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Introduction

mass and charge and energy transport in heterogeneous semiconductor devices
described by

e continuity equations for densities n, p
of electrons e~ and holes h™

e Poisson equation for the electrostatic potential ¢
e balance equation for the density of the total energy e

e reaction equations for incompletely ionized impurities
+(=)
X],X] ,]:17...7k
(radiation-induced traps, other deep recombination centers)
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Introduction

Mathematical problems
non-smooth data:

e heterogeneous materials — physical quantities jump at material interfaces

discontinuities w.r.t. space variable
e domain €2 in general non-smooth, but only Lipschitz
e mixed boundary conditions

strongly coupled PDEs:

e coefficients depend on the state variable

e ellipticity condition is not fulfilled uniformly

e equations degenerateif n =0, p=00r7T = o0

Poisson equation singularly perturbed

constraints n, p, T'> 0

restrict us to the stationary energy model
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Introduction

Stationary energy model for devices with incompletely ionized impurities

2k

(1) —V - (eVyp) = fg—n+p+2q2uz, \E je:O
) V- —R0+ZR]1, V-jp= RO+ZR]2,
J=1 J=1

(3) Rj1 = Rjo, ugj_1+ugy=17f; Jj=1...k.
dielectric permittivity

fo, fi prescribed charge density and particle densities

Je flux density of the total energy

Ins Jp particle flux densities of electrons and holes

R;1, Rj; reaction rates of the ionization reactions

Ry reaction rate of the direct electron-hole recombination-generation
e +h" =0
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Introduction

Impurities:

X; occur in different charge states, take place ionization reactions
If X; is an acceptor-like impurity, X" its ion, the reactions are

e” +X;=X;, h"+X; =X,
If X; is a donor-like impurity, X" its ion, the reactions are

e +X =X;, h"+X;=X

for donors X;: ugj—1 — density of X;,  uy; — density of X7
for acceptors X;: wug;—1 —density of X', uy; — density of X;

charge numbers: 1= 0~ 17X, 1s a donor =14 qo;
J © T 21 if X is anacceptor © 4T T4
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Introduction

system has to be completed by

e State equations
e Kinetic relations (reactions, fluxes)
e mixed boundary conditions

denote
Cnsy Cp — electrochemical potentials of electrons and holes
Gi — electrochemical potentials of immobile (neutral, ionized)
1=1,...,2k impurities
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Elimination of the constraints (3)

state equations
ui=F e, T,.¢), i=1,....2k, n=F(,0T,6G), p=F(eT/]()
Kinetic relations (reaction rates)
le = 7“,7‘1('; ©, T, Cp, Cp) (GXP 21 — €XP CQ‘]TCH>7
Rjo =rjo( 0, T, Gus ) (eXP 2 — exp %)»
Ry =ro(-, 0, T, G, Gp) (1 — exp Cn%p)

under reliable assumptions eliminate the constraints (3) by evaluating the sub-
systems

Ugj—1 + U2 = [j, Rjui=Rjp, j=1,...,k
obtain

/\

CQj:Sj('7907T7Cn7Cp7fj>7 C2] 1 — ( QO,T C?”Lanaf]) ]: 17°"7k
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Elimination of the constraints (3)

use state equations and expression for (;, + = 1, ..., 2k, to write right hand sides
in (1), (2):
2k
fo—n+p+Y qui — H(0,T (oG foo frs - fr),
1=1
k
Ry+» Rj — R0, T, Cn, Cps So, 105 Si)
7=1

:T(',@7T7Cn7Cp7f07f17"'7fk) (1_6XP%)
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Reduced energy model

e 0 0 0 Vo H
0 K-+ (,/Do w1 w9y VT . 0 :

(4) A 5 T ve, | = | B in Q.
0 Wy Tnp Tp+ Onp V, R

where

W n n n Pn A~ ~ o~
<w1):<0 T Onp Onp )(P )7 w():(Cn+PnT>W1+<Cp+PpT>W2,
p

W9 Onp Op T+ Opp

Wi\ OntOonp Onp Cn + P, T
wy )\ o Op + Onp G+ PT )7
H = H('7907T7Cn7gp7f07f17 . °7f/<?>7 R = R<'7907T7C717Cp7 fO?fl" ’ ’fk)

with coefficients x > 0, o,,, 0, > 0, 0y, > 0, P,, P,
all depending in a nonsmooth way on x, smoothly on the state variables,
system strongly coupled, matrix not symmetric
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Reduced energy model

I'p and I'y denote disjoint, relatively open parts of the boundary I' = 02 with
mes(I' \ <FD U FN)> =0

mixed boundary conditions

5 © = Up1, T = vpg, Cn = U3, (p=vps ONIp
() | o i o e T I
v-(eVo)=g1, —V-je=¢s, —V-jn=g3 —V-jp=gs ONly

notation

U= (%Ta Cnan)a Up = (’UDl,---,’UDzL), g=I(g1,... 794), = (f()afla"'afk:)
w = (vp,g, f) (vector of data)

look for weak solutions of (4), (5) in the form
v=V+o"

where ev” = Lup continuation of the Dirichlet values vp to
¢ |/ fulfils homogeneous Dirichlet bcs on I'p
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Outline of the results and methods for the reduced stationary energy model

result:
existence of a thermodynamic equilibrium

v =const, 1 =23,4, vs+v; =0

local existence and uniqueness result near this thermodynamic equilibrium

methods:

prove existence of a thermodynamic equilibrium v* with 7%, n*, p* > 0
apply Implicit Function Theorem

we obtain only local assertions

but we needn’t global assumptions

problems:

suitable choice of function spaces and weak formulation

supply requirements of Implicit Function Theorem

differentiability properties of Nemyzki operators

regularity results for strongly coupled lin. ell. systems with mixed bcs
technique works in 2D only
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Continuation operator L

Let s € [1, 00), we define

X, = (Wy*(QuUTy))
Y, = (Wl—l/s,s(FD>>4

Lemma 1. There exists a p, > 2 such that for all p € |2, py| the following assertion
holds true:

For all vp € Y, there exists a unique solution v” € (W?(Q))* of
D - D 0v;” :
Av” =0In§), v =wvp;0onlp, 5 oonly, :=1,2,34.
v

vP is given by v = Lup where L € L(Y,, (WP(Q))1).
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Thermodynamic equilibrium

necessary conditions for the existence of thermodynamic equilibrium:

data has to fulfil
vp; =const, 1 =2,3,4, wvps+ vps =0,

vpe >0, ¢ =0, 1=2,3,4
corresponding equilibrium densities n, p are obtained by the state equations

n = Fy(-,v1, Lupy, Lups), p = Fy(-,v1, Lupz, Lups)

where v; has to satisfy the nonlinear Poisson equation
—V - (eVuy) = H(-, vy, Lvps, Lups, Lupy, f)

U1 = vp1 ON FD, V- <8VU1) = g1 ONn [y

Energy models with incompletely ionized impurities 13 lwlilals



Thermodynamic equilibrium

Let p € (2, pol,

Q:{w:(vDag7f) :UDG)/pv (g,f)EZ,

gi =0, vp; = €oNst, i = 2,3,4, vpy > 0,vp3 +vpy = 0}
Y, = (W)t Z = L) x L®(Q) x {y € L®(Q) : essinf,cq y > 0}F

Theorem 1. (Existence of thermodynamic equilibria)

Let w* = (v}, g%, f*) € Q.
Then there exist ¢y € (2, p| and vi € W9(Q) such that

* * * * *
v = (’UhLUD%LUDsaLUm)

IS a thermodynamic equilibrium.
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Weak formulation

set
v =V+ Lvup, w = (vp, 9, f)

vt = V*+ Louj, w* = (v}, 9% f")

Definition. Let g € (2, p]. We define the open subset M, C X, x Y,
M, = {(V, vp) € X, x Y, with |V, + Lup;| < 7, i =1,3,4,

L<Vo+Lopy <7 OonQ}

where 7 > 1is such that (V*,v})) € M,
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Weak formulation

define A, M, x Z — X,
q

4
<Aq<v7 w)a¢>Xq/ — L Z az'k;(‘,’U)V’Uk y V@DZ dz

i k=1

+ /Q{T(-,v,f) (exp ’03;’04 _ 1) (13 + g) — H<'>Uaf>¢1} do

4
— [ > gdl, weXy, v=V+Lup

Iy iz

Problem (P):
find (¢,V,w) such that ¢ € (2,p], (V,w) € X, x Y, x Z,
(V,up) e M,, A, (V,w) =0
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Implicit Function Theorem

equilibrium:
A, (VE5w') =0

differentiability:
Ap M, x Z — X, is continuously differentiable for all ¢ € (2, p)

properties of the linearization in the thermodynamic equilibrium:

Let w* = (v}), g% ") € Q, and A, (V*, w*) = 0.
Then there exists a ¢; € (2, qo] such that the Fréchet derivative

ovA, (V5w X, — X;i

IS an injective Fredholm Operator of index zero.
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Local existence and uniqueness result

Theorem 2. (Local existence and unigueness of steady states)

Let w* = (v}), g%, f*) € @, and let (qo, V*, w*) be the equilibrium solution to Prob-
lem (P) according to Theorem 1.

Then there exists ¢; € (2, qo] such that the following assertion holds: There exist

neighbourhoods V ¢ X,, of V*and W C Y, x Z of w* = (v}, ¢*, f*) and a C'-map

$: W — V such that V = &(w) iff
Ay (V,w) =0, (V,op) € M,

41>

VeV, w=(vp,g,f)EW.

For data w = (vp, g, f) near w* = (v}, g%, f*) € @ there exists a locally unique
solution v =V + Lvp of the stationary energy model.
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