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Outline of the talk

. Spin-polarized drift-diffusion model

. Stationary model

• Continuous system:
Existence, boundedness,
uniqueness for small applied voltages

• Discretized system:
Existence, boundedness,
uniqueness for small applied voltages

Zutic et al 2004

Details:
A. G., K. Gärtner, Existence of bounded steady state solutions to spin-
polarized drift-diffusion systems, SIAM J. Math. Anal. 41 (2010), 2489–2513.
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Spin-resolved drift-diffusion model

consider spin-resolved carriers e↑, e↓, h↑, h↓

spin-resolved densities for electrons and holes

n↑↓ =
Nc

2
exp

[−Ec0±qgc

kBT

]
exp

[ϕn↑↓ + qψ

kBT

]
p↑↓ =

Nv

2
exp

[Ev0∓qgv

kBT

]
exp

[−ϕp↑↓ − qψ

kBT

]
Nc, Nv effective densities of state
Ec0, Ev0 band edge energies
ϕn↑↓, ϕp↑↓ spin-resolved quasi-Fermi energies
q, ψ elementary charge, electrostatic potential
gc, gv splitting of carrier bands due to magnetic

impurities or an applied magnetic field
T, kB Temperature, Boltzmann constant

spin relaxation reactions
e↑ 
 e↓, h↑ 
 h↓

recombination/generation of electrons and holes

e↑ + h↑ 
 0, e↑ + h↓ 
 0

e↓ + h↑ 
 0, e↓ + h↓ 
 0
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Spin-resolved drift-diffusion model

. system of 4 continuity equations containing spin-relaxation as well as
generation-recombination terms

. coupled with a Poisson equation

. completed by boundary conditions from device simulation and initial
conditions

. obtain a generalization of the classical van Roosbroeck system

. introduce scaled variables
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Model equations in scaled variables

Xi species: e↑, e↓, h↑, h↓ ui densities
λi charge numbers: −1, −1, 1, 1 ūi reference densities
ζi = ln ui

ūi
+ λiv0 electrochemical potentials v0 electrostatic potential

ai = eζi electrochemical activities

particle flux densitiy for species Xi

Ji = −Diui∇ζi = −Diūie−λiv0∇ai

−Ri net production rate of species Xi

R1 = r13(a1a3 − 1) + r14(a1a4 − 1) + r12ev0(a1 − a2),
R2 = r23(a2a3 − 1) + r24(a2a4 − 1)− r12ev0(a1 − a2),

R3 = r13(a1a3 − 1) + r23(a2a3 − 1) + r34e−v0(a3 − a4),

R4 = r14(a1a4 − 1) + r24(a2a4 − 1)− r34e−v0(a3 − a4)
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Model equations

Stationary spin-polarized drift-diffusion model (SPDD model)

continuity equations

∇ · Ji = −Ri in Ω,

ν · Ji = 0 on ΓN ,

ζi = ζD
i on ΓD, i = 1, . . . , 4.

Poisson equation

−∇ · (ε∇v0) = f +
4∑

i=1

λiūie−λiv0ai in Ω,

ν · (ε∇v0) = 0 on ΓN , v0 = vD
0 on ΓD.
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Continuous system: A-priori estimates

Theorem 1. If (v0, ζ1, . . . , ζ4) ∈ (W 1,2(Ω) ∩ L∞(Ω))5 is a weak solution to the
stationary SPDD model then

v0 ∈ [L,L], ζi ∈ [−M,M ], ai ∈ [e−M , eM ], i = 1, . . . , 4, a.e. in Ω,

where M, L, L are constants given by the data such that

|ζD
i | ≤M, ess sup

ΓD

vD
0 − ess inf

ΓD
vD
0 ≤M,

L := min
(
ess inf

ΓD
vD
0 , ln

cf+
√

c2
f+16Cūcū

4Cū
−M

)
,

L := max
(
ess sup

ΓD

vD
0 , ln

Cf+
√

C2
f+16Cūcū

4cū
+M

)
.
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Continuous system: A-priori estimates

Idea of the proof:

• test continuity equations by(
(ζ1−M)+, (ζ2−M)+, −(ζ3+M)−, −(ζ4+M)−

)
and (

− (ζ1+M)−, −(ζ2+M)−, (ζ3−M)+, (ζ4−M)+
)

• test Poisson equation by (v0−L)+, −(v0+L)−

use strict monotonous decay of y 7→
4∑

i=1

λiūiaie−λiy
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Continuous system: Existence

Theorem 2. There exists at least one solution (v•0 , a
•) to the stationary

SPDD model.

Idea of the proof:
• use Slotboom variables: (v0, a1, a2, a3, a4), where ai = eζi , Gummel map

• iterate an=Qc(ao), solve fixed point problem a•=Qc(a•) for Qc :Mc→L2(Ω)4,

Mc := {a ∈ L2(Ω)4 : ai ∈ [e−M , eM ] a.e. in Ω, i = 1, . . . , 4}.

• Qc is continuous, maps the bounded, closed, convex set Mc 6= ∅ into itself,
Qc[Mc] is a precompact subset of L2(Ω)4

apply Schauder’s fixed point theorem.

• evaluate v•0 as the unique weak solution to

−∇ · (ε∇v0) = f +
4∑

i=1

λiūie−λiv0a•i on Ω + mixed BCs.
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Continuous system: Uniqueness for small applied voltages

Theorem 3.
1. If the Dirichlet data is compatible with thermodynamic equilibrium, i.e.

ζD∗
i = const, i = 1, . . . , 4, ζD∗

1 = ζD∗
2 = −ζD∗

3 = −ζD∗
4

then the thermodynamic equilibrium (v∗0 , ζ
D∗
1 , . . . , ζD∗

4 ) with

−∇ · (ε∇v∗0) = f +
4∑

i=1

λiūieζD∗i −λiv
∗
0 on Ω + mixed BCs

is the unique solution to the stationary SPDD model.

2. Let vD∗
0 ∈W 1,2,ωD (Ω) for some ωD ∈ (N − 2, N). If the applied voltage is

sufficiently small, then the stationary SPDD model possesses exactly one
solution.
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Ideas of the proof:

• formulation in a Sobolev-Campanato space setting, use results of Gröger,
Recke’06

• write (v0, ζ1, . . . , ζ4) = Z + zD, where zD = (vD
0 , ζ

D
1 , . . . , ζ

D
4 )

• Frechet derivative of the linearization w.r.t. Z at thermodynamic equilibrium
(Z∗, zD∗) is an injective Fredholm operator of index zero

W 1,2,ω
0 (Ω ∪ ΓN )5 →W−1,2,ω(Ω ∪ ΓN )5

for some ω ∈ (N − 2, ωD]

• apply implicit function theorem
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Discretization

use boundary conforming Delaunay grids with r grid points

matrix G̃ maps from nodes to edges of a triangle (tetrahedron)

G̃2 =

 1 −1 0
0 1 −1

−1 0 1

 , G̃3 =


1 −1 0 0
0 1 −1 0

−1 0 1 0
−1 0 0 1

0 −1 0 1
0 0 −1 1


G =

√
[γ]G̃ discrete gradient matrix

[γ] diagonal matrix of geometric weights per simplex, γσ = mσ

dσ

GT [·]Gw indicates the global function including boundary conditions

w ∈ Rr vector of values in grid points

[·] diagonal matrix, [·]j its jth diagonal element
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Discretized system: Scharfetter-Gummel scheme

AS
i (v0) := GT [Diūie−λiv0/sh(G̃

v0

2
)]G, i = 1, . . . 4,

where
sh(t) =

sinh t
t

, v0 =
v0,j + v0,k

2
.

The ’average’ Diūie−λiv0/sh(G̃v0

2 ) is called Scharfetter-Gummel scheme and
results from solving a two-point BVP along each edge, (e−λiv0ai

′) ′ = 0.

Discrete stationary SPDD model:

GT εGv0 = [V ](f +
∑4

i=1 λi[ūie−λiv0 ]ai),

AS
1 (v0)a1 =

∑
i=3,4[V ][r1i(u)](1− [ai]a1) + [V ][r12 ev0 ](a2 − a1),

AS
2 (v0)a2 =

∑
i=3,4[V ][r2i(u)](1− [ai]a2)− [V ][r12 ev0 ](a2 − a1),

AS
3 (v0)a3 =

∑
i=1,2[V ][ri3(u)](1− [ai]a3) + [V ][r34 e−v0 ](a4 − a3),

AS
4 (v0)a4 =

∑
i=1,2[V ][ri4(u)](1− [ai]a4)− [V ][r34 e−v0 ](a4 − a3).
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Discretized system: Existence and bounds

Theorem 4. There exists at least one solution (v•0,a
•) to the discretized

stationary SPDD model. Solutions fulfill the bounds

a•ij ∈ [e−M , eM ], i = 1, . . . , 4, v•0j ∈ [L,L], j = 1, . . . , r.

Idea of the proof:

• iterate an = Q(ao), solve fixed point problem a• = Q(a•) for Q : M→ R4r,

M := {a ∈ R4r : aij ∈ [e−M , eM ], j = 1, . . . , r, i = 1, . . . , 4}.

• Q is continuous, maps the bounded, closed, non empty set M into itself,
apply Brouwer’s fixed point theorem

• evaluate v•0 by
GT εGv•0 = [V ](f +

4∑
i=1

λi[ūie−λiv
•
0 ]a•i ).
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Discretized system: Existence Iteration procedure

Starting from ao = (ao
1,a

o
2,a

o
3,a

o
4) ∈M, we evaluate an = Q(ao) ∈M by:

1. Determine vn
0 as the unique solution to

GT εGvn
0 = [V ](f +

4∑
i=1

λi[ūie−λiv
n
0 ]ao

i ).

2. Using this vn
0 we solve the four decoupled discretized continuity equations

AS
1 (vn

0)an
1 =

∑
i=3,4

[V ][r1i(ao, vn
0 )](1− [ao

i ]a
n
1) + [V ][r12 evn0 ](ao

2 − an
1),

...

to evaluate an = (an
1 , . . . ,a

n
4).
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Discretized system: Details

1. Iterated Poisson equation

bounds for vn
0 : multiply equation by (vn

0 − L)+T , −(vn
0 + L)−T

solvability: minimize h : Rr → R,

h(y) =
1
2
yTGT εGy − yT [V ]

(
f +

4∑
i=1

[ūie−λiy]ao
i

)
.

uniqueness: suppose to have two solutions vn
0 , ṽn

0 , multiply equation by
(vn

0 − ṽn
0)+T

continuous dependence on ao

For vn
0 with |vn

0j | ≤ c, j = 1, . . . , r, for some c > 0 =⇒
AS

i (vn
0) are weakly diagonally dominant M-matrices, i = 1, . . . , 4,

they have bounded positive inverses for homogeneous Dirichlet data.
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Discretized system: Details

2. Iterated (1.) continuity equation

AS
1 (vn

0)an
1 =

∑
i=3,4

[V ][r1i(ao, vn
0 )](1− [ao

i ]a
n
1) + [V ][r12 evn0 ](ao

2 − an
1)

solvability:
AS

1 (vn
0) +

∑
i=3,4

[V ][r1i(ao, vn
0 )][ao

i ] + [V ][r12 evn0 ]

has a bounded inverse. Thus the problem is uniquely solvable.

boundedness: multiply by (an
1 − eM )+T , and −(an

1 + eM )−T

continuous dependence on vn
0 and ao
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Discretized system: Uniqueness for small applied voltages

Lemma 1. If no voltage is applied to the device (the boundary conditions

v0|ΓD = vbi
0 , ai|ΓD = 1, i = 1, . . . , 4,

which are compatible with thermodynamic equilibrium) then there exists a
unique solution (v∗0,a

∗) = (v∗0,1,1,1,1) to the discrete stationary SPDD
model, here

GT εGv∗0 = [V ](f +
4∑

i=1

λi[ūie−λiv
∗
0 ]1).

This solution is a thermodynamic equilibrium.
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Discretized system: Uniqueness for small applied voltages

Theorem 5. If the applied voltage is sufficiently small, then the discrete
stationary SPDD model possesses exactly one solution.

• Linearization of the discrete stationary SPDD system in the
thermodynamic equilibrium (v∗0,a

∗) (corresponding to no applied voltage,
Lemma 1) has a bounded inverse.

• Due to the continuous dependence of the problem on (v0,a) the implicit
function theorem gives the desired uniqueness result for small voltages.

Summary
The static SPDD system possesses very similar analytical and numerical
properties compared to the stationary classical van Roosbroeck system.
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Assumptions

(A1) Ω ⊂ RN bounded Lipschitzian domain, N ≤ 3,
ΓN relative open subset of ∂Ω, ΓD := ∂Ω \ ΓN , mesΓD > 0.

(A1*) For all x∈∂Ω there exists an open neighborhood U of x in RN and a Lipschitz
transformation Φ : U → RN such that Φ(U ∩ (Ω ∪ ΓN )) ∈ {E1, E2, E3}.

(A2) rii′ ∈ L∞+ (Ω), ii′ = 12, 34. rii′ : Ω× (0,∞)4 → R+, rii′(x, ·) ∈ C1((0,∞)4)

for a.a. x ∈ Ω. rii′(·, u), ∂rii′
∂u

(·, u) are measurable for all u ∈ (0,∞)4.

(A2*) For every compact subset K⊂ (0,∞)4 there exists a ∆ > 0 such that
|rii′(x, u)|, ‖ ∂rii′

∂u
(x, u)‖ ≤ ∆ for all u ∈ K and a.a. x ∈ Ω.

For every compact subset K ⊂ (0,∞)4 and ε > 0 there exists a δ > 0 such
that |rii′(x, u)− rii′(x, û)| < ε, ‖ ∂rii′

∂u
(x, u)− ∂rii′

∂u
(x, û)‖ < ε for all u, û ∈ K

with ‖u− û‖ ≤ δ and a.a. x ∈ Ω, ii′ = 13, 14, 23, 24.

(A3) Di, ε, f, ūi ∈ L∞(Ω), Di, ε ≥ c > 0, 0 < cf ≤ f ≤ Cf , cu ≤ ūi ≤ Cu

a.e. on Ω, vD
0 , ζD

i ∈ W 1,2(Ω) ∩ L∞(Ω), i = 1, . . . , 4.

(A4) Ω is polyhedral with a finite polyhedral partition Ω = ∪IΩ
I . On each ΩI

the functions ε, ūi, Di, i = 1, . . . , 4, r12, r34, rii′(·, u), ii′ = 13, 14, 23, 24,
are constants. The discretization is boundary conforming Delaunay.
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Definitions Sobolev-Campanato spaces

Campanato space
L2,ω(Ω) := {v ∈ L2(Ω) : ‖v‖L2,ω(Ω) < ∞},

‖v‖2
L2,ω(Ω) := ‖v‖2

L2 + sup
x∈Ω,ρ>0

n
ρ−ω

Z
B(x,ρ)

|v(y)− vB(x,ρ)|2 dy
o

.

Sobolev-Campanato space

W 1,2,ω(Ω) :=
˘
v ∈ W 1,2(Ω) :

∂v

∂xj
∈ L2,ω(Ω), j = 1, . . . , N

¯
,

‖v‖2
W1,2,ω(Ω) := ‖v‖2

L2 +
PN

j=1 ‖
∂v

∂xj
‖2

L2,ω(Ω).

W 1,2,ω
0 (Ω ∪ ΓN ) := W 1,2

0 (Ω ∪ ΓN ) ∩W 1,2,ω(Ω)

Sobolev-Campanato spaces of functionals

W−1,2,ω(Ω ∪ ΓN ) := {F ∈ W−1,2(Ω ∪ ΓN ) : ‖F‖W−1,2,ω(Ω∪ΓN ) < ∞},

‖F‖W−1,2,ω(Ω∪ΓN ) := sup
n

ρ−ω/2|〈F, v〉| : v ∈ W 1,2
0 (Ω ∪ ΓN ), ‖v‖W1,2(Ω) ≤ 1,

supp(v) ⊂ B(x, ρ), x ∈ Ω, ρ > 0

o
.
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