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Abstract We present recent developments in the field of stochastic programming
with regard to application in power management. In particular we discuss issues of
scenario tree modeling, i.e., appropriate discrete approximations of the underlying
stochastic parameters. Moreover, we suggest risk avoidance strategies via the in-
cooperation of so-called polyhedral risk functionals intostochastic programs. This
approach, motivated through tractability of the resultingproblems, is a constructive
framework providing particular flexibility with respect tothe dynamic aspects of
risk.

1 Introduction

In medium term planning of electricity production and trading one is typically faced
with uncertain parameters (such as energy demands and market prices in the future)
that can be described reasonably by stochastic processes indiscrete time. When time
passes, additional information about the uncertain parameters may arrive (e.g., ac-
tual energy demands may be observed). Planning decisions can be made at different
time stages based on the information available by then and onprobabilistic infor-
mation about the future (non-anticipativity), respectively. In terms of optimization,
this situation is modeled by the framework ofmultistage stochastic programming;
cf. Section 2. This framework allows to anticipate this dynamic decision structure
appropriately. We refer to [6, 22, 23, 31, 49, 51, 56, 67, 70, 73] for exemplary
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case studies of stochastic programming in power planning. For a broad overview
on stochastic programming models in energy we refer to [71].

However, a stochastic program incorporating a (discrete-time) stochastic pro-
cess having infinite support (think of probability distributions with densities such
as normal distributions) is aninfinite dimensionaloptimization problem. For such
problems a solution can hardly be found in practice. On the other hand, an a priori
limitation to stochastic processes having finite support (think of discrete probability
distributions) wouldn’t be appropriate to many applications (including power plan-
ning). Therefore, for practical problem solving, approximation schemes are required
such that general given stochastic processes are replaced by discrete ones with fi-
nite support (scenario trees) in such a way that the solutions of a stochastic program
incorporating the discrete process are somehow close to the(unknown) solutions of
the same program incorporating the original process. Suchscenario tree approxima-
tion schemes will be one major topic in this chapter. Within the methods [36, 32, 34]
to be presented, the closeness of the solutions will be ensured by means of suitable
stability theorems for stochastic programs [62, 37].

The second major topic of this chapter will be the incorporation of risk manage-
ment into power production planning and trading based on stochastic programming.
In energy risk management, which is typically carried outex postin practice, i.e.,
after power production planning, derivative products suchas futures or options are
traded in order to hedge a given production plan. However, decisions about buying
and selling derivative products can also be made at different time stages, i.e., the
dynamics of the decisions process here is of the same type as in production and
(physical) power trading. Moreover, risk management and stochastic optimization
rest upon the same type of stochastic framework. Hence, it issuggesting to integrate
these two decision processes, i.e., to carry out simultaneously production planning,
power trading, and trading of derivative products. E.g., in[3, 4] it has been demon-
strated that such an integrated approach based on stochastic programming (electric-
ity portfolio optimization) yields additional overall efficiency.

If risk avoidance is an objective of a stochastic optimization model, risk has to be
quantified in a definite way. To this end, a suitable risk functional has to be chosen
according to the economic requirements of a given application model. While in short
term optimization simplerisk functionals(risk measures) such as expected utility or
Average-Value-at-Risk might be appropriate, the dynamic nature of risk has to be
taken into account if medium or long term time horizons are considered. In this case,
intermediate cash flows as well as the partial information that is revealed gradually
at different time stages may have a significant impact on the risk. Therefore,multi-
period risk functionals are required [2, 58]. Another important aspect of choosing
a risk functional for the use in a stochastic programming model is a technical one:
How much does a certain risk functional complicate the numerical resolution of
a stochastic program? We argue thatpolyhedral risk functionalsare a favorable
choice with respect to the tractability of stochastic programs [18]. Also the stability
theorems known for stochastic programs without any risk functional remain valid
[17, 20] and, hence, there is a justification for scenario tree approximation schemes.
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In addition, the class of polyhedral risk functionals provides flexibility, particularly
in the multi-period situation.

This paper is organized as follows: after brief reviews on multistage stochastic
programming in Section 2, we present scenario tree approximation algorithms in
Section 3. After that, in Section 4, we discuss risk functionals with regard to their
employment in electricity portfolio optimization. In particular, our concept of poly-
hedral risk functionals is presented in Section 4.2. Finally, we illustrate the effect of
different polyhedral risk functionals with optimal cash flow curves from a medium
term portfolio optimization model for a small power utilityfeaturing a combined
heat and power plant (CHP).

2 Multistage Stochastic Programming

For a broad presentation of stochastic programming we referto [63] and [47]. Let
the time stages of the planning horizon be denoted byt = 1, ...,T and let, for each
of these time steps, ad-dimensional random vectorξt be given. This random vector
represents the uncertain planning parameters that become known at staget, e.g.,
electricity demands, market prices, inflows or wind power. We assume thatξ1 is
known from the beginning, i.e., a fixed vector inR

d. Forξ2, ...,ξT , one may require
the existence of certain statistical moments. The collection ξ := (ξ1, ...,ξT) can be
understood as multivariate discrete time stochastic process. Based on these notations
a multistage stochastic program can be written as

min
x1,...,xT







F(z1, ...,zT)

∣

∣

∣

∣

∣

∣

zt := ∑t
s=1bs(ξs) ·xs,

xt = xt(ξ1, ...,ξt), xt ∈ Xt ,

∑t−1
s=0At,s(ξt)xt−s = ht(ξt)

(t = 1, ...,T)







(1)

wherext is the decision vector for time staget. The latter may depend and may
only depend on the data observed until timet (non-anticipativity), i.e., onξ1, ...,ξt ,
respectively. In particular, the components ofx1 arehere and nowdecisions since
x1 may only depend onξ1 which was assumed to be deterministic. The decisions
are subject to constraints: eachxt has to be chosen within a given setXt . Typically,
eachXt is a polyhedron or even a box, potentially further constrained by integer
requirements. Moreover, there are dynamic constraints involving matricesAt,s and
right-hand sidesht which may depend onξt in an affinely linear way. For the ob-
jective, we introduce wealth valueszt (accumulated revenues) for each time stage
defined by a scalar product ofxt and (negative) cost coefficientsbt . The latter may
also depend onξt in an affinely linear way. Hence, eachzt is a random variable
(t = 2, ...,T).

The objective functionalF maps the entire stochastic wealth process (cash flow)
to a single real number. The classical choice in stochastic optimization is theex-
pected valueE (mean) of the overall revenuezT , i.e.,
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F(z1, ...,zT) = −E[zT ]

which is alinear functional. Linearity is a favorable property with respectto the-
oretical analysis as well as to the numerical resolution of problem (1). However,
if risk is a relevant issue in the planning process, then somesort of nonlinearity is
required in the objective (or, alternatively, in the constraints). In this presentation,
we will discussmean-riskobjectives of the form

F(z1, ...,zT) = γ ·ρ(zt1, ...,ztJ)− (1− γ) ·E[zT ]

with γ ∈ [0,1] andρ being amulti-periodrisk functional applied to selected time
steps 1< t1 < ... < tJ = T allowing for dynamic perspectives to risk.

Though the framework (1) considers the dynamics of the decision process, typi-
cally only the first stage solutionx1 is used in practice since it is scenario indepen-
dent whereasxt is scenario dependent fort ≥ 2. When the second time staget = 2
is reached in reality one may solve a new problem instance of (1) such that the time
stages are shifted one step ahead (rolling horizon). However, x1 is a good decision
in the sense that it anticipates future decisions and uncertainty.

3 Scenario Tree Approximation

If the stochastic input processξ has infinite support (infinitely many scenarios), the
stochastic program (1) is an infinite dimensional optimization problem. For such
problems a solution can hardly be found in practice. Therefore,ξ has to be approx-
imated by another process having finite support [36, 34]. Such an approximation
must exhibit tree structure in order to reflect the monotone information structure of
ξ . It is desirable thatscenario treeapproximation schemes rely on approximation
or stability results for (1) (cf., e.g., [37, 20, 52, 54]) that guarantee that the results
of the approximate optimization problem are related to the (unknown) results of the
original problem.

The recent stability result in [37] reveals that the multistage stochastic program
(1) essentially depends on the probability distribution ofthe stochastic input pro-
cess and on the implied information structure. Whereas the probability information
is based on the characteristics of the individual scenariosand their probabilities,
the information structure says something about the availability of information at
different time stages within the optimization horizon. Thescenario tree construc-
tion approach to be presented next consists of both approximation of the probability
information and recovering the information structure [32].

Presently, there exist several approaches to generate scenario trees for multistage
stochastic programs (see [14] for a survey). They are based on several different prin-
ciples. We mention here (i) bound-based constructions [7, 16, 26, 50], (ii) Monte
Carlo-based schemes [8, 68, 69] or Quasi-Monte Carlo-basedmethods [54, 55],
(iii) (EVPI-based) sampling within decomposition schemes[10, 11, 46], (iv) the
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target/moment-matching principle [44, 45, 48], and (v) probability metric based ap-
proximations [30, 36, 41, 42, 57].

We propose a technique that belongs to the group (v) and is based on probability
distances that are associated with the stability of the underlying stochastic program.
The input of the method consists of a finite number of scenarios that are provided
by the user and, say, are obtained from historical data by data analysis and resam-
pling techniques or from statistical models calibrated to the relevant historical data.
Sampling from historical time series or from statistical models (e.g., time series or
regression models) is the most popular method for generating data scenarios. Statis-
tical models for the data processes entering power operation and planning models
have been proposed, e.g., in [5, 9, 21, 43, 65, 66, 67, 72].

The actual scenario tree construction method starts with a finite set of typically
individual scenarios where we assume that these scenarios serve as approximation
for the original probability information. Although such individual scenarios are con-
venient to represent a very good approximation of the underlying probability distri-
bution the approximation with respect to the information structure could be poor.
In particular, if sampling is performed from non-discrete random variables (e.g.,
random variables having a density function such as normal distributions), the in-
formation structure gets lost in general. But, fortunately, it can be reconstructed
approximately by applying techniques ofoptimal scenario reductionsuccessively.

3.1 Scenario reduction

The basis of our scenario tree generation methods is the reduction of scenarios mod-
eling the stochastic data process in stochastic programs. We briefly describe this
universal and general concept developed in [15, 33]. More recently, it was improved
in [35] and extended to mixed-integer models in [40]. It was originally intended
for non-dynamic (two-stage) stochastic programs and, hence, doesn’t take into ac-
count the information structure when applied in a multistage framework. There are
no special requirements on the stochastic data processes (e.g., on the dependence
structure or the dimension of the process) or on the structure of the scenarios (e.g.
tree-structured or not).

Scenario reduction may be desirable in some situations whenthe underlying op-
timization models already happen to be large scale and the incorporation of a large
number of scenarios leads to huge programs and, hence, to high computation times.
The idea of the scenario reduction framework in [15, 33] is tocompute the (nearly)
best approximation of the underlying discrete probabilitydistribution by a measure
with smaller support in terms of a probability metric which is associated to the
stochastic program in a natural way by stability theory [62,37]. Here, with regard
to problem (1), thenorm‖ · ‖r will be used defined by
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‖ξ‖r :=

(

T

∑
t=1

E[|ξt |
r ]

)
1
r

, (2)

for a random vectorξ = (ξ1, . . . ,ξT) whereE[·] denotes expectation and| · | denotes
some norm inRd. We aim at finding somêξ such that the distance‖ξ − ξ̂‖r is small.
The role of the parameterr ≥ 1 is to ensure that the stochastic program (1) is well
defined provided that‖ξ‖r < ∞. The choice ofr depends on the existing moments of
the stochastic input processξ coming across and on whetherξ enters the right-hand
sideht and/or the costsbt and/or the (technology) matricesAt,s. Typical choices are
r = 1 if either right-hand sides or costs are random andr = 2 if both right-hand sides
and costs are random. For further details we refer to [36].

The scenario reduction aims at reducing the number of scenarios in an optimal
way. If ξ = (ξ1, . . . ,ξT) is a given random vector with finite support, i.e. represented
by the scenariosξ i = (ξ i

1, . . . ,ξ
i
T) and probabilitiespi , i = 1, . . . ,N, then ones may

be interested in deleting of a certain number of scenarios for computational reasons.
So the main issue here is to find a suitable index subsetJ ⊂ {1, . . . ,N}. Moreover,
if J is given, the question arises, what is the best approximation ξ̃ = (ξ̃1, . . . , ξ̃T) of
ξ supported only by the scenariosξ j = (ξ j

1 , . . . ,ξ j
T), j /∈ J. The answer to the latter

question, however, can be given directly: In our notation using (2) the problem reads

min

{

T

∑
t=1

N

∑
i=1

pi |ξ i
t − ξ̃ i

t |
r

∣

∣

∣

∣

∣

(ξ̃ i
1, . . . , ξ̃

i
T) ∈ {(ξ j

1 , . . . ,ξ j
T)} j /∈J

}

(3)

and if we define a mappingj(i) such that

j(i) ∈ argmin
j /∈J

T

∑
t=1

|ξ i
t −ξ j

t |
r , i ∈ J,

the minimum of (3) is attained for scenarios

(ξ̂ i
1, . . . , ξ̂

i
T) =

{

(ξ j(i)
1 , . . . ,ξ j(i)

T ), if i ∈ J,
(ξ i

1, . . . ,ξ
i
T), if i /∈ J.

(4)

Hence, the best approximation ofξ is obtained for the random vectorξ̂ supported
by the scenarioŝξ j = (ξ̂ j

1 , . . . , ξ̂ j
T) and probabilitiesq j , j /∈ J, where we have

‖ξ − ξ̂‖r
r = ∑

i∈J
pi min

j /∈J

T

∑
t=1

|ξ i
t −ξ j

t |
r , (5)

q j = p j + ∑
i∈J

j(i)= j

pi . (6)
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In other words, theredistribution rule(6) consists in assigning the new probability
to a preserved scenario to be equal to the sum of its former probability and of all
probabilities of deleted scenarios that are closest to it.

More complicated is the actual problem of optimal scenario reduction, i.e., find-
ing an optimal choice for the index setJ with, say, prescribed cardinality. This prob-
lem represents a metrick-median problem which is known to be NP-hard, hence,
(polynomial-time) approximation algorithms and heuristics become important. Sim-
ple heuristics may be derived from formula (5) for the approximation error. The re-
sult are two heuristic algorithms to compute nearly optimalindex setsJ with given
cardinalityn.

Algorithm 3.1 (Forward selection)

[Initialization]
SetJ := {1, . . . ,N}.

[Index Selection]
Determine an indexl ∈ J such that

l ∈ argmin
u∈J

∑
k∈J\{u}

pk min
j /∈J\{u}

T

∑
t=1

|ξ k
t −ξ j

t |
r

and setJ := J \ {l}. If the cardinality ofJ equalsn go to the termination step.
Otherwise continue with a further index selection step.

[Termination]
Determine scenarios according to (4) and apply the redistribution rule (6) for the
final index setJ.

Algorithm 3.2 (Backward reduction)

[Initialization]
SetJ := /0.

[Index Selection]
Determine an indexu /∈ J such that

u∈ argmin
l /∈J

∑
k∈J∪{l}

pk min
j /∈J∪{u}

T

∑
t=1

|ξ k
t −ξ j

t |
r

and setJ := J∪ {l}. If the cardinality ofJ equalsn go to the termination step.
Otherwise continue with a further index selection step.

[Termination]
Determine scenarios according to (4) and apply the redistribution rule (6) for the
final index setJ.
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3.2 Scenario tree construction

Now we turn to the scenario tree construction, where we assume to have a sufficient
large set of original or sample scenarios available. Let the(individual) scenarios and
probabilities be denoted again byξ i = (ξ i

1, . . . ,ξ
i
T) andpi , i = 1, . . . ,N, respectively,

and we assume thatξ 1
1 = ξ 2

1 = . . . = ξ N
1 =: ξ ∗

1 (deterministic first stage). The random
process with scenariosξ i and probabilitiespi , i = 1, . . . ,N, is denoted byξ .

The idea of our tree construction method is to apply the abovescenario reduction
techniques successively in a specific way. In fact, by the approach of arecursive
scenario reductionfor increasing and decreasing time, respectively, both a forward
and backward in time performing method can be derived.

The recursive scenario reduction acts as recovering the original information
structure approximately. In the next two subsections we present a detailed descrip-
tion for two variants of our method, the forward and the backward approach. In the
following let I := {1, . . . ,N}.

Forward tree construction

The forward tree construction is based on recursive scenario reduction applied to
time horizons{1, . . . , t} with successively increasing time parametert. It succes-
sively computes partitions ofI of the form

Ct := {C1
t , . . . ,Ckt

t } , kt ∈ N,

such that for everyt the partitions satisfy the conditions

Ck
t ∩Ck′

t = /0 for k 6= k′ , and
kt
⋃

k=1

Ck
t = I .

The elements of a partitionCt are called (scenario) clusters. The following forward
algorithm allows to generate different scenario tree processes depending on the pa-
rameter settings for the reductions in each step.

Algorithm 3.3 (Forward construction)

[Initialization]
DefineC1 = {I} and sett := 2.

[Cluster computation]
Let beCt−1 = {C1

t−1, . . . ,C
kt−1
t−1 }. For everyk ∈ {1, . . . ,kt−1} subject the scenario

subsets{ξ i
t }i∈Ck

t−1
to a scenario reduction with respect to thet-th components only.

This yields disjoint subsets of remaining and deleted scenarios Ik
t andJk

t , respec-
tively. Next, obtain the mappingsjkt : Jk

t → Ik
t such that
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jkt (i) ∈ argmin
j∈Ik

t

|ξ i
t −ξ j

t | , i ∈ Jk
t ,

according to the reduction procedure (cf. Section 3.1). Finally, define an overall
mappingαt : I → I by

αt(i) =

{

jkt (i), i ∈ Jk
t for somek = 1, . . . ,kt−1,

i, otherwise.
(7)

A new partition att is defined now by

Ct :=
{

α−1
t (i)

∣

∣ i ∈ Ik
t , k = 1, . . . ,kt−1

}

which is in fact a refinement of the partionCt−1. If t < T sett := t +1 and continue
with a further cluster computation step, otherwise go to thetermination step.

[Termination]
According to the partition setCT and the mappings (7) define a scenario tree process
ξtr supported by the scenarios

ξ k
tr =

(

ξ ∗
1 ,ξ α2(i)

2 , . . . ,ξ αt (i)
t , . . . ,ξ αT (i)

T

)

for any i ∈Ck
T ,

and probabilitiesqk := ∑
i∈Ck

T

pi , for eachk = 1, . . . ,kT .

1 2 3 4t t t t= = = =

1

2

3

4

5

6

7

8

9

Scenario C C CC 21 3 4

Scenario α2 α3 α4

1 2 1 1
2 2 1 2
3 2 4 4
4 2 4 4
5 6 5 5
6 6 5 6
7 6 7 7
8 6 9 9
9 6 9 9

Fig. 1 Illustration of the clustering by the forward scenario tree construction algorithm 3.3 (left)
and the mappingsαt (right) for an example.

We want to conclude this subsection with two remarks regarding algorithm 3.3.
Firstly, both heuristic algorithms from Section 3.1 may be used to compute the sce-
nario reduction within the cluster computation step. Secondly, according to (5) the
error of the cluster computation stept is
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errt :=
kt−1

∑
k=1

∑
i∈Jk

t

pi min
j∈Ik

t

|ξ i
t −ξ j

t |
r .

Furthermore, as shown in [32, Proposition 6.6], the estimate

‖ξ −ξtr‖r ≤

(

T

∑
t=2

errt

)
1
r

holds for the total approximation error. The latter estimate allows to control the
construction process by prescribing tolerances for errt for everyt = 2, . . . ,T.

Backward tree construction

The idea of the backward scenario tree construction consists in recursive scenario
reduction on{1, . . . , t} for decreasingt, t = T, . . . ,2. That results in a chain of index
sets

I1 := {i∗} ⊆ I2 ⊆ ·· · ⊆ It−1 ⊆ It ⊆ ·· · ⊆ IT ⊆ I = {1, . . . ,N}

representing an increasing number of scenario realizations over the time horizon.
The following backward algorithm is the counterpart of the forward algorithm 3.3
and allows again to generate different scenario tree processes depending on the pa-
rameters for the reduction steps.

Algorithm 3.4 (Backward construction)

[Initialization]
DefineIT+1 := {1, . . . ,N} andpi

T+1 := pi for all i ∈ IT+1. Further, let beαT+1 the
identity onIT+1 and sett := T.

[Reduction]
Subject the scenario subset{(ξ i

1, . . . ,ξ
i
t )}i∈It+1 with probabilitiespi

t+1 (i ∈ It+1) to
a scenario reduction which results in a index setIt of remaining scenarios with
It ⊆ It+1. Let beJt := It+1\ It . According to the reduction procedure (cf. Section 3.1)
obtain a mappingjt : Jt → It such that

jt(i) ∈ argmin
j∈It

t

∑
k=1

|ξ i
k−ξ j

k |
r , i ∈ Jt .

Define a mappingαt : I → It by

αt(i) =

{

jt(αt+1(i)), αt+1(i) ∈ Jt ,
αt+1(i), otherwise,

(8)

for all i ∈ I . Finally, set probabilities with respect to the redistribution (6), i.e.,
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p j
t := p j

t+1 + ∑
i∈Jt

jt (i)= j

pi
t+1.

If t > 2 sett := t −1 and continue with performing a further reduction step, other-
wise go to the termination step.

[Termination]
According to the obtained index setIT and the mappings (8) define a scenario tree
processξtr supported by the scenarios

ξ i
tr =

(

ξ ∗
1 ,ξ α2(i)

2 , . . . ,ξ αt (i)
t , . . . ,ξ αT (i)

T

)

and probabilitiesqi := pi
T , for all i ∈ IT .

1 2 3 4t t t t= = = =

1

2

3

4

5

6

7

8

9

Scenario 21 3 4I I I I
Scenario α2 α3 α4

1 3 2 1
2 3 2 2
3 3 3 3
4 5 5 4
5 5 5 5
6 5 5 6
7 7 7 7
8 7 8 8
9 7 8 8

Fig. 2 Illustration of the recursive backward scenario tree construction algorithm 3.4 (left) and the
mappingsαt (right) for an example. Note that the backward construction yields a clustering similar
to the forward variant. Black circles correspond to scenarioscontained in the index setsIt .

We note again that the specific scenario reduction can be performed with both
heuristic algorithms of Section 3.1. A similar estimate forthe total approximation
error‖ξ −ξtr‖r holds as for the forward variant. For details we refer to [36,Section
4.1]. Finally, we mention that all algorithms discussed in this section are imple-
mented and available in GAMS-SCENRED (seewww.gams.com).

4 Risk Avoidance via Risk Functionals

Risk avoidance requirements in optimization are typicallyachieved by the employ-
ment of a certainrisk functional. Alternatively,risk probabilistic constraintsor risk
stochastic dominance constraintswith respect to a given acceptable strategy may be
incorporated, i.e., (1) may adopt constraints of the form



12 Andreas Eichhorn, Holger Heitsch, and Werner Römisch

P(zT ≤ zref) ≥ α or zT ¹ zref

with (high) probabilityα ∈ (0,1] and some acceptable reference levelzref or some
acceptable reference distributionzref and a suitable stochastic ordering relation “¹”.
For the relevant background of probabilistic constraints we refer to the survey [59]
and to [38, 39]. For a systematic introduction into stochastic order relations we refer
to [53] and for recent work on incorporating stochastic dominance constraints into
optimization models to [12, 13].

In this section, we focus on risk functionalsρ with regard to their utilization in
the objectiveF of (1) as suggested, e.g., in [64]; cf. Section 2. Clearly, the choice
of ρ is a very critical issue. On the one hand, the output of a stochastic program
is highly sensitive to this choice. One is interested in a functional that makes sense
from an economic point of view for a given situation. On the other hand, the choice
of the risk functional has a significant impact on the numerical tractability of (1)
(whereξ may be approximated by a finite scenario tree according to Section 3).
Note that reasonable risk functionals are never linear (like the expectation func-
tional), but some of them may be reformulated as infimal valueof a linear stochastic
program (see Section 4.2).

4.1 Axiomatic Frameworks for Risk Functionals

Basically, a risk functional in a probabilistic framework ought to measure the danger
of ending up at low wealth in the future and/or the degree of uncertainty one is faced
with in this regard. However, the question what is a good or what is the best risk
functional from the viewpoint of economic reasoning cannotbe answered in general.
The answer depends strongly on the application context. However, various axioms
have been postulated by various authors in the last decade that can be interpreted as
minimum requirements.

A distinction can be drawn between single-period risk functionals evaluating a
stochastic wealth valuezT at one single point in timeT and multi-period risk func-
tionals evaluating ones wealth at different time stages, say, t1 < t2... < tJ. The latter
are typically required for medium or long term models. Of course, from a technical
point of view single-period risk measurement can be understood as a special case of
multi-period risk measurement. However, with regard to single-period risk function-
als there is a relatively high degree of agreement about their preferable properties
[1, 25, 58], whereas the multi-period case raises a lot more questions. In the fol-
lowing we pass directly to multi-period risk measurement having single-period risk
measurement as a special case in mind.

Let a certain linear spaceZ of discrete-time random processes be given. A ran-
dom processz∈Z is basically a collection of random variablesz= (zt1, ...,ztJ) rep-
resenting wealth at different time stages. The realizationof zt j is completely known
at time t j , respectively. Moreover, at time staget j one may have more informa-
tion about(zt j+1, ...,ztJ) than before (at earlier time stagest1, ..., t j−1). Therefore,
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t0 tk t j tJ  0  1000  2000  3000  4000  5000  6000  7000  8000  9000

Fig. 3 Left: Illustration of the (discretized) information structureof a stochastic wealth process
zt1, ...,ztJ . At each time stagetk and in each scenario one can look at subsequent time stepst j > tk
and consider the discrete (sub-) distribution ofzt j seen from this node. Right: Branching structure
of an exemplary scenario tree with 40 scenarios,T = 8760 time steps, and approx. 150,000 nodes
used for the simulations in Section 4.3. There is a node at each time step for each scenario.

a multi-period risk functional may also take into accountconditional distributions
with respect to someunderlying information structure. In the context of the mul-
tistage stochastic program (1), the underlying information structure is given in a
natural way through the stochastic input processξ = (ξ1, ...,ξT). Namely, it holds
thatzt j = zt j (ξ1, ...,ξt j ), i.e.,z is adaptedto ξ . In particular, ifξ is discrete, i.e., if
ξ is given by a finite scenario tree as in Section 3, then alsoz is discrete, i.e.,z is
given by the valueszi

t j
( j = 1, ...,J, i = 1, ...,N) on the scenario tree. However, we

will consider general (not necessarily discretely distributed) random processes here
and we also writezi

t j
for a realization (outcome) of random variablezt j even if the

number of scenarios (possible outcomes) is infinite.
From a formal point of view, a risk functionalρ is just a mapping

z= (zt1, ...,ztJ) ∈ Z 7→ ρ(z) ∈ R

i.e., a real number is assigned to each random wealth processfrom Z . One may
require the existence of certain statistical moments for the random variableszt j ( j =
1, ...,J), i.e.,E[|zt j |

p] < ∞ for somep≥ 1. TheJ time steps are denoted byt1, ..., tJ to
indicate that, with regard to problem (1), they may be only a subset of the time steps
t = 1, ...,T of the underlying information structure. We assume 1< t1 < ... < tJ = T
and sett0 = 1 for convenience. The special case ofsingle-periodrisk functionals
occurs if only one time step is taken into account (J = 1, tJ = T).

Now, a high numberρ(z) should indicate a high risk of ending up at low wealth
valueszt j , a low (negative) numberρ(z) indicates a small risk. In [2] the number
ρ(z) is interpreted as theminimal amountµ of additionally required risk-free capital
such that the processzt1 +µ , ...,ztJ +µ is acceptable. Such and other intuitions have
been formalized by various authors in terms of axioms. As a start, we cite the first
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two axioms from [2], in addition to convexity as the third axiom. A functionalρ
is called a multi-periodconvex (capital) risk functionalif the following properties
hold for all stochastic wealth processesz = (zt1, ...,ztJ) and z̃ = (z̃t1, ..., z̃tJ) in Z ,
and for all (non-random) real numbersµ :

• Monotonicity: If zt j ≤ z̃t j in any case forj = 1, ...,J, then it holds thatρ(z)≥ ρ(z̃).
• Cash invariance: It holds thatρ(zt1 + µ , ...,ztJ + µ) = ρ(zt1, ...,ztJ)−µ .
• Convexity: If 0 ≤ µ ≤ 1 it holds thatρ(µz+(1−µ)z̃) ≤ µρ(z)+(1−µ)ρ(z̃).

The formulation “zt j ≤ z̃t j in any case” means that in each scenarioi it holds that
zi
t j
≤ z̃i

t j
. The convexity property is motivated by the idea thatdiversificationmight

decrease risk but does never increase it. Sometimes the following property is also
required for allz∈ Z :

• Positive homogeneity: For eachµ ≥ 0 it holds thatρ(µz) = µρ(z).

Note that, for the single-period caseJ = 1, the first three properties coincide with the
classical axioms from [1, 24, 27]. A positively homogeneousconvex risk functional
is calledcoherentin [1, 2]. We note, however, that other authors do not require
positive homogeneity, but claim that risk should rather grow overproportionally, i.e.,
ρ(µz) > µρ(z) for µ > 1; cf. [28, 25]. Clearly, the negative expectation functional
−E is a (single-period) coherent risk functional, whereas theα-Value-at-Risk given
by VaRα(z) = − inf{µ ∈ R : P(z≤ µ) > α} is not since it is not convex [1].

For the multi-period case (J > 1) the three above axioms are only a basis ad-
mitting many degrees of freedom. There are several aspects of risk that could be
measured. First of all, one may want to measure the chance of ending up at very low
valueszi

t j
at each time since very low values can mean bankruptcy (liquidity con-

siderations). In addition, one may want to measure the degree of uncertainty one is
faced with at each time step; cf. Fig. 3 (left). A situation where, at some timetk, one
can be sure about the future development of ones wealthzt j ( j > k) may be preferred
to a situation continuing uncertainty. E.g., low valueszt j may be tolerable if one can
be sure that later the wealth is higher again. Hence, one may want to take into ac-
count not only the marginal distributions ofzt1, ...,ztJ but also their chronological
order, their interdependence, and the underlying information structure. Therefore,
a multi-period risk functional may also take into account the conditional distribu-
tions of zt j given the informationξ1, ...,ξs with s = 1, ..., t j − 1 ( j = 1, ...,J); cf.
Fig. 3 (left). Clearly, there are quite a lot of those conditional distributions and the
question arises which ones are relevant and how to weight them reasonably.

The above axioms leave all these questions open. In our opinion, general answers
can not be given, the requirements depend strongly on the application context, e.g.,
on the time horizon, on the size and capital reserves of the respective company, on
the broadness of the model, etc. Some stronger versions of cash invariance (trans-
lation equivariance) have been suggested, e.g., in [28, 58], tailored to certain situa-
tions. However, the framework of polyhedral risk functionals in the next section is
particularly flexible with respect to the dynamic aspects.
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4.2 Polyhedral Risk Functionals

The basic motivation for polyhedral risk functionals is a technical, but important
one. Consider the optimization problem (1). It is basicallylinear or mixed-integer
linear if the objective functional is linear, i.e.,F =−E. In this case it is well tractable
by various solution and decomposition methods. However, ifF incorporates a risk
functionalρ it is no longer linear since risk functionals are essentially nonlinear by
nature. Decomposition structures may get lost and solutionmethods may take much
longer or may even fail. To avoid the worst possible situation one should chooseρ
to be at least convex [64]. Then (1) is at least a convex problem (except possible
integer constraints contained inXt ), hence, any local optimum is always the global
one. As discussed above, convexity is in accordance with economic considerations
and axiomatic frameworks.

Now, the framework of polyhedral risk functionals [18, 17] goes one step beyond
convexity: polyhedral risk functionals maintain linearity structures even though they
are nonlinear functionals. Namely, a polyhedral risk functional ρ is given by

ρ(z) = inf







E

[

∑J
j=0c j ·y j

]

∣

∣

∣

∣

∣

∣

y j = y j(ξ1, ...,ξt j ) ∈Yj ,

∑ j
k=0Vj,ky j−k = r j ( j = 0, ...,J),

∑ j
k=0w j,k ·y j−k = zt j ( j = 1, ...,J)







(9)

wherez = (zt1, ...,ztJ) denotes a stochastic wealth process being non-anticipative
with respect toξ , i.e.,zt = zt(ξ1, ...,ξt). The notation inf{ .} refers to the infimum.
The definition includes fixed polyhedral conesYj (e.g.,R+ × ...×R+) in some Eu-
clidean spacesRk j , fixed vectorsc j , r j w j,k, and matricesVj,k, which have to be
chosen appropriately. We will give examples for these parameters below. However,
functionalsρ defined by (9) are always convex [18, 17].

Observe that problem (9) is more or less of the form (1), i.e.,the risk of a stochas-
tic wealth processz is given by the optimal value of a stochastic program. Moreover,
if (9) is inserted into the objective of (1) (i.e.,F = ρ), one is faced with two nested
minimizations which, of course, can be carried out jointly.This yields the equivalent
optimization problem

min















E

[

∑J
j=0c j ·y j

]

∣

∣

∣

∣

∣

∣

∣

∣

xt = xt(ξ1, ...,ξt) ∈ Xt , ∑t−1
s=0At,s(ξt)xt−s = ht(ξt)

(t = 1, ...,T),

y j = y j(ξ1, ...,ξt j ) ∈Yj , ∑ j
k=0Vj,ky j−k = r j ,

∑ j
k=0w j,k ·y j−k = ∑

t j
s=1bs(ξs) ·xs ( j = 1, ...,J)















which is a stochastic program of the form (1) withlinear objective. In other words:
the nonlinearity of the risk functionalρ is transformed into additional variables and
additional linear constraints in (1). This means that decomposition schemes and so-
lution algorithms known for linear or mixed-integer linearstochastic programs can
also be used for (1) withF = ρ . In particular, as discussed in [18, Section 4.2], dual
decomposition schemes (like scenario and geographical decomposition) carry over
to the situation withF = ρ . However, the dual problem in Lagrangian relaxation of
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coupling constraints (also called geographical or component decomposition) con-
tains polyhedral constraints originating from the dual representation ofρ .

Furthermore, the linear combination of two polyhedral riskfunctionals is again
a polyhedral risk functional (cf. [17, Section 3.2.4]). In particular, the case

F(z) = γρ(z)+
J

∑
k=1

µkE
[

ztk

]

with a polyhedral risk functionalρ (with parametersc j , w j,k etc.) and real numbers
γ andµk, k = 1, . . . ,J, can be fully reduced to the caseρ by setting

ĉ j := γc j +
J

∑
k= j

µkwk,k− j ( j = 0, . . . ,J)

for the vectors in the objective function of the representation (9) ofF and letting all
remaining parameters ofρ unchanged.

Another important advantage of polyhedral risk functionals is that they also be-
have favorable to stability with respect to (finite) approximations of the stochastic
input processξ [20]. Hence, there is a justification for the employment of the sce-
nario tree approximation schemes from Section 3.

It remains to discuss the issue of choosing the parametersc j , h j , w j,k, Vj,k, Yj

in (9) such that the resulting functionalρ is indeed a reasonable risk functional
satisfying, e.g., the axioms presented in the previous section. To this end, several
criteria for these axioms have been deduced in [18, 17] involving duality theory
from convex analysis. However, here we restrict the presentation to examples.

First, we consider the caseJ = 1, i.e., single-period risk functionals evaluat-
ing only the distribution of the final valuezT (total revenue). The starting point
of the concept of polyhedral risk functionals was the well-known risk functional
Average-Value-at-RiskAVaRα at some probability levelα ∈ (0,1). It is also known
as Conditional-Value-at-Risk (cf. [61]), but as suggestedin [25] we prefer the name
Average-Value-at-Risk according to its definition

AVaRα(z) := 1
α

∫ α

0
VaRβ (z)dβ

as an average of Value-at-Risks and avoid any conflict with the use of conditional
distributions within VaR and AVaR (see [58] for such constructions). The Average-
Value-at-Risk is a (single-period) coherent risk functional which is broadly ac-
cepted. AVaRα(zT) can be interpreted as the mean (expectation) of theα-tail distri-
bution ofzT , i.e., the mean of the distribution ofzT below theα-quantile ofzT . It
has been observed in [61] that AVaRα can be represented by

AVaRα(zT) = infy0∈R

{

y0 + 1
α E[(y0 +zT)−]

}

= inf







y0 + 1
α E[y1,2]

∣

∣

∣

∣

∣

∣

y0 ∈ R,
y1 = y1(ξ1, ...,ξT) ∈ R

2
+,

y0 +zT = y1,1−y1,2









Stochastic Optimization of Electricity Portfolios 17

where( .)− denotes the negative part of a real number, i.e.,a− = max{0,−a} for a∈
R. The second representation is deduced from the first one by introducing stochastic
variablesy1 for the positive and the negative part ofy0 + zT . Hence, AVaRα is of
the form (9) withJ = 1, c0 = 1, c1 = (0, 1

α ), w1,0 = (1,−1), w1,1 = −1, Y0 = R,
Y1 = R

2
+ = R+ ×R+, andh0 = h1 = V0,0 = V1,0 = V1,1 = 0. Thus, it is a (single-

period) polyhedral risk functional.

x

uHxL

x1

x2

uHx1,x2L

x1

Fig. 4 Monotone and piecewise linear concave utility functions, single-period (left) and two-
period (J = 2) (right)

Another single-period example for a polyhedral risk functional (satisfying mono-
tonicity and convexity) is expected utility, i.e.,ρu(zT) := −E[u(zT)] with a non-
decreasing concave utility functionu : R → R; cf. [25]. Typically, nonlinear func-
tions such asu(x) = 1−e−βx with some fixedβ > 0 are used. Of course, in such
casesρu is not a polyhedral risk functional. However, in situationswhere the domain
of zT can be bounded a priori, it makes sense to use piecewise linear functions foru
(see Fig. 4, left). Then, according to the infimum representation of piecewise linear
convex functions [60, Corollary 19.1.2], it holds that

ρu(zT) = inf

{

E [c·y1]

∣

∣

∣

∣

y1 = y1(ξ1, ...,ξT) ∈ R
n+2
+ ,

w ·y1 = zT , ∑n
i=1y1,i = 1

}

wheren is the number of cusps ofu, w1, ...,wn are thex-coordinates of the cusps, and
ci =−u(wi) (i = 1, ..,n). Thus,ρu is a polyhedral risk functional. This approach can
also be generalized to the multi-period situation in an obvious way by specifying
a (concave) utility functionu : R

J → R (see Fig. 4, right). However, specifying
an adequate utility function may be difficult in practice, inparticular in the multi-
period case. Furthermore, expected utility is not cash invariant (cf. Section 4.1),
neither in the single-period nor in the multi-period case. Therefore we will focus on
generalizations of AVaRα to the multi-period case.

In the multi-period caseJ > 1, the framework of polyhedral risk functionals al-
lows to model different perspectives to the relations between different time stages.
In [18, 19, 17, 58], several examples extending AVaRα to the multi-period situa-
tion in different ways have been constructed via a bottom-upapproach using duality
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AVaRα (z0) polyhedral representation (9)

z0 = 1
J ∑J

j=1 zt j inf















1
J

(

y0 +∑J
j=1

1
α E

[

y j,2
]

)

∣

∣

∣

∣

∣

∣

∣

∣

y0 ∈ R, y j = y j (ξ1, ...ξt j ) ∈ R×R+

( j = 1, ...,J−1),
yJ = yJ(ξ1, ...ξtJ) ∈ R+ ×R+

y j,1−y j,2 = zt j +y j−1,1 ( j = 1, ...,J)















z0 = min{zt1, ...,ztJ} inf















y0 + 1
α E [yJ,2]

∣

∣

∣

∣

∣

∣

∣

∣

y0 ∈ R, y j = y j (ξ1, ...ξt j ) ∈ R+ ×R+ ×R+

( j = 1, ...,J),
y1,2−y1,3 = 0, y j,2−y j,3−y j−1,2 = 0 ( j = 2, ...,J),
y j,1−y j,2−y0 = zt j ( j = 1, ...,J)















Table 1 Representation (9) of AVaRα ( 1
J ∑J

j=1 zt j ) (above) and AVaRα (min{zt1 , ...,ztJ}) (below)

theory from convex analysis. Here, we restrict the presentation to the most obvious
extensions that can be written in the form AVaRα(z0) with a suitablemixture z0 of
(zt1, ...,ztJ). We consider

z0 = 1
J ∑J

j=1zt j or z0 = min{zt1, ...,ztJ}

where “∑” and “min” are understood scenariowise, i.e.,zi
0 = 1

J ∑J
j=1zi

t j
respectively

zi
0 = min{zi

t1, ...,z
i
tJ} for each scenarioi. Hence, in both cases the risk functional

AVaRα(z0) depends on the multivariate distribution of(zt1, ...,ztJ).
As shown in Table 1, both AVaRα(1

J ∑J
j=1zt j ) and AVaRα(min{zt1, ...,ztJ}) can

be written in the form (9), i.e., they are indeedmulti-period polyhedral risk func-
tionals. Moreover, they are multi-period coherent risk functionals in the sense of
Section 4.1. Clearly, the latter of the two functionals is the most reasonable multi-
period extension of AVaR with regard to liquidity considerations, since AVaR is
applied to the respectively lowest wealth values in each scenario; this worst case
approach has also been suggested in [2, Section 4].

4.3 Illustrative Simulation Results

Finally, we illustrate the effects of different polyhedralrisk functionals by presenting
some optimal wealth processes from an electricity portfolio optimization model [21,
19]. This model is of the form (1), it considers the one year planning problem of a
municipal power utility, i.e., a price-taking retailer serving heat and power demands
of a certain region; see Fig. 5. It is assumed that the utilityfeatures a combined
heat and power (CHP) plant that can serve the heat demand completely but the
power demand only in part. In addition, the utility can buy power at the day-ahead
spot market of some power exchange, e.g., the European Energy Exchange EEX.
Morover, the utility can trade monthly (purely financial) futures (e.g., Phelix futures
at EEX).
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Fig. 5 Schematic diagram for a power production planning and trading model under demand and
price uncertainty (portfolio optimization).

The objectiveF of this model is a mean-risk objective as discussed in Section 1
incorporating a polyhedral risk functionalρ and the expected total revenueE[zT ];
the weighting factor is set toγ = 0.9. Time horizon is one year in hourly discretiza-
tion, i.e.,T = 8760. Time series models for the uncertain input data (demands and
prices) have been set up (see [21] for details) and approximated according to Sec-
tion 3 by a finite scenario tree consisting of 40 scenarios; see Fig. 3 (right). The
scenario tree has been obtained by the forward constructionprocedure of Algorithm
3.3. It represents the uncertainty well enough on the one hand, and, on the other
hand the moderate size of the tree guarantees computationaltractability. For the risk
time stepst j we use 11 PM at the last trading day of each week (j = 1, ...,J = 52).
Note that, due to the limited number of branches in the tree, afiner resolution for
the risk time steps doesn’t make sense here. The resulting optimization problem is
very large-scale, however, it is numerically tractable dueto the favorable nature of
polyhedral risk functionals. In particular, since we modeled the CHP plant without
integer variables, it is a linear program (LP) which could besolved by ILOG CPLEX
in about one hour.

In Fig. 6 (as well as in Fig. 7) the optimal cash flows are displayed, i.e., the
wealth valueszt for each time stept = 1, ...,T and each scenario, obtained from
optimization runs with different mean-risk objectives. The price parameters have
been set such that the effects of the risk functionals may be observed well although
these settings yield negative cash values. These families of curves differ in shape due
to different policies of future trading induced by the different risk functionals; see
Fig. 8. Settingγ = 0 (no risk functional at all) yields high spread forzT and there is
no future trading at all (since we worked with fair future prices). Using AVaRα(zT)
(γ = 0.9) yields low spread forzT but low values and high spread att < T. This
shows that, for the situation here, single-period risk functionals are not appropriate.
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Fig. 6 Optimal cash valueszt (wealth) over time (t = 1, ...,T) with respect to different risk func-
tionals. Each curve in a graph represents one of the 40 scenarios.The expected value of the cash
flows is displayed in black.
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Fig. 7 Optimal cash valueszt (wealth) over time (t = 1, ...,T) with respect to different risk func-
tionals. For these calculations, slightly higher fuel cost parameters have been used such that the
graphs demonstrate the nature of the risk functionals best.
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Fig. 8 Optimal future stock over time with respect to different polyhedral risk functionals. The
expected value of the future stock over time is displayed in black.
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The employment of multi-period polyhedral risk functionals yields spread that is
better distributed over time. However, the way how this is achieved is different: The
functional AVaRα(min{zt1, ...,ztJ}) aims at finding a levely0 as high as possible
such that the curves rarely fall below that level, whereas AVaRα(1

J ∑J
j=1zt j ) aims

at equal spread at all times. In the latter case, futures are held only for short time
periods, whereas in the other cases futures are held longer.Finally, we note that the
effects of the risk functionals cost only less than 1% of the expected overall revenue
E[zT ].

5 Conclusions

Multi-stage stochastic programming models are discussed as mathematical tools for
dealing with uncertain (future) parameters in electricityportfolio and risk manage-
ment. Since statistical information on the parameters (like demands, spot prices,
inflows or wind speed) is often available, stochastic modelsmay be set up for them
so that scenarios of the future uncertainty are made available. To model the infor-
mation flow over time, the scenarios need to be tree-structured. For this reason a
general methodology is presented in Section 3 that allows togenerate scenario trees
out of the given set of scenarios. The general method is basedon stability argument
for multistage stochastic programs and does not require further knowledge on the
underlying multivariate probability distribution. The method is flexible and allows
to generate scenario trees whose size enables a good approximation of the underly-
ing probability distribution on the one hand and allows for reasonable running times
of the optimization software on the other hand. Implementations of these scenario
tree generation algorithms are available in GAMS-SCENRED.

A second issue discussed in the paper is risk management via the incorpora-
tion of risk functionals into the objective. This allows maximizing expected revenue
und minimizing risk simultaneously. Since risk functionals are nonlinear by defini-
tion, a natural requirement consists in preserving computational tractability of the
(mixed-integer) optimization models and, hence, in reasonable running times of the
software. Therefore, a class of risk functionals is presented in Section 4.2 that allow
a formulation as linear (stochastic) program. Hence, if therisk functional (measure)
belongs to this class, the resulting optimization model does not contain additional
nonlinearities. If the expected revenue maximization model is (mixed-integer) lin-
ear, the linearity is preserved. A few examples of suchpolyhedralrisk functionals
are provided for multi-period situations, i.e., if the riskevolves over time and re-
quires to rely on multivariate probability distributions.The simulation study in Sec-
tion 4.3 for the electricity portfolio management of a price-taking retailer provides
some insight into the risk minimization process by trading electricity derivatives. It
turns out that the risk can be reduced considerably for less than 1% of the expected
overall revenue.
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24. F̈ollmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance and
Stochastics6, 429–447 (2002)

25. F̈ollmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time,De Gruyter
Studies in Mathematics, vol. 27, 2nd edn. Walter de Gruyter, Berlin (2004)

26. Frauendorfer, K.: Barycentric scenario trees in convex multistage stochastic programming.
Mathematical Programming75, 277–293 (1996)

27. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. Journal of Banking & Finance
26, 1473–1486 (2002)

28. Frittelli, M., Scandolo, G.: Risk measures and capital requirements for processes. Mathemat-
ical Finance16, 589–612 (2005)
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