

DFG Research Center
MATHEON
mathematics for
key technologies
www.matheon.de

Modeling of electronic properties of interfaces in solar cells

WIS

Weierstrass Institute fo Applied Analysis and Stochastics

Annegret Glitzky Alexander Mielke Marita Thomas

Domain of Expertise: Electronic devices

Background

Photovoltaic cells are semiconductor heterostructures

Effects of rough interfaces in thin-film cells:

- used for light trapping, have strong impact on the functionality of the device
- nanoscale-treatment of interfaces to tune electronic properties

Helmholtz-Zentrum Berlin für Materialien und Energie investigates thin-film

- a-Si:H/c-Si solar cells built from layers of amorphous and crystalline silicon Issues: reduction of recombination losses at the a-Si:H/c-Si interface
 - improvement of the charge-carrier transport over the heterointerface

Technological aims in photovoltaics:

- maximize efficiency of the solar cells
- minimize production costs, ...

Principle of solar cells:

- photons generate electron-hole pairs
- electrons/holes move to contacts
- → minimize recombination losses

At heterointerfaces new electrical effects may occur:

- electrons, holes are transmitted/reflected
- technological treatment of interfaces leads to defect distributions
- special recombination at defects
- quantum mechanical tunneling effects

at defects

unneling effects

 \sim new mathematical models required!

Equations in the bulk

$$\begin{split} \frac{\partial}{\partial t} n - \operatorname{div} \! \left(c_n (\nabla n - n \nabla \varphi) \right) &= G_{\mathrm{phot}} (t, x) - \left\langle \left\langle \rho_n (.., n, \eta) \right\rangle \right\rangle - R(n, p), \\ \frac{\partial}{\partial t} p - \operatorname{div} \! \left(c_p (\nabla p + p \nabla \varphi) \right) &= G_{\mathrm{phot}} (t, x) - \left\langle \left\langle \rho_p (.., p, \eta) \right\rangle \right\rangle - R(n, p), \\ - \operatorname{div} \! \left(\varepsilon(x) \nabla \varphi \right) &= d_{\mathrm{dop}} (x) + p - n - \left\langle \left\langle \eta \right\rangle \right\rangle \\ \frac{\partial}{\partial t} \eta(t, x, E) &= \rho_n (x, E, n, \eta) - \rho_p (x, E, p, \eta) \end{split}$$

 $egin{aligned} n, \ p \ arphi, \ \eta \ R(n,p), \ G_{ extstyle phot} \
ho_n, \
ho_p \end{aligned}$

densities of electrons and holes electrostatic potential, defect-occupation probability recombination rate, optical generation rate ionization rates of defects

$$\langle\langle g\rangle\rangle := \int_{E_{\mathrm{V}}}^{E_{\mathrm{C}}} \,g(E) N(x,\!E)\,\mathrm{d}E,$$

E energy levels

Research plan for the project

(1) Nontrivial interface conditions

Conditions at interfaces $x^{\mathrm{I}} = x = x^{\mathrm{II}}$

• extra defect dynamics ($\widehat{\eta}$ localized at interface x)

$$\begin{split} \frac{\partial}{\partial t} \widehat{\eta}(t, x, E) &= \rho_n(x^{\mathrm{I}}, E, n^{\mathrm{I}}, \widehat{\eta}) + \rho_n(x^{\mathrm{II}}, E, n^{\mathrm{II}}, \widehat{\eta}) \\ &- \rho_p(x^{\mathrm{I}}, E, p^{\mathrm{I}}, \widehat{\eta}) - \rho_p(x^{\mathrm{II}}, E, p^{\mathrm{II}}, \widehat{\eta}) \end{split}$$

current determined by thermionic emission and defect recombination

$$c_n(\nabla n - n\nabla\varphi)^{\mathrm{I}} \cdot \nu = \alpha_n^{\mathrm{I}} n^{\mathrm{I}} - \alpha_n^{\mathrm{II}} n^{\mathrm{II}} + \langle \langle \rho_n(x^{\mathrm{I}}, \cdot, n^{\mathrm{I}}, \widehat{\eta}) \rangle \rangle$$

(plus 3 similar conditions)

Aims:

- thermodynamic wellposedness of resulting model equations
- existence theory for stationary/instationary problems (starting from lower dimensional problems)

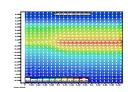
(2) Approximation by pseudo layers

Numerical implementations replace the interface conditions and the interface-trap kinetics by bulk kinetics on thin layer elements with suitably scaled properties

- (++) classical interface conditions can be used
- (--) the problem might become badly conditioned or even unstable

Aims:

- Investigate this approximation procedure in a rigorous fashion
- Which nontrivial boundary conditions can be obtained by such limits?
 How much freedom do we have in such approximations?
- Approximate tunneling effects through interfacial potential barriers:


Do pseudo-layers with fitted material data approximate the tunneling characteristics sufficiently well?

(3) Numerical approximation and simulation

1-dimensional software AFORS-HET of Helmholtz Zentrum Berlin (HZB) uses finite differences, no numerical analysis available

Aims

- establish discretization schemes benefitting from analytical properties of the continuous problem
- implement such schemes or adapt WIAS-TeSCA
- predict characteristics of solar cells (band diagrams, cv-characteristics, quantum efficiency)
- validation/comparison with measurements (HZB)

WIAS-TeSCA Simulation (R. Nürnberg): Electron current through a structured passivation layer and electrostatic potential in a thin-film solar cell.

Cooperation

Helmholtz Zentrum Berlin für Materialien und Energie, Group SE1 "Silizium-Photovoltaik" (discussion of models, experimental data to validate our models) PVcomB: Photovoltaics Competence Center Berlin (Head Prof. Bernd Rech) ODERSUN AG Berlin · Frankfurt (Oder) · London (modeling and simulation)

References

A. GLITZKY AND K. GÄRTNER, Energy estimates for continuous and discretized electro-reaction-diffusion systems, *Nonlinear Analysis*, 70:788–805, 2009.

A. GLITZKY AND K. GÄRTNER, Existence of bounded steady state solutions to spin-polarized drift-diffusion systems, *SIAM J. Math. Anal.* 41:2489–2513, 2010.

A. MIELKE, Weak-convergence methods for Hamiltonian multiscale problems. *Discr. Cont. Dynam. Systems Series A*, 20(1):53–79, 2008.