow).
Since the appearance of these cases will lead to considerable extra costs, a careful
planning for the operation should be made to prevent these situations.

Another consequence of a large feed change is that it causes significant vari-
ations of the operating point of the distillation column. To guarantee the product
quality (xD, xB), a conservative operating point is usually used for a higher purity
than the required specification. This leads, however, to more energy consumption
than required. The growth of energy requirement for a column operation is very
sensitive to the product purity, especially for a high purity distillation.

Conventionally a feedback control loop is used in process industry to keep the
level of the feed tank, using the outflow as the manipulated variable. The drawback
of this control loop is that it can not guarantee the output constraints and it will
propagate the inflow disturbance to the downstream distillation column.

To describe the continuous uncertain inflow this stochastic process will be dis-
cretized as multiple stochastic variables in fixed time intervals. We assume they have
a multivariate normal distribution with an available expected profile and a covari-
ance matrix in the considered time horizon. The reason for this assumption is that
the total feed of the tank is the sum of several independent streams from the up-
stream plants. According to the central limit theorem [16], if a random variable is
generated as the sum of effects of many independent random parameters, the distri-
bution of the variable approaches a normal distribution, regardless of the distribution
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Figure 4. Measured feed profiles of an industrial methanol-water distillation process

of each individual parameter. These parameters can be readily obtained by analyz-
ing daily measured operating data. It is obvious that a wait-and-see strategy is not
appropriate to be used in this process. Setting the feed flow with its expected profile
in a deterministic optimization can not guarantee holding the tank level in the de-
sired region. The product specification will also be easily violated by the drastically
changing real feed flow. Therefore, a here-and-now strategy, which includes the un-
certainties in the optimization problem, should be used. This will be discussed in
the next sections.

2 MODELING UNCERTAINTY

As discussed in the previous section, a common technique of correcting random
disturbances in chemical processes is moving horizon control (or model predictive
control): states are measured (or estimated) in relatively small intervals, and optimal
open-loop strategies are computed over a given planning horizon—“optimal” under
the simplifying assumption that no further disturbances occur. In effect, the frequent
repetition of this process implicitly generates a (possibly nonlinear) feedback con-
troller that reacts to the measured disturbances.

The stochastic approaches described here are naturally applicable within such
a moving horizon framework but differ in a fundamental aspect: rather than just
reacting they look ahead by taking stochastic information on future events explicitly
into account. This is possible if it is known which random events may occur and how
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likely they are. In other words, a stochastic model of the disturbances is required,
taking the form of a random process ξ = (ξt)t∈[0,T ] defined on some underlying
probability space (Ω,F , P). Here T is the length of the planning horizon and 0 is the
current time. In the present context, only R

k-valued discrete-time processes for t =
0, 1, . . . , T are considered, and it is assumed that ξt is observed just before time t

so that ξ0 is known at t = 0. Thus, the processes can be seen as random variables
ξ = (ξ1, . . . , ξT ) in R

kT . Moreover, we consider either discrete distributions Pξ or
distributions with a continuous density function on R

kT . (More details will be given
below.) For a comprehensive treatment of the measure-theoretic and probability-
theoretic foundations see, e.g., Bauer [1, 2].

Apparently the explicit modeling of uncertainty adds information to the opti-
mization model and allows for more robust process control. The price one has to
pay is the necessity of solving a stochastic optimization problem whose complexity
may exceed the complexity of the underlying deterministic problem by orders of
magnitude.

The precise nature of uncertainties (such as the time dependence and the signif-
icance in objective and constraints) leads to different classes of stochastic optimiza-
tion models; we will describe two of them. The first approach yields a multistage
recourse strategy consisting of optimal reactions to every observable sequence of
random events. It minimizes expected costs while satisfying all constraints. This is
appropriate if feasible solutions exist for every possible disturbance, or if costs for
the violation of soft constraints can be quantified (as penalty terms). The second
approach yields a single control strategy that does not react to random events but is
guaranteed to satisfy the constraints with a prescribed probability. This is appropri-
ate if constraint violations are unavoidable in certain extreme cases, or if they cause
significant costs that cannot be modeled exactly. For detailed discussions of stochas-
tic modeling aspects and problem classes we refer to the textbooks [5] and [14].

3 SCENARIO-BASED STOCHASTIC OPTIMIZATION

In scenario-based optimization, uncertainty is modeled as a finite set of possible
realizations of the future with associated positive probabilities. Each realization is
called a scenario and represents a certain event or, in our case, history of events. In
precise probabilistic terms this corresponds to a discrete distribution given by a finite
probability space (Ω,F , P), |Ω| = N. One may simply think of ω as the “number”
of a scenario, which is often emphasized by using index notation. Thus, each ele-
mentary event ω ∈ Ω labels a possible realization ξω = (ξω1, . . . , ξωT ), and the
distribution is given by N probabilities (pω)ω∈Ω, that is, Pξ(ξω) = P(ω) = pω.
(The σ-field is then simply the power set of the sample space, F = 2Ω.)

3.1 Scenario Trees

As indicated, we have to deal with event histories rather than single events. This
means that there is a finite number of realizations of ξ1, each of which may lead to
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LT ≡ L2 = {3, 4, 5}

L1 = {1, 2}

L0 = {0}

1

0

2

4 53 F2 ≡ FT = σ({3}, {4}, {5})

F1 = σ({3, 4}, {5})

F0 = σ({3, 4, 5})

Figure 5. A small scenario tree with level sets and corresponding σ-fields

a different group of realizations of ξ2, and so on. The repeated branching of partial
event histories ξt := (ξ0, . . . , ξt), called stage t scenarios, defines a scenario tree
(or event tree) whose root represents ξ0, the known observation at t = 0, and whose
leaves represent the complete set of scenarios. Thus any node represents a group
of scenarios that share a partial history ξt. We denote by V the set of nodes (or
vertices) of the tree, by Lt ⊆ V the level set of nodes at time t, and by L ≡ LT

the set of leaves; further by 0 ∈ L0 the root, by j ∈ Lt the “current” node, by
i ≡ π(j) ∈ Lt−1 its unique predecessor (if t > 0), and by S(j) ⊆ Lt+1 its set of
successors. The scenario probabilities are pj > 0, j ∈ L. All other nodes also have
a probability pj satisfying pj =

∑
k∈S(j) pk. Hence,

∑
j∈Lt

pj = 1 holds for all t,
and p0 = 1.

Seen as a partitioning of the scenarios into groups, each level set Lt consists of
atoms generating a sub-σ-fieldFt = σ(Lt) ⊆ F (whereF0 = {∅,Ω} andFT = F),
and ξt is measurable with respect to Ft. The tree structure is thus reflected by the
fact that these σ-fields form a filtration F0 ⊆ · · · ⊆ FT to which the process
(ξt)

T
t=0 is adapted. For instance, in Figure 5 the nodes represent scenario sets as

follows: 0 ↔ {3, 4, 5}, 1 ↔ {3, 4}, 2 ↔ {5}, 3 ↔ {3}, 4 ↔ {4}, and 5 ↔ {5}.
Since these abstract probability-theoretic notions are unnecessarily general for our
purposes, we will use the more natural concept of scenario trees in the following.
The notation ξt = (ξj)j∈Lt or ξ = (ξj)j∈V refers to the distinct realizations of ξ on
level t or on the entire tree, respectively. (Here we include the deterministic initial
event ξ0 in ξ.)

3.2 Multistage Stochastic Programs

The main topic of this section are multistage decision processes, that is, sequences
of alternating decisions and observations over the given planning horizon. The ini-
tial decision must be made without knowledge of the actual realizations of future
events; hence it is based solely on ξ0 and the probability distribution of ξ. As the
future unfolds, the decision maker observes realizations ξj of random events ξt,
thus collecting additional information which he or she takes into account from then
on. The resulting sequence of decisions is therefore called nonanticipative. For in-
stance, in controlling the feed tank of the distillation column in Section 1, we have
to decide in each time step how much liquid to extract during the next period based
on observations of the inflow during all previous periods and taking into account
the probability distribution of future inflows. (For the initial decision, past obser-
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vations do not appear explicitly in the problem but are implicitly modeled in the
distribution.)

The specific class of problems considered here are (convex quadratic) multistage
recourse problems on scenario trees, with decision vectors yj ∈ R

n, j ∈ V . Given
are convex quadratic objective functions

φj(yj) :=
1

2
y∗
jHjyj + f∗jyj,

and polyhedral feasible sets depending on the previous decision yi ≡ yπ(j),

Y0 := {y0 ≥ 0 : W0y0 = h0 }, (7)

Yj(yi) := {yj ≥ 0 : Wjyj = hj − Tjyi }, j ∈ V∗ := V \ {0}. (8)

These are the realizations of random costs φt(yt) and random sets Yt(yt−1), that
is, we take as random events the problem matrices and vectors

ξj = (Hj, fj,Wj, hj, Tj)

or, more generally, the functions and sets ξj = (φj, Yj). (Conceptually we are thus
allowing entirely random problem data. In practice, however, only a subset of matrix
and vector elements will usually depend on an even smaller number of random
influences.) Decisions yj are to be made so as to minimize the immediate costs
plus the expected costs of (optimal) future decisions; this is expressed in the general
multistage recourse problem

min
y0∈Y0

φ0(y0)

+ EL0

[
min

y1∈Y1(y0)
φ1(y1) + · · ·+ ELT−1

[
min

yT∈YT (yT−1)
φT (yT )

]
. . .

]
. (9)

Here ELt denotes the conditional expectation with respect to Lt,

ELt(Xt+1) =

{ ∑
k∈S(j)

pk

pj

Xk

}
j∈Lt

.

The recourse structure of this class of stochastic programs is induced by the
stage-coupling equations in (8); it is best seen in the deterministic equivalent form.
Defining QT+1(yT ) := 0 and then recursively

Qt(yt−1) := ELt−1

[
min

yt∈Yt(yt−1)
φt(yt) +Qt+1(yt)

]
, t = T(−1)1,

or, in terms of the realizations,

Qt(yi) :=
∑

j∈S(i)

pj

pi

[
min

yj∈Yj(yi)
φj(yj) +Qt+1(yj)

]
, t = T(−1)1, i ∈ Lt−1,
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the deterministic equivalent problem reads

min
y0∈Y0

φ0(y0) +Q1(y0).

This has the form of a deterministic optimization problem (hence the name), but
Q1 is nonlinear and in general non-smooth, so it is not necessarily an appropriate
formulation for numerical computations. In the case of interest one can actually
unwrap the nesting of minimizations to obtain a single objective; the deterministic
equivalent then takes the form of a large but structured convex quadratic program in
the decision variables y = (yj)j∈V ,

min
y

∑
j∈V

pj

[1

2
y∗
jHjyj + f∗jyj

]
, (10)

s.t. W0y0 = h0, (11)

Wjyj = hj − Tjyi ∀j ∈ V∗, (12)

yj ≥ 0 ∀j ∈ V. (13)

This is called the extensive form. In stochastic notation with y = (y0, . . . , yT ) the
same problem reads

min
y

T∑
t=0

E

[1

2
y∗
tHtyt + f∗tyt

]
(14)

s.t. W0y0 = h0, (15)

Wtyt = ht − Ttyt−1 ∀t ∈ {1, . . . , T }, (16)

yt ≥ 0 ∀t ∈ {0, . . . , T }. (17)

Problem (14–17) and its deterministic equivalent (10–13) represent a standard
problem class in stochastic programming. Especially the linear case with fixed re-
course (i.e., objective

∑
t E[f∗tyt] and deterministic Wt) is very well-understood

and widely used in practice. An important property of the deterministic equivalent
is that, except for the recourse sub-structure, it has the form of a standard mathe-
matical program (LP, QP, CP, or NLP). Thus, even though the scenario tree may
cause exponential growth of the problem size, standard solution approaches are ap-
plicable when combined with suitable techniques that exploit the sparsity induced
by the stochastic nature. The most prominent such techniques are decomposition
approaches which split the large stochastic program into smaller problems associ-
ated with clusters of nodes (or scenarios). For a discussion of these techniques we
refer the reader to the excellent survey articles [4, 21]; our own approach combines
interior point methods with specially developed sparse-matrix techniques.

3.3 Dynamic Structure

The stage-coupling equations (16) or (12) define (implicitly) an underlying dynamic
process, usually combined with further equality constraints. More precisely, the
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rows of conditions (16) can be categorized into dynamic equations and certain types
of constraints which possess natural interpretations and satisfy associated regularity
conditions. In [25, 26] we have developed complete such categorizations for sev-
eral formulations of stochastic programs, accompanied by solution algorithms that
employ natural pivot orders resulting from the refined sparse structure.

In processes governed by differential (or difference) equations there is typically
also a natural partitioning of the decision variables y = (x, u) into (independent)
control variables u and (dependent) state variables x, the former representing the
actual degrees of freedom available to the decision maker. The dynamic equations
are then often given in explicit form,

xj = Gjxi + Ejui + hj, (18)

which is equivalent to (12) if we define Wj := (I 0) and Tj := −(Gj Ej). In
this notation (and with the convention xπ(0), uπ(0) ∈ R

0), the multistage stochastic
program of interest takes the form

min
(x,u)

∑
j∈V

pj

[
1

2

(
xj
uj

)∗(
Hj J∗j
Jj Kj

)(
xj
uj

)
+

(
fj
dj

)∗(
xj
uj

)]
, (19)

s.t. xj = Gjxi + Ejui + hj ∀j ∈ V, (20)

x ∈ [xmin, xmax], (21)

u ∈ [umin, umax], (22)∑
j∈V

pj(Fjxj + Djuj + ej) = 0. (23)

Apart from the form of dynamic equations, the major difference to the standard
formulation consists in the additional equality constraint (23). This condition rep-
resents a sum of expectations; we call it a global constraint since it may couple all
nodes of the tree. In the standard formulation (10–13), such a condition cannot be
modeled directly; it would require surplus variables and additional constraints.

The natural interpretation of the dynamics (18) is that the decision ui at time
t−1 controls all subsequent states xj, j ∈ S(i), at time t. This is the typical situation
in discretized continuous-time processes: actually ui determines a control action for
the entire interval (t − 1, t) which becomes effective in xj one period later. In other
application contexts (particularly in the financial area), decisions become effective
immediately, leading to dynamic equations

xj = Gjxi + Ejuj + hj. (24)

Here each state xj has “ its own” control uj rather than sharing ui with the siblings
S(i).

The problem classes and solution algorithms associated with the possible formu-
lations of dynamics are closely related; we refer to them collectively as tree-sparse.
(For details see [24–26].) Applications are not only in discrete-time deterministic
and stochastic optimal control but also in other dynamic optimization problems with



Stochastic Optimization for Operating Chemical Processes 469

an underlying tree topology; extensions to network topologies with “ few” cycles are
straightforward. A very general related problem class is investigated in [20] using
a similar formulation of dynamics but σ-fields and probability spaces rather than
scenario trees.

3.4 Convex Programs

Since we are concerned with convex quadratic stochastic programs, we recall here
some basic definitions and facts of convex optimization. A convex optimization
problem has the general form

min
y∈Y

f(y) (25)

where Y is a convex set and f : Y → R is a convex function, that is,

(1 − t)y0 + ty1 ∈ Y and f((1 − t)y0 + ty1) ≤ (1 − t)f(y0) + tf(y1)

for all y0, y1 ∈ Y and t ∈ [0, 1]. A convex program (CP) is the special case

min
y

f(y) s.t. g(y) = 0, h(y) ≥ 0, (26)

where g : R
n → R

m is an affine mapping, g(y) ≡ Ay + a, and h : R
n → R

k is a
(component-wise) concave mapping. If f, g, h are twice continuously differentiable,
this means that the Hessians of f and −hi are positive semidefinite, D2f(y) ≥ 0

and D2hi(y) ≤ 0. The convex quadratic case (with H ≥ 0) reads

min
y

1

2
y∗Hy + f∗y s.t. Ay + a = 0, By + b ≥ 0. (27)

The feasible set Y is a polyhedron if and only if it is given by finitely many linear
equalities and inequalities, as in (27). It is easily seen that all level sets Nc := {y ∈
Y : f(y) ≤ c } of (25) are convex. Moreover, every local solution is automatically a
global solution, and the set S of all solutions is convex. In the general case S may be
empty even if feasible solutions exist. This happens either if f is unbounded below,
infy∈Y = −∞, or if f is bounded below but the level sets Nc are unbounded for
c ↓ infy∈Y > −∞. Both situations are impossible in the convex quadratic case (27):
existence of a solution ŷ ∈ Y is then always guaranteed (unless the problem is
infeasible). Uniqueness of a solution ŷ holds under standard conditions. For the
convex QP (27), a sufficient condition is positive definiteness of H on the null space
N(A) or, more generally, on its intersection with the null spaces of the rows of B

associated with strictly active inequalities at ŷ. All this applies in particular to the
stochastic problems (10–13) and (19–23). For an exhaustive treatment of the theory
and numerical aspects of convex and (nonconvex) nonlinear programming we refer
the reader to standard textbooks, such as [7, 8, 17].
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4 STOCHASTIC OPTIMIZATION UNDER PROBABILISTIC CONSTRAINTS

An important instance of optimization problems with uncertain data occurs if the
constraints depend on a stochastic parameter, such as the inequality system

h(x, ξ) ≥ 0, (28)

where h : R
n ×R

s → R
m, ξ is an s-dimensional random variable defined on some

probability space (Ω,A, P) and the inequality sign has to be understood component-
wise. Written as such, the constraint set is not a well-defined part of an optimization
problem since, usually, the decision on the variables x has to be taken before ξ

can be observed. It is clear that, in order to arrive at an implementable form of the
constraints, one has to remove in an appropriate way the dependence of h on specific
outcomes of ξ. The most prominent approaches to do so are

– the expected value approach
– the compensation approach
– the worst case approach
– the approach by probabilistic constraints

Using expected values, the system (28) is replaced by E h(x, ξ) ≥ 0, which now
can be understood as an inequality system depending on x only, as the expectation
operator acts as an integrator over ξ. An even simpler form is obtained when the
random variable itself is replaced by its expectation: h(x, Eξ) ≥ 0 (both forms co-
incide in case that h depends linearly on ξ). The last form corresponds to the naive
idea of substituting random parameters by average values. It seems obvious (and
will be demonstrated later) that such reduction to first moment information ignores
substantial information about ξ. Indeed, the expectation approach guarantees the
inequality system to be satisfied on the average only, but a decision x leading to a
failure of a system for about half of the realizations of ξ is usually considered as
unacceptable. On the other extreme, the worst case approach enforces a decision to
be feasible under all possible outcomes of ξ: h(x, ξ) ≥ 0 ∀ξ. This puts emphasis
on absolute safety which is frequently either not realizable in the strict sense or is
bought by extreme increase of costs. Although diametrically opposed in their mod-
eling effects, both the expected value and worst case approach share some ignorance
of the stochastic nature of ξ.

The basic idea of compensation relies on the possibility to adjust constraint vi-
olations in the system (28) after observation of ξ by later compensating actions.
Accordingly, the set of variables splits into first stage decisions x (to be fixed before
realization of ξ) and second stage decisions y (to be fixed after realization of ξ).
As an example, one may think of power scheduling where an optimal load pattern
of power generating units has to be designed prior to observing the unknown de-
mand, and, where possible later gaps between supply and demand can be corrected
by additional resources (e.g., hydro-thermal units, contracts etc.). The adjustment of
constraint violation is modeled by an inequality system H(x, ξ, y) ≥ 0, connecting
all three types of variables and it causes additional costs g(y, ξ) for the second stage
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decisions. Of course, given x and ξ, y should be chosen as to minimize second stage
costs among all feasible decisions. Summarizing, compensation models replace the
original problem

min{ f(x) | h(x, ξ) ≥ 0 }

of minimizing the costs of first stage decision under stochastic inequalities by a
problem where the sum of first stage costs and expected optimal second stage costs
is minimized:

min{f(x) + Q(x)}, Q(x) = Eq(x, ξ), q(x, ξ) = min{g(y, ξ) | H(x, ξ, y) ≥ 0 }.

The compensation approach, however, requires that compensating actions exist at all
and can be reasonably modeled. In many situations this is not the case. For instance,
operating an abundance of inflow in a continuous distillation process may cause
adjusting actions which are inconvenient to carry out or the costs of which are hard
to specify. In such circumstances, emphasis is shifted towards the reliability of a
system by requiring a decision to be feasible at high probability. More precisely,
(28) is replaced by the probabilistic constraint

P(h(x, ξ) ≥ 0) ≥ p.

Here, P is the probability measure of the given probability space and p ∈ (0, 1]
is some probability level. Of course, the higher p the more reliable is the mod-
eled system. On the other hand, the set of feasible x is more and more shrunk with
p ↑ 1 which makes increase the optimal value of the objective function at the same
time. The extreme case p = 1 is similar to the worst case approach mentioned be-
fore. Fortunately, in a typical application, considerable increase in reliability can be
obtained—for instance when contrasted to the expected value approach—at a small
expense of the objective function and it is only for requirements close to certainty
that the optimal value of the objective function worsens critically. This makes the
use of probabilistic constraints a good compromise between the afore-mentioned
methods. For a detailed introduction into various models of stochastic optimization
the reader is referred to the monographs [5], [14] and [18].

4.1 Types of Probabilistic Constraints

Both for theoretical and practical reasons it is a good idea to identify different types
of probabilistic constraints. First let us recall, that (28) is a system of inequalities
given in components by h1(x, ξ) ≥ 0, . . . , hm(x, ξ) ≥ 0. Now, when passing to
probabilistic constraints as described before, one has the choice of integrating or
separating these components with respect to the probability measure P:

P[h1(x, ξ) ≥ 0, . . . , hm(x, ξ) ≥ 0] ≥ p or

P[h1(x, ξ) ≥ 0] ≥ p, . . . , P[hm(x, ξ) ≥ 0] ≥ p.

These alternatives are referred to as joint and individual probabilistic constraints,
respectively. It is easily seen that feasibility in the first case entails feasibility in the
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second case while the reverse statement is false. In the context of control problems,
the components of ξ may relate to a discretization of the time interval. Then, joint
probabilistic constraints express the condition that at minimum probability p certain
trajectories satisfy the given constraints over the whole interval whereas individual
ones mean that this statement holds true for each fixed time of the discretized inter-
val. From the formal point of view, passing from joint to individual constraints may
appear as a complication as a single inequality (with respect to the decision variables
x) is turned into a system of m inequalities. However, introducing one-dimensional
random variables (depending on x) ηi(x) := hi(x, ξ), it can be seen that the joint
constraints involve all components ηi simultaneously, whereas in each of the indi-
vidual constraints just one specific component ηi figures as a scalar random variable.
Taking into account that the numerical treatment of probability functions involv-
ing high-dimensional random vectors is much more delicate than in dimension one,
where typically a reduction to quantiles of one-dimensional distributions can be car-
ried out, the increase in the number of inequalities is more than compensated by a
much simpler implementation. Of course, the choice between both formulations is
basically governed by the modeling point of view.

Another important structure of probabilistic constraints occurs if in the con-
straint function h decision and random variables are separated in the sense that
h(x, ξ) = h̃(x) − ĥ(ξ). Using the distribution function Fη(z) := P(η ≤ z) for the
transformed random variable η = ĥ(ξ), the resulting (joint) probabilistic constraint
may be equivalently written as

P(h(x, ξ) ≥ 0) ≥ p ⇐⇒ P(h̃(x) ≥ ĥ(ξ)) ≥ p ⇐⇒ Fη(h̃(x)) ≥ p.

In this way, the originally implicit constraint function on x has been transformed into
a composed function Fη ◦ h̃. Taking into account that h̃ is analytically given from
the very beginning and that there exist satisfactory approaches of evaluating dis-
tribution functions (in particular multivariate normal distribution), one has arrived
at an explicit, implementable constraint. Thus it makes sense to speak of explicit
probabilistic constraints here.

In the general implicit case, the evaluation of probabilities P(h(x, ξ) ≥ 0) as
well as of their gradients with respect to x may become very difficult and efficient
only in lower dimension. Nevertheless, there is some good chance for special cases
like hi( · , ξ) concave. Another option for solution is passing from joint to individual
constraints.

4.2 Storage Level Constraints

An important instance of probabilistic constraints arises with the control of stochas-
tic storage levels. Here it is assumed that some reservoir storing water or energy
or anything similar is subject to lower and upper capacity levels lmin and lmax. The
reservoir is continuously fed and emptied. The feed ξ is assumed to be stochastic
whereas extraction x is carried out in a controlled way. We consider this process
over a fixed time horizon [ta, tb] and discretize ξ and x according to subintervals of
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time as (ξ1, . . . , ξs) and (x1, . . . , xs), where ξi and xi denote the amount of sub-
stance directed to or extracted from the reservoir, respectively, during the i-th time
subinterval. Accordingly, the current capacity level after the i-th interval amounts
to l0+ ξ1 + · · · + ξi − x1 − · · · − xi, where l0 refers to the initial capacity at ta.
Thus, the stochastic storage level constraints may be written as

lmin − l0 ≤ ξ1 + · · ·+ ξi − x1 − · · ·− xi ≤ lmax − l0 (i = 1, . . . , s)

or more compactly as the system l1 ≤ Lξ − Lx ≤ l2, where L is a lower left trian-
gular matrix filled with ‘1’ . Obviously, decision and random variables are separated
here and, according to the preceding section, the resulting probabilistic constraints
become explicit and can basically be reduced to level sets of s-dimensional distribu-
tion functions in case of joint constraints. The problem becomes particularly simple
if the constraints are considered individually both with respect to the upper and
lower level and to time index i. For instance, the i-th upper level constraint writes
as

P(ηi ≤ l2i + x1 + · · ·+ xi) ≥ p ⇐⇒ Fηi(l
2
i + x1 + · · ·+ xi) ≥ p⇐⇒ x1 + · · ·+ xi ≥ (Fηi)

−1(p) − l2i ,

where ηi = ξ1 + · · · + ξi, Fηi refers to the 1-dimensional distribution function
of ηi and (Fηi)

−1(p) denotes the (usually tabulated) p-quantile of this distribution.
Consequently, the probabilistic constraints can be transformed to a system of simple
linear inequalities in the decision variable x then. Storage level constraints will be
considered later in the context of controlling a continuous distillation process where
the role of the reservoir is played by the so-called feed tank which acts as a buffer
between stochastic inflows and the operating distillation unit.

4.3 Numerical Treatment

The solution of optimization problems involving probabilistic constraints requires
at least the ability of evaluating the function ϕ(x) = P(h(x, ξ) ≥ 0). Thinking of
discretized control problems which are typically large dimensional, efficient meth-
ods like SQP have to be employed. Then, of course, the gradient of ϕ has to be
provided as well if not even second partial derivatives.

Assuming ξ to have a density fξ, the function ϕ is formally defined as the
parameter-dependent multivariate integral

ϕ(x) =

∫
h(x,z)≥0

fξ(z)dz, (29)

where integration takes place over an s-dimensional domain. Thinking of discretized
control problems again, the dimension s of the random variable may correspond to
the discretization of a time interval, hence values of s = 20 are more than moderate.
In such dimension, however, an ‘exact’ evaluation of the above integral by numer-
ical integration is far from realistic. Rather, two principal ‘ inexact’ strategies have
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proven powerful in the past, namely bounding and simulation. Some rough ideas can
be illustrated for the example of distribution functions, i.e., the special case where
the domain of integration becomes a cell h(x) + R

s
−. As mentioned in the previous

sections, the evaluation of distribution functions is crucial for the important special
case of explicit probabilistic constraints.

The generic representatives of the bounding and simulation procedures are the
Bonferroni bounds and the crude Monte-Carlo estimator. The Bonferroni bounds
refer to the determination of the probability P(

⋃s

k=1 Ak) of the union of s abstract
probability events Ak, and they are based on the inequalities

2m∑
k=1

(−1)k−1Sk ≤ P(

s⋃
k=1

Ak) ≤
2m+1∑
k=1

(−1)k−1Sk,

where m = 1, . . . , 3s/24 on the left hand side and m = 0, . . . , 3(s − 1)/24 on the
right hand side, and

Sk =
∑

1≤i1<···<ik≤s

P(Ai1 ∩ · · · ∩Aik)

denotes the summarized probability of all possible intersections of order k. In case
of s = 2, for instance, the very properties of a measure yield

P(A1 ∪A2) = P(A1) + P(A2) − P(A1 ∩A2) ≤ P(A1) + P(A2) = S1,

so we have recovered the first Bonferroni upper bound in a trivial case. For the
evaluation of a distribution function one has

F(z) = P(ξ1 ≤ z1, . . . , ξs ≤ zs) = P(A1 ∩ · · · ∩As) = 1 − P(

s⋃
k=1

Ak),

hence the Bonferroni bounds can be applied to the last expression. Specifying these
bounds for m up to 2, one gets

1 − S1 ≤ F(z) ≤ 1 − S1 + S2.

Increasing m, these bounds become sharper and sharper until the maximum pos-
sible value of m exactly realizes the desired probability. On the other hand, the
determination of Sk becomes increasingly complex. For instance, in the context
of F being a multivariate normal distribution, the determination of probabilities
P(Ai1 ∩ · · · ∩ Aik) leads to k-dimensional integration of that distribution. This
can be efficiently done for k = 1, 2 but gets quickly harder with higher dimension.
At the same time, the number of such probability terms to be summed up in the
determination of Sk equals

(
s
k

)
and thus makes the numerical effort soon explode.

That is why in the determination of distribution functions, one has to be content with
the very few first terms Sk. Often, the gap between the resulting Bonferroni bounds
is too large for practical purposes then.
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Fortunately, sharper bounds can be derived on the basis of appropriate linear
programs (see [18]). For k ≤ 4 there even exist explicit expressions for these im-
proved bounds, for instance 1 − S1 + 2

s
S2 ≤ F(z) provides a much better lower

bound on the basis of Sk with k ≤ 2 than the Bonferroni counterpart 1 − S1 ≤ F(z)
(where S2 does not figure at all in the first lower bound). Still the gap may remain
unsatisfactory. Another strategy of deriving bounds relies on graph-theoretical ar-
guments. The prominent Hunter bound (see [12]), for instance, is based on finding a
maximum weight spanning tree in a graph the vertices of which are represented by
the single events Ak and the edges of which correspond to pairwise intersections of
events Ak∩Al. The weight of an edge is given by the probability P(Ak∩Al) which
is easily calculated for all edges. The Hunter bound can be shown to be at least as
good as, but frequently much better than the (improved) lower Bonferroni bound
1 − S1 + 2

s
S2 mentioned above, although calculated with basically the same effort.

The idea behind the Hunter bound has been continuously generalized towards more
complex graph structures (hypertrees defined by hyperedges) in the last few years
resulting in amazingly efficient lower and upper bounds. Excellent results for the
multivariate normal distribution are reported in [6] with dimension up to s = 40.

The simplest scheme of Monte-Carlo simulation for evaluating (29) consists in
generating a sample of N realizations z1, . . . , zN of ξ and to take then the ratio
k/N as an estimate for the desired probability, where k = #{ i | h(x, zi) ≥ 0 }. For
larger dimension s, the variance of this estimate becomes quite large which makes
it unsatisfactory soon. Similar to the starting point of Bonferroni bounds, more effi-
cient simulation schemes have been developed as well. At this point, we may refer
to Szántai’s simulation scheme (see [27], related approaches are described in [18])
which is based on the knowledge of the first two terms S1, S2 of probabilities of sin-
gle events and pairwise intersections. Using the same sample as already generated
for the crude Monte-Carlo estimator, these terms allow immediately to calculate
two additional Monte-Carlo estimators, the reason behind being a simple cancella-
tion rule of binomial expressions. Now, the main idea is to convexly combine these
three Monte-Carlo estimators (including the crude one) and to exploit correlations
between them in order to minimize the variance of the combined estimator. In this
way, simulation results become considerably more precise. Finally, an extension to
incorporating Hunter’s and the other mentioned graph-theoretical bounds into this
scheme has been successfully carried out.

The procedures described so far are related to the evaluation of functional values
of ϕ in (29) with special emphasis on distribution functions. As for gradients or
higher order derivatives, these can be reduced analytically to the determination of
functional values again at least in case of a multivariate normal distribution (for
details see [18]). Hence, the same basic strategies apply although with repeated
effort now (n components for the gradient and n(n + 1)/2 components for the
Hessian if wanted).
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4.4 Probability Maximization

As already mentioned above, increasing the probability level p in a probabilistic
constraint shrinks the feasible set. Typically, the feasible set becomes empty start-
ing from a critical value p̄ which may be less than 1. In particular, a user of some
implemented solution method dealing with probabilistic constraints might uninten-
tionally have chosen a value of p above that critical value. Then, for instance, SQP
codes working with infeasible iterates and enforcing feasibility in convergence only,
will consume a lot of computing time in vain due to operating on an empty constraint
set. This effect is particularly undesirable in an environment of on-line optimization.
Therefore, one has good reason prior to the optimization problem itself to determine
p̄ by probability maximization over the constraints:

max{p | P(h(x, ξ) ≥ 0) ≥ p }.

As long as probabilistic constraints are considered alone in this auxiliary problem,
it can be solved rather quickly as compared to the original optimization problem.
However, one has to take into account that the obtained maximum value of p is
just an upper bound for p̄ since the other constraints of the optimization problem
(usually related to the dynamics of the underlying control problem) are not involved
here. At least, this bound gives an indication for a probability level which cannot be
exceeded at all. In order to calculate the exact bound, one would have to include all
constraints which, of course, is almost as time consuming as the original problem.

4.5 Structural Properties

For an efficient treatment of probabilistic constraints, it is crucial to have some in-
sight into their analytical, geometrical and topological structure. While correspond-
ing statements are well-known and immediate for usual (analytical) constraints of
the type g(x) ≤ 0 (e.g., when g is linear, convex or differentiable), there are no
obvious relations between the quality of data and the structure of probabilistic con-
straints. Most results in this direction are concerned with convexity issues which
have direct consequences for numerics and theoretical analysis. A corresponding
important statement in simplified form is the following one (cf. [18]):

Theorem 1. In (28), let the components hi of h be convex and assume that ξ has a
density the logarithm of which is concave. Then, the function ϕ(x) = P(h(x, ξ) ≥
0) is concave and, hence, the corresponding probabilistic constraint may be con-
vexly described, i.e., P(h(x, ξ) ≥ 0) ≥ p ⇐⇒ −ϕ(x) ≤ p.

Many but not all of the prominent multivariate distribution share the property of hav-
ing a log-concave density as required in the last theorem (e.g., multivariate normal
distribution or uniform distribution on bounded convex sets, cf. [18]).
An alternative structural characterization relates to the weaker property of connect-
edness (cf. [11]):
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Theorem 2. The constraint set { x | P(h̃(x) ≥ ĥ(ξ)) ≥ p } of an explicit proba-
bilistic constraint is connected whenever the components h̃i are concave and the
constraint qualification

Im(h̃) ∩ (t · (1, . . . , 1) + R
m
+ ) �= ∅ ∀t ∈ R.

In the affine linear case h̃(x) = Ax + b, this constraint qualification reduces to the
positive linear independence of the rows of A.

Note that this last result does not require any assumptions on the distribution of the
random variable. Applying the previous theorems to the specific situation of joint
storage level constraints to be considered later on in the context of a distillation
process, one may infer that the feasible set is convex for many and connected for all
distributions of the random variable ξ.
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