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Introduction

mass, charge and energy transport in heterogeneous semiconductor materials

mass and charge transport of charged and uncharged particles —
continuity equations + Poisson equation
energy transport resulting in a variation of the lattice temperature —
heat flow equation or balance equation for the densities of entropy or energy

heterogeneity: heterogeneous materials, mixed boundary conditions

fields of application:

e application of semiconductor devices
e semiconductor technology

e other problems in electrochemistry

restrict us to stationary case
global assertion: existence and uniqueness of thermodynamic equilibrium for special data
local result: unique steady state in a neighbourhood of thermodynamic equilibrium
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Stationary energy model

Xi, 1=1,...,n - species Ui - reference density
Ui - particle density Ei - reference energy
Gi - electrochemical potential ¢ - electrostatic potential
qi - charge number T - lattice temperature
ansatz for the state equations
ul — UI (X, T) e(gi_qi§0+Ei (X,T))/T, | — 1, ...n

reversible reactions
Ol]_X]_"_..."_aan ﬁﬁle"‘...—l_anXn

stoichiometric coefficients (o, B) = (a1, ...,0n, B1, ..., Bn) € R

reaction rates according to the mass action law

Ra,B = Iup(X, U, T, @) (eZLlaici/T _ eZinzlﬂi{i/T) ., (@, B)eR
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Stationary energy model

ansatz for particle flux densities |j and total energy flux density |e

n

ji = —ZO‘ik(X, u, T) (Ve + Pe(x,u, TYVT), |l =1,....N
k=1 "
je=—Kk(,U, VT +> (& +Rxu,NHT) j
=1

Oik, kK - conductivities, P, - transported entropies

n
oik =0k, Y _ oik(U T)YiYk = oo TYI* VyeR", «(X,u,T) > roU,T)
I,k=1

with og(U, T), xo(U, T) > O for all non-degenerated states U, T, no sign condition for P,
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Stationary energy model

N continuity equations, conservation law for the total energy, Poisson equation

V.ji = Z(,Bi_ai)Raﬁ, 1=1...,n
(. B)ER
0

Ve L inQCR?

n
~V-(eVp) = f+) qu
=1

¢ - dielectric permittivity
f - fixed charge density
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Stationary energy model

mixed boundary conditions

—V- JI — Y, I — 4 ... na —V - je — gl’H—la V- (SV(:O) — gI’H—Z on 1_1N

'q :é'iD, | =1, ....n, T :TD, gp:ng on I'p
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Stationary energy model

Conservation of energy V - Je = O frequently substituted by the heat flow equation
—V.-k«kVT)=H

where the source term
n
H ==Y V- ((&+PTDi)
i=1

= Z oik(VeGi + BVT)(Vic+ PVT)
i k=1

k=

_ZTVPl Ji
=1

=Y @G +PRT) > (B —ai)Ry
i=1 (o, B)eR

contains a lot of quadratic gradient terms
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Stationary energy model

Reformulation by an entropy balance equation

entropy flux density

is (Je Z:.J.)=——VT+ZP.J.

=1

for isothermal case, VI =0, =—

n
js: Zpiji
=1

explains the meaning of P as transported entropies
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Stationary energy model

entropy formulation

(j.l\ /0011 U.ln T.l \ (V.é‘l\

In Oni *** Onn Tn Vin
\js) \771 e Tp %+Tn+1) KVT
n n
T :Zo'ikpk, i =1, ...,n, Thtl = ZO’ikP, Pk
k=1 I,k=1

matrix is symmetric, positive definite for non-degenerated states — Onsager’s relations
are fulfilled for fluxes (J1, ..., Jn, Js) and generalized forces (V¢y, ..., ViEn, VT)
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Stationary energy model

entropy balance equation

V . jS — d

entropy production rate

n n

Td==) ji-Vai—js-VT+ Y Ryg)Y (@—p)

i=1 (@,B)eR i=1

d > O, and for non-degenerated states
r Vi =0, 1=1,..n
VT =0

d=0 —

Y @—B)i=0 Y@p eR
| 1=1

conditions characterize thermodynamic equilibrium
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Stationary energy model

if a thermodynamic equilibrium satisfies the boundary conditions, the data has to fulfil
{iD —const, 1 =1,...,N, Zinzl(ozi — ﬁi)giD =0 V(a, B) € R,
TP = const > 0, g=0 1=1....n+1

corresponding equilibrium densities U;j are obtained by the state equations

U =G, T®) exp{GP — g+ E(.T?)/TP}, i=1...,n

where the electrostatic potential has to satisfy the nonlinear Poisson equation

~V-(eVe) =+ ql(, T®) exp{c° —ap+ Ei(, T?)/TP]

n
i=1

o =¢onTp, v-(eVg)=gn2o0n Ty
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Stationary energy model

Onsager’s relations for fluxes (J1, ..., Jn, Je) and generalized forces (V¢y, ..., ViEn, VT)

are not fulfilled
change of generalized forces to (V[¢1/T1, ..., V[¢n/T1, V[=1/T))

(1'1\ (011T o o1l Ty \ (V[é“l/T] \

oml -+ oml ?n V[é‘n/T]

Jn
\je) K?l e T KT2‘|‘?n+1) KV[—l/T])

n n
'ﬁ=k2;aikT<ck+ PT), i=1,..,n, %“n+1=_kzlaikT<ci + P T) (¢ + PT)
— I, K=

matrix is symmetric, positive definite for non-degenerated states = Onsager’s relations
are fulfilled for fluxes (]1,..., Jn, Je) and generalized forces (V[¢1/T1,...,V[¢n/ T, V[=1/T))
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Stationary energy model

entropy production rate writes as

n

d = —Zji - VIGi/T]

=1
—le- V[=1/T]

n

+ > Ra,BZ(ai_,Bi)%

(a,B)eR =1

again, d > 0, and for all non-degenerate states

[ V[z/T]1=0, i=1..,n
d-0 s f YT
Y (@i —p)z2=0 Y@ p)eR
| i=1 T

conditions characterize thermodynamic equilibrium
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Reformulation

introduce new variables

Z2=(Z1, -y Zny2) = (G&2/ T, ..., &/ T, =1/T, ¢)
reformulate the state equations
ux)=Hjx,z, 1=1,...,n

express reaction rates R,g in the new variables

Roc,B(X, Z) — raﬁ(x, Hl(Z), cee Hn(Z), _1/Zn+1, Zn+2) (eZinzwtiZi _ eZLﬁm)
Fup(x,2) (€207 — @Xlafiz) (@, B) € R
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Reformulation

strongly coupled nonlinear elliptic system

( an -+ ainp 0 ( Vz / Ry \
; ; 0 ; s
-Vl @1 -+ anpr O Vz, | = Ry
an+11 - angin+r O VZni1 0

\ 0 0 0 &) \Vzeo/) \ f+Y0 ckHk )

i = &k = &k(X, 2(X)), € = &(X)
Ri= ) (B —a)Ry(X,2(X)), He= Hy(X, 2(x))

(a,B)eR

mixed boundary conditions

Zi:ZiD, =1 ...,n+ 2, on I'p
D - ZE—I:_]]:aik(Z)VZk =0, 1=1,...,n+ 1, V- (eVZyi2) = Ona2 on I’y
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Outline of the results and methods

result:
local existence and uniqueness result near a thermodynamic equilibrium

methods:

e prove existence of thermodynamic equilibrium u® > 0, T* > 0, ¢*

e apply Implicit Function Theorem

e we obtain only local assertions (e.g. T > O, Uj > O near thermodynamic equilibrium)
but we needn’t global assumptions

problems:

e suitable choice of function spaces and weak formulation

e supply requirements of Implicit Function Theorem

e properties of Nemyzki operators

e regularity results for strongly coupled elliptic systems with mixed boundary conditions

e technique works in 2D only
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class (D)

Let V = R" x (—00, 0) x R.
A function b: Q2 x V — R is of the class (D) iff it fulfills the following properties:

e Db, 9,b Caratheodory functions
Z — D(X, 2) is continuously differentiable f.a.a. X € Q
X = b(X, 2), X = 9;b(X, Z) are measurable Vz € V

e Db, 9,b (locally) uniformly bounded
For every compact subset K C V there exists an M > 0 such that

Ib(X,2)| <M, o b(X,2)|| <M VzeK, faa. XeQ.

e Db, 9,b (locally) uniformly continuous
For every compact subset K C V and € > O there exists a § > O such that

b(x, 2" —b(x, 29| <€, |3b(x,2Z" — d,b(x, Z%)| < €

vzl 72 € K with |2} — 7%| < §, f.a.a. X € Q.
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General assumptions

(Al) (domain)
Q2 is a bounded Lipschitzian domain in R2 ' =02,
['p, I'y are disjoint open subsets of I', I' = I'p U TN, mesT'p > 0,
['p N I'y consists of finitely many points

(A2) (boundedness and ellipticity of coefficients)
The functions gjx = &i: 2 x V — R are of the class (D), i, k=1,...,n+ 1.
For every compact subset K C V there exists an ax > 0 such that
n+1
Y a(X, &&= akllEI® Vze K, VE e R faa x€Q
k=1
e e L®Q),0<eg<eX) <& <o0ae inQ,

(A3) (reaction terms in the continuity equations)

R C ZL x 71, for (a, B) € R we define Ry5: 2 x V — R by

Rus(X, 2) = Tup(X, 2) (eZLlaizi _ eZleﬁizi>
where FJole: Q2 x V — R, is of the class (D)
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General assumptions

(A4) (source terms in the Poisson equation)
g €Z, H:Q2xV — R, are of the class (D), i = 1,...,n,
h=— Zrzl gH: Q2 xV — R, h(X,z,...,Z1, ) is monotonic increasing
forall (z1,...,2Zn41) € R" x (—00,0), f.a.a X € ,

Ih(x, 2)| < cxe"l@n+!
V(zZ,...,2Znt1) € [—K K" x [k, —=1/K], Zhi2 € R, f.a.a. X € Q.

For the data we suppose:

o There exists a p > 2 such that z° on I'p are traces of functions
z° e WHP(Q), i=1,....,n+2 withz) ; <0in Q.

e gelL®Ty),i=1...,n+2
. f e L®(Q)
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Weak formulation

Let s € [1, 00), we define

Xs = (Wp*(Q U Ty))"?2
X5 = (WS(QUTN)™2)* = (WH3(Q U Ty))"™
Ys — (Wl,S(Q))rH—Z

We set
z=7+72°, w= (g, )

Definition. Let g € (2, p] and T > 1. We define the open subset
Mg,r C Xg X Yp as

—T <Zn1+2z), < —% on |

Stationary energy models with multiple species 20 [wlilals



Weak formulation

define  Fy .1 Mg X LI\ )" x L®(Q) — Xq by

n+1

ForZow i, = [ 13 8K DV Vi + eVzna- iz} dx
Q

I,k=1

Y Rac z)Z«x. BV + NC, 2z} i

(@,B)eR

n+-2
/ f‘ﬁn+2dx_/ Zgl”mdr wexq’
I'n

z=272+7° w=(", g f) g =q/(q — 1) dual exponent of g
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Problem (P)

Problem (P):
Find (q, 7, Z, w) such that g € (2, p], T > 1, (Z, w) € Xqx Ypx L®(TN)"2x L>(R),

(Z,2°) € Mq., Fq.(Z,w)=0.

If (q, T, Z, w) is a solution to (P) then (q, T, Z, w) is a solution to (P) ifgd <q, 71 <7
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Differentiability

Lemma 1. (Differentiability)
For all T > 1 and all exponents p > ( > 2 the operator

Fa.oi Mg,z X L¥(W)™2 x L¥(Q) - X5

is continuously differentiable.

n+1
/ 1@ik(, DV Zx + 878ik(-, 2) - Z Ve - Vi dx
2 k=1

T / eV Zns2- Vnsz + 90( 2) - Z Ynsa) dX

#[ Y R Z Y (e~ fvndx
2 (@,p)eR i=1

(0zFq.(Z, w)Z, ¥)x,

Q)

VZ e Xq ¥ € Xy
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Thermodynamic equilibrium

Q={w=(2"g, f) e WP(Q)"?* x L®(I"y)"* x L®(Q):

n
g =0 z"=const,i =1..n+1, 2, <0, ) (x—B)z’ =0V(e p) € R}
i=1

Theorem 1. (Existence and uniqueness of thermodynamic equilibria)
Let w* = (z°*, g*, f*) € Q.
Then there exist o € (2, p], T > land 2], € Wol’qo(Q U TI'N) such that

(2*,2°%) = ((0,...,0,0, Z; ), 27) € Mgyr.  Fgoo(Z¥, w*) =0,

in other words, (Co, T, Z*, w*) is a solution to (P).

~y

If (4,7, Z, w*) is a solution to (P) then Z =Z*in Xmin{ao.d}-

For given w* = (zP*, (O, ..., 0,0, Onio), f) € Q there exists a unique thermodynamic
equilibrium z* = Z* 4+ zP*.
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Sketch of the proof of Theorem 1

1. Solution of the Poisson equation: &: Hol(SZ Ul'y) > H X QUTY),

(E(P), d) Hi(QUIy) = / eV(p + Zr?:z) - Vg dx — . g;‘+2$dF

2
+f (h(,(O,...,0,0,¢) +2°") — f*) pdx V¢ € Hy(QUT)
Q2

is strongly monotone and hemicontinuous (Trudinger's imbedding result)
— unique solution ¢ = Z] ., of £(¢p) =0

2. higher regularity: Z] ., € W1%(Q U 'y) (Trudinger's imbedding result,
Groger's regularity result for elliptic equations with mixed boundary conditions)
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Sketch of the proof of Theorem 1

3. Setting Z* = (0,...,0,0, Z7 ), then for g and suitable 7 > 1 we find

n

(2*9 ZD*) S Mqo,r, qu,r(z*, w*) — O

—>  (Qo, T, Z*, w*) is a solution to (P)

4. uniqueness: if (4, T, Z, w*) would be a solution to (P), then for

g=min{gq,q}, T =max{r,T)

~

@, 7, Z*, w*) and (Q, T, Z, w*) would be solutions to (P), too
o 0= <|:q\’?(z, w*) — I:q\,?(Z*, w*)’ (Zl’ c ooy Zn+1, O))Xq/
(A2), (A3) = Z =0,i=1,...,n+1

e uniqueness of the solution of £(¢p) =0 — Zn+2 = /7

n+2 ®
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Linearization

Lemma 2. (Properties of the linearization in the thermodynamic equilibrium)

Let w* = (zP*, g*, f*) € Q. Furthermore, let (0o, T, Z*, w*) with Z* = (0, ..., 0, L. o)
be the equilibrium solution to Problem (P) according to Theorem 1.

Then there exists a (1 € (2, Qo] such that the Fréchet derivative
az Fql,-[(z*, w*) qu —> X;i

is an injective Fredholm Operator of index zero.
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Sketch of the proof of Lemma 2

(02Fq.(Z, w)Z, ¥)x,

n+1
/ Y {ak(. DVZk+ d81(. 2) - ZVz) - Vi dx
2 k=1

n / (eVZni2- Vimiz + 8:0(. 2) - Z Ynsa) dX
Q

T (. T (eXiiwz _ o)1 Bz - A\l
+/Q Z O us (-, 2) Z(e e )Z(a, Bi) Wi dx

(a,f)eR i=1
n n
+/ Y T2 (OlkeZi:lO“Zi - ﬂkeZizlﬁizi) Zy Y (o — By dx
© (a,8)eR k=1 i=1

VZ e Xq ¥ € Xq

has to be calculated for Z = Z2*, w = w*
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Sketch of the proof of Lemma 2

1. linearization in thermodynamic equilibrium:

Let g € (2, qol, since (¥, 9%, f*) € Q = dzFy.(Z", w") = Lq+ Kq

n+1

(LqZ, Vixy = / {Z aik(-, ZYVZi- Vi + eV Znyo Vipnyo}dx
2 j k=1
n+2

+ Z/Zwidx
=1 v/

o L is injective
e Groger's regularity result = there exists Q1 € (2, (o] such that L is surjective
for all g € (2, g4]

e Banach's open mapping theorem = L. Xq — X{, is an isomorphism

for all q € (2, q1]
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Sketch of the proof of Lemma 2

(Kq Z, ¥)xy =/Q Y Fup(LZeZSE Y N — B) Y (et — B Zic v dx
=1 =1

(x,B)eR
o n+2_
+ [ 3.2 Z o= Y 2w} o
Q2 i=1

compact imbedding of WH9(Q) into L®(Q) = Kgq is compact

2. Fredholm property:

criterion for Fredholm operators —

0z Fq (27, w*) = Lq + Kq is Fredholm operator of index 0 for all q € (2, q1]
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Sketch of the proof of Lemma 2

3. injectivity of dzFq, (Z*, w*): Xq, = Xéi: show injectivity on Xy, let Z € X»
(02 Fqy,c(Z*, w"Z, (Z1, ..., Zns1, 0))Xq, =0
strong ellipticity of (@k(X, 2%)), T'p # ¥, Fap(X, Z¥) eXi21%% > 0 V(a, B) € R =>
Zi=0i=1,...n+1

use the test function (0, ..., 0, O, 7n+2) —

— d
VZiol?
/9{8| nt+2|” + P

h is cont. differentiable, monotonic increasing in the argument z, . (see (A4)) —

h(-, z% 7§+2} dx =0
n+2

h(x, Z*) > 0 a.e. on Q; together with ¢ > g9 a.e. on Q@ — 7n+2 =0 o

0Zn42
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Local existence and uniqueness result

Theorem 2. (Local existence and uniqueness of steady states)

Let w* = (zP*, g*, f*) € Q. Furthermore, let (0o, T, Z*, w*) with Z* = (0, ..., 0, L. o)
be the equilibrium solution to Problem (P) according to Theorem 1.

Then there exists 1 € (2, o] such that the following assertion holds: There exist neigh-
bourhoods U C Xg, of Z* and W C Y, x L)% x L®(Q) of w* = (zP*, g*, f*)
and a C-map ®: W — U such that Z = ®(w) iff

Fou:(Z,w)=0, (Z,2°) e Mgy, ZeU, w=(Z"g f)eW.

For data w = (Z°, g, f) near w* = (zP*, g*, f*) € Q there exists a unique solution
Zz = Z + ZP of the stationary energy model.
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Conclusions

Q={w=("0 f)eYpx LT xL¥Q):g=0i=1...,n+1

Jro 2ot =) Z°dT =0 V(a,B) € R, 2z, <0}.

QC Q

Corollary 1.
Let w = (Z°, g, f) € Q1 be given. Then there are constants g € (2, p], T > 1, € > O
such that the following assertions hold: If

||VZiD|||_p(Q)<€, =1 ...,n+1,

then there exists a Z € Xq such that (q, 7, Z, w) is a solution to (P). This solution lies
in a neighbourhood of an equilibrium squtior~1 Q, t, Z*,~w*) to Problem (P), and in this
neighbourhood there are no solutions (q, t, Z, w) with Z # Z.
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Proof of Corollary 1

o Letw=(Z°, g, f) € Qq, define
D _ i
| I'p| Jr,

— w* € Q, let (qo, T, Z*, w*) be the equilibrium solution to (P)

z>dli=1,...,n+1, 2z, =2, w'=@z"g,f)

e Theorem 2 guarantees q € (2, o], €’ > O such that the equation Fy . (Z, w) =0
has a locally unique solution Z € X if

n+1
D _D
(1) lw — w*|ly,x Loorpn2x Lo (@) = E 1z7 — 7" lwreie) < €.
i—1

D+ on I'p vanish, Friedrich's inequality yields

e Since mean values of ZiD — Z
D D D ,
127 — 7" lwee) < CIIVZ |lLey, 1=1,...,n+1,

choosing € in Corollary 1 sufficiently small inequality (1) can be fulfilled
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Conclusions
Q={w=(2"0g f)eYpx LT x L) : z7,; <0}

Q1 C Q>

Corollary 2.
Let w = (z°, g, f) € Q, be given. Then there are constants q € (2, p], T > 1, ¢ >0
such that the following assertions hold: If

||VZiD|||_p(Q)<€, l=1,...,n+1,

1D (i — B) ZPllLrre) <€ V(@ B) € R,
=1

1GillLery) <€, 1=1...,n4+1,

then there exists a Z € Xq such that (q, 7, Z, w) is a solution to (P). This solution lies
in a neighbourhood of an equilibrium squtior~1 Q, t, Z*,~w*) to Problem (P), and in this

neighbourhood there are no solutions (q, 7, Z, w) with Z # Z.
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Proof of Corollary 2

stoichiometric subspace
S =spanfaa — B: (o, B) € R} Cc R", R"=Sa St

corresponding projection operators IIg: R" — S, Ig:: R" —» S+

an indirect proof gives

(2) I — Oshflge = [Tshlln <¢ Y [(@—pB)-A] VAeR"
(a,B)ER
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Proof of Corollary 2

Let w = (2P, g, f) € Q,, define
1

I'pl Jrp
Dx Dx

D Dxy __sD _ 5D
(Z07, .., 2y) =lseh, Zoly =75, Znio = Zngo,

z’dl i =1,...,n+1, A=(Z],....2ZD),

w* — (ZD*a (Oa s eey Oa gn+2), f)

—> w* € Q, let (Qo, T, Z*, w*) be the equilibrium solution to (P)

Theorem 2 guarantees q € (2, (o], €’ > O such that the equation F, . (Z, w) = 0 has a
locally unique solution Z € X, if

n+1

D D
(3)  llw = w*llvpxLemoraxi=@ = Y {120 — 27 lwre) + G~y < €
=1
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Proof of Corollary 2

Friedrich's inequality and (2) for A = (Z, ..., Z}) =

n+1 n+1

ZHZ — 2>*wiece) <Z:HZ —7 ”Wlp(Q)‘I'Z”Z — 2>*wrece)

n+1
Zan ey + Y Z(a.
(@,p)eR i=1
[w — W*{ly,xLoerymexLe)
n+1
D
<c(Y _{IVZPle + llGillsarn}+ > | Z(a.
i=1 (@,f)eR =1

B zP || L1(FD))

Bi) ZiD|||_1(FD))

choosing € in Corollary 2 sufficiently small inequality (3) can be fulfilled
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Conclusions

Interpretation

Let the source terms for the Poisson equation f, Z,E)+2, On.2 be given. Then the stationary
energy model has a solution, if

e driving forces for the fluxes induced by the boundary data
(gradients Vz, ..., Vzp,,)
e driving forces for all reactions evaluated on the boundary

(affinities Zin:l(ozi — ,Bi)ZiD on I'p)
e prescribed fluxes on the boundary

(gl’ ceey gn+1 on FN)

are small enough. This solution is locally unique.

One could expect that uniqueness should be valid globally in this case. But such a result
cannot be obtained by the Implicit Function Theorem.
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