Analysis of electronic models for solar cells including energy resolved defect densities

Annegret Glitzky

GAMM 82nd Annual Meeting Graz
Content

1. Electronic models for solar cells
2. Energy estimates
3. Existence and uniqueness
4. Comments and references
An electronic model for solar cells

Situation:

- semiconductor heterostructure with mixed boundary conditions
- technological treatment leads to energy resolved defect distributions
- besides electron/hole generation/recombination there occur special recombinations at defects

(Helmholtz-Zentrum Berlin für Materialien und Energie)
An electronic model for solar cells

- **species:** \(n^-(x), p^+(x) \) electrons and holes
 \(t^{-/0}(x, E), t^{0/+}(x, E) \) defects occupied/unoccupied by electrons

- **reactions:** (for acceptor like defects)

 \[R_0: \quad n^- + p^+ \iff \emptyset \] generation/recombination of electrons and holes

 \[R_1: \quad n^- + t^{0/+} \iff t^{-/0} \] capture/escape of electrons

 \[R_2: \quad p^+ + t^{-/0} \iff t^{0/+} \] capture/escape of holes

- **distribution of defects** \(N(x, E) \) defines measure \(\mu = NdE \) on \(G := \Omega \times E_G \)

- **vector of quantities:**

 \[u = (u_1, u_2, u_3, u_4) \in Y := L^2(\Omega)^2 \times L^2(G; d\mu)^2 \]

 - \(u_1, u_2 \) densities of electrons and holes
 - \(u_3 \) occupation probability by an electron for defects with trap distribution \(N(x, E) \), \(u_4 = 1 - u_3 \)
Notation

- Electrostatic potential: z
- Charge numbers: λ_i, $\lambda = (\lambda_1, \ldots, \lambda_4)$
- Positive reference densities: $\tilde{\mu}_i$
- Chemical activities: $b_i = \frac{\mu_i}{\tilde{\mu}_i} H^1$-functions, $i = 1, 2$,

Flux terms:

$$j_i = -D_i \tilde{\mu}_i (\nabla b_i + \lambda_i b_i \nabla z), \quad i = 1, 2$$

Reaction rates:

$$R_0(x) - G_{phot}(x) = r_0(u_1u_2 - k_0)(x),$$
$$R_1(x, E) = r_1(u_1u_4 - k_1u_3)(x, E), \quad R_2(x, E) = r_2(u_2u_3 - k_2u_4)(x, E)$$

Quantities integrated over the energy interval:

$$\langle \langle g \rangle \rangle(x) := \int_{E_G} g(E) \mu(x, dE)$$

Analysis of electronic models for solar cells · GAMM 20011, April 20, 2011 · Page 5 (14)
Model equations

Drift-diffusion system

\[-\nabla \cdot (\varepsilon \nabla z) = f - u_1 + u_2 + \sum_{i=3}^{4} \lambda_i \langle \langle u_i \rangle \rangle \quad \text{on } \mathbb{R}_+ \times \Omega,\]

\[\frac{\partial}{\partial t} u_i + \nabla \cdot j_i = G_{phot} - R_0 - \langle \langle R_i \rangle \rangle \quad \text{on } \mathbb{R}_+ \times \Omega, \quad i = 1, 2,\]

ODEs for defects

\[\frac{\partial}{\partial t} u_3 = R_1 - R_2, \quad \frac{\partial}{\partial t} u_4 = - \frac{\partial}{\partial t} u_3 \quad \text{on } \mathbb{R}_+ \times \text{supp } \mu,\]

Boundary conditions

\[z = z^D, \quad b_i = b_i^D \quad \text{on } \mathbb{R}_+ \times \Gamma_D, \quad i = 1, 2,\]

\[\nu \cdot (\varepsilon \nabla z) = 0, \quad \nu \cdot j_i = 0 \quad \text{on } \mathbb{R}_+ \times \Gamma_N, \quad i = 1, 2.\]

Initial conditions

\[u(0) = U\]
Weak formulation, Problem (P)

Poisson equation

\[
\int_\Omega \left\{ \varepsilon \nabla z \cdot \nabla \hat{z} - \left[f + \sum_{i=1}^{2} \lambda_i u_i \right] \hat{z} \right\} \, dx - \sum_{i=3}^{4} \int_G \lambda_i u_i \hat{z} \, d\mu = 0, \quad \hat{z} \in Z = H_0^1(\Omega \cup \Gamma_N).
\]

Continuity equations

\[
\int_S \left\{ (u', \hat{b})_X + \sum_{i=1}^{2} \int_\Omega \left\{ D_i \bar{u}_i (\nabla b_i + \lambda_i b_i \nabla z) \cdot \nabla \hat{b}_i + r_0 (u_1 u_2 - k_0) \hat{b}_i \right\} \, dx \right. \\
+ \left. \int_G \left\{ r_1 (u_1 u_4 - k_1 u_3) (\hat{b}_1 + \hat{b}_4 - \hat{b}_3) + r_2 (u_2 u_3 - k_2 u_4) (\hat{b}_2 + \hat{b}_3 - \hat{b}_4) \right\} \, d\mu \right\} ds = 0,
\]

\[\hat{b} \in L^2(S, X), \quad X := \{ b \in Y: b_i \in H_0^1(\Omega \cup \Gamma_N), \ i = 1, 2 \}.\]

For all \(t \in \mathbb{R}_+ \) the solutions \((u, z)\) to (P) fulfill

\[
0 \leq u_3(t), u_4(t) \leq 1, \quad u_3(t) + u_4(t) = U_3 + U_4 = 1 \quad \mu\text{-a.e. on } G.
\]
Lemma (Poisson equation)

For all $u \in Y$ there is exactly one solution z to the Poisson equation, $z - z^D \in Z$.

- $\|z - \bar{z}\|_Z \leq c \|u - \bar{u}\|_Y \quad \forall u, \bar{u} \in Y,$

- $\|z\|_{W^{1,q}} \leq c \left(1 + \sum_{i=1}^{2} \|u_i\|_{L^2}^{2/(2+q)}\right)$ for a suitable $q > 2$.

Free energy

$$F(u) := \int_{\Omega} \frac{\varepsilon}{2} |\nabla (z - z^D)|^2 + \sum_{i=1}^{2} \left\{ u_i (\ln \frac{u_i}{u_i^D} - 1) + u_i^D \right\} \, dx + \sum_{i=3}^{4} \int_{G} \left\{ u_i (\ln \frac{u_i}{\bar{u}_i} - 1) + \bar{u}_i \right\} \, d\mu,$$

where z is the solution to the Poisson equation with this u in the right hand side,

$$u_i^D = \tilde{u}_i b_i^D, \quad u_1^D \tilde{u}_4 = k_1 \tilde{u}_3.$$

Lower estimate of the free energy

$$\|z - z^D\|^2_Z + \sum_{i=1}^{2} \|u_i \ln u_i\|_{L^1} + \sum_{i=1}^{2} \|u_i\|_{L^1} \leq c F(u) + \tilde{c}.$$
Energy estimates

Theorem (Energy estimate)

Let \((u, z)\) be a solution to \((P)\) and \(T \in \mathbb{R}_+\). Then

\[
F(u(t)) \leq (F(U) + c_0) e^{c_0 t} \quad \forall t \in [0, T],
\]

(1)

where the constant \(c_0 > 0\) does not depend on \(U\) and \(T\). If the data is compatible with thermodynamic equilibrium, meaning that

\[
\ln b_i^D + \lambda_i z^D \text{ is constant on } \Omega, u_1^D u_2^D = k_0 \text{ a.e. on } \Omega, k_1 k_2 = k_0 \mu\text{-a.e. on } G,
\]

then (1) holds true with \(c_0 = 0\).

Idea of the proof:

formally test by

\[
\lambda(z - z^D) + \left(\ln \frac{b_1^D}{b_1^D}, \ln \frac{b_2^D}{b_2^D}, \ln b_3, \ln b_4 \right), \quad b_i = \frac{u_i}{\tilde{u}_i}, \quad i = 1, \ldots, 4,
\]

more precise, use \(\left(\ln \frac{b_i^\delta}{b_1^D}, \ln \frac{b_i^\delta}{b_2^D}, \ln b_3^\delta, \ln b_4^\delta \right)\), where \(b_i^\delta = \max\{b_i, \delta\}\), let \(\delta \to 0\)
A priori estimates

Using

- monotonicity of the \(\ln \) function
- definition of \(\tilde{u}_3, \tilde{u}_4 \)
- boundedness of \(u_3, u_4 \)
- case by case analysis

it results

\[
F(u(t)) - F(U) \\
\leq c \int_0^t \sum_{i=1}^2 (1 + \| u_i \|_{L^1}) \left(\| \nabla (\ln b_i^D + \lambda_i z_i^D) \|_{L^\infty}^2 + \| \ln \frac{k_1 k_2}{u_1^D u_2^D} \|_{L^\infty(G,\mu)} \right) ds \\
+ c \int_0^t \| \ln \frac{u_1^D u_2^D}{k_0} \|_{L^\infty} ds
\]

- BCs compatible with thermodynamic equilibrium: \(F(u(t)) \leq F(U) \)
- More general case: use lower estimate of the free energy and Gronwall's Lemma.
A priori estimates

Theorem (Boundedness)

There exists a monotonously increasing function $d : \mathbb{R}_+ \to \mathbb{R}_+$, depending on the data, but independent of T, such that

$$
\|u_i(t)\|_{L^\infty} \leq d(\|F(u)\|_{C(S)}) , \quad i = 1, 2,
$$

$$
\|z(t)\|_{L^\infty} \leq d(\|F(u)\|_{C(S)}) \quad \forall t \in S
$$

for all solutions (u, z) to (P).

Idea of the proof:

- test functions

$$
p e^{pt} (v_1^{p-1}, v_2^{p-1}, 0, 0) \in L^2(S, X), \quad p = 2^m, \quad m \geq 1,
$$

where $v_i := (b_i - K)^+$, $K = \max \left(1, \max_{i=1,2} \|U_i\|_{L^\infty}, \max_{i=1,2} \|b_i^D\|_{L^\infty} \right)$

- L^2 estimate: $m = 1$: regularity results for the solution to the Poisson equation (Gröger), lower estimate of the free energy, and energy estimate

- Moser iteration
Theorem (Existence and uniqueness)

There is exactly one solution to problem (P).

Steps of the proof

- consider regularized problem (P_M) on arbitrarily fixed time interval $S = [0, T]$
 - regularize flux terms, reaction terms (parameter M)
- show solvability of (P_M) by
 - decomposition into problems with partly frozen arguments for
 - Poisson equation
 - immobile species
 - mobile species
 - iteration
 - Schauder’s Fixed Point Theorem for densities of the mobile species
- a priori estimates (independent of M!)
 - energy estimates for (F_M)
 - Moser technique for getting upper bounds
- solution to (P_M) is a solution to (P) if M is chosen sufficiently large
- uniqueness result
Generalizations

- different kinds of defects with different trap distributions $N_j(x, E)$ leading to measures μ_j on $\Omega \times E_G$
- different kinds of traps on different subdomains of $\Omega \times E_G$
- traps with more than two charge states \leadsto other types of ionization reactions

Outlook

- heterostructures with active interfaces:
 - traps confined at interfaces
 - defects capture/escape the electrons/holes from both sides
 - thermionic emission of electrons/holes at the active interface
- derivation of the resulting interface-model as limit model of models with volume-traps in thin layers (M. Liero)
- formulation of the system as generalized gradient flow (together with A. Mielke)
- investigations of the stationary (continuous and discretized) problem (together with K. Gärtner)
References

