
Overview of Unstructured 
Mesh Generation Methods



Structured Meshes
• local mesh points and cells do not depend on their 

position but are defined by a general rule. 

• Lead to very efficient algorithms and storage. 

• High quality for numerical methods.
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Structured Grid Generation Methods
• Conformal mapping 

• Transfinite interpolation 

• Solving PDEs — Elliptic, Parabolic/Hyperbolic 

• Multi-block structured methods5.3. wY^ISLITELXNYE ALGORITMY 133
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• Only suitable for domain with regular shapes. 

• The block-structured (or hybrid) mesh is formed by 
a number of structured meshes combined in an 
unstructured pattern. 

• Mesh adaptation is difficult. 

Limitations of Structured Meshes



Unstructured Meshes
• An unstructured mesh is one which vertices have 

arbitrary varying local neighbours.  

• Such mesh are more easy to fit in complex domain. 

• Such mesh are easy for mesh adaptation.
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• Quadtree-Octree based methods 

• Advancing-front methods 

• Delaunay-based methods



Quadtree-Octree 
based Methods



Introduction
• It is one of the spatial tree data 

structures used widely in geometric 
computation. 

• Quadtree-Octree based methods 
for mesh generation has been a 
topic of research since 1980s, 
pioneered by [Thacker-1980, 
Yerry,Shephard-1983]. 

• This type of methods is fully 
automatic for arbitrary complicated 
domains.

[HandbookGG, Chap 15, Shephard et al]



General Principles
• The mesh domain is first approximate by a union of disjoint 

and viable sized cells. These cells are obtained by recursive 
refinement with a set of subdivision rules and stopping criteria. 

• Each cell is decomposed into a set of mesh elements by a set 
of templates.

Mesh Size Functions

• Function h(x) specifying desired mesh element size

• Many mesh generators need a priori mesh size functions

– Physically-based methods such as DistMesh

– Advancing front and Paving methods

• Discretize mesh size function h(x) on a coarse background grid

12Picture of Persson’s Mesh Course 2006



10

•Define intial bounding box (root of quadtree) 
•Recursively break into 4 leaves per root to resolve geometry 
•Find intersections of leaves with geometry boundary 
•Mesh each leaf using corners, side nodes and intersections with geometry 
•Delete Outside 
•(Yerry and Shephard, 84), (Shepherd and Georges, 91) 



Detail: Tree Construction

A. Selection of a boundary entity, in ascending order (point, edges, faces). 

B. Identification of the cell in the current tree that contains this entity. 

C. Analysis of the cell, if it already contains an entity of the same dimension 
then refine the cell (with 4 equally sized cells), otherwise, back to (B) 

D. Insertion of the entity in the cell and back to (A).

The tree construction is an iterative procedure that 
builds the covering tree of the domain



Cell refinement examples [Mitschell & Vavasis 2000] 
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u
v

w

Fig. 5.1. Examples of crowdedness: solid lines indicate boxes, dotted lines indicate ex(B) for
these boxes, dashed lines indicate the boundary of P , and shading represents the interior of P .
Suppose we are in the separation stage of the phase 0 in the case d = 2. All boxes in the top row
are uncrowded. The first box would be placed into O

u

. The second box would be placed into I
1

. The
third box in the top row must be duplicated, and then one duplicate would go into O

v

and the other
into O

w

. Both boxes in the bottom row are crowded and must be split.

boundary faces), but in practice the running time will usually be closer to O(n).
In the case d = 2, it is possible to find connected components of co(B) via a plane

sweep in O(n logn) operations. In the case d = 3, an O(n logn) plane sweep can also
be used provided that P is preprocessed with O(N2) preprocessing steps, where N is
the combinatorial complexity of the input polyhedron P . This e�cient algorithm for
d = 3 is described in our earlier paper [13]. We have not implemented a plane-sweep
procedure for either d = 2 or d = 3.

6. Alignment. In this section we describe the alignment stage. Recall that the
alignment stage processes each orbit independently. For this section, assume we are
in phase k and are processing orbit OF of P -face F whose dimension is k.

First, a sequence of parameters

0 = ✏d,F = ✏d�1,F = · · · = ✏d�k,F < ✏d�k�1,F < ✏d�k�2,F < · · · < ✏0,F < 0.5

is chosen for F . The method for choosing positive scalars ✏d�k�1,F , ✏d�k�2,F , . . . , ✏0,F
is described in [12], which must be slightly modified to take into account the contain-
ment relationship between P -faces of di↵erent dimensions. These parameters have
positive upper and lower bounds depending only on d and k.

We now process boxes in OF in the order described below. Let B be the high-
precedence box in the orbit. Let B0 be any subface of B. We construct the 1-
norm neighborhood of radius ✏r,F around B0, denoted N(B0), where r stands for the
dimension of B0. Thus, this neighborhood is an axis-parallel parallelepiped (which
could be degenerate if ✏r,F = 0). If F meets N(B0), then F is said to be close to B0.
The close subface of B is the box subface of lowest dimension that is close to F . If
there is a tie (i.e., there are several faces of the same lowest dimension all close to F ),
then we break the tie with a priority rule, which is described below. A box with no
close subface is transferred to Ik+1.



Detail: Tree Balancing
• The tree resulting from the tree construction procedure 

can be rather unbalanced. It is not efficient for future 
mesh generation: 

• The size variation between neighbour cells will 
increase the searching cost. 

• It complicates the mesh template design  

• The 2-to-1 Rule: A tree subdivision is balanced if every 
side (edge) of a terminal cell contains at most one 
corner (hanging node) .



An example of tree balancing



Detail: Boundary Intersection
• Filtering of the intersecting points 

• This step could be very tedious and time 
consuming.

[Frey & George 2000]



[Mitschell & Vavasis 2000]
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Fig. 6.1. The alignment condition in the case d = 2, k = 1: the boxes in this figure are the
extended orbit of a P -edge E, which is the dashed line. The two large boxes at the ends are protected
boxes for the endpoints of E, protected from phase 0. In this figure, box a must be split because the
alignment condition does not hold for this box. Its close subface, which could be either its lower
left-hand corner or upper right-hand corner, is contained by another box smaller than a. All other
boxes satisfy the alignment condition. For example, box b does not have to be split; its close subface
could be either its bottom edge or right edge. The right edge will have higher priority, since the
alignment condition holds for that edge.

could not end up in OF (i.e., if they were still active in phase dim(F ), they would be
crowded).

As mentioned earlier, a box is protected if the alignment condition holds for its
close subface. We make the following claim: if the alignment condition holds for B at
the time it is protected, then the condition continues to hold for the remainder of the
algorithm. In other words, the following situation cannot occur: a box B with close
subface B0 is deemed to satisfy the alignment condition and becomes protected. Later
a neighboring box B̄ also containing B0 as a subface gets split because the alignment
condition does not hold for B̄, thus causing the alignment condition to be violated
for B.

To prove the claim in the last paragraph, we must describe the order in which
QMG processes the boxes in an orbit OF . “Process” means that QMG determines
whether the box satisfies the alignment condition; if so, then protect it, and if not,
then split it. The correct order is to start with the largest boxes in the orbit, working
down to the smallest. Within the set of boxes of the same size, we process those with
the lowest-dimensional close subfaces first, working toward highest-dimensional close
subfaces.

• Inserting boundary edges and tree balancing.



Detail: Mesh Generation
The mesh vertices consist of cell corners and intersecting points of cell  
sides with boundary edges. Templates are designed to quickly triangulate  
the cells. 



Software: QMG, Cornell University



Main Difficulties
• Specific consideration must 

be given to the interaction of 
the cells of the tree and the 
geometric domain. 

• Determine the intersections of 
the cells of the tree represents 
the most complex aspect of 
the method.  

• 3D cases are much more 
complicated.



• Mesh quality are degraded at 
domain boundary. 

• Mesh improvement is 
necessary.



Advancing Front



Introduction
• Advancing Front methods for mesh 

generation has been a topic of 
research since 1980s, pioneered 
by [Lo-1985, Perrier et al-1987, 
Löhner & Parikh-1988]. 

• This type of methods is fully 
automatic for arbitrary complicated 
domains. 

• It is now a very powerful and 
mature technique for generating 
high-quality unstructured meshes.

Ansys



Introduction (cont’d)

• This method allows for the generation of high 
quality (aspect ratio) mesh elements that fit domain 
boundary. 

• Mesh sizing control is easily adapted by using 
mesh spacing control functions. Resulting nicely 
graded meshes.  

• On the other hand, convergence problems can 
occur, especially in 3d, as it is not always 
guarantee how to cover the entire domain. 



General Principles

• Assume the domain 
boundary has been properly 
subdivided (into) the right 
element shape and size. 

• Form the initial front of all 
boundary edges (faces).

[Peraire et al1998]



1. Generate new mesh 
elements from current front. 

2. Update the front. 

3. Repeat 1 and 2 until the front 
is empty.

General Principles



Advancing Front

A B

C

•Begin with boundary mesh - define as initial front 
•For each edge (face) on front, locate ideal node C based on front AB



Advancing Front

A B

C
r

•Determine if any other nodes on current front are within search 
radius r of ideal location C (Choose D instead of C)

D



Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front

D



Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front



Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front



Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front



Advancing Front

A

B

C

•Where multiple choices are available, use best quality (closest 
shape to equilateral) 
•Reject any that would intersect existing front 
•Reject any inverted triangles (|AB X AC| > 0) 
•(Lohner,88;96)(Lo,91)

r



Detail: Creation of New Points
1. Select a front entity f (based on a specific criterion) 

2. Determine a ``best-point” position P_opt for this entity. 

3. Identify if a point P exists in the current mesh that 
should be used in preference to P_opt. If such a point 
exists, consider using it as P_opt. 

4. Form an element K with f and P_opt. 

5. Check if the element K intersects any mesh entity. If this 
check fails, pick a new point P (if any) and return to 4. 





Detail: Finding Optimal Point Location



Detail: Finding Optimal Point Location



Detail: Avoid Front Collision



Remarks

• The principle of any AFT method is relatively simple 
and practical. It generates high quality meshes. 

• However, several details to be implemented are all 
based on heuristics. 

• In 3d, none of the AFT methods has guarantee that 
it will complete. 



Delaunay-based 
Methods



40

Delaunay

Triangle 
Jonathon Shewchuk 
http://www-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D 
INRIA, France 
http://www.simulog.fr/tetmesh/



Delaunay Triangulation:  
Obeys empty-circle (sphere) property

Delaunay



Non-Delaunay Triangulation 

Delaunay



Lawson Algorithm 
•Locate triangle containing X 
•Subdivide triangle 
•Recursively check adjoining 
triangles to ensure empty-
circle property.  Swap diagonal 
if needed 
•(Lawson,77)

X

Given a Delaunay 
Triangulation of n nodes, 
How do I insert node n+1 ?

Delaunay



X

Lawson Algorithm 
•Locate triangle containing X 
•Subdivide triangle 
•Recursively check adjoining 
triangles to ensure empty-
circle property.  Swap diagonal 
if needed 
•(Lawson,77)

Delaunay



Bowyer-Watson Algorithm 
•Locate triangle that contains 
the point 
•Search for all triangles whose 
circumcircle contain the point 
(d<r) 
•Delete the triangles (creating a 
void in the mesh) 
•Form new triangles from the 
new point and the void 
boundary 
•(Watson,81) 

X

r c
d

Given a Delaunay 
Triangulation of n nodes, 
How do I insert node n+1 ?

Delaunay



Delaunay

•Begin with Bounding Triangles (or Tetrahedra)



Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)



Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)



Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)



Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)



Delaunay

•Recover boundary 
•Delete outside triangles 
•Insert internal nodes



Delaunay

Node Insertion

Grid Based 
•Nodes introduced based on a regular lattice 
•Lattice could be rectangular, triangular, quadtree, etc… 
•Outside nodes ignored

h



Delaunay

Node Insertion

Grid Based 
•Nodes introduced based on a regular lattice 
•Lattice could be rectangular, triangular, quadtree, etc… 
•Outside nodes ignored



Delaunay

Node Insertion

Centroid 
•Nodes introduced at triangle centroids 
•Continues until edge length, hl ≈



Delaunay

Node Insertion

Centroid 
•Nodes introduced at triangle centroids 
•Continues until edge length, hl ≈

l



Delaunay

Node Insertion

Circumcenter (“Guaranteed Quality”) 
•Nodes introduced at triangle circumcenters 
•Order of insertion based on minimum angle of any triangle 
•Continues until minimum angle > predefined minimum  

α

)30( �≈α
(Chew,Ruppert,Shewchuk)



Delaunay

Circumcenter (“Guaranteed Quality”) 
•Nodes introduced at triangle circumcenters 
•Order of insertion based on minimum angle of any triangle 
•Continues until minimum angle > predefined minimum  )30( �≈α

Node Insertion (Chew,Ruppert,Shewchuk)



Delaunay

Advancing Front 
•“Front” structure maintained throughout 
•Nodes introduced at ideal location from current front edge 

Node Insertion

A B

C

(Marcum,95)



Delaunay

Advancing Front 
•“Front” structure maintained throughout 
•Nodes introduced at ideal location from current front edge 

Node Insertion
(Marcum,95)



Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 
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Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 



Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 



Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 



Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 

(George,91)(Owen,99)



D C

VS

Delaunay

Local Swapping Example 
•Recover edge CD at vector Vs 

Boundary Constrained



D C

E1

E2

E3

E4E5

E6
E7

E8

Local Swapping Example 
•Make a list (queue) of all edges Ei, that intersect Vs 

Delaunay

Boundary Constrained



D C
E1

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Swap the diagonal of adjacent triangle pairs for each edge 
in the list 

Boundary Constrained



D C

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Check that resulting swaps do not cause overlapping 
triangles.  I they do, then place edge at the back of the 
queue and try again later 



D C

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Check that resulting swaps do not cause overlapping 
triangles.  If they do, then place edge at the back of the 
queue and try again later 



D C

E6

Local Swapping Example 
•Final swap will recover the desired edge. 
•Resulting triangle quality may be poor if multiple swaps 
were necessary 
•Does not maintain Delaunay criterion! 



Delaunay

A

C

D E

B

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABC = non-conforming face

DE = edge to be recovered

(George,91;99)(Owen,00)



Delaunay

A

B

C

D E

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABC = non-conforming face

DE = edge to be recovered

ABCE 
ACBD

2-3 Swap

(George,91;99)(Owen,00)



Delaunay

A

B

C

D E

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABCE 
ACBD

2-3 Swap
BAED 
CBED 
ACED

DE = edge recovered

(George,91;99)(Owen,00)



Delaunay

A

C

D E

B

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

DE = edge recovered

ABCE 
ACBD

2-3 Swap
BAED 
CBED 
ECED

(George,91;99)(Owen,00)



Delaunay

A B

A B
S

S

3D Edge Recovery 
•Form queue of faces through which edge AB will pass 
•Perform 2-3 swap transformations on all faces in the list 
•If overlapping tets result, place back on queue and try again later 
•If still cannot recover edge, then insert “steiner” point  

Edge AB to be recovered

Exploded view of tets 
intersected by AB


