Stochastic Optimization of Electricity Portfolios:
Scenario Tree Modeling and Risk M anagement

Andreas Eichhorn, Holger Heitsch, and Wernénftsch

Abstract We present recent developments in the field of stochastigranoming
with regard to application in power management. In pargéicule discuss issues of
scenario tree modeling, i.e., appropriate discrete apmations of the underlying
stochastic parameters. Moreover, we suggest risk avoédsimategies via the in-
cooperation of so-called polyhedral risk functionals istochastic programs. This
approach, motivated through tractability of the resulfaimgblems, is a constructive
framework providing particular flexibility with respect the dynamic aspects of
risk.

1 Introduction

In medium term planning of electricity production and tragione is typically faced
with uncertain parameters (such as energy demands andtrpades in the future)
that can be described reasonably by stochastic procesdissiiate time. When time
passes, additional information about the uncertain paeenay arrive (e.g., ac-
tual energy demands may be observed). Planning decisiorsecaade at different
time stages based on the information available by then angravabilistic infor-

mation about the future (non-anticipativity), respediivén terms of optimization,

this situation is modeled by the frameworkmfiltistage stochastic programming
cf. Section 2. This framework allows to anticipate this dyinadecision structure
appropriately. We refer to [6, 22, 23, 31, 49, 51, 56, 67, 1), for exemplary
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case studies of stochastic programming in power planning.aFbroad overview
on stochastic programming models in energy we refer to [71].

However, a stochastic program incorporating a (discrietejt stochastic pro-
cess having infinite support (think of probability distrilmns with densities such
as normal distributions) is ainfinite dimensionabptimization problem. For such
problems a solution can hardly be found in practice. On therdband, an a priori
limitation to stochastic processes having finite suppaihk of discrete probability
distributions) wouldn’t be appropriate to many applicadincluding power plan-
ning). Therefore, for practical problem solving, approation schemes are required
such that general given stochastic processes are replgadiddoete ones with fi-
nite support (scenario trees) in such a way that the solsitida stochastic program
incorporating the discrete process are somehow close {oittk@own) solutions of
the same program incorporating the original process. Scehario tree approxima-
tion schemes will be one major topic in this chapter. Within théhods [36, 32, 34]
to be presented, the closeness of the solutions will be edsayr means of suitable
stability theorems for stochastic programs [62, 37].

The second major topic of this chapter will be the incorpgoradf risk manage-
ment into power production planning and trading based achststic programming.
In energy risk management, which is typically carried exipostin practice, i.e.,
after power production planning, derivative products saslutures or options are
traded in order to hedge a given production plan. Howeveisams about buying
and selling derivative products can also be made at diffeism® stages, i.e., the
dynamics of the decisions process here is of the same type @®duction and
(physical) power trading. Moreover, risk management andreistic optimization
rest upon the same type of stochastic framework. Hencesliggesting to integrate
these two decision processes, i.e., to carry out simulteastg@roduction planning,
power trading, and trading of derivative products. E.g[3iM] it has been demon-
strated that such an integrated approach based on staghairamming (electric-
ity portfolio optimization) yields additional overall effency.

If risk avoidance is an objective of a stochastic optim@atnodel, risk has to be
quantified in a definite way. To this end, a suitable risk fior@l has to be chosen
according to the economic requirements of a given apptinatiodel. While in short
term optimization simpleisk functionalgrisk measures) such as expected utility or
Average-Value-at-Risk might be appropriate, the dynanaiire of risk has to be
taken into account if medium or long term time horizons arestered. In this case,
intermediate cash flows as well as the partial informatia hrevealed gradually
at different time stages may have a significant impact onigthe Thereforemulti-
periodrisk functionals are required [2, 58]. Another importanpest of choosing
a risk functional for the use in a stochastic programming ehigla technical one:
How much does a certain risk functional complicate the nicaéresolution of
a stochastic program? We argue tipalyhedral risk functionalsre a favorable
choice with respect to the tractability of stochastic pesgs [18]. Also the stability
theorems known for stochastic programs without any riskcfional remain valid
[17, 20] and, hence, there is a justification for scenarie éqgproximation schemes.
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In addition, the class of polyhedral risk functionals pans flexibility, particularly
in the multi-period situation.

This paper is organized as follows: after brief reviews oritistage stochastic
programming in Section 2, we present scenario tree appediom algorithms in
Section 3. After that, in Section 4, we discuss risk funaisrwith regard to their
employment in electricity portfolio optimization. In partilar, our concept of poly-
hedral risk functionals is presented in Section 4.2. Finalk illustrate the effect of
different polyhedral risk functionals with optimal cashwicurves from a medium
term portfolio optimization model for a small power utilifgaturing a combined
heat and power plant (CHP).

2 Multistage Stochastic Programming

For a broad presentation of stochastic programming we tefgg3] and [47]. Let
the time stages of the planning horizon be denotetibyl, ..., T and let, for each
of these time steps,@&dimensional random vectdg be given. This random vector
represents the uncertain planning parameters that becoovenkat stagd, e.g.,
electricity demands, market prices, inflows or wind powee s¢sume thaf; is
known from the beginning, i.e., a fixed vector®d. Foré&s, ..., &r, one may require
the existence of certain statistical moments. The cobedi:= (&1,...,&1) can be
understood as multivariate discrete time stochastic gpo&ased on these notations
a multistage stochastic program can be written as

4 = ztszl bs(és) - Xs,
min { F(z,...,2r) X =% (&1,.., &), x €%, (t=1,..T) (1)
et U A (&)X —s = he(&)

wherex; is the decision vector for time stageThe latter may depend and may
only depend on the data observed until titr(@on-anticipativity), i.e., o€y, ..., &,
respectively. In particular, the componentsxgfare here and nowdecisions since
X1 may only depend o, which was assumed to be deterministic. The decisions
are subject to constraints: eaghhas to be chosen within a given sgt Typically,
eachX; is a polyhedron or even a box, potentially further constdiby integer
requirements. Moreover, there are dynamic constraintshiimg matrices; s and
right-hand side$: which may depend o#; in an affinely linear way. For the ob-
jective, we introduce wealth values (accumulated revenues) for each time stage
defined by a scalar product gf and (negative) cost coefficients. The latter may
also depend od; in an affinely linear way. Hence, eachis a random variable
t=2,..T).

The objective functiondl maps the entire stochastic wealth process (cash flow)
to a single real number. The classical choice in stochagtiicnization is theex-
pected valuét (mean) of the overall revenug, i.e.,
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IE‘(217 "~7ZT) = _E[ZT]

which is alinear functional. Linearity is a favorable property with respézthe-
oretical analysis as well as to the numerical resolutionrobfem (1). However,
if risk is a relevant issue in the planning process, then ssoneof nonlinearity is
required in the objective (or, alternatively, in the coasits). In this presentation,
we will discussmean-riskobjectives of the form

]F(Zla ---vZT) = V'p(ztlv ""Zt.]) - (1_ V) 'E[ZT}

with y € [0,1] and p being amulti-periodrisk functional applied to selected time
steps I< t; < ... <ty =T allowing for dynamic perspectives to risk.

Though the framework (1) considers the dynamics of the @etjgrocess, typi-
cally only the first stage solutioxy is used in practice since it is scenario indepen-
dent whereag; is scenario dependent foe> 2. When the second time stage: 2
is reached in reality one may solve a new problem instancg)afuch that the time
stages are shifted one step ahead (rolling horizon). Howryés a good decision
in the sense that it anticipates future decisions and weiogyt

3 Scenario Tree Approximation

If the stochastic input procegshas infinite support (infinitely many scenarios), the
stochastic program (1) is an infinite dimensional optim@atproblem. For such
problems a solution can hardly be found in practice. Theegfohas to be approx-
imated by another process having finite support [36, 34]hSarcapproximation
must exhibit tree structure in order to reflect the monotafermation structure of
. It is desirable thascenario treeapproximation schemes rely on approximation
or stability results for (1) (cf., e.g., [37, 20, 52, 54]) tlguarantee that the results
of the approximate optimization problem are related to thekigown) results of the
original problem.

The recent stability result in [37] reveals that the mugiigt stochastic program
(1) essentially depends on the probability distributiorthef stochastic input pro-
cess and on the implied information structure. Whereas thlegiility information
is based on the characteristics of the individual scenak their probabilities,
the information structure says something about the avéilabf information at
different time stages within the optimization horizon. T$w@enario tree construc-
tion approach to be presented next consists of both appatiximof the probability
information and recovering the information structure [32]

Presently, there exist several approaches to generatargctrees for multistage
stochastic programs (see [14] for a survey). They are basseweral different prin-
ciples. We mention here (i) bound-based constructions §7 26, 50], (ii) Monte
Carlo-based schemes [8, 68, 69] or Quasi-Monte Carlo-bassttiods [54, 55],
(i) (EVPI-based) sampling within decomposition scheni#8, 11, 46], (iv) the
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target/moment-matching principle [44, 45, 48], and (v)aioility metric based ap-
proximations [30, 36, 41, 42, 57].

We propose a technique that belongs to the group (v) and édk@sprobability
distances that are associated with the stability of the lyidg stochastic program.
The input of the method consists of a finite number of scerdhat are provided
by the user and, say, are obtained from historical data by alsalysis and resam-
pling techniques or from statistical models calibratecherielevant historical data.
Sampling from historical time series or from statisticaldats (e.g., time series or
regression models) is the most popular method for genegrdtita scenarios. Statis-
tical models for the data processes entering power oparatid planning models
have been proposed, e.g., in [5, 9, 21, 43, 65, 66, 67, 72].

The actual scenario tree construction method starts withite §et of typically
individual scenarios where we assume that these scenarnes as approximation
for the original probability information. Although suchdividual scenarios are con-
venient to represent a very good approximation of the ugitgylprobability distri-
bution the approximation with respect to the informatiomusture could be poor.
In particular, if sampling is performed from non-discretandom variables (e.g.,
random variables having a density function such as nornsdtilolitions), the in-
formation structure gets lost in general. But, fortunatélycan be reconstructed
approximately by applying techniquesaftimal scenario reductiosuccessively.

3.1 Scenario reduction

The basis of our scenario tree generation methods is thetiedwf scenarios mod-
eling the stochastic data process in stochastic prograresbiWfly describe this
universal and general concept developed in [15, 33]. Marenty, it was improved
in [35] and extended to mixed-integer models in [40]. It wagioally intended
for non-dynamic (two-stage) stochastic programs and, dyeshmesn’t take into ac-
count the information structure when applied in a multisttgmework. There are
no special requirements on the stochastic data processesde the dependence
structure or the dimension of the process) or on the strecifithe scenarios (e.g.
tree-structured or not).

Scenario reduction may be desirable in some situations wWieeanderlying op-
timization models already happen to be large scale and ttoegoration of a large
number of scenarios leads to huge programs and, hence htadnigputation times.
The idea of the scenario reduction framework in [15, 33] isdmpute the (nearly)
best approximation of the underlying discrete probabdistribution by a measure
with smaller support in terms of a probability metric whichdssociated to the
stochastic program in a natural way by stability theory [82]. Here, with regard
to problem (1), thenorm || - [|; will be used defined by
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r %
&= <;E[|am> , @

for arandom vectof = (&1,...,&r) whereE[| denotes expectation and denotes
some norm irRY. We aim at finding somé such that the distandg — & ||; is small.
The role of the parameter> 1 is to ensure that the stochastic program (1) is well
defined provided thafé ||, < . The choice of depends on the existing moments of
the stochastic input proceéscoming across and on wheth&enters the right-hand
sideh; and/or the costl; and/or the (technology) matricégs. Typical choices are

r = 1if either right-hand sides or costs are randomiaad® if both right-hand sides
and costs are random. For further details we refer to [36].

The scenario reduction aims at reducing the number of sicsnigran optimal
way. If &€ = (&1,..., &) is a given random vector with finite support, i.e. represgénte
by the scenariog§' = (&},...,&}) and probabilitiegy, i = 1,...,N, then ones may
be interested in deleting of a certain number of scenariosdmputational reasons.
So the main issue here is to find a suitable index subsef{1,...,N}. Moreover,
if Jis given, the question arises, what is the best approximdtie (1,...,¢&t) of
& supported only by the scenariés = (&/,...,&}), j ¢ J. The answer to the latter
question, however, can be given directly: In our notatiangi§2) the problem reads

T N .
min{tziz pil& — &

and if we define a mapping(i) such that

(Ei,...,éhe{(s£7...,54)}j¢3} 3)

T _
i e argminzi\ft' =&, ey,
j8d &
the minimum of (3) is attained for scenarios

N i (Ej(i>,-..,fj(i)), ifi e,
(El,.--fT)—{ (e eh, gl “

Hence, the best approximation &fis obtained for the random vectérsupported
by the scenario§! = (&/,...,&}) and probabilities;, j ¢ J, where we have

T
T e i r
1€ E”r—l;plr}g?t;m &l 5)

qj = pj+ Pi- (6)
J J IGZ 1
i0)=]
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In other words, theedistribution rule(6) consists in assigning the new probability
to a preserved scenario to be equal to the sum of its formdyapility and of all
probabilities of deleted scenarios that are closest to it.

More complicated is the actual problem of optimal scenauction, i.e., find-
ing an optimal choice for the index sktith, say, prescribed cardinality. This prob-
lem represents a metriemedian problem which is known to be NP-hard, hence,
(polynomial-time) approximation algorithms and heudstbecome important. Sim-
ple heuristics may be derived from formula (5) for the appration error. The re-
sult are two heuristic algorithms to compute nearly optimedex sets) with given
cardinalityn.

Algorithm 3.1 (Forward selection)

[Initialization]
Setd:={1,...,N}.

[Index Selectioh
Determine an indek € J such that

T )
| €ar m|n min k&gl
g n {u}p J¢J\{u}t21‘ =& |

and setd := J\ {I}. If the cardinality ofJ equalsn go to the termination step.
Otherwise continue with a further index selection step.

[Terminatior
Determine scenarios according to (4) and apply the redigtan rule (6) for the
final index setl.

Algorithm 3.2 (Backward reduction)

[Initialization]
SetJ := 0.

[Index Selectioh
Determine an index ¢ J such that

u e argmin min &l
’ 13 k501 ka¢JU{U}tZl‘ !

and set := JU{l}. If the cardinality ofJ equalsn go to the termination step.
Otherwise continue with a further index selection step.

[Termination
Determine scenarios according to (4) and apply the rebdigtan rule (6) for the
final index setl.
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3.2 Scenario tree construction

Now we turn to the scenario tree construction, where we asgarmave a sufficient
large set of original or sample scenarios available. Lefitiddvidual) scenarios and
probabilities be denoted again By= (&1,...,&L) andpi,i=1,...,N, respectively,
and we assume thaf = £2 = ... = &N =: & (deterministic first stage). The random
process with scenarids and probabilitieg, i = 1,....N, is denoted by.

The idea of our tree construction method is to apply the abogeario reduction
techniques successively in a specific way. In fact, by theaggh of arecursive
scenario reductiorfor increasing and decreasing time, respectively, botmadmd
and backward in time performing method can be derived.

The recursive scenario reduction acts as recovering ttggnatiinformation
structure approximately. In the next two subsections wegrka detailed descrip-
tion for two variants of our method, the forward and the bamidvapproach. In the
following let| :={1,...,N}.

Forward tree construction

The forward tree construction is based on recursive saemaduction applied to
time horizons{1,...,t} with successively increasing time parameteit succes-
sively computes partitions afof the form

Ct::{ctlv"'actk(}’ k €N,

such that for every the partitions satisfy the conditions

ke
cncf =0 for k#K, and |JCk=1.

k=1

The elements of a partitiof; are called (scenario) clusters. The following forward
algorithm allows to generate different scenario tree psses depending on the pa-
rameter settings for the reductions in each step.

Algorithm 3.3 (Forward construction)

[Initialization]
DefineC; = {I} and set := 2.

[Cluster computatioh
Let beG_1 = {C}_b...,qki‘ll}. For everyk € {1,...,k_1} subject the scenario
subsets &'}, ek, to a scenario reduction with respect to tha components only.

This yields disjoint subsets of remaining and deleted stem# and J¥, respec-
tively. Next, obtain the mapping : J< — IX such that
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i) € argmin|g/ — &|, i€,
jelf
according to the reduction procedure (cf. Section 3.1)alindefine an overall
mappinga; : | — | by

(i) = jK(i), i € Jfor somek=1,... k1,
t i, otherwise

(7)
A new partition at is defined now by
G = {or(l(i) lielf k= 1,...,kt,1}

which is in fact a refinement of the parti@q 1. If t < T sett :=t+ 1 and continue
with a further cluster computation step, otherwise go taénmination step.

[Termination
According to the partition s&r and the mappings (7) define a scenario tree process
& supported by the scenarios

gt';:(ff, 2"2“),...,Et“‘(i),...,E{’T(i)) forany ieCk,

and probabilitiesy := Y pj, foreachk=1,... k7.
ieck

Scenario
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Fig. 1 lllustration of the clustering by the forward scenario treestorction algorithm 3.3 (left)
and the mappinge; (right) for an example.

We want to conclude this subsection with two remarks reggrdigorithm 3.3.
Firstly, both heuristic algorithms from Section 3.1 may lsedito compute the sce-
nario reduction within the cluster computation step. Sebgraccording to (5) the
error of the cluster computation stefs
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(] ) )
ery ;= pimin|& — &'|".
PP

Furthermore, as shown in [32, Proposition 6.6], the estémat

1
T T
& —éullr < Ee
|| IH (t ”t)

holds for the total approximation error. The latter estienaliows to control the
construction process by prescribing tolerances fqrferreveryt = 2,...,T.

Backward tree construction

The idea of the backward scenario tree construction canisigecursive scenario
reduction on{1,...,t} for decreasing,t =T,...,2. That results in a chain of index
sets

l1i={i,}ChC---Clh1ChkC---Cly ClI={1...,N}

representing an increasing number of scenario realizatieer the time horizon.
The following backward algorithm is the counterpart of tbeafard algorithm 3.3
and allows again to generate different scenario tree psesedepending on the pa-
rameters for the reduction steps.

Algorithm 3.4 (Backward construction)

[Initialization] _
Definelr 1:={1,...,N} andpt,, := pi for all i € It 1. Further, let bear 1 the
identity onlt1 and set :=T.

[Reductioh

Subject the scenario subsg€},. .., &) }iey,,, With probabilitiespl, ; (i € li41) to

a scenario reduction which results in a index ketf remaining scenarios with

It Cly1. Letbed := ;41\ It. According to the reduction procedure (cf. Section 3.1)
obtain a mapping; : J — |; such that

t
. e . i_ jl’ .
i) € argming |8~ &7, i€
Define a mappingr : | — |; by

C(t(i) _ { jt(at+1(i))a at+1(i) €d, (8)

ai+1(i), otherwise

for alli € I. Finally, set probabilities with respect to the redisttibo (6), i.e.,



Stochastic Optimization of Electricity Portfolios 11
| i
Pl =Pt % Pt
i€
jt(H=]

If t > 2 sett :=t— 1 and continue with performing a further reduction stepeoth
wise go to the termination step.

[Termination
According to the obtained index slgt and the mappings (8) define a scenario tree
proces<; supported by the scenarios

Etir = (Ef7 2az<i>a'"7Etat(i)7"'7€'|q-r(i))

and probabilities) := p', for alli € I7.

Scenario Iy

Scenarioa, Qs Qg
3

1

© N U AN®WN
O©CoOoO~NOOTA,WNPRE
N~N~NO1TOoToTww
WO ~NOIOTOWNN
oo ~NO O, WN PR

Fig. 2 lllustration of the recursive backward scenario tree constmetigorithm 3.4 (left) and the
mappings; (right) for an example. Note that the backward constructieftg a clustering similar
to the forward variant. Black circles correspond to scenaravgained in the index sels

We note again that the specific scenario reduction can berpaefi with both
heuristic algorithms of Section 3.1. A similar estimate ttoe total approximation
error||& — &||r holds as for the forward variant. For details we refer to [Béction
4.1]. Finally, we mention that all algorithms discussedhistsection are imple-
mented and available in GAMS-SCENRED (segv. gans. con).

4 Risk Avoidancevia Risk Functionals

Risk avoidance requirements in optimization are typicatthieved by the employ-
ment of a certaimisk functional Alternatively,risk probabilistic constraint®r risk
stochastic dominance constraintéth respect to a given acceptable strategy may be
incorporated, i.e., (1) may adopt constraints of the form
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P(zr <zef) >a  OF  Z7 = Zf

with (high) probabilitya € (0, 1] and some acceptable reference leyglor some
acceptable reference distributigg: and a suitable stochastic ordering relatioti
For the relevant background of probabilistic constraingsrefer to the survey [59]
and to [38, 39]. For a systematic introduction into stodleastler relations we refer
to [53] and for recent work on incorporating stochastic dwamice constraints into
optimization models to [12, 13].

In this section, we focus on risk functiongswith regard to their utilization in
the objectiveF of (1) as suggested, e.g., in [64]; cf. Section 2. Clearlg, ¢hoice
of p is a very critical issue. On the one hand, the output of a sistah program
is highly sensitive to this choice. One is interested in afiomal that makes sense
from an economic point of view for a given situation. On thieesthand, the choice
of the risk functional has a significant impact on the nunaricactability of (1)
(whereé may be approximated by a finite scenario tree according ttidde8).
Note that reasonable risk functionals are never lineae (e expectation func-
tional), but some of them may be reformulated as infimal vafieelinear stochastic
program (see Section 4.2).

4.1 Axiomatic Frameworksfor Risk Functionals

Basically, a risk functional in a probabilistic frameworkght to measure the danger
of ending up at low wealth in the future and/or the degree otuinty one is faced
with in this regard. However, the question what is a good oatvh the best risk
functional from the viewpoint of economic reasoning carbb@answered in general.
The answer depends strongly on the application context.adewy various axioms
have been postulated by various authors in the last decatleah be interpreted as
minimum requirements.

A distinction can be drawn between single-period risk fiorals evaluating a
stochastic wealth valug:- at one single point in tim& and multi-period risk func-
tionals evaluating ones wealth at different time stagestsa to... < ty. The latter
are typically required for medium or long term models. Of rs@) from a technical
point of view single-period risk measurement can be undedsas a special case of
multi-period risk measurement. However, with regard tgkgrperiod risk function-
als there is a relatively high degree of agreement about ineferable properties
[1, 25, 58], whereas the multi-period case raises a lot maestipns. In the fol-
lowing we pass directly to multi-period risk measurementig single-period risk
measurement as a special case in mind.

Let a certain linear spac#” of discrete-time random processes be given. A ran-
dom procesg € Z is basically a collection of random variables: (z,, ..., %, ) rep-
resenting wealth at different time stages. The realizatfag is completely known
at timetj, respectively. Moreover, at time stagieone may have more informa-

tion about(ztjﬂ,...,zu) than before (at earlier time staggs...,tj—1). Therefore,
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Fig. 3 Left: lllustration of the (discretized) information structuséa stochastic wealth process
z,,...,%;. At each time stagg and in each scenario one can look at subsequent timetsteds
and consider the discrete (sub-) distributiorepfseen from this node. Right: Branching structure
of an exemplary scenario tree with 40 scenarios; 8760 time steps, and approx. 1800 nodes
used for the simulations in Section 4.3. There is a node at emehstiep for each scenario.

a multi-period risk functional may also take into accoaanditional distributions
with respect to someanderlying information structureln the context of the mul-
tistage stochastic program (1), the underlying informattructure is given in a
natural way through the stochastic input procéss (&1, ..., &t). Namely, it holds
thatz; = ztj(517...,5tj), i.e.,zis adaptedto &. In particular, ifé is discrete, i.e., if
¢ is given by a finite scenario tree as in Section 3, then alsadiscrete, i.e.zis
given by the valueg (j =1,...,J,i=1,...,N) on the scenario tree. However, we
will consider general (not necessarily discretely distiéal) random processes here
and we also erte{ for a realization (outcome) of random varialzigeven if the
number of scenarios (possible outcomes) is infinite.

From a formal point of view, a risk functional is just a mapping

2= (2y,.2) €% — p@)eR

i.e., a real number is assigned to each random wealth préaess?’. One may
require the existence of certain statistical moments feramdom variables; (j =
1,...,d),i.eE[|z,|P] < « for somep > 1. TheJ time steps are denoted by...,t; to
indicate that, with regard to problem (1), they may be onlylasgt of the time steps
t=1,...,T of the underlying information structure. We assumet} < ... <t;=T
and setp = 1 for convenience. The special casesaigle-periodrisk functionals
occurs if only one time step is taken into accouhiH1,t; =T).

Now, a high numbep(z) should indicate a high risk of ending up at low wealth
valuesz;, a low (negative) numbep(z) indicates a small risk. In [2] the number
p(z) is interpreted as thminimal amouny of additionally required risk-free capital
such that the procesgs + U, ..., z, + 1 is acceptable. Such and other intuitions have
been formalized by various authors in terms of axioms. Asg,swe cite the first
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two axioms from [2], in addition to convexity as the third axi. A functionalp
is called a multi-perioatonvex (capital) risk functionaf the following properties
hold for all stochastic wealth processes: (z,,...,z,) andZ= (%,,...,%,) in &,
and for all (non-random) real numbeus

e Monotonicity If z; <%, inany case foj =1,...,J, then it holds thap(z) > p(2).
e Cash invariancelt holds thatp(z, + i, ..., z;, + 1) = p(z,, ... %;) — U.
e ConvexityIf 0 < u <1itholds thato(uz+ (1—u)2) < up(z)+ (1—p)p(2).

The formulation g < z in any case” means that in each scenaiibholds that

z{ < z{ The convexny property is motivated by the idea tbatersificationmight
decrease risk but does never increase it. Sometimes tlosvioll property is also
required for allze 2

e Positive homogeneityror eachu > 0 it holds thatp(uz) = up(2).

Note that, for the single-period cade- 1, the first three properties coincide with the
classical axioms from [1, 24, 27]. A positively homogeneoosvex risk functional
is calledcoherentin [1, 2]. We note, however, that other authors do not require
positive homogeneity, but claim that risk should rathemgowerproportionally, i.e.,
p(uz) > up(z) for u > 1; cf. [28, 25]. Clearly, the negative expectation funcéibn
—E is a (single-period) coherent risk functional, whereasathéalue-at-Risk given
by VaR,(z) = —inf{u e R:P(z< ) > a} is not since it is not convex [1].

For the multi-period casel(> 1) the three above axioms are only a basis ad-
mitting many degrees of freedom. There are several aspéciskahat could be
measured. First of all, one may want to measure the chancelofegeup at very low
valuesz{ at each time since very low values can mean bankruptcy dityucon-
S|derat|ons) In addition, one may want to measure the éagfrancertainty one is
faced with at each time step; cf. Fig. 3 (left). A situationes, at some timg, one
can be sure about the future development of ones waalth> k) may be preferred
to a situation continuing uncertainty. E.g., low valagsnay be tolerable if one can
be sure that later the wealth is higher again. Hence, one naay o take into ac-
count not only the marginal distributions &f, ...,z, but also their chronological
order, their interdependence, and the underlying infoilomagtructure. Therefore,
a multi-period risk functional may also take into accourg ttonditional distribu-
tions of z; given the informatiorts,...,&s with s=1,...,tj -1 (j = 1,...,J); cf.
Fig. 3 (left). Clearly, there are quite a lot of those coradiil distributions and the
guestion arises which ones are relevant and how to weight teasonably.

The above axioms leave all these questions open. In ourarpigeneral answers
can not be given, the requirements depend strongly on theappn context, e.g.,
on the time horizon, on the size and capital reserves of tgemive company, on
the broadness of the model, etc. Some stronger versionsbfigeariance (trans-
lation equivariance) have been suggested, e.g., in [281&8]red to certain situa-
tions. However, the framework of polyhedral risk functitmia the next section is
particularly flexible with respect to the dynamic aspects.
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4.2 Polyhedral Risk Functionals

The basic motivation for polyhedral risk functionals is ahweical, but important
one. Consider the optimization problem (1). It is basicéfigar or mixed-integer
linear if the objective functional is linear, i.& = —E. In this case it is well tractable
by various solution and decomposition methods. Howevé,iifcorporates a risk
functionalp it is no longer linear since risk functionals are essentiatinlinear by
nature. Decomposition structures may get lost and solutiethods may take much
longer or may even fail. To avoid the worst possible situatioe should choose
to be at least convex [64]. Then (1) is at least a convex prolfexcept possible
integer constraints contained Xp), hence, any local optimum is always the global
one. As discussed above, convexity is in accordance withao@ considerations
and axiomatic frameworks.

Now, the framework of polyhedral risk functionals [18, 1 0les one step beyond
convexity: polyhedral risk functionals maintain linegustructures even though they
are nonlinear functionals. Namely, a polyhedral risk fimwal p is given by

Vi =VYj(é,.-,&;) €Y,
ZIi:OWj,k'YJfk =z (j=1,...,9)

wherez = (z,,...,%,) denotes a stochastic wealth process being non-antiaipativ
with respect tcf, i.e.,z = z(&y,...,&). The notation inf. } refers to the infimum.
The definition includes fixed polyhedral congge.g.,R; x ... x R}) in some Eu-
clidean space®", fixed vectorsc;, rj wjx, and matriced/; , which have to be
chosen appropriately. We will give examples for these patans below. However,
functionalsp defined by (9) are always convex [18, 17].

Observe that problem (9) is more or less of the form (1),the. risk of a stochas-
tic wealth procesgis given by the optimal value of a stochastic program. Moegov
if (9) is inserted into the objective of (1) (i.€F,= p), one is faced with two nested
minimizations which, of course, can be carried out joiniflyis yields the equivalent
optimization problem

X =X (€1, &) € X, Y5 As(&)X—s = he(&)
t=1,..T),

Vi =Vi(é1,-s &) Gt_Yj, ShoVikYi—k="Tj,
SkeoWik-Yi—k = T4 1bs(8s) X (j=1,....)

min & (52064

which is a stochastic program of the form (1) wiithear objective. In other words:
the nonlinearity of the risk functional is transformed into additional variables and
additional linear constraints in (1). This means that dgoosition schemes and so-
lution algorithms known for linear or mixed-integer linesiochastic programs can
also be used for (1) witl = p. In particular, as discussed in [18, Section 4.2], dual
decomposition schemes (like scenario and geographicahawasition) carry over
to the situation withf = p. However, the dual problem in Lagrangian relaxation of
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coupling constraints (also called geographical or compbdecomposition) con-
tains polyhedral constraints originating from the duakesgntation op.

Furthermore, the linear combination of two polyhedral ffisikctionals is again
a polyhedral risk functional (cf. [17, Section 3.2.4]). larpcular, the case

J
F(2)=yp(2)+ 5 IKE [z,]
k=1

with a polyhedral risk functiongb (with parameters;, wj k etc.) and real numbers
yandu, k=1,...,J, can be fully reduced to the capéby setting

J

Cii=yej+ ) HWk-j (j=0,....J)
&

for the vectors in the objective function of the represaoisef9) of F and letting all
remaining parameters @f unchanged.

Another important advantage of polyhedral risk functisrialthat they also be-
have favorable to stability with respect to (finite) approations of the stochastic
input procesg€ [20]. Hence, there is a justification for the employment & fite-
nario tree approximation schemes from Section 3.

It remains to discuss the issue of choosing the paramefetg, wj, Vi, Y]
in (9) such that the resulting functional is indeed a reasonable risk functional
satisfying, e.g., the axioms presented in the previousaecto this end, several
criteria for these axioms have been deduced in [18, 17] uinglduality theory
from convex analysis. However, here we restrict the pregiemt to examples.

First, we consider the cask= 1, i.e., single-period risk functionals evaluat-
ing only the distribution of the final valuer (total revenue). The starting point
of the concept of polyhedral risk functionals was the welbWn risk functional
Average-Value-at-RiskvaR, at some probability levalr € (0,1). It is also known
as Conditional-Value-at-Risk (cf. [61]), but as suggestel@5] we prefer the name
Average-Value-at-Risk according to its definition

AVaR,(2) 1= %/OGVaR,;(z)dB

as an average of Value-at-Risks and avoid any conflict wighutbe of conditional
distributions within VaR and AvaR (see [58] for such constions). The Average-
Value-at-Risk is a (single-period) coherent risk funcéibmhich is broadly ac-
cepted. AVaR (zr) can be interpreted as the mean (expectation) ofrthail distri-
bution of zr, i.e., the mean of the distribution af below thea-quantile ofzr. It
has been observed in [61] that AVaRan be represented by

AvaR4 (ZT) = infyOeR {yo+ %E[(yo JrZT)_]}

Yo € R,
=inf< yo+ 2E[y12] | y1 =y1(&1,....&1) € R,
Yo+Zr =Y11—VY12
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where(.)~ denotes the negative part of a real number,aes= max{0, —a} forae
R. The second representation is deduced from the first onditoyglircing stochastic
variablesy; for the positive and the negative partyf+ zr. Hence, AvVaR is of
the form (9) withd =1,co=1,c1 = (0, %), wao = (1,—1), wp1 = -1, Yo =R,
Y, = Ri =Ry xRy, andhy = h; = V070 = V]__yo = Vl,]_ =0. Thus, itis a (single-
period) polyhedral risk functional.

u(x1, x2)

15
vatre L “y
n.'u. n.',',n'.',',:.

'
AL
"..',',:..":.'.7.
l

x2

Fig. 4 Monotone and piecewise linear concave utility functions, Ieiperiod (left) and two-
period J = 2) (right)

Another single-period example for a polyhedral risk fuoetl (satisfying mono-
tonicity and convexity) is expected utility, i.eo,(zr) := —E[u(zr)] with a non-
decreasing concave utility functian; R — R; cf. [25]. Typically, nonlinear func-
tions such asi(x) = 1 — e PX with some fixedB > 0 are used. Of course, in such
casegy is not a polyhedral risk functional. However, in situatiavisere the domain
of zr can be bounded a priori, it makes sense to use piecewise furedions foru
(see Fig. 4, left). Then, according to the infimum repred@nrtaf piecewise linear
convex functions [60, Corollary 19.1.2], it holds that

y1 =yi(&1, ..., &r) € RTZ, }

putar) =inf {ifo-yy | 1 V&) I
y 2i=1Y1,

wherenis the number of cusps of wy, ..., W, are thex-coordinates of the cusps, and
¢ =—u(w;) (i=1,..,n). Thus,p, is a polyhedral risk functional. This approach can
also be generalized to the multi-period situation in an obsiway by specifying
a (concave) utility functioru: R? — R (see Fig. 4, right). However, specifying
an adequate utility function may be difficult in practice particular in the multi-
period case. Furthermore, expected utility is not cashriamt (cf. Section 4.1),
neither in the single-period nor in the multi-period cadeeefore we will focus on
generalizations of AVaRto the multi-period case.

In the multi-period caséd > 1, the framework of polyhedral risk functionals al-
lows to model different perspectives to the relations betweifferent time stages.
In [18, 19, 17, 58], several examples extending Ayae the multi-period situa-
tion in different ways have been constructed via a bottorapoach using duality
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AVaRq (20) polyhedral representation (9)
Yo € R, yj =VYj(é1,..&;) e Rx Ry
1l Ce ) J 1mpiy (1j=1..,9-1),
2= 321 infy 3 <yo+z':1“E[yJ‘2}> Y3 =Ys(&1,--&y) €Ry xRy

Vii—VYi2=2% +yj-11(j=1,...,J)

y(? eR,yj =Y (fl,...ftj) eRy xRy xRy
(i=1,...,39), _
Y12-Y13=0 ¥j2-Yj3—Y¥j-12=0(j=2,...,),
yj‘l 7yj‘2 —Yo= Z(j (J = 1>~‘])

Table1 Representation (9) of AVaR } zf:l z;) (above) and AVaR(min{z,, ...,z }) (below)

20 =min{z,, ...z, }|inf{ yo+ 2E[ys2]

theory from convex analysis. Here, we restrict the presiemt#o the most obvious
extensions that can be written in the form A@R,) with a suitablemixture g of
(z,,...,%,). We consider

=33% O Zo=min{z,..z}

where 3™ and “min” are understood scenariowise, iz, = 3 5]_1 %, respectively

Zy=min{z_,...,2,} for each scenario. Hence, in both cases the risk functional
AVaR, (70) depends on the multivariate distribution(@f,, ..., z;,).

As shown in Table 1, both AVaR 3 y7_;2;) and AvaR,(min{z,, ..., z,}) can
be written in the form (9), i.e., they are indepullti-period polyhedral risk func-
tionals Moreover, they are multi-period coherent risk functienil the sense of
Section 4.1. Clearly, the latter of the two functionals is thost reasonable multi-
period extension of AvaR with regard to liquidity considéwas, since AvaR is
applied to the respectively lowest wealth values in eachae; this worst case
approach has also been suggested in [2, Section 4].

4.3 lllustrative Simulation Results

Finally, we illustrate the effects of different polyhedrizk functionals by presenting
some optimal wealth processes from an electricity podfofitimization model [21,
19]. This model is of the form (1), it considers the one yeanping problem of a
municipal power utilityi.e., a price-taking retailer serving heat and power detean
of a certain region; see Fig. 5. It is assumed that the ufiéiBtures a combined
heat and power (CHP) plant that can serve the heat demandletetypbut the
power demand only in part. In addition, the utility can buyveo at the day-ahead
spot market of some power exchange, e.g., the European\ERgahange EEX.
Morover, the utility can trade monthly (purely financial}dives (e.g., Phelix futures
at EEX).
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Municipal Power Utility Power
- Exchange
(e.g., EEX)
. 7$
Combined I4 Spot Market
Heat and $ ?
Power $

Production
Plant

Lol

4 :{ “ stocI{astic markét pricéé
PP P P S RTAVAVIVATA
Customers stochastic customer demand

Fig. 5 Schematic diagram for a power production planning and tgadindel under demand and
price uncertainty (portfolio optimization).

The objectiveF of this model is a mean-risk objective as discussed in Sedtio
incorporating a polyhedral risk functionaland the expected total revenliézr|;
the weighting factor is set tp= 0.9. Time horizon is one year in hourly discretiza-
tion, i.e.,T = 8760. Time series models for the uncertain input data (desand
prices) have been set up (see [21] for details) and appraadreccording to Sec-
tion 3 by a finite scenario tree consisting of 40 scenarios;FEg. 3 (right). The
scenario tree has been obtained by the forward constryatamedure of Algorithm
3.3. It represents the uncertainty well enough on the oné,heamd, on the other
hand the moderate size of the tree guarantees computatiaciability. For the risk
time stepg; we use 11 PM at the last trading day of each week (L, ...,J = 52).
Note that, due to the limited number of branches in the trémea resolution for
the risk time steps doesn’t make sense here. The resulttimgiaation problem is
very large-scale, however, it is numerically tractable thughe favorable nature of
polyhedral risk functionals. In particular, since we madkethe CHP plant without
integer variables, it is a linear program (LP) which couldébkred by ILOG CPLEX
in about one hour.

In Fig. 6 (as well as in Fig. 7) the optimal cash flows are digpth i.e., the
wealth valuesz for each time step = 1,...,T and each scenario, obtained from
optimization runs with different mean-risk objectives.eTprice parameters have
been set such that the effects of the risk functionals maybkerged well although
these settings yield negative cash values. These famflasees differ in shape due
to different policies of future trading induced by the diffat risk functionals; see
Fig. 8. Settingy = 0 (no risk functional at all) yields high spread far and there is
no future trading at all (since we worked with fair futureqas). Using AVaR (zr)

(y = 0.9) yields low spread forr but low values and high spreadta& T. This
shows that, for the situation here, single-period risk fiomals are not appropriate.
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Fig. 6 Optimal cash valueg (wealth) over timet(= 1,..., T) with respect to different risk func-
tionals. Each curve in a graph represents one of the 40 scenBhiegxpected value of the cash
flows is displayed in black.
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Fig. 7 Optimal cash valueg (wealth) over timet(= 1,..., T) with respect to different risk func-
tionals. For these calculations, slightly higher fuel cost patarséhave been used such that the
graphs demonstrate the nature of the risk functionals best.
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Fig. 8 Optimal future stock over time with respect to different polytadisk functionals. The
expected value of the future stock over time is displayed inkblac
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The employment of multi-period polyhedral risk functionglields spread that is
better distributed over time. However, the way how this isiemed is different: The
functional AVaR,(min{z,,...,z,}) aims at finding a leveyy as high as possible
such that the curves rarely fall below that level, whereaal;@(% zleztj) aims
at equal spread at all times. In the latter case, futureselcednly for short time
periods, whereas in the other cases futures are held Idfigaily, we note that the
effects of the risk functionals cost only less than 1% of tkgeeted overall revenue
E[ZT].

5 Conclusions

Multi-stage stochastic programming models are discussatedhematical tools for
dealing with uncertain (future) parameters in electrigitytfolio and risk manage-
ment. Since statistical information on the parameters (lkmands, spot prices,
inflows or wind speed) is often available, stochastic modedy be set up for them
so that scenarios of the future uncertainty are made al@ildab model the infor-
mation flow over time, the scenarios need to be tree-stredtufor this reason a
general methodology is presented in Section 3 that allowysb@rate scenario trees
out of the given set of scenarios. The general method is asethbility argument
for multistage stochastic programs and does not requiteduknowledge on the
underlying multivariate probability distribution. The thed is flexible and allows
to generate scenario trees whose size enables a good apatiaxi of the underly-
ing probability distribution on the one hand and allows fegsonable running times
of the optimization software on the other hand. Implemémnatof these scenario
tree generation algorithms are available in GAMS-SCENRED.

A second issue discussed in the paper is risk managementeiad¢orpora-
tion of risk functionals into the objective. This allows niraizing expected revenue
und minimizing risk simultaneously. Since risk functianare nonlinear by defini-
tion, a natural requirement consists in preserving contjmutal tractability of the
(mixed-integer) optimization models and, hence, in reabtrunning times of the
software. Therefore, a class of risk functionals is pre=gint Section 4.2 that allow
a formulation as linear (stochastic) program. Hence, ififlefunctional (measure)
belongs to this class, the resulting optimization modelsduoet contain additional
nonlinearities. If the expected revenue maximization nhazlémixed-integer) lin-
ear, the linearity is preserved. A few examples of spolyhedralrisk functionals
are provided for multi-period situations, i.e., if the riskolves over time and re-
quires to rely on multivariate probability distributionihe simulation study in Sec-
tion 4.3 for the electricity portfolio management of a prie&ing retailer provides
some insight into the risk minimization process by traditeg&icity derivatives. It
turns out that the risk can be reduced considerably for lems 1% of the expected
overall revenue.
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