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Abstract

By extending the stability analysis of [20] for multistage stochastic programs
we show that their (approximate) solution sets behave stable with respect to the
sum of an Lr-distance and a filtration distance. Based on such stability results we
suggest a scenario tree generation method for the (multivariate) stochastic input
process. It starts with an initial scenario set and consists of a recursive deletion
and branching procedure which is controlled by bounding the approximation
error. Some numerical experience for generating scenario trees in electricity
portfolio management is reported.
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1 Introduction

Multistage stochastic programs are often used to model practical decision processes
over time and under uncertainty, e.g., in finance, production, energy and logistics. We
refer to the pioneering work of Dantzig [5, 6], and to the recent books [39], [44] and
the monograph [27] for the state-of-the-art of the theory and solution methods for
multistage models and for a variety of applications.

The inputs of multistage stochastic programs are multivariate stochastic processes
{ξt}T

t=1 defined on some probability space (Ω,F , P) and with ξt taking values in some
Rd. The decision xt at t belonging to Rmt is assumed to be nonanticipative, i.e., to
depend only on (ξ1, . . . , ξt). This property is equivalent to the measurability of xt with
respect to the σ-field Ft(ξ) ⊆ F which is generated by (ξ1, . . . , ξt). Clearly, we have
Ft(ξ) ⊆ Ft+1(ξ) for t = 1, . . . , T −1. Since at time t = 1 the input is known, we assume
that F1 = {∅, Ω}.

The multistage stochastic program is assumed to be of the form

min







E

[

T
∑

t=1

〈bt(ξt), xt〉

]

∣

∣

∣

∣

∣

∣

xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),
xt is Ft(ξ)-measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T







, (1)
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where the sets Xt ⊆ Rmt are polyhedral cones, the cost coefficients bt(ξt) and right-
hand sides ht(ξt) belong to Rmt and Rnt , respectively, the fixed recourse matrices At,0

and the technology matrices At,1(ξt) are (nt, mt)- and (nt, mt−1)-matrices, respectively.
The costs bt(·), technology matrices At,1(·) and right-hand sides ht(·) are assumed to
depend affinely linear on ξt.

While the first and third groups of constraints in (1) have to be satisfied pointwise
with probability 1, the second group, the measurability or information constraints, are
functional and non-pointwise at least if T > 2 and F2 $ Ft ⊆ F for some 2 < t ≤ T .
The presence of such qualitatively different constraints constitutes the origin of both
the theoretical and computational challenges of multistage models. Recent results
(see [42, 43]) indicate that multistage stochastic programs have higher computational
complexity than two-stage models.

The main computational approach to multistage stochastic programs consists in
approximating the stochastic process ξ = {ξt}

T
t=1 by a process having finitely many

scenarios exhibiting tree structure and starting at a fixed element ξ1 of Rd. This
leads to linear programming models that are very large scale in most cases and can
be solved by linear programming techniques, in particular, by decomposition methods
that exploit specific structures of the model. We refer to [39, Chapter 3] for a recent
survey.

Presently, there exist several approaches to generate scenario trees for multistage
stochastic programs (see [8] for a survey). They are based on several different principles.
We mention here (i) bound-based constructions [2, 10, 15, 29], (ii) Monte Carlo-based
schemes [3, 41, 43] or Quasi Monte Carlo-based methods [32, 33], (iii) (EVPI-based)
Sampling within decomposition schemes [4, 7, 21, 26], (iv) the target/moment-matching
principle [24, 25], and (v) probability metric based approximations [17, 19, 22, 23, 34].

We add a few more detailed comments on some of the recent work. The approach
of (i) relies on constructing discrete probability measures that correspond to lower and
upper bounds (under certain assumptions on the model and the stochastic input) and
on refinement strategies. The recent paper/monograph [2, 29] belonging to (i) also
offer convergence arguments (restricted to linear models containing only stochasticity
in right-hand sides in [2] and to convex models whose stochasticity is assumed to follow
some linear block-diagonal autoregressive process with compact supports in [29]). The
Monte Carlo-based methods in (ii) utilize conditional sampling schemes and lead to a
large number of (pseudo) random number generator calls for conditional distributions.
Consistency results are shown in [41] and the complexity is discussed in [42]. The
Quasi Monte Carlo-based methods in [32, 33] are developed for convex models and
for stochastic processes driven by time series models with uniform innovations. While
the general theory on epi-convergent discretizations in [32] also applies to conditional
sampling procedures, a general procedure for generating scenario trees of such time
series driven stochastic processes is developed in [33] by approximating each of the
(independent) uniform random variables using Quasi Monte Carlo methods (see [31]).
The motivation of using Quasi Monte Carlo schemes originates from their remarkable
convergence properties and good performance for the computation of high-dimensional
integrals while ”generating random samples is difficult” [31, p. 7]. The approach of (v)
is based on probability distances that are relevant for the stability of multistage models.
While the papers [17, 23, 34] employ Fortet-Mourier or Wasserstein distances, our
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recent work [19] is based on the rigorous stability result for linear multistage stochastic
programs in [20]. Most of the methods for generating scenario trees require to prescribe
(at least partially) the tree structure. Finally, we also mention the importance of
evaluating the quality of scenario trees and of a postoptimality analysis [8, 28].

In the present paper we extend the theoretical results obtained in [20] by proving
an existence result for solutions of (1) (Theorem 2.1), a Lipschitz stability result for ε-
approximate solution sets and a (qualitative) stability result for solutions of multistage
models. In addition, we review the forward technique of [19] for generating scenario
trees. Its idea is to start with an initial finite scenario set with given probabilities which
represents a ‘good’ approximation of the underlying stochastic input process ξ. Such
a finite set of scenarios may be obtained by sampling or resampling techniques based
on parametric or nonparametric stochastic models of ξ or by optimal quantization
techniques [16]. Starting from the initial scenario set, a tree is constructed recursively
by scenario reduction [9, 18] and bundling (Algorithm 3.2). We review an error estimate
for Algorithm 3.2 in terms of the Lr-distance (Theorem 3.1) and a convergence result
(Theorem 3.4). Algorithm 3.2 represents a stability-based heuristic for generating
scenario trees. It has been implemented and tested on real-life data in several practical
applications. Numerical experience was reported in [19] on generating inflow-demand
scenario trees based on real-life data provided by the French electricity company EdF.
Algorithm 3.2 or a modified version were used in [40] to generate scenario trees in
power engineering models and in [30] on generating passenger demand scenario trees
in airline revenue management.

Section 2 presents extensions of the stability result of [20] which provide the basis of
our tree constructions. Section 3 reviews some results of [19], in particular, the forward
tree construction and error estimates in terms of the Lr-distances and a convergence
result. In Section 4 we discuss some numerical experience on generating load-price
scenario trees for an electricity portfolio optimization model based on real-life data of
a municipal German power company.

2 Stability of multistage models

We assume that the stochastic input process ξ = {ξt}T
t=1 belongs to the linear space

×T
t=1Lr(Ω,F , P; Rd) for some r ∈ [1, +∞]. The model (1) is regarded as optimization

problem in the space ×T
t=1Lr′(Ω,F , P; Rmt) for some r′ ∈ [1,∞], where both linear

spaces are Banach spaces when endowed with the norms

‖ξ‖r :=
(

T
∑

t=1

E[|ξt|
r]
) 1

r

for r ∈ [1,∞) and ‖ξ‖∞ := max
t=1,...,T

ess sup |ξt|,

‖x‖r′ :=
(

T
∑

t=1

E[|xt|
r′]

)
1
r′

for r′ ∈ [1,∞) and ‖x‖∞ := max
t=1,...,T

ess sup |xt|,
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respectively. Here, | · | denotes some norm on the relevant Euclidean spaces and r′ is
defined by

r′ :=















r
r−1

, if costs are random,

r , if only right-hand sides are random,

r = 2 , if only costs and right-hand sides are random,

∞ , if all technology matrices are random and r = T.

(2)

The definition of r′ is justified by the proof of [20, Theorem 2.1], which we record as
Theorem 2.2. Since r′ depends on r and our assumptions will depend on both r and
r′, we will add some comments on the choice of r and its interplay with the structure
of the underlying stochastic programming model. To have the stochastic program well
defined, the existence of certain moments of ξ has to be required. This fact is well
known for the two-stage situation (see, e.g., Chapter 2 in [39]). If either right-hand
sides or costs in a multistage model (1) are random, it is sufficient to require r ≥ 1.
The flexibility in case that the stochastic process ξ has moments of order r > 1 may
be used to choose r′ as small as possible in order to weaken the condition (A3) (see
below) on the feasible set. If the linear stochastic program is fully random (i.e., costs,
right-hand sides and technology matrices are random), one needs r ≥ T to have the
model well defined and no flexibility on r′ remains.

Let us introduce some notation. Let F denote the objective function defined on
Lr(Ω,F , P; Rs) × Lr′(Ω,F , P; Rm) → R by

F (ξ, x) :=







E
[ T

∑

t=1

〈bt(ξt), xt〉
]

, x ∈ X (ξ),

+∞ , otherwise,

where

X (ξ) := {x ∈ Lr′(Ω,F , P; Rm) : x1 ∈ X1(ξ1), xt ∈ Xt(xt−1; ξt), t = 2, . . . , T}

is the set of feasible elements of (1) and

X1(ξ1) := {x1 ∈ X1 : A1,0x1 = h1(ξ1)}

Xt(xt−1; ξt) := {xt ∈ Rmt : xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)}

the t-th feasibility set for every t = 2, . . . , T . Denoting by

Nr′(ξ) := ×T
t=1Lr′(Ω,Ft(ξ), P; Rmt)

the nonanticipativity subspace of ξ allows to rewrite the stochastic program (1) in the
form

min{F (ξ, x) : x ∈ Nr′(ξ)}. (3)

Let v(ξ) denote the optimal value of (3) and, for any α ≥ 0, let

Sα(ξ) := {x ∈ Nr′(ξ) : F (ξ, x) ≤ v(ξ) + α}

denote the α-approximate solution set of the stochastic program (3). Since, for α = 0,
the set Sα(ξ) coincides with the set solutions to (3), we will also use the notation

S(ξ) := S0(ξ).
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The following conditions are imposed on (3):
(A1) ξ ∈ Lr(Ω,F , P; Rs), i.e.,

∫

Ω
|ξ(ω)|rdP(ω) < ∞.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ,
any t = 2, . . . , T and any x1 ∈ X1(ξ̃1), xτ ∈ Xτ (xτ−1; ξ̃τ), τ = 2, . . . , t − 1, there exists
an Ft(ξ̃)-measurable xt ∈ Xt(xt−1; ξ̃t) (relatively complete recourse locally around ξ).
(A3) The optimal values v(ξ̃) of (3) with input ξ̃ are finite for all ξ̃ in a neighborhood
of ξ and the objective function F is level-bounded locally uniformly at ξ, i.e., for some
α > 0 there exists a δ > 0 and a bounded subset B of Lr′(Ω,F , P; Rm) such that Sα(ξ̃)
is contained in B for all ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

For any ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ, condition (A2) implies the existence
of some feasible x̃ in X (ξ̃) and (2) implies the finiteness of the objective F (ξ̃, ·) at any
feasible x̃. A sufficient condition for (A2) to hold is the complete recourse condition
on every recourse matrix At,0, i.e., At,0Xt = Rnt , t = 1, . . . , T . The locally uniform
level-boundedness of the objective function F is quite standard in perturbation results
for optimization problems (see, e.g., [37, Theorem 1.17]). The finiteness condition on
the optimal value v(ξ) is not implied by the level-boundedness of F for all relevant
pairs (r, r′). In general, the conditions (A2) and (A3) get weaker for increasing r and
decreasing r′, respectively.

To state our first result on the existence of solutions to (3) in full generality, we
need two additional conditions:
(A4) There exists a feasible element z in ×T

t=1Lr̂(Ω,F , P; Rnt), 1
r

+ 1
r̂

= 1, of the dual
stochastic program to (3), i.e., it holds that

A⊤
t,0zt + A⊤

t+1,1(ξt+1)zt+1 − bt(ξt) ∈ X∗
t , t = 1, . . . , T − 1, A⊤

T,0zT − bT (ξT ) ∈ X∗
T , (4)

where X∗
t denotes the polar to the polyhedral cone Xt, t = 1, . . . , T .

(A5) If r′ = 1 we require that, for each c ≥ 0, there exists g ∈ L1(Ω,F , P) such that

T
∑

t=1

〈bt(ξt(ω)), xt〉 ≥ c|x| − g(ω)

for all x ∈ Rm such that xt ∈ Xt, t = 1, . . . , T , A1,0x1 = h1(ξ1), At,0xt +At,1(ξt(ω))xt−1

= ht(ξt(ω)), t = 2, . . . , T , and for P-almost all ω ∈ Ω.
To use Weierstrass’ result on the existence of minimizers, we need a topology T

on Lr′(Ω,F , P; Rm) such that some approximate solution set Sα(ξ) is compact with
respect to T . Since, in general, the norm topology is too strong for infinite-dimensional
optimization models in Lp-spaces, we resort to the weak topologies σ(Lp, Lq) on the
spaces Lp(Ω,F , P; Rm), where p ∈ [1,∞] and 1

p
+ 1

q
= 1. They are Hausdorff topological

spaces and generated by a basis consisting of the sets

O =
{

x ∈ Lp(Ω,F , P; Rm) :
∣

∣

∣
E
[

T
∑

t=1

〈xt − x0
t , y

i
t〉

]∣

∣

∣
< ε, i = 1, . . . , n

}

for all x0 ∈ Lp(Ω,F , P; Rm), n ∈ N, ε > 0 and yi ∈ Lq(Ω,F , P; Rm), i = 1, . . . , n. For
p ∈ [1,∞), the weak topology σ(Lp, Lq) is of the form σ(E, E∗) with some Banach
space E and its topological dual E∗. For p = ∞, the weak topology σ(L∞, L1) on the
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Banach space L∞(Ω,F , P; Rm) is sometimes called weak∗ topology since it is of the
form σ(E∗, E). If Ω is finite, the weak topologies coincide with the norm topology. If
the space Lp(Ω,F , P; Rm) is infinite-dimensional, its weak topology σ(Lp, Lq) is even
not metrizable. For p ∈ [1,∞), subsets of Lp(Ω,F , P; Rm) are (relatively) weakly
compact iff they are (relatively) weakly sequentially compact due to the Eberlein-
Šmulian theorem. For p = ∞ the latter property is lost in general. However, if a
subset B of Lp(Ω,F , P; Rm) is compact with respect to the weak topology σ(Lp, Lq),
its restriction to B is metrizable if Lq(Ω,F , P; Rm) is separable. We note that the
Banach space Lp(Ω,F , P; Rm) with p ∈ [1,∞) is separable if there exists a countable
set G of subsets of Ω such that F is the smallest σ-field containing G [45]. A σ-field F
contains such a countable generator if it is generated by a Rm-valued random vector.
For these and related results we refer to [14, Sections 3 and 4].

Now, we are ready to state our existence result for solutions of (3).

Theorem 2.1 Let (A1) – (A5) be satisfied for some pair (r, r′) satisfying (2).
Then the solution set S(ξ) of (3) is nonempty, convex and compact with respect to the
weak topology σ(Lr′, Lq) ( 1

r′
+ 1

q
= 1). Here, the conditions (A4) and (A5) are only

needed for r′ ∈ {1,∞}.

Proof: We define the integrand f : Ω × Rm → R

f(ω, x) :=







T
∑

t=1

〈bt(ξt(ω)), xt〉 , x1 ∈ X1(ξ1), xt ∈ Xt(xt−1, ξt(ω)), t = 2, . . . , T,

+∞ , otherwise.

Then f is a proper normal convex integrand (cf. [36] and [37, Chapter 14]).
Let (ω, x) ∈ Ω × Rm be such that x1 ∈ X1(ξ1), xt ∈ Xt(xt−1, ξt(ω)), t = 2, . . . , T .
Then we conclude from (A4) the existence of z ∈ ×T

t=1Lr̂(Ω,F , P; Rnt) such that (4) is
satisfied. Hence, for each t = 1, . . . , T , there exists x∗

t (ω) ∈ X∗
t such that

bt(ξt(ω)) = A⊤
t,0zt(ω) + A⊤

t+1,1(ξt+1(ω))zt+1(ω) − x∗
t (ω) (t = 1, . . . , T − 1)

bT (ξT (ω)) = A⊤
T,0zT (ω) − x∗

T (ω) .

Inserting the latter representation of bt(ξt(ω)) into the integrand f (defining F (ξ, x) =
E[f(ω, x)]) leads to

f(ω, x) =

T−1
∑

t=1

〈A⊤
t,0zt(ω) + A⊤

t+1,1(ξt+1(ω))zt+1(ω) − x∗
t (ω), xt〉

+〈A⊤
T,0zT (ω) − x∗

T (ω), xT 〉

≥
T−1
∑

t=1

〈A⊤
t,0zt(ω) + A⊤

t+1,1(ξt+1(ω))zt+1(ω), xt〉 + 〈A⊤
T,0zT (ω), xT 〉

=

T
∑

t=1

〈zt(ω), At,0xt〉 +

T−1
∑

t=1

〈zt+1(ω), At+1,1(ξt+1(ω))xt〉

=
T

∑

t=1

〈zt(ω), ht(ξt(ω))〉.
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Hence, we have

f(ω, x) ≥ g(ω) , where g :=
T

∑

t=1

〈zt, ht(ξt)〉 ∈ L1(Ω,F , P).

This implies for the conjugate normal convex integrand f ∗ : Ω × Rm → R given by

f ∗(ω, y) := sup
x∈Rm

{〈y, x〉 − f(ω, x)}

that the estimate f ∗(ω, 0) ≤ −g(ω) holds. Hence, the assumption of [36, Corollary 3D]
is satisfied and we conclude that the integral functional F (ξ, ·) = E[f(ω, ·)] is lower
semicontinuous on Lr′(Ω,F , P; Rm) with respect to the weak topology σ(Lr′, Lq).

The nonanticipativity subspace Nr′(ξ) is closed with respect to the weak topology
σ(Lr′ , Lq) for all r′ ∈ [1,∞]. For r′ ∈ [1,∞) this fact is a consequence of the norm
closedness and convexity of Nr′(ξ). For r′ = ∞, let (xα)α∈I be a net in N∞(ξ) with
some partially ordered set (I,≤) that converges to some x∗ ∈ L∞(Ω,F , P; Rm). Any
neighborhood U(x∗) of x∗ with respect to the weak topology σ(L∞, L1) is of the form

U(x∗) =
{

x ∈ L∞(Ω,F , P; Rm) :
∣

∣

∣
E
[

T
∑

t=1

〈xt − x∗
t , y

i
t〉

]∣

∣

∣
< εi, i = 1, . . . , n

}

,

where n ∈ N, yi ∈ L1(Ω,F , P; Rm), εi > 0, i = 1, . . . , n. Since the net (xα)α∈I converges
to x∗, there exists α0 ∈ I such that xα ∈ U(x∗) whenever α0 ≤ α. If the elements yi

belong to ×T
t=1L1(Ω,Ft, P; Rmt) for each i = 1, . . . , n, we obtain

∣

∣

∣
E
[

T
∑

t=1

〈xα,t − x∗
t , y

i
t〉

]∣

∣

∣
=

∣

∣

∣
E
[

T
∑

t=1

E[〈xα,t − x∗
t , y

i
t〉|Ft]

]∣

∣

∣

=
∣

∣

∣
E
[

T
∑

t=1

〈xα,t − E[x∗
t |Ft], y

i
t〉

]∣

∣

∣
< εi

due to the fact that E[xα,t|Ft] = xα,t for each t = 1, . . . , T and α ∈ I. Hence, we have
in this case

U(x∗) = U(E[x∗
1|F1], . . . , E[x∗

T |FT ]).

Since the net (xα)α∈I converges to x∗ and the weak topology is Hausdorff, we conclude
x∗

t = E[x∗
t |Ft], t = 1, . . . , T , and, thus, x∗ ∈ N∞(ξ).

It remains to show that, for some α > 0, the α-approximate solution set Sα(ξ) is
compact with respect to the weak topology σ(Lr′ , Lq). For r′ ∈ (1,∞) the Banach
space Lr′(Ω,F , P; Rm) is reflexive. Furthermore, any α-approximate solution set Sα(ξ)
is closed and convex. For some α > 0 the level set is also bounded due to (A3)
and, hence, compact with respect to σ(Lr′ , Lq). For r′ = 1 the compactness of any
α-level set with respect to σ(L1, L∞) follows from [36, Theorem 3K] due to condition
(A5). For r′ = ∞, some α-level set is bounded due to (A3) and, hence, relatively
compact with respect to σ(L∞, L1) due to Alaoglu’s theorem [14, Theorem 3.21]. Since
the objective function F (ξ, ·) is lower semicontinuous and N∞(ξ) weakly closed with
respect to σ(L∞, L1), the α-level set is even compact with respect to σ(L∞, L1).
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Altogether, S(ξ) is nonempty due to Weierstrass’ theorem and compact with respect
to σ(Lr′ , Lq). The convexity of S(ξ) is an immediate consequence of the convexity of
the objective F (ξ, ·) of the stochastic program (3).

Finally, we note that assumptions (A4) and (A5) are not needed for proving that
S(ξ) is nonempty and compact with respect to the topology σ(Lr′ , Lq) in case r′ ∈
(1,∞). This fact is an immediate consequence of minimizing a linear continuous func-
tional on a closed, convex, bounded subset of a reflexive Banach space. �

To state our next result we introduce the functional Df(ξ, ξ̃) depending on the
filtrations of ξ and of its perturbation ξ̃, respectively. It is defined by

Df(ξ, ξ̃) := sup
ε∈(0,α]

inf
x∈Sε(ξ)

x̃∈Sε(ξ̃)

T−1
∑

t=2

max{‖xt − E[xt|Ft(ξ̃)]‖r′, ‖x̃t − E[x̃t|Ft(ξ)]‖r′}, (5)

In the following, we call the functional Df filtration distance, although it fails to satisfy
the triangle inequality in general. If solutions of (3) for the inputs ξ and ξ̃ exist (see
Theorem 2.1), the filtration distance is of the simplified form

Df(ξ, ξ̃) = inf
x∈S(ξ)

x̃∈S(ξ̃)

T−1
∑

t=2

max{‖xt − E[xt|Ft(ξ̃)]‖r′ , ‖x̃t − E[x̃t|Ft(ξ)]‖r′}.

We note that the conditional expectations E[xt|Ft(ξ̃)] and E[x̃t|Ft(ξ)] may be written
equivalently in the form E[xt|ξ̃1, . . . , ξ̃t] and E[x̃t|ξ1, . . . , ξt], respectively.

The following stability result for optimal values of program (3) is essentially [20,
Theorem 2.1].

Theorem 2.2 Let (A1), (A2) and (A3) be satisfied and the sets X1(ξ̃1) be nonempty
and uniformly bounded in Rm1 if |ξ̃1 − ξ1| ≤ δ (where δ > 0 is taken from (A3)).
Then there exists positive constants L and δ such that the estimate

|v(ξ) − v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃)) (6)

holds for all random elements ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

The proof of [20, Theorem 2.1] extends easily to constraints for x1 that depend on ξ1

(via the right-hand side of the equality constraint A1,0x1 = h(ξ1)). We note that the
constant L depends on ‖ξ‖r in all cases.

To prove a stability result for (approximate) solutions of (3), we need a stronger
version of the filtration distance Df , namely,

D∗
f (ξ, ξ̃) = sup

‖x‖r′≤1

T
∑

t=2

‖E[xt|Ft(ξ)] − E[xt|Ft(ξ̃)]‖r′ . (7)

Notice that the sum is extended by the additional summand for t = T and that the
former infimum is replaced by a supremum with respect to a sufficiently large bounded
set (the unit ball in Lr′). Clearly, the conditions (A1)–(A3) imply the estimate

Df(ξ, ξ̃) ≤ sup
x∈B

T−1
∑

t=2

‖E[xt|Ft(ξ)] − E[xt|Ft(ξ̃)]‖r′ ≤ C D∗
f (ξ, ξ̃) (8)
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for all ξ and ξ̃ in Lr(Ω,F , P; Rs) with ‖ξ̃−ξ‖r ≤ δ, where δ > 0 and B are the constant
and Lr′-bounded set appearing in (A2) and (A3), respectively, and the constant C > 0
is chosen such ‖x‖r′ ≤ C for all x ∈ B.
Sometimes, the unit ball in Lr′ in the definition of D∗

f is too large. It may be replaced
by the smaller set B∞ := {x : Ω → Rm : x is measurable, |x(ω)| ≤ 1 for all ω ∈ Ω} if
the following stronger condition (A3)’ is satisfied.
(A3)’ The optimal values v(ξ̃) of (3) with input ξ̃ are finite for all ξ̃ in a neighborhood
of ξ and for some α > 0 there exist constants δ > 0 and C > 0 such that |x̃(ω)| ≤ C

for P-almost every ω ∈ Ω and all x̃ ∈ Sα(ξ̃) with ξ̃ ∈ Lr(Ω,F , P; Rs) and ‖ξ̃ − ξ‖r ≤ δ.
If (A3)’ is satisfied, we define

D∗
f (ξ, ξ̃) := sup

x∈B∞

T
∑

t=2

‖E[xt|Ft(ξ)] − E[xt|Ft(ξ̃)]‖r′ (9)

and have Df(ξ, ξ̃) ≤ C D∗
f (ξ, ξ̃). We note that D∗

f always satisfies the triangle inequality.
In the next result we derive a (local) Lipschitz property of the feasible set-valued

mapping X (·) from Lr(Ω,F , P; Rs) into Lr′(Ω,F , P; Rm) in terms of a ‘truncated’
Pompeiu-Hausdorff type distance

d̂lρ(B, B̃) = inf
{

η ≥ 0 : B ∩ ρB ⊂ B̃ + ηB, B̃ ∩ ρB ⊂ B + ηB
}

of closed subsets B and B̃ of the space Lr′(Ω,F , P; Rm) with B denoting its unit ball.
The Pompeiu-Hausdorff distance may be defined by

dl∞(B, B̃) = lim
ρ→∞

d̂lρ(B, B̃)

(see [37, Corollary 4.38]).

Proposition 2.3 Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and the sets
X1(ξ̃1) be nonempty and uniformly bounded in Rm1 if |ξ̃1 − ξ1| ≤ δ (with δ > 0 from
(A3)). Then there exist positive constants L and δ such that the estimate

d̂lρ(X (ξ),X (ξ̃)) ≤ L(‖ξ − ξ̃‖r + ρD∗
f (ξ, ξ̃))

holds for any ρ > 0 and any ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ − ξ̃‖r ≤ δ. If (A3)’ is
satisfied instead of (A3), the estimate is valid with d̂lρ denoting the ‘truncated’ Pompeiu-
Hausdorff distance in L∞(Ω,F , P; Rm) and D∗

f defined by (9).

Proof: Let ρ > 0, δ > 0 be selected as in (A2) and (A3), x ∈ X (ξ) ∩ ρB and
ξ̃ ∈ Lr(Ω,F , P; Rs) be such that ‖ξ̃ − ξ‖r < δ.
With the same arguments as in the proof of [20, Theorem 2.1], there exists x̃ ∈ X (ξ̃)
such that the estimate

|E[xt|Ft(ξ̃)]−x̃t| ≤ L̂t

(

t
∑

τ=1

E[|ξτ−ξ̃τ | |Fτ(ξ̃)]+

t−1
∑

τ=2

E[|xτ−E[xτ |Fτ(ξ̃)]| |Fτ+1(ξ̃)]
)

(10)

holds P-almost surely with some positive constant L̂t for t = 1, . . . , T . Note that
r′ < ∞ means that only costs and/or right-hand sides in (3) are random and that the

9



first sum on the right-hand side of (10) disappears if only costs are random. From the
definition of r′ we know that r 6= r′ may occur only in the latter case.

Hence, together with the estimate

|xt − x̃t| ≤ |xt − E[xt|Ft(ξ̃)]| + |E[xt|Ft(ξ̃)] − x̃t|

P-almost surely and for all t = 1, . . . , T , (10) implies for all pairs (r, r′) with r′ ∈ [1,∞)
that

E[|xt − x̃t|
r′] ≤ Lt

(

t
∑

τ=1

E[|ξτ − ξ̃τ |
r] +

t
∑

τ=2

E[|xτ − E[xτ |Fτ(ξ̃)]|
r′]

)

holds with certain constants Lt, t = 1, . . . , T . We conclude

‖x − x̃‖r′ ≤ L(‖ξ − ξ̃‖r + ρD∗
f (ξ, ξ̃)).

with some constant L > 0. The second estimate follows by interchanging the role of
the pairs (x, ξ̃) and (x̃, ξ). If (A3)’ is satisfied instead of (A3), the changes are obvious.�

Now, we are ready to establish a Lipschitz property of approximate solution sets.

Theorem 2.4 Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and the sets X1(ξ̃1)
be nonempty and uniformly bounded in Rm1 if |ξ̃1 − ξ1| ≤ δ. Assume that the solution
sets S(ξ) and S(ξ̃) are nonempty for some ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ − ξ̃‖r ≤ δ (with
δ > 0 from (A3)). Then there exist L̄ > 0 and ε̄ > 0 such that

dl∞(Sε(ξ), Sε(ξ̃)) ≤
L̄

ε
(‖ξ − ξ̃‖r + D∗

f (ξ, ξ̃)) (11)

holds for any ε ∈ (0, ε̄).

Proof: Let ρ0 ≥ 1 be chosen such that the Lr′-bounded set B in (A3) is contained
in ρ0B (with B denoting the unit ball in Lr′) and min{v(ξ), v(ξ̃)} ≥ −ρ0. Let ρ > ρ0,
ε̄ = min{α, ρ − ρ0} and 0 < ε < ε̄. Let ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ − ξ̃‖r ≤ δ.
Then the assumptions of Theorem 7.69 in [37] are satisfied for the functions F (ξ, ·)
and F (ξ̃, ·). We note that most of the results in [37] are stated in finite-dimensional
spaces. However, the proof of [37, Theorem 7.69] carries over to linear normed spaces
(see also [1, Theorem 4.3]). We obtain from the proof the inclusion

Sε(ξ) = Sε(ξ) ∩ ρB ⊆ Sε(ξ̃) +
2η

ε + 2η
2ρB ⊆ Sε(ξ̃) +

4ρ

ε
ηB, (12)

for all η > d̂l
+

ρ+ε(F (ξ, ·), F (ξ̃, ·)), where the auxiliary epi-distance d̂l
+

ρ (F (ξ, ·), F (ξ̃, ·)) is
defined as the infimum of all η ≥ 0 such that for all x, x̃ ∈ ρB,

min
ỹ∈B(x,η)

F (ξ̃, ỹ) ≤ max{F (ξ, x),−ρ} + η (13)

min
y∈B(x̃,η)

F (ξ, y) ≤ max{F (ξ̃, x̃),−ρ} + η. (14)

The estimate (12) implies

Sε(ξ) ⊆ Sε(ξ̃) +
4ρ

ε
d̂l

+

ρ+ε(F (ξ, ·), F (ξ̃, ·))B.
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Since the same argument works with ξ and ξ̃ interchanged, we obtain

dl∞(Sε(ξ), Sε(ξ̃)) ≤
4ρ

ε
d̂l

+

ρ+ε(F (ξ, ·), F (ξ̃, ·))

and it remains to estimate d̂l
+

ρ+ε(F (ξ, ·), F (ξ̃, ·)). Let η > d̂l
+

ρ+ε(F (ξ, ·), F (ξ̃, ·)) and

x ∈ X (ξ). Proposition 2.3 implies the existence of x̃ ∈ X (ξ̃) such that

‖x − x̃‖r′ ≤ L(‖ξ − ξ̃‖r + ‖x‖r′D
∗
f (ξ, ξ̃)).

In order to check condition (13), we have to distinguish three cases, namely, that
randomness appears in costs and right-hand sides, only in costs, and only in right-
hand sides. Next we consider the first case, i.e., r = r′ = 2, and obtain as in the proof
of [20, Theorem 2.1] the estimate

F (ξ̃, x̃) ≤ F (ξ, x) + |F (ξ̃, x̃) − F (ξ̃, x)| + |F (ξ̃, x) − F (ξ, x)|

≤ F (ξ, x) +
∣

∣

∣
E
[

T
∑

t=1

〈bt(ξ̃t), x̃t − E[xt|Ft(ξ̃)]〉
]∣

∣

∣
+

∣

∣

∣
E
[

T
∑

t=1

〈bt(ξ̃t) − bt(ξt), xt〉
]∣

∣

∣

≤ F (ξ, x) + K̂
((

T
∑

t=1

(1 + E[|ξ̃t|
2])

)
1
2
(

T
∑

t=1

E[|x̃t − E[xt|Ft(ξ̃)]|
2]
)

1
2

+‖ξ̃ − ξ‖2‖x‖2

)

≤ F (ξ, x) + L̂
(

ρ‖ξ̃ − ξ‖2 +
T−1
∑

t=2

‖xt − E[xt|Ft(ξ̃)]‖2

)

≤ F (ξ, x) + Lρ(‖ξ̃ − ξ‖2 + D∗
f (ξ, ξ̃))

with certain constants K̂, L̂ and L (depending on ‖ξ‖2), where the Cauchy-Schwarz
inequality, (A3) and the estimate (10) are used. Hence, condition (13) is satisfied if

η = Lρ(‖ξ̃ − ξ‖2 + D∗
f (ξ, ξ̃))

holds with certain constant L > 0. The same estimate holds in the remaining two
cases and when checking condition (14) (possibly with different constants). Taking the
maximal constant L > 0 we conclude

d̂l
+

ρ+ε(F (ξ, ·), F (ξ̃, ·)) ≤ Lρ(‖ξ̃ − ξ‖r + D∗
f (ξ, ξ̃))

and, hence,

dl∞(Sε(ξ), Sε(ξ̃)) ≤
4Lρ2

ε
(‖ξ̃ − ξ‖r + D∗

f (ξ, ξ̃)).

Setting L̄ = 4Lρ2 completes the proof. �

For solution sets the situation is less comfortable. Stability of solutions can only
be derived with respect to the weak topology σ(Lr′ , Lr).
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Theorem 2.5 Let (A1), (A2) and (A3) be satisfied with r′ ∈ (1,∞) and the sets X1(ξ̃1)
be nonempty and uniformly bounded in Rm1 if |ξ̃1 − ξ1| ≤ δ (with δ > 0 from (A3)).
If (ξ(n)) is a sequence in Lr(Ω,F , P; Rs) converging to ξ in Lr and with respect to D∗

f

and if (x(n)) is a sequence of solutions of the approximate problems, i.e., x(n) ∈ S(ξ(n)),
then there exists a subsequence (x(nk)) of (x(n)) that converges with respect to the weak
topology σ(Lr′ , Lr) to some element of S(ξ). If S(ξ) is a singleton, the sequence (x(n))
converges with respect to the weak topology σ(Lr′, Lr) to the unique solution of (3).

Proof: Let (ξ(n)) and (x(n)) be selected as above. Since there exists n0 ∈ N such that
‖ξ(n)−ξ‖r ≤ δ and x(n) ∈ Sα(ξ(n)) for any n ≥ n0, where α > 0 and δ > 0 are chosen as
in (A3), the sequence (x(n)) is contained in a bounded set of the reflexive Banach space
Lr′(Ω,F , P; Rm). Hence, there exists a subsequence (x(nk)) of (x(n)) that converges
with respect to the weak topology σ(Lr′ , Lr) to some element x∗ in Lr′(Ω,F , P; Rm).
Theorem 2.2 implies

v(ξ(nk)) = F (ξ(nk), x(nk)) = E
[

T
∑

t=1

〈bt(ξ
(nk)
t ), x

(nk)
t 〉

]

→ v(ξ).

Due to the norm convergence of (ξ(nk)) and the weak convergence of (x(nk)), we also
obtain

E
[

T
∑

t=1

〈bt(ξ
(nk)
t ), x

(nk)
t 〉

]

→ E
[

T
∑

t=1

〈bt(ξt), x
∗
t 〉

]

.

Hence, it remains to show that x∗ is feasible for (3), i.e., x∗ ∈ X (ξ) and x∗ ∈ Nr′(ξ).
In the present situation, the set X (ξ) is of the form

X (ξ) = {x ∈ Lr′(Ω,F , P; Rm) : x ∈ X, Ax = h(ξ)}, (15)

where X := ×T
t=1Xt, h(ξ) := (h1(ξ1), . . . , hT (ξT )} and

A :=











A1,0 0 0 · · · 0 0 0
A2,1 A2,0 0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · 0 AT,1 AT,0











.

The graph of X , i.e., graphX = {(x, ξ) ∈ Lr′(Ω,F , P; Rm)×Lr(Ω,F , P; Rs)|x ∈ X (ξ)}
is closed and convex. Since (ξ(nk)) norm converges in Lr(Ω,F , P; Rs) to ξ and (x(nk))
weakly converges to x∗, the sequence ((x(nk), ξ(nk))) of pairs in graphX converges weakly
to (x∗, ξ). Due to the closedness and convexity of graphX , Mazur’s theorem [14,
Theorem 3.19] implies that graphX is weakly closed and, thus, (x∗, ξ) ∈ graphX or
x∗ ∈ X (ξ).

Finally, we have to show that x∗ belongs to Nr′(ξ). For any y ∈ Lr(Ω,F , P; Rm)
we obtain the estimate

∣

∣

∣
E
[

T
∑

t=1

〈yt, x
∗
t − E[x∗

t |Ft(ξ)]〉
]∣

∣

∣
≤

∣

∣

∣

T
∑

t=1

E[〈yt, x
∗
t − x

(nk)
t 〉]

∣

∣

∣
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+
∣

∣

∣

T
∑

t=1

E[〈yt, x
(nk)
t − E[x

(nk)
t |Ft(ξ)]〉]

∣

∣

∣

+
∣

∣

∣

T
∑

t=1

E[〈yt, E[x
(nk)
t − x∗

t |Ft(ξ)]〉]
∣

∣

∣

≤ 2
∣

∣

∣

T
∑

t=1

E[〈yt, x
∗
t − x

(nk)
t 〉]

∣

∣

∣

+ max
t=1,...,T

‖yt‖r

T
∑

t=2

‖x(nk)
t − E[x

(nk)
t |Ft(ξ)]‖r′.

The first term on the right-hand side converges to 0 for k tending to ∞ as the sequence
(x(nk)) converges weakly to x∗. The second term converges to 0 due to the estimate (8)
since (D∗

f (ξ, ξ
(nk))) also converges to 0. We conclude that

E
[

T
∑

t=1

〈yt, x
∗
t − E[x∗

t |Ft(ξ)]〉
]

= 0

holds for any y ∈ Lr(Ω,F , P; Rm) and, hence, that x∗
t = E[x∗

t |Ft(ξ)] for each t =
1, . . . , T . This means x∗ ∈ Nr′(ξ). �

Remark 2.6 Theorem 2.5 remains true if the filtration distance D∗
f is replaced by the

weaker distance

D̂f(ξ, ξ̃) = sup
x̃∈S(ξ̃)

T
∑

t=2

‖x̃t − E[x̃t|Ft(ξ)]‖r′.

Furthermore, if the solutions x(n) ∈ S(ξ(n)) are adapted to the filtration Ft(ξ), t =
1, . . . , T , of the original process ξ (as in [19, Proposition 5.5]), the convergence of
(ξ(n)) to ξ in Lr is sufficient for the weak convergence of some subsequence of (x(n)) to
some element of S(ξ) (in the sense of σ(Lr′, Lr)).

Remark 2.7 The stability analysis of (linear) two-stage stochastic programs (see, e.g.,
[35, Section 3.1], [38]) mostly studied the continuity behavior of first-stage (approxi-
mate) solution sets. Hence, for the specific case T = 2, our stability results in Theorems
2.4 and 2.5 extend earlier work because they concern first- and second-stage solutions.
The new important assumption is (A3), i.e., the level-boundedness of the objective (lo-
cally uniformly at ξ) with respect to both first- and second-stage variables.

Remark 2.8 In many applications of stochastic programming it is of interest to de-
velop risk-averse models (e.g., in electricity risk management and in finance). For
example, this can be achieved if the expectation in the objective of (1) is replaced by a
(convex) risk functional (measure). Typically, risk functionals are inherently nonlin-
ear. If, however, a multiperiod polyhedral risk functional [11] replaces the expectation
in (1), the resulting risk-averse stochastic program may be reformulated as a linear
multistage stochastic program of the form (1) by introducing new state variables and
(linear) constraints (see [11, Section 4]). Moreover, it is shown in [12] that the stability
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behavior of the reformulation does not change (when compared with the original prob-
lem with expectation objective) if the multiperiod polyhedral (convex) risk functional
has bounded L1-level sets. The latter property is shared by the Conditional or Average
Value-at-Risk and several of its multiperiod extensions [12, Section 4].

3 Generating scenario trees

Let ξ be the original stochastic process on a probability space (Ω,F , P) with parameter
set {1, . . . , T} and state space Rd. We aim at generating a scenario tree ξtr such that
the distances

‖ξ − ξtr‖r and D∗
f (ξ, ξtr) (16)

are small and, hence, the optimal values v(ξ) and v(ξtr), and the approximate solution
sets Sε(ξ) and Sε(ξtr) are close to each other according to Theorems 2.2 and 2.4,
respectively.

The idea is to start with a good initial approximation ξ̂ of ξ having a finite num-
ber of scenarios ξi = (ξi

1, . . . , ξ
i
T ) ∈ RTd with probabilities pi > 0, i = 1, . . . , N , and

common root, i.e., ξ1
1 = . . . = ξN

1 =: ξ∗1. These scenarios might be obtained by quan-
tization techniques [16] or by sampling or resampling techniques based on parametric
or nonparametric stochastic models of ξ.

In the following we assume that

‖ξ − ξ̂‖r + D∗
f (ξ, ξ̂) ≤ ε (17)

holds for some given (initial) tolerance ε > 0. For example, condition (17) may be
satisfied for D∗

f given by (9) and for any tolerance ε > 0 if ξ̂ is obtained by sampling
from a finite set with sufficently large sample size (see [19, Example 5.3]).

Next we describe an algorithmic procedure that starts from ξ̂ and ends up with a
scenario tree process ξtr having the same root node ξ∗1 , less nodes than ξ̂ and allowing
for constructive estimates of

‖ξ̂ − ξtr‖r .

The idea of the algorithm consists in forming clusters of scenarios based on scenario
reduction on the time horizon {1, . . . , t} recursively for increasing time t.

To this end, the Lr-seminorm ‖ · ‖r,t on Lr(Ω,F , P; Rs) (with s = Td) given by

‖ξ‖r,t := (E[|ξ|rt ])
1
r (18)

is used at step t, where | · |t is a seminorm on Rs which, for each ξ = (ξ1, . . . , ξT ) ∈ Rs,
is given by |ξ|t := |(ξ1, . . . , ξt, 0, . . . , 0)|.

The following procedure determines recursively stochastic processes ξ̂t having sce-
narios ξ̂t,i endowed with probabilities pi, i ∈ I := {1, . . . , N}, and, in addition, parti-
tions Ct = {C1

t , . . . , C
Kt

t } of the index set I, i.e.,

Ck
t ∩ Ck′

t = ∅ (k 6= k′) and
Kt
⋃

k=1

Ck
t = I. (19)
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The index sets Ck
t ∈ Ct, k = 1, . . . , Kt, characterize clusters of scenarios. The initializa-

tion of the procedure consists in setting ξ̂1 := ξ̂, i.e., ξ̂1,i = ξi, i ∈ I, and C1 = {I}. At
step t (with t > 1) we consider each cluster Ck

t−1, i.e., each scenario subset {ξ̂t−1,i}i∈Ck
t−1

,

separately and delete scenarios {ξ̂t−1,j}j∈Jk
t

by the forward selection algorithm of [18]
such that

(

Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

|ξ̂t−1,i − ξ̂t−1,j|rt

)
1
r

is bounded from above by some prescribed tolerance. Here, the index set Ik
t of remain-

ing scenarios is given by
Ik
t = Ck

t−1 \ Jk
t .

As in the general scenario reduction procedure in [18], the index set Jk
t is subdivided

into index sets Jk
t,i, i ∈ Ik

t such that

Jk
t =

⋃

i∈Ik
t

Jk
t,i, Jk

t,i := {j ∈ Jk
t : i = ikt (j)} and ikt (j) ∈ arg min

i∈Ik
t

|ξ̂t−1,i − ξ̂t−1,j |rt .

Next we define a mapping αt : I → I such that

αt(j) =

{

ikt (j) , j ∈ Jk
t , k = 1, . . . , Kt−1

j , otherwise.
(20)

Then the scenarios of the stochastic process ξ̂t = {ξ̂t
τ}

T
τ=1 are defined by

ξ̂t,i
τ =

{

ξ
ατ (i)
τ , τ ≤ t

ξi
τ , otherwise

(21)

with probabilities pi for each i ∈ I. The processes ξ̂t are illustrated in Figure 1, where
ξ̂t corresponds to the t-th picture for t = 1, . . . , T . The partition Ct at t is defined by

Ct = {α−1
t (i) : i ∈ Ik

t , k = 1, . . . , Kt−1}, (22)

i.e., each element of the index sets Ik
t defines a new cluster and the new partition Ct is

a refinement of the former partition Ct−1.
The scenarios and their probabilities of the final scenario tree ξtr := ξ̂T are given

by the structure of the final partition CT , i.e., they have the form

ξk
tr = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and πk

T =
∑

j∈Ck
T

pj if i ∈ Ck
T (23)

for each k = 1, . . . , KT . The index set It of realizations of ξtr
t is given by

It :=

Kt−1
⋃

k=1

Ik
t .

For each t ∈ {1, . . . , T} and each i ∈ I there exists an unique index kt(i) ∈ {1, . . . , Kt}

such that i ∈ C
kt(i)
t . Moreover, we have C

kt(i)
t = {i} ∪ J

kt−1(i)
t,i for each i ∈ It. The
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5

 t = 3 t = 1  t = 2  t = 4  t = 5  t = 1  t = 2  t = 3  t = 5 t = 4

 t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Figure 1: Illustration of the tree construction for an example with T=5 time periods
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probability of the i-th realization of ξtr
t is πi

t =
∑

j∈C
kt(i)
t

pj. The branching degree of

scenario i ∈ It−1 coincides with the cardinality of I
kt(i)
t .

The next result quantifies the relative error of the t-th construction step and is
proved in [19, Theorem 3.4].

Theorem 3.1 Let the stochastic process ξ̂ with fixed initial node ξ∗1, scenarios ξi and
probabilities pi, i = 1, . . . , N , be given. Let ξtr be the stochastic process with scenarios
ξk
tr = (ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt(i)
t , . . . , ξ

αT (i)
T ) and probabilities πk

T if i ∈ Ck
T , k = 1, . . . , KT .

Then we have

‖ξ̂ − ξtr‖r ≤
T

∑

t=2

(

Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

|ξi
t − ξ

j
t |

r
)

1
r

. (24)

Next, we provide a flexible algorithm that allows to generate a variety of scenario
trees satisfying a given approximation tolerance with respect to the Lr-distance.

Algorithm 3.2 (forward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root ξ∗1 ∈ Rd and probability

distribution P , r ≥ 1 and tolerances εr, εt, t = 2, . . . , T , be given such that
T
∑

t=2

εt ≤ εr.

Step 1: Set ξ̂1 := ξ̂ and C1 = {{1, . . . , N}}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1

t−1 }. Determine disjoint index sets Ik
t and Jk

t such
that Ik

t ∪ Jk
t = Ck

t−1, the mapping αt(·) according to (20) and a stochastic process

ξ̂t having N scenarios ξ̂t,i with probabilities pi according to (21) and such that

‖ξ̂t − ξ̂t−1‖r
r,t =

Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

|ξi
t − ξ

j
t |

r ≤ εr
t .

Set Ct = {α−1
t (i) : i ∈ Ik

t , k = 1 . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , CKT

T }. Construct a stochastic process ξtr having KT

scenarios ξk
tr such that ξk

tr,t := ξ
αt(i)
t , t = 1, . . . , T , if i ∈ Ck

T with probabilities πk
T

according to (23), k = 1, . . . , KT .

While the first picture in Figure 1 illustrates the process ξ̂, the t-th picture corresponds
to the situation after Step t, t = 2, 3, 4, 5 of the algorithm. The final picture corresponds
to Step 6 and illustrates the final scenario tree ξtr. The proof of the following corollary
is also given in [19].

Corollary 3.3 Let a stochastic process ξ̂ with fixed initial node ξ∗1, scenarios ξi and
probabilities pi, i = 1, . . . , N , be given. If ξtr is constructed by Algorithm 3.2, we have

‖ξ̂ − ξtr‖r ≤
T

∑

t=2

εt ≤ εr.
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The next results states that the distance |v(ξ) − v(ξtr)| of optimal values gets small if
the initial tolerance ε in (17) as well as εr are small.

Theorem 3.4 Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and the sets X1(ξ̃1)
be nonempty and uniformly bounded in Rm1 if |ξ̃1 − ξ1| ≤ δ. Let L > 0, δ > 0 and
C > 0 be the constants appearing in Theorem 2.2 and (8).

If (ε
(n)
r ) is a sequence tending to 0 such that the corresponding tolerances ε

(n)
t in Algo-

rithm 3.2 are nonincreasing for all t = 2, . . . , T , the corresponding sequence (ξ
(n)
tr ) has

the property
lim sup

n→∞
|v(ξ) − v(ξ

(n)
tr )| ≤ L max{1, C}ε, (25)

where ε > 0 is the initial tolerance in (17).

Proof: It is shown in [19, Proposition 5.2] that the estimate

|v(ξ)− v(ξ
(n)
tr )| ≤ L(ε(n)

r + ‖ξ − ξ̂‖r + C D∗
f (ξ, ξ̂) + C D∗

f (ξ̂, ξ
(n)
tr )) (26)

is valid and that D∗
f (ξ̂, ξ

(n)
tr ) tends to 0 as n → ∞. We conclude that the estimate (26)

implies (25). �

4 Numerical experience

We consider a mean-risk optimization model for electricity portfolios of a German mu-
nicipal electricity company which consist of the own (thermal) electricity production,
the spot market contracts, supply contracts and electricity futures. Stochasticity enters
the model via the electricity demand, heat demand, spot prices, and future prices (cf.
[13]). Our approach of generating input scenarios in form of a scenario tree consists
in developing a statistical model for all stochastic components and in using Algorithm
3.2 started with a finite number of scenarios which are simulated from the statistical
model.

4.1 Adapting a statistical model

For the stochastic input data of the optimization model (namely, electricity demand,
heat demand, and electricity spot prices), we had access to historical data (from a
yearly period of hourly observations). Due to climatic influences the demands are
characterized by typical yearly cycles with high (low) demand during winter (summer)
time. Furthermore, the demands contain weekly cycles due to varying consumption
behavior of private and industrial customers on working days and weekends. The
intra-day profiles reflect a characteristic consumption behavior of the customers with
seasonal differences. Outliers can be observed on public holidays, on days between
holidays, and on days with extreme climatic conditions. Spot prices are affected by
climatic conditions, economic activities, local power producers, customer behavior etc.
An all-embracing modeling is hardly possible. However, spot prices are also character-
ized by typical yearly cycles with high (lower) prices during winter (summer) time, and
they show weekly and daily cycles, too. Hence, the (price and demand) data was de-
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Figure 2: Time plot of load profile for one year
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Figure 3: Time plot of spot price profile for one year

composed into intra-day profiles and daily average values. While the intra-day profiles
are modeled by a distribution-free resampling procedure based on standard clustering
algorithms, a three dimensional time series model was developed for the daily average
values. The latter consists of deterministic trend functions and a trivariate autoregres-
sive moving-average (ARMA) model for the (stationary) residual time series (see [13]
for details). Then an arbitrary number of three dimensional scenarios can easily be
obtained by simulating white noise processes for the ARMA model and by adding on
afterwards the trend functions, the matched intra-day profiles from the clusters and
extreme price outliers modeled by a discrete jump-diffusion process with time-varying
jump parameters. Future price scenarios are directly derived from those for the spot
prices.

4.2 Construction of input scenario trees

The three dimensional (electricity demand, heat demand, spot price) scenarios form
the initial scenario set and serve as inputs for the forward tree construction (Algorithm
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3.2). In our test series we started with a total number of 100 sample scenarios for a
one year time horizon with hourly discretization. Table 1 displays the dimension of the

Components Horizon Scenarios Time steps Nodes
3 (trivariate) 1 year 100 8 760 875 901

Table 1: Dimension of simulated input scenarios

simulated input scenarios. Due to the fact that electricity future products can only be
traded monthly, branching was allowed only at the end of each month. Scenario trees
were generated by Algorithm 3.2 for r = r′ = 2 and different relative reduction levels
εrel. The relative levels are given by

εrel :=
ε

εmax

and εrel,t :=
εt

εmax

,

where εmax is given as the maximum of the best possible Lr-distance of ξ̂ and of one of
its scenarios endowed with unit mass. The individual tolerances εt at branching points
were chosen such that

εr
t =

εr

T

[

1 + q

(

1

2
−

t

T

)]

, t = 2, . . . , T, r = 2, (27)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees. For the test runs we used q = 0.2 which results in a slightly decreasing sequence
εt. All test runs were performed on a PC with a 3 GHz Intel Pentium CPU and 1
GByte main memory.

Table 2 displays the results of our test runs with different relative reduction levels.
As expected, for very small reduction levels, the reduction affects only a few scenarios.
Furthermore, the number of nodes decreases considerably if the reduction level is in-
creased. The computing times of less than 30 seconds already include approximately 20
seconds for computing distances of all scenario pairs that are needed in all calculations.
Figure 4 illustrates the scenario trees obtained for reduction levels of 40 percent and
55 percent, respectively.

εrel Scenarios Nodes Stages Time (sec)
initial tree initial tree

0.20 100 100 875 901 775 992 4 24.53 s
0.25 100 100 875 901 752 136 5 24.54 s
0.30 100 100 875 901 719 472 7 24.55 s
0.35 100 97 875 901 676 416 8 24.61 s
0.40 100 98 875 901 645 672 10 24.64 s
0.45 100 96 875 901 598 704 10 24.75 s
0.50 100 95 875 901 565 800 9 24.74 s
0.55 100 88 875 901 452 184 10 24.75 s
0.60 100 87 875 901 337 728 11 25.89 s

Table 2: Numerical results of Algorithm 3.2 for yearly demand-price scenario trees
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Jan Feb Apr Jun Jul Aug Sep NovMay Oct DecMar

a) Forward constructed scenario tree with reduction level εrel = 0.4

Jan Feb Apr Jun Jul Aug Sep NovMar May Oct Dec

b) Forward constructed scenario tree with reduction level εrel = 0.55

Figure 4: Yearly demand-price scenario trees obtained by Algorithm 3.2
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[9] Dupačová,J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic program-
ming: An approach using probability metrics, Mathematical Programming 95 (2003),
493–511.

[10] Edirisinghe, N.C.P.: Bound-based approximations in multistage stochastic program-
ming: Nonanticipativity aggregation, Annals of Operations Research 85 (1999), 103–
127.

[11] Eichhorn, A., Römisch, W.: Polyhedral risk measures in stochastic programming, SIAM

Journal on Optimization 16 (2005), 69–95.

[12] Eichhorn, A.; Römisch, W.: Stability of multistage stochastic programs incorporating
polyhedral risk measures, Optimization 57 (2008), 295–318.

[13] Eichhorn, A., Römisch, W., Wegner, I.: Mean-risk optimization of electricity portfolios
using multiperiod polyhedral risk measures, IEEE St. Petersburg Power Tech 2005.
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