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h}Summary. Dynami
 sto
hasti
 optimization te
hniques are highly relevant for ap-pli
ations in ele
tri
ity produ
tion and trading sin
e there are un
ertainty fa
torsat di�erent time stages (e.g., demand, spot pri
es) that 
an be des
ribed reasonablyby statisti
al models. In this paper, two aspe
ts of this approa
h are highlighted:s
enario tree approximation and risk aversion. The former is a pro
edure to repla
ea general statisti
al model (probability distribution), whi
h makes the optimizationproblem intra
table, suitably by a �nite dis
rete distribution. Our methods restupon suitable stability results for sto
hasti
 optimization problems. With regard torisk aversion we present the approa
h of polyhedral risk measures. For sto
hasti
optimization problems minimizing risk measures from this 
lass it has been shownthat numeri
al tra
tability as well as stability results known for 
lassi
al (non-risk-averse) sto
hasti
 programs remain valid. In parti
ular, the same s
enario approxi-mation methods 
an be used. Finally, we present illustrative numeri
al results froman ele
tri
ity portfolio optimization model for a muni
ipal power utility.Key words: Sto
hasti
 programming, optimization, s
enario tree approxi-mation, risk management, polyhedral risk fun
tionals, multiperiod risk, en-ergy trading, power portfolio, ele
tri
ity1 Introdu
tionThe deregulation of energy markets has led to several new 
hallenges for ele
-tri
 power utilities. Ele
tri
 power has to be generated in a 
ompetitive en-vironment and, in addition, 
oordinated with several trading a
tivities. Ele
-tri
ity portfolios for spot and derivative markets be
ome important, and theele
tri
al load as well as ele
tri
ity pri
es be
ome in
reasingly unpredi
table.Hen
e, the number of un
ertainty sour
es and the �nan
ial risk for ele
tri
utilities have in
reased. These fa
ts initiated the development of sto
hasti
optimization models for produ
ing and trading ele
tri
ity. We mention, for
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hexample, sto
hasti
 hydro-ele
tri
 and trading models [13, 32℄ and sto
hasti
hydro-thermal produ
tion and trading models [12, 18, 19, 28, 37, 38, 39℄. Foran overview on sto
hasti
 programming models in energy we refer to [40℄.Typi
al sto
hasti
 optimization models for produ
ing and trading ele
tri
-ity, however, are fo
used on (expe
ted) pro�t maximization while risk man-agement is 
onsidered as an extra task. Power utilities often separate theplanning of their hydro-thermal ele
tri
ity produ
tion versus a preliminaryand simpli�ed trading model from the risk management. However, alterna-tively, risk management may be integrated into the (hydro-thermal) powerprodu
tion and trading planning by maximizing expe
ted pro�t and mini-mizing (or bounding) a 
ertain risk fun
tional simultaneously [3, 9, 26℄. Su
hintegrated risk management strategies promise additional overall eÆ
ien
y forpower utilities.Mathemati
al modeling of integrated risk management of an ele
tri
ityprodu
ing and trading utility leads to multi-stage sto
hasti
 programs withrisk obje
tives or risk 
onstraints. In the present paper, we dis
uss two basi
aspe
ts of implementing su
h models: (i) the approximate representation ofthe underlying probability distribution by a �nite dis
rete distribution, i.e.,by a �nite number of s
enarios with their probabilities, and (ii) modeling andminimization of risk.The �rst is typi
ally an indispensable �rst step towards a solution of asto
hasti
 optimization model. On the other hand, this is a highly sensitive
on
ern, in parti
ular, if dynami
 de
ision stru
tures are involved (multi-stage sto
hasti
 programming [36℄). Then, the s
enarios of the approximatedistribution must exhibit tree stru
ture. Moreover, it is of interest to getby with a moderate number of s
enarios to have the resulting problemtra
table. We refer to the overview [6℄ and to several di�erent approa
hes[4, 5, 23, 20, 25, 27, 31℄ for s
enario tree generation.In se
tion 4 we assume that s
enarios of the underlying sto
hasti
 load-pri
e pro
ess are available, e.g., by sampling from a properly developedsto
hasti
 (time series) model or by some other approximation s
heme. Wedesribe a methodology based on 
lustering and s
enario redu
tion that pro-du
es a tree of s
enarios and represents a good approximation of the sto
hasti
pro
ess. The approa
h is based on suitable stability results ensuring that theobtained approximate problems are indeed related to the original (in�nite di-mensional) ones. For interested readers these stability results are presentedin se
tion 3. The methodology as well as the stability arguments are basedon distan
es of random ve
tors that allow to de
ide about their 
loseness.Moreover, sin
e multi-stage sto
hasti
 programs look for de
isions that donot anti
ipate, but depend at ea
h time period t only on information thatis available at t, a distan
e measure for the information 
ow is needed. It isexpressed by a distan
e of �ltrations, sin
e the information in
rease over timeis modeled by �-�elds forming a �ltration that is asso
iated to the sto
hasti
pro
ess.
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 optimization 3The se
ond topi
 requires the sele
tion of appropriate risk fun
tionals thatallow to quantify risk in a meaningful way and preserve tra
tability of theoptimization model. We argue that polyhedral risk fun
tionals satisfy bothdemands. These are given as (the optimal values of) 
ertain simple linearsto
hasti
 programs. Well-known risk fun
tionals su
h as Average Value-at-Risk AVaR and expe
ted polyhedral utility belong to this 
lass and, more-over, multi-period risk fun
tionals for multi-stage sto
hasti
 programs aresuggested. For sto
hasti
 programs in
orporating polyhedral risk fun
tionalsit has been shown that numeri
al tra
tability as well as stability results knownfor 
lassi
al (non-risk-averse) sto
hasti
 programs remain valid. In parti
ular,the same s
enario tree approximation methods 
an be used.In a 
ase study, we present illustrative numeri
al results from an ele
tri
ityportfolio optimization model for a muni
ipal power utility. In parti
ular, it isshown that the use of di�erent risk obje
tives leads to di�erent risk aversionstrategies by trading at derivative markets. They require less than additional1% of the optimal expe
ted revenue.2 Mathemati
al frameworkLet a �nite number of time steps T 2 N as well as a multivariate dis
rete-time sto
hasti
 pro
ess � = (�1; :::; �T ) be given. This means that ea
h �t isa d-dimensional random ve
tor (with some �xed dimension d 2 N) whoserealization 
an be observed at time step t = 1; :::; T , respe
tively. Sin
e t = 1represents the present we require that �1 is deterministi
, i.e., �1 2 Rd . For t �2 we require that ea
h �t has statisti
al moments of oder r with some numberr � 1 (that will be spe
i�ed later on), i.e., E [j�t jr℄ <1 for t = 1; :::; T whereE [ : ℄ denotes the expe
ted value fun
tional and j : j refers to the Eu
lideannorm in Rd .Mathemati
ally, these requirements are typi
ally expressed by means ofthe so-
alled Lr-spa
es: �t 2 Lr(
;F ;P;Rd) where (
;F ;P) is a given proba-bility spa
e. Now, in multi-stage sto
hasti
 programming, de
isions xt 
an bemade at ea
h time step t = 1; :::; T based on the observations until time t,respe
tively. This means that xt may depend and may only depend on (the
on
rete realization of) �t := (�1; :::; �t), respe
tively. This nonanti
ipativityrequirement 
an be expressed by xt 2 Lr0(
; �(�t);P;Rmt ) with some momentorder r0 � 1 (spe
i�ed later on) and some dimensions mt 2 N (t = 1; :::; T ).In other words: xt must be a �(�t)-measurable random element where �(�t) isthe sub-�-�eld of the original �-�eld F generated by �1; :::; �t. The sequen
eof all �-�elds is in
reasing, i.e., f;; 
g = �(�1) � �(�2) � ::: � �(�T ) = Fand thus forms a so-
alled �ltration. Assume for the moment that the inputrandom ve
tor � is represented in the form of a s
enario tree, where d realvariables are asso
iated to ea
h node of the tree. Then the �(�t)-measurabilityof xt for every t 2 f1; : : : ; Tg means that the de
ision ve
tor x is represented
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hby the same tree (as �), but with mt real variables asso
iated to ea
h node attime t.In this presentation, we 
onsider linear multi-stage sto
hasti
 program ofthe formminx1;:::;xT 8>><>>:E " TX�=1hbt(�t); xti# ��������xt 2 Lr0(
; �(�t);P;Rmt );xt 2 Xt P-almost surely (a.s.);At;0xt +At;1(�t)xt�1 = ht(�t) a.s.(t = 1; :::; T ) 9>>=>>; (1)with some numbers mt; nt 2 N, given polyhedral sets Xt � Rmt , re
oursematri
es At;0 2 Rnt�mt , te
hnology matri
es At;1 2 Rnt�mt�1 (where weassume A1;1 � 0), and ve
tors ht 2 Rnt and bt 2 Rmt (
ost fa
tors). Theitems At;1, ht, and bt may depend on �t (t = 1; :::; T ). It is assumed that thisdependen
e is aÆnely linear. This allows, for example, to model that some
omponents of bt, ht and/or some elements of the matrix At;1 are sto
hasti
and � denotes the ve
tor of all su
h sto
hasti
 inputs.Note that in (1) optimality of the sto
hasti
 
osts hbt(�t); xti is determinedin terms of the expe
ted value, i.e., the obje
tive is linear (risk-neutral). Inse
tion 5 and 6 we will 
onsider the risk-averse alternativeminx1;:::;xT 8>>>><>>>>:
 � �(zt1 ; :::; ztJ )�(1� 
) � E [zT ℄ ����������xt 2 Lr0(
; �(�t);P;Rmt );xt 2 Xt a.s.;At;0xt +At;1(�t)xt�1 = ht(�t) a.s.zt := �Pt�=1hb� (�� ); x� i a.s.(t = 1; :::; T ) 9>>>>=>>>>; (2)where the obje
tive is supplemented with a (multi-period) risk fun
tional �(risk measure). The number 
 2 [0; 1℄ is a �xed weighting parameter. Therandom values zt represent the a

umulated revenues at ea
h time t. Clearly,it holds that zt 2 Lp(
; �(�t);P) with p 2 [1;1℄ given by1p = � 1r0 ; if all bt are non-random1r + 1r0 ; otherwise.The risk fun
tional � is applied to a subset of J time steps 1 < t1 < t2 <::: < tJ = T . Note that, sin
e risk fun
tionals are essentially nonlinear bynature, problem (2) is no longer linear. However, we will 
on
entrate on theemployment of risk fun
tionals from the 
lass of polyhedral risk fun
tionalswhi
h exhibit a favorable sort of nonlinearity; 
f. se
tion 5.3 Stability of multi-stage problemsStudying stability of the multi-stage sto
hasti
 programs (1) 
onsists in re-garding it as an optimization problems in the in�nite dimensional linear spa
e�Tt=1Lr0(
;F ;P;Rmt ). This is a Bana
h spa
e when endowed with the norm
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 optimization 5kxkr0 := �PTt=1 E�jxtjr0��1=r0 for r0 2 [1;1);kxk1 := maxt=1;:::;T ess sup jxtj;where j : j denotes some norm on the relevant Eu
lidean spa
es and ess sup jxtjdenotes the essential supremum of jxtj, i.e., the smallest 
onstant C su
hthat jxtj � C holds P-almost surely. Analogously, � 
an be understood as anelement of the Bana
h spa
e �Tt=1Lr(
;F ;P;Rd) with norm k�kr. For theintegrability numbers r and r0 it will be imposed thatr := 8<:2 [1;1) ; if only 
osts or only right-hand sides are random2 ; if only 
osts and right-hand sides are randomT ; if all te
hnology matri
es are randomr0 := 8<: rr�1 ; if only 
osts are randomr ; if only right-hand sides are random1 ; if all te
hnology matri
es are random (3)with regard to problem (1). The 
hoi
e of r and the de�nition of r0 are moti-vated by the knowledge of existing moments of the input pro
ess �, by havingthe sto
hasti
 program well de�ned (in parti
ular, su
h that hbt(�t); xti is inte-grable for every de
ision xt and t = 1; :::; T ), and by satisfying the 
onditions(A2) and (A3) (see below).Sin
e r0 depends on r and our assumptions will depend on both r andr0, we will add some 
omments on the 
hoi
e of r and its interplay withthe stru
ture of the underlying sto
hasti
 programming model. To have thesto
hasti
 program well de�ned, the existen
e of 
ertain moments of � hasto be required. This fa
t is well known for the two-stage situation (see, e.g.,[36, Chapter 2℄). If either right-hand sides or 
osts in a multi-stage model(1) are random, it is suÆ
ient to require r � 1. The 
exibility in 
ase thatthe sto
hasti
 pro
ess � has moments of order r > 1 may be used to 
hooser0 as small as possible in order to weaken the 
ondition (A3) (see below) onthe feasible set. If the linear sto
hasti
 program is fully random (i.e., 
osts,right-hand sides and te
hnology matri
es are random), one needs r � T tohave the model well de�ned and no 
exibility w.r.t. r0 remains.3.1 AssumptionsNext we introdu
e some notation. We set s := Td and m :=PTt=1mt. LetF (�; x) := E� PTt=1hbt(�t); xti�denote the obje
tive fun
tion de�ned on Lr(
;F ;P;Rs) � Lr0(
;F ;P;Rm)and letX (�) := �x 2 �Tt=1Lr0(
; �(�t);P;Rmt ) jxt 2 Xt(xt�1; �t) a.s. (t = 1; :::; T )	denote the set of feasible elements of (1) with x0 � 0 and
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hXt(xt�1; �t) := �xt 2 Rmt : xt 2 Xt; At;0xt +At;1(�t)xt�1 = ht(�t)	denoting the t-th feasibility set for every t = 1; :::; T . That allows to rewritethe sto
hasti
 program (1) in the short formmin�F (�; x) : x 2 X (�)	 (4)In the following, we need the optimal valuev(�) = inf �F (�; x) : x 2 X (�)	for every � 2 Lr(
;F ;P;Rs ) and, for any " � 0, the "-approximate solutionset (level-set) S"(�) := �x 2 X (�) : F (�; x) � v(�) + "	of the sto
hasti
 program (4). Sin
e, for " = 0, the set S"(�) 
oin
ides with theset solutions to (4), we will also use the notation S(�) := S0(�). The following
onditions will be imposed on (4):(A1) The numbers r; r0 are 
hosen a

ording to (3) and � 2 Lr(
;F ;P;Rs).(A2) There exists a Æ > 0 su
h that for any ~� 2 Lr(
;F ;P;Rs ) satisfying k~���kr � Æ, any t = 2; :::; T and any x� 2 Lr0(
; �(~�� );P;Rm� ) (� = 1; :::; t�1) satisfying x� 2 X� (x��1; ~�� ) a.s. (where x0 = 0), there exists xt 2Lr0(
; �(~�t);P;Rmt ) satisfying xt 2 Xt(xt�1; ~�t) a.s. (relatively 
ompletere
ourse lo
ally around �).(A3) The optimal values v(~�) of (4) with input ~� are �nite for all ~� in aneighborhood of � and the obje
tive fun
tion F is level-bounded lo
allyuniformly at �, i.e., for some "0 > 0 there exists a Æ > 0 and a boundedsubset B of Lr0(
;F ;P;Rm) su
h that S"0(~�) is 
ontained in B for all~� 2 Lr(
;F ;P;Rs) with k~� � �kr � Æ.For any ~� 2 Lr(
;F ;P;Rs) suÆ
iently 
lose to � in Lr, 
ondition (A2) impliesthe existen
e of some feasible ~x in X (~�) and (3) implies the �niteness of theobje
tive F (~�; :) at any feasible ~x. A suÆ
ient 
ondition for (A2) to hold is the
omplete re
ourse 
ondition on every re
ourse matrix At;0, i.e., At;0Xt = Rnt ,t = 1; :::; T . The lo
ally uniform level-boundedness of the obje
tive fun
tion Fis quite standard in perturbation results for optimization problems (see, e.g.,[35, Theorem 1.17℄). The �niteness 
ondition on the optimal value v(�) is notimplied by the level-boundedness of F for all relevant pairs (r; r0). In general,the 
onditions (A2) and (A3) get weaker for in
reasing r and de
reasing r0,respe
tively.3.2 Optimal valuesThe �rst stability result for multi-stage sto
hasti
 programs represents a quan-titative 
ontinuity property of the optimal values. Its main observation is thatmulti-stage models behave stable at some sto
hasti
 input pro
ess if both its
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 optimization 7probability distribution and its �ltration are approximated with respe
t tothe Lr-distan
e and the �ltration distan
eDf(�; ~�) :=sup">0 infx2S"(�)~x2S"(~�)T�1Xt=2 maxn

xt � E [xt j�(~�t)℄

r0 ; 

~xt � E [~xt j�(�t)℄

r0o (5)where E [ : j�(�t )℄ and E [ : j�(~�t )℄ (t = 1; :::; T ) are the 
orresponding 
ondi-tional expe
tations, respe
tively. Note that for the supremum in (5) onlysmall "'s are relevant and that the approximate solution sets are boundedfor " 2 (0; "0℄ a

ording to (A3).The following stability result for optimal values of program (4) is takenfrom [24, Theorem 2.1℄.Theorem 1. Let (A1), (A2) and (A3) be satis�ed and the setsX1 be nonemptyand bounded. Then there exist positive 
onstants L and Æ su
h that the esti-mate ��v(�)� v(~�)�� � L�k� � ~�kr +Df(�; ~�)� (6)holds for all random elements ~� 2 Lr(
;F ;P;Rs ) with k~� � �kr � Æ.The result states that the 
hanges of optimal values are at most proportionalto the errors in terms of Lr- and �ltration distan
e when approximating �.The 
orresponding 
onstant L depends on k�kr (i.e. the r-th moment of �),but is not known in general.3.3 Approximate SolutionsTo prove a stability result for (approximate) solutions of (4) a stronger versionof the �ltration distan
e Df is needed, namely,D�f (�; ~�) := supx2B1 TXt=2 

E [xt j�(�t)℄� E [xt j�(~�t)℄

r0 ; (7)where B1 := fx : 
 ! Rm : x is F-measurable; jx(!)j � 1; P-almost surelyg.Noti
e that the sum is extended by the additional summand for t = T and thatthe former in�mum is repla
ed by a supremum with respe
t to a suÆ
ientlylarge bounded set. If we require, in addition to assumption (A3), that forsome "0 > 0 there exist 
onstants Æ > 0 and C > 0 su
h that j~x(!)j � Cfor P-almost every ! 2 
 and all ~x 2 S"0(~�) with ~� 2 Lr(
;F ;P;Rs) andk~� � �kr � Æ, we have Df(�; ~�) � C D�f (�; ~�): (8)Sometimes it is suÆ
ient to 
onsider the unit ball in Lr0 rather than B (
f.[23, 22℄). However, in 
ontrast to Df the distan
e D�f always satis�es thetriangle inequality.Now, we state the se
ond stability result that represents a Lips
hitz prop-erty of approximate solution sets ([22, Theorem 2.4℄).
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hTheorem 2. Let (A1), (A2) and (A3) be satis�ed with r0 2 [1;1) and the setX1 be nonempty and bounded. Assume that the solution set S(�) is nonempty.Then there exist �L > 0 and �" > 0 su
h thatdl1�S"(�); S"(~�)� � �L" �k� � ~�kr +D�f (�; ~�)� (9)holds for every ~� 2 Lr(
;F ;P;Rs) with k� � ~�kr � Æ (with Æ > 0 from(A3)) and S(~�) 6= ;, and for any " 2 (0; �"). Here, dl1 denotes the Pompeiu-Hausdor� distan
e of 
losed bounded subsets of Lr0 = Lr0(
:F ;P;Rm), whi
his given by dl1(B; ~B) = supx2Lr0 ��dB(x)� d ~B(x)��with dB(x) denoting the distan
e of x to B, i.e., dB(x) = infy2B kx� ykr0.The most restri
tive assumption in Theorem 2 is the existen
e of solutions toboth problems. Noti
e that solutions always exist if the underlying randomve
tor has a �nite number of s
enarios or if r0 2 (1;1). For a more thoroughdis
ussion we refer to [22, Se
tion 2℄. Noti
e that the 
onstant �L" gets largerfor de
reasing " and that, indeed, Theorem 2 does not remain true for thePompeiu-Hausdor� distan
e of solution sets S(�) = S0(�) and S(~�) = S0(~�),respe
tively.4 Constru
tion of s
enario treesIn this se
tion we want to introdu
e a general approa
h to generate appropri-ate s
enario trees by making use of the stability theory of the previous se
tion.To this end we assume that r � 1 and r0 are sele
ted su
h that � has a �niter-th moment and a

ording to (3), respe
tively. Then we aim at generating as
enario tree �tr su
h that the distan
esk� � �trkr and D�f (�; �tr) (10)are small, where the latter is given by (7). We 
on
lude that the optimal valuesv(�) and v(�tr), and the approximate solution sets S"(�) and S"(�tr) are 
loseto ea
h other a

ording to Theorem 1 and Theorem 2, respe
tively.4.1 General Approa
hThe s
enario tree 
onstru
tion method starts with a good initial s
enario ap-proximation 
onsisting of a �nite number of s
enarios. These s
enarios mightbe obtained by quantization te
hniques [16℄ or by sampling or resampling te
h-niques based on parametri
 or nonparametri
 sto
hasti
 models of the inputpro
ess �. Let us denote the initial approximation of � by �̂ having s
enarios
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 optimization 9�i = (�i1; :::; �iT ) 2 RTd with probabilities pi > 0, i = 1; :::; N , and a 
ommonroot, i.e., �11 = ::: = �N1 =: ��1 .In the following we assume thatk� � �̂kr + D�f (�; �̂) � " (11)holds for some given (initial) toleran
e " > 0. For example, 
ondition (11)may be satis�ed for D�f and any toleran
e " > 0 if �̂ is obtained by samplingfrom a �nite set with suÆ
iently large sample size (see [23, Example 5.3℄).A more general 
ase is dis
ussed in [20℄, where the only assumption is thatthe initial set of s
enarios provides a good approximation with respe
t to theLr-distan
e.Next we des
ribe an algorithmi
 pro
edure that starts from �̂ and endsup with a s
enario tree pro
ess �tr having the same root node ��1 , less nodesthan �̂ and allowing for 
onstru
tive estimates of k�̂ � �trkr . The idea of thealgorithm 
onsists in forming 
lusters of s
enarios based on s
enario redu
tionon the time horizon f1; :::; tg re
ursively for in
reasing time t. To this end, theseminorm k : kr;t on Lr(
;F ;P;Rs) (with s = Td) given byk�kr;t := �E�j�jrt ��1=r (12)is used at step t, where j : jt is a seminorm on Rs whi
h, for ea
h � =(�1; :::; �T ) 2 Rs , is given by j�jt := j(�1; :::; �t; 0; :::; 0)j.The s
enario tree 
onstru
tion algorithm determines re
ursively sto
hasti
pro
esses �̂t having s
enarios �̂t;i endowed with probabilities pi, i 2 I :=f1; :::; Ng, and, in addition, partitions Ct = fC1t ; :::; CKtt g of the index set I ,i.e., Ckt \ Ck0t = ; (k 6= k0) and Kt[k=1Ckt = I: (13)The index sets Ckt 2 Ct, k = 1; :::;Kt, represent 
lusters of s
enarios (seeFigure 1 for an illustration). To de�ne these 
lusters we aim at aggregatingsimilar s
enarios at ea
h time step.The initialization of the s
enario tree generation pro
edure 
onsists insetting �̂1 := �̂, i.e., �̂1;i = �i, i 2 I , and C1 = fIg. At step t (with t > 1) we
onsider ea
h 
luster Ckt�1, i.e., ea
h s
enario subset f�̂t�1;igi2Ckt�1 , separatelyand delete s
enarios f�̂t�1;jgj2Jkt by the forward sele
tion algorithm of [21℄(see also [23, Se
tion 2℄) su
h that0�Kt�1Xk=1 Xj2Jkt pj mini2Ikt ���̂t�1;i � �̂t�1;j��rt1A1=ris bounded from above by some pres
ribed toleran
e. Here, the index set Iktof remaining s
enarios is given by
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1 2 3 4t t t t= = = =Fig. 1. Illustration of the tree 
onstru
tion by re
ursive s
enario 
lusteringIkt = Ckt�1 n Jkt :As in the general s
enario redu
tion pro
edure in [21℄, the index set Jkt issubdivided into index sets Jkt;i, i 2 Ikt su
h thatJkt = Si2Ikt Jkt;i and Jkt;i := fj 2 Jkt : i = ikt (j)gwith ikt (j) 2 argmini2Ikt j�̂t�1;i � �̂t�1;j jrt :Next we de�ne a mapping �t : I ! I su
h that�t(j) = � ikt (j) ; j 2 Jkt ; k = 1; :::;Kt�1j ; otherwise: (14)Then the s
enarios of the sto
hasti
 pro
ess �̂t = f�̂t�gT�=1 are de�ned by�̂t;i� = � ��� (i)� ; � � t�i� ; otherwise (15)with probabilities pi for ea
h i 2 I . The pro
esses �̂t are illustrated in Figure2, where �̂t 
orresponds to the t-th pi
ture for t = 1; :::; T . The partition Ctat t is de�ned by Ct = f��1t (i) : i 2 Ikt ; k = 1; :::;Kt�1g; (16)i.e., ea
h element of the index set Ikt de�nes a new 
luster and the new partitionCt is a re�nement of the former partition Ct�1.The s
enarios of the �nal s
enario tree �tr := �̂T and their probabilitiesare given by the stru
ture of the �nal partition CT , i.e., they have the form�ktr = ���1 ; ��2(i)2 ; :::; ��t(i)t ; :::; ��T (i)T � and �kT = Xj2CkT pj if i 2 CkT (17)for ea
h k = 1; :::;KT . The index set It of realizations of �trt is given by
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h t 2 f1; :::; Tg and ea
h i 2 I there exists an unique index kt(i) 2f1; :::;Ktg su
h that i 2 Ckt(i)t . Moreover, we have Ckt(i)t = fig [ Jkt�1(i)t;i forea
h i 2 It. The probability of the i-th realization of �trt is �it =Pj2Ckt(i)t pj .The bran
hing degree of s
enario i 2 It�1 
oin
ides with the 
ardinality ofIkt(i)t .The next result quanti�es the relative error of the t-th 
onstru
tion stepand is proved in [23, Theorem 3.4℄.Theorem 3. Let the sto
hasti
 pro
ess �̂ with �xed initial node ��1 , s
enarios�i and probabilities pi, i = 1; :::; N , be given. Let �tr be the sto
hasti
 pro
esswith s
enarios �ktr = (��1 ; ��2(i)2 ; :::; ��t(i)t ; :::; ��T (i)T ) and probabilities �kT fori 2 CkT , k = 1; :::;KT . Then we have

�̂ � �tr

r � TXt=20�Kt�1Xk=1 Xj2Jkt pj mini2Ikt j�it � �jt jr1A1=r : (18)4.2 Flexible algorithmSummarizing the above ideas yields the following s
enario tree 
onstru
tionalgorithm that allows to 
ontrol the tree stru
ture as well as the approximationtoleran
e with respe
t to the Lr-distan
e.Algorithm 1 (forward tree 
onstru
tion)Let N s
enarios �i with probabilities pi, i = 1; :::; N , �xed root ��1 2 Rd , r � 1and toleran
es "r, "t, t = 2; :::; T , be given su
h that PTt=2 "t � "r.Step 1: Set �̂1 := �̂ and C1 = ff1; :::; Ngg.Step t: Let Ct�1 = fC1t�1; :::; CKt�1t�1 g. Determine disjoint index sets Ikt andJkt su
h that Ikt [ Jkt = Ckt�1, the mapping �t( : ) a

ording to (14) and asto
hasti
 pro
ess �̂t having N s
enarios �̂t;i with probabilities pi a

ordingto (15) and su
h that

�̂t � �̂t�1

rr;t = Kt�1Xk=1 Xj2Jkt pj mini2Ikt j�it � �jt jr � "rt :Set Ct = f��1t (i) : i 2 Ikt ; k = 1; :::;Kt�1g.Step T+1: Let CT = fC1T ; :::; CKTT g. Constru
t a sto
hasti
 pro
ess �tr havingKT s
enarios �ktr su
h that �ktr;t := ��t(i)t , t = 1; :::; T , if i 2 CkT withprobabilities �kT a

ording to (17), k = 1; :::;KT .
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5Fig. 2. Stepwise s
enario tree 
onstru
tion for an exampleWhile the �rst pi
ture in Figure 2 illustrates the pro
ess �̂, the t-th pi
ture
orresponds to the situation after Step t, t = 2; 3; 4; 5 of the algorithm. The�nal pi
ture 
orresponds to Step 6 and illustrates the �nal s
enario tree �tr.The proof of the following 
orollary is also given in [23℄.Corollary 1. Let a sto
hasti
 pro
ess �̂ with �xed initial node ��1 , s
enarios�i and probabilities pi, i = 1; :::; N , be given. If �tr is 
onstru
ted by Algorithm1, we have k�̂ � �trkr � TXt=2 "t � "r:The next results states that the distan
e jv(�)� v(�tr)j of optimal values getssmall if the initial toleran
e " in (11) as well as "r are small (
f. [22, Theorem3.4℄.Theorem 4. Let (A1), (A2) and (A3) be satis�ed with r0 2 [1;1) and the setX1 be nonempty and bounded. Let L > 0, Æ > 0 and C > 0 be the 
onstantsappearing in Theorem 1 and (8), respe
tively. If ("(n)r ) is a sequen
e tending to
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h that the 
orresponding toleran
es "(n)t in Algorithm 1 are nonin
reasingfor all t = 2; :::; T , the 
orresponding sequen
e (�(n)tr ) has the propertylim supn!1 jv(�)� v(�(n)tr )j � Lmaxf1; Cg"; (19)where " > 0 is the initial toleran
e in (11).5 Polyhedral risk fun
tionalsThe results and methods from se
tion 3 and se
tion 4 rest upon the linearityof problem (1) to some extent. Hen
e, in general they are not valid for the risk-averse problem (2) in
orporating a general (nonlinear) risk fun
tionals � su
has, e.g., Value-at-Risk (� = VaR�) or standard deviation. Also algorithmi
approa
hes for (1) might be destroyed by the in
orporation of general riskfun
tionals. However, in this se
tion we 
onsider the risk-averse problem (2)with � being 
hosen as a so-
alled polyhedral risk fun
tional. This 
lass of riskfun
tionals has been introdu
ed in [8, 7℄. The key feature of these fun
tionalsis that they, though being non-linear, do not destroy mathemati
al stru
turesof sto
hasti
 programs su
h as linearity or 
onvexity.5.1 De�nitionThe reason for the favorable behavior of polyhedral risk fun
tionals in (2) isobvious from their de�nition: a polyhedral risk fun
tional � is given by (theoptimal value of) a linear sto
hasti
 minimization problem of the form�(z) = inf8>><>>:E24 JXj=0h
j ; yji35��������y 2 �Jj=0Lp(
; �(�tj );P;Rkj )yj 2 Yj P-almost surely (a.s.) (j = 0; :::; J);Pj�=0hwj;� ; yj�� i = ztj a.s. (j = 1; :::; J);Pj�=0 Vj;�yj�� = rj a.s. (j = 0; :::; J) 9>>=>>; (20)for every z = (zt1 ; :::; ztJ ) 2 �Jj=1Lp(
; �(�tj );P) with some p 2 [1;1). Thenumbers kj 2 N0 , dj 2 N0 (j = 0; :::; J), ve
tors 
j 2 Rkj , rj 2 Rdj (j =0; :::; J), wj;� 2 Rkj�� (j = 1; :::; J , � = 0; :::; j), matri
es Vj;� 2 Rdj�kj��(j = 0; :::; J , � = 0; :::; j), and polyhedral 
ones Yj � Rkj (j = 0; :::; J) haveto be 
hosen in advan
e su
h that the resulting fun
tional exhibits suitablerisk fun
tional properties. Clearly, if de�nition (20) is inserted into (2) with1
 = 1, one ends up with the problem1 The 
hoi
e 
 = 1 is not restri
tive at all sin
e the so-
alled mean-risk obje
tive
 � �(zt1 ; :::; ztJ ) � (1 � 
) � E [zT ℄ 
an be expressed as another polyhedral riskfun
tional of the form (20); 
f. [8, 7℄.
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hmin8>>>>>><>>>>>>:E24 JXj=0h
j ; yji35������������x 2 �
Tt=1Lr0(
;At;P;Rmt ); xt 2 Xt a.s. (t � 1);y 2 �Jj=1Lp(
;Atj ;P;Rkj ); yj 2 Yj a.s. (j � 0);At;0xt +At;1(�t)xt�1 = ht(�t) a.s. (t = 2; :::; T );zt = zt(x; �) := �Pt�=1hb� (�� ); x� i (t = 1; :::; T );Pj�=0hwj;� ; yj�� i = ztj a.s. (j = 1; :::; J);Pj�=0 Vj;�yj�� = rj a.s. (j = 0; :::; J)

9>>>>>>=>>>>>>; (21)i.e., the non-linearity of the fun
tional � is transformed into a problem ofthe form (1) with additional de
ision variables yj and additional linear 
on-straints. This fa
t is not only useful for stability analysis (see below), it is alsoappre
iated with regard to algorithmi
 issues. Note that this transformationis also possible if integer variables are in
orporated into (1).Most well-known risk fun
tionals (e.g., VaR� and standard deviation whi
hare both not polyhedral) depend on a single random variable z only ratherthan on a �nite sequen
e zt1 ; :::; ztJ . In the framework of (2) this means J = 1and t1 = T . Several 
oheren
e axioms for su
h single-period risk fun
tionalshave been suggested in [1, 14, 30℄ whi
h are broadly a

epted. For medium-and long-term e
onomi
 a
tivities (su
h as the model in se
tion 6) one maywant to use multi-period risk fun
tionals (J > 1) that take into a

ount thetemporal development of pro�ts and losses, e.g., to avoid liquidity problemsat intermediate time steps. Also for this 
ase 
oheren
e axioms are suggested[2, 15, 33℄. In both the single- and the multi-period 
ase su
h axioms givedire
tions for the 
hoi
e of the ve
tors and matri
es in (20).5.2 PropertiesBe
ause the arguments ztj in (20) appear on the right-hand sides of the 
on-straints, it 
an be 
on
luded that the fun
tional � is always 
onvex [8, 7℄.Hen
e, the theory of 
onvex duality 
an be applied. This yields dual rep-resentations for � whi
h 
an be useful for interpretation and veri�
ation of
oheren
e axioms, and for algorithmi
 approa
hes, too.Theorem 5. ([8, 33, 7℄) Let � be a polyhedral risk fun
tional of the form (20)and let the following 
onditions be satis�ed for Yj , 
j , wj;� , and Vj;� :� 
omplete re
ourse: � Vj;0w0j;0�Yj = Rdj+1 (j = 1; :::; J),� dual feasibility: TJj=0D�;j 6= ; withD�;j := ( (uv; uw) 2 RJ � RP dj :
j +PJ�=maxf1;jg uv;�w�;��j +PJ�=j V ��;��juw;� 2 �Y �j ).Then the fun
tional � is �nite, 
onvex, and 
ontinuous on �Jj=1Lp(
; �(�tj );P)and it is representable by
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 optimization 15�(z) = sup8>><>>:�E hPJj=1��jztj + h�j ; rji�i ���������j 2 Lp0(
; �(�tj );P);�j 2 Lp0(
; �(�tj );P;Rdj );(E [�j�tj ℄ ; E [�j�tj ℄) 2 D�;j a.s.(j = 0; :::; J) 9>>=>>;with p0 2 (1;1℄ being de�ned by 1=p+ 1=p0 = 1.The above dual representation 
an be read as follows: the supremum oper-ator aims at making � large where z is small (in 
omplian
e with the respe
tive
onstraints). Hen
e, �(z) 
an be understood as a worst 
ase weighted expe
ta-tion of z (possibly biased by h�j ; rji). If � satis�es the 
oheren
e axioms from[2℄, then (and only then) the 
onstraints in the dual representation are su
hthat all the � multipliers are probability densities and h�j ; rji is always zero.5.3 Single-period examplesFor J = 1 and t1 = T , i.e., for the single-period situation, polyhedral riskfun
tionals 
an be found in e
onomi
 literature.Example 1. The Conditional or Average Value-at-Risk at level � 2 (0; 1)(CVaR� or AVaR�, 
f. [34℄ and [14, Chapter 4.4℄) is given byAVaR�(z) := 1�Z �0 VaR��(z)d�� = infy02Rny0 + 1�E h(y0 + z)�io (22)where the representation on the right is due to [34℄. By introdu
ing variablesfor positive and negative parts of y0+z, respe
tively, AVaR� 
an be rewrittenin the form (20) with J = 1, d0 = d1 = 0, k0 = 1, k1 = 2, 
0 = 1, 
1 =�0; 1��, w1;0 = (1;�1), w1;1 = �1, Y0 = R, and Y1 = R2+ . Hen
e, AVaR� isa polyhedral risk fun
tional. Moreover, 
omplete re
ourse and dual feasibilityare satis�ed and the dual representation of Theorem 5 readsAVaR�(z) = sup��E [�z℄ : � 2 Lp0(
;F ;P); � 2 [0; 1� ℄ a.s.; E [�℄ = 1	where the � multipliers 
an be interpreted as densities. We note that AVaR�is known to be a 
onvex risk fun
tional in the sense of [14℄, a 
oherent riskfun
tional in the sense of [1℄, and it is 1st and 2nd order sto
hasti
 dominan
e
onsistent [30℄.Example 2. Consider expe
ted utility as a risk fun
tional, i.e., �u(z) = �E [u(z)℄with some 
on
ave and non-de
reasing utility fun
tion u : R ! R. This ap-proa
h goes ba
k to [29℄. Typi
ally, non-linear utility fun
tions u : R ! Rare used within this framework. Of 
ourse, in this 
ase �u 
annot be repre-sented by a linear sto
hasti
 program. However, in 
ases when the domain ofthe out
ome z 
an be bounded a priori, it makes sense to 
onsider pie
ewiselinear utility fun
tions u. In that 
ase, �u is 
onvex and pie
ewise linear,
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e, a

ording to [35, Example 3.54℄ there exist k 2 N, w 2 Rk , 
 2 Rk , andv 2 f0; 1gk su
h that�u(�) = inf �h
; yi ��y 2 Rk ; y � 0 hw; yi = �; hv; yi = 1 	for all � 2 R. For this 
ase, the expe
ted utility risk fun
tional reads�u(z) = inf �E�h
; y1i� ����y1 2 Lp(
;A;P;Rk ); y1 � 0 a.s.hw; y1i = z a.s.; hv; y1i = 1 a.s. �where [35, Theorem 14.60℄ is used to justify the inter
hange of in�mum andexpe
tation. Hen
e, �u is a polyhedral risk fun
tional with k0 = d0 = 0,k1 = k, d1 = 1, 
1 = 
, w1;0 = w, V1;0 = v0, and Y1 = Rk1+ . The spe
ial 
ase ofthe expe
ted regret (expe
ted loss), i.e., the 
ase that �(z) = E [(z � 
)�℄ withsome target 
 2 R, is obtained by setting k = 3, w = (
; 1;�1), v = (1; 0; 0),and 
 = (0; 0;�1).5.4 Multi-period examplesFor J > 1, i.e., for the multi-period situation, only few (polyhedral) riskfun
tionals are suggested in e
onomi
 literature. However, the framework ofpolyhedral risk fun
tionals is 
onstru
tive: various multi-period polyhedralrisk fun
tionals have been proposed in [8, 7, 33℄ that 
an be understood asmulti-period extentions of AVaR�. They all satisfy the basi
 risk 
oheren
eaxioms from [2℄, but they di�er with respe
t to the in
orporation of the infor-mation dynami
s. We present a sele
tion of those in the following (keeping theoriginal index numbers). It is assumed that the random variables zt representa

umulated revenues as in problem (2).Example 3. The fun
tional�2(zt1 ; :::; ztJ ) := infy02Rny0 + 1� 1J PJj=1 E h�ztj + y0��io :from [8℄ 
an be understood as AVaR� applied to a 
ompound lottery, i.e.,applied to z0 given by z0(!) := z�(!)(!) with � being uniformly distributedon ft1; :::; tJg and independent of zt1 ; :::; ztJ . Clearly, �2 
an be representedthrough (20) by introdu
ing (sto
hasti
) variables for the positive and thenegative part of ztj +y0, respe
tively, for j = 1; :::; J . Hen
e, it is a polyhedralrisk fun
tional. It satis�es 
omplete re
ourse and dual feasibility. The dualrepresentation a

ording to Theorem 5 given by�2(z) = sup��E hPJj=1 �jztji ����� 2 �Jj=1Lp(
; �(�tj );P); PJj=1 E [�j ℄ = 1�j 2 [0; 1� ℄ a.s. (j = 1; :::; J); �aims at pla
ing the available probability mass of � to stages where z =(zt1 ; :::; ztJ ) attains low values.
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tional �4 from [8℄, though being de�nedvia an in�mum representation of the form (20), is easier to 
at
h by its dualrepresentation a

ording to Theorem 5 given by�4(z) = sup8<:�E hPJj=1 �jztji ������� 2 �Jj=1Lp(
; �(�tj );P);�j 2 [0; 1� ℄ a.s.; E [�j ℄ = 1J (j = 1; :::; J)�j = E [�j+1 j�(�tj )℄ a.s. (j = 1; :::; J � 1)9=;with z = (zt1 ; :::; ztJ ). Here, the multiplier pro
ess � has to be a martingaleand, hen
e, all time steps are weighted equally.Example 5. In [2℄ it was suggested to apply a single-period risk fun
tionalto the pointwise minimum of z = (zt1 ; :::; ztJ ), i.e., to z0 given by z0(!) :=minfzt1(!); :::; ztJ (!)g. Doing so by using AVaR� yields the fun
tional�6(z) = infy02R �y0 + 1�E� (y0 + z0)� ��= infy02R �y0 + 1�E�maxf0;�y0 � zt1 ; :::;�y0 � ztJg��whi
h 
an also be represented in the form (20) by introdu
ing (sto
hasti
)variables yj;2 = maxf0;�y0 � zt1 ; :::;�y0 � ztjg = maxfyj�1;2;�y0 � ztjg forj = 1; :::; J ; 
f. [7℄. Then, 
omplete re
ourse and dual feasibility are satis�edand there is also a dual representation a

ording to Theorem 5.5.5 StabilityAt the �rst glan
e it seems as if stability of problem (2) with � being 
hosenas a polyhedral risk fun
tional (20) were 
overed by the results from se
tion3 due to the reformulation (21). However, a 
loser look to the latter problemreveals that it is not 
ompletely of the form (1): the resulting re
ourse matri
esbe
ome sto
hasti
 when the dynami
 
onstraints in (21) are integrated. Hen
e,Theorem 1 and Theorem 2 are not valid for problem (21) and 
annot besuitably modi�ed easily.For this reason, stability of (2) is analyzed in [10, 7℄ systemati
ally. Startingwith the �nding of further 
ontinuity properties of � (stronger than plain
ontinuity as stated in Theorem 5), a stability theorem for the optimal values(
orresponding to Theorem 1) 
an be proven. However, the �ltration distan
ethere is even more involved than Df in (5) from Theorem 1.For the justi�
ation of the s
enario tree generation methods in se
tion 4,it is ne
essary to estimate these problem dependent obje
ts by problem in-dependent ones as in (8). In order to get a similar estimate for the involved�ltration distan
e for problem (2), it turns out to be ne
essary to impose fur-ther te
hni
al 
onditions on � (beside 
omplete re
ourse and dual feasibility).However, these 
onditions 
an be shown to be satis�ed for all known polyhe-dral risk fun
tionals from [8, 7, 33℄ as long as the integrability number p isset to 1. We 
on
lude that there is a theoreti
al basis for the s
enario treeapproximation methods from se
tion 4 also in the situation of the risk-averseproblem (2) if � is 
hosen as a suitable polyhedral risk fun
tional.
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Fig. 3. S
hemati
 diagram for the optimization model 
omponents6 Case studyIn this �nal se
tion we demonstrate the use of the above theoreti
al results bypresenting some simulation results from a power portolio optimization model;
f. Fig. 3. For motivation and for a detailed te
hni
al des
ription of this modelsee [11, 9℄; in the following, we des
ribe its 
omponents on a more abstra
tlevel only. Its numeri
al output shall then illustrate the usage of s
enario treesas well as the e�e
t of di�erent polyhedral risk fun
tionals.6.1 ModelTaking into a

ount un
ertainties in power portfolio optimization yields quiteautomati
ally to sto
hasti
 programming; see, e.g., [40℄. The optimizationmodel here is a mean-risk multi-stage sto
hasti
 program of the form (2). Itis tailored to the one year planning situation of a 
ertain (German) muni
ipalpower utility serving an ele
tri
ity demand and a heat demand for 
ertain
ustomers; see Fig. 3. The (German) power market indu
es an hourly timedis
retization, hen
e, we have T = 365�24 = 8760 time steps. Energy demandsas well as market pri
es for ea
h hour in the future are unknown at previoustime steps. These un
ertainties 
an be des
ribed reasonably by sto
hasti
 timeseries models; 
f. [11℄. It is assumed that the power utility is suÆ
iently smallsu
h that it 
an be 
onsidered as a pri
e-taker, i.e., its de
isions do not a�e
tmarket pri
es or demands.The 
on
rete situation of the power utility is supposed to be as follows: Itfeatures a 
ombined heat and power (CHP) produ
tion plant that 
an servethe heat demand 
ompletely but the ele
tri
ity demand only in part. Hen
e,
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 0  1000  2000  3000  4000  5000  6000  7000  8000  9000Fig. 4. Bran
hing stru
ture of the input s
enario tree of 40 s
enarios (T = 8760)additional sour
es of ele
tri
ity have to be used. Ele
tri
ity 
an be obtainedfrom the spot market of a power ex
hange (su
h as the European EnergyEx
hange EEX in Germany), or by pur
hasing a bilateral supply 
ontra
tfrom a larger power produ
er. The latter possibility is suspe
ted to be moreexpensive, but relying on the spot market only is known to be extremely risky.Spot pri
e risk, however, may be redu
ed (hedged) by means of derivativeprodu
ts. Here, we 
onsider futures from EEX (Phelix-futures, purely �nan
ial
ontra
ts).The original pra
ti
al purpose of this model was to evaluate given supply
ontra
ts in 
omparison with the possibility of relying on spot and future mar-ket only [9, 11℄. In the presentation here, however, we fo
us on the qualitativeoutput with respe
t to the e�e
t of the di�erent polyhedral risk fun
tion-als from se
tion 5. Therefore, no su
h supply 
ontra
ts are 
onsidered in theportfolio here.The sto
hasti
 input pro
ess � = (�1; :::; �T ), modeled by an appropriatetime series model (
f. [11℄), is approximated by a s
enario tree (
f. Fig. 4)a

ording to the methods from se
tion 4. Ea
h random ve
tor �t 
onsistsof 27 
omponents: ele
tri
ity demand �et , heat demand �ht , EEX spot pri
es�st , as well as base and peak future pri
es �fbmt and �fpmt (for ea
h monthm = 1; :::; 12). However, to avoid te
hni
al problems related to arbitrage,the future pri
es are 
al
ulated as fair pri
es from the spot pri
es in thes
enario tree, i.e., the methods from se
tion 4 are applied only to the �rstthree 
omponents �et , �ht , and �st (t = 1; :::; T ).The de
isions at ea
h time t 
onsist of CHP produ
tion amounts, EEXspot market volumes (ele
tri
ity may be bought or sold), future sto
k, and
ontra
t 
exibility (if there is any). The CHP produ
tion is subje
t to sev-eral te
hni
al (dynami
) 
onstraints whi
h are slightly simpli�ed su
h that no
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hinteger variables 
ome into play, i.e., everything is linear. There are no par-ti
ular 
onstraints for spot and future trading, but the pri
ing rules for EEXfutures (initial margin, variation margin, transa
tion 
osts) make it ne
essaryto introdu
e some auxiliary variables and 
onstraints. Finally, there are thedemand satisfa
tion 
onstraints requiring that ele
tri
ity demand and heatdemand are always met. For further details we refer to [9℄. The overall model(in
orporating a polyhedral risk fun
tional) is linear, i.e., it is of the form (2)resp. (21). Of 
ourse, the latter formulation is used for implementation.6.2 Simulations resultsTogether with a �xed s
enario tree (
f. Fig. 4) the overall optimization modelis a (large-s
ale) linear program. For the simulation results presented here, weused a s
enario tree of 40 s
enarios and approx. 150; 000 nodes. The de
isionvariables are de�ned on the nodes of the tree. For solving the linear programthe ILOG CPLEX 9.1 software was employed. We restri
t the presentationhere to the 
ase that no additional supply 
ontra
ts are involved (beside EEXfutures). Then, the di�erent e�e
ts of the polyhedral risk fun
tionals fromse
tion 5 
an be observed best.In Fig. 5 the a

umulated revenues zt over time for ea
h s
enario, i.e., thetemporal developments of the 
ompany's wealth, are shown after optimizationwith di�erent polyhedral risk fun
tionals. Of 
ourse, the tree stru
ture of theinput s
enario tree 
an also be found in these outputs sin
e the (optimal)revenues are sto
hasti
 in the same manner as the inputs. Optimizing theexpe
ted overall revenue E [zT ℄ only (without any risk fun
tional) yields largedispersion (spread) at time T (
f. top of Fig. 5). The in
orporation of the(single-period) AVaR applied to zT redu
es this spread 
onsiderably, but yieldshigh spread and very low values for zt at earlier time steps t < T . Clearly,this behavior is not a

eptable for a (small) power utility. The multi-periodpolyhedral risk fun
tionals from se
tion 5 are e�e
tive su
h that dispersion issomehow better distributed over all time steps.The graphs in Fig. 5 suggest that the e�e
t of �2, �4, and �6 is more orless the same. However, Fig. 6 reveals that there are further di�eren
es amongthese multi-period risk fun
tionals. For the 
al
ulation of these graphs, thefuel 
osts for the CHP plant have been slightly augmented in order to givethe 
ash value 
urves a di�erent dire
tion. The di�eren
e between the multi-period fun
tionals is, roughly speaking, that �4 aims at equal spread at alltimes, whereas �2 and �6 try to �nd a maximal level that is rarely underrun.The di�erent shapes of the 
ash value 
urves are a
hieved by di�erentpoli
ies of future trading. Future trading is revealed through the jumps inthe 
ash value 
urves and is expli
itely shown in Fig. 7. These graphs displaythe overall future sto
k volumes (in Euro) at ea
h time step. If no risk is
onsidered then there is no future trading at all sin
e, due to the fair-pri
eassumption, there is no bene�t from futures in terms of the expe
ted revenue.
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hUsing AVaR, �2, or �6 leads to extensive future trading a
tivity, whereas theappli
ation of �4 yields more moderate future trading a
tivity.Finally, we mention that, within this appli
ation model, the in
orporationof a polyhedral risk fun
tional into the obje
tive redu
es the expe
ted overallrevenue E [zT ℄ only by approx. 1%. The additional 
omputational e�ort arisingfrom the risk measure is also very moderate.7 Con
lusionWe have presented a 
apa
ious theory for the framework of multi-stagesto
hasti
 programming. Though appearing rather te
hni
al and abstra
t atthe �rst glan
e, these results are highly relevant in pra
ti
e: Problems be
omenumeri
ally tra
table by �nite s
enario tree approximation of the underlyingsto
hasti
 input data. Moreover, risk-averion requirements 
an be in
orpo-rated without signi�
ant in
rease of 
omplexity by means of polyhedral riskfun
tionals. In parti
ular, there is a theoreti
al basis for the s
enario treeapproximation methods in both 
ases, the risk-neutral and the risk-averse
ase. For illustration, we have presented an exemplary model for mean-riskoptimization of an ele
tri
ity portfolio.A
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