Overview of Unstructured
Mesh Generation Methods

Structured Meshes

* |local mesh points and cells do not depend on thelir

position but are defined by a general rule.

* Lead to very efticient algorithms and storage.

* High quality for numerical methods.

XA
aiai gy ALY
e r s ma SIS

.:;. FRAEEID Y N OCKAQUEAS ./M.f . :

)

e —————
W

0
o

)

X T SRR,
......"...""......".ﬂtﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂuﬂ
)

\
X OO
0 .. :..&.Illllllllllllll

\
AR

.

[T 771771771717
ONYAINT I TS T T T 77T 7]
NN ..f. [T 77777777777
NN T T T 77 717
QNI AT T T 7117
...‘. NI T 17717717

i
..“....)

“..
..... .. [T 1777771717 171771717
N T TS 7T 7T 7777
OWNT T T T T T T
MNT 7777777111111
N ...Illllllllllllll

Methods

10N

Structured Grid Generat

e Conformal mapping
* Solving PDEs — Elliptic, Parabolic/Hyperbolic

 Multi-block structured methods

* Transfinite interpolation

I

' o 5 L | I B
T T

+H

-
oy

M

T

FIGURE 4.6 Laplace grid. Grid control map is the identity map.

- B LLLLUILRENUNSNNUGY

RS
R =
e
\ 9%

y

)

\\X

—

| 7

\ 0% Sy
Wy

yfnmmxv B
. \ /u:n.h\\\\\\ﬁ\ﬂﬁ\ 11
S

~ A ERERRRRRRAR R RN

T
e =

% m"" -__-==.==_=“\==

s(5)
s(5)

I
|
|
|
|
|
W
o | 3
(1] W [1]
|
|
|
|
|
|
|
|

Limitations of Structured Meshes

* Only suitable for domain with regular shapes.

* The block-structured (or hybrid) mesh is formed by
a number of structured meshes combined in an
unstructured pattern.

* Mesh adaptation is difficult.

Unstructured Meshes

e An unstructured mesh is one which vertices have
arbitrary varying local neighbours.

* Such mesh are more easy to fit in complex domain.

* Such mesh are easy for mesh adaptation.

=N WA LN 0O =~
(=]

e Quadtree-Octree based methods
* Advancing-front methods

* Delaunay-based methods

Quadtree-Octree
based Methods

lNtroauction

« |tis one of the spatial tree data
structures used widely in geometric
computation.

e Quadtree-Octree based methods
for mesh generation has been a
topic of research since 1980s,
pioneered by [Thacker-1980,
Yerry,Shephard-1983].

e This type of methods is fully
automatic for arbitrary complicated
domains.

L 0

1

1

3

2

quadrant order

M interior quadrant
0 exterior quadrant
F] boundary quadrant

Quadtree

FIGURE 15.1 Quadtree example.

[HandbookGG, Chap 15, Shephard et al]

General Principles

* The mesh domain is first approximate by a union of disjoint
and viable sized cells. These cells are obtained by recursive
refinement with a set of subdivision rules and stopping criteria.

* Each cell is decomposed into a set of mesh elements by a set
of templates.

/ \
A H
] A \ an
/ e
[Ay e
HH ns s
\ T P M H
| BN [/
N NS /
_$ L1

Picture of Persson’s Mesh Course 2006

*Define intial bounding box (oot of quadtree)

*Recursively break into 4 leaves per root to resolve geometry

*Find intersections of leaves with geometry boundary

*Mesh each /eaf using corners, side nodes and intersections with geometry
*Delete Outside

*(Yerry and Shephard, 84), (Shepperd and Georges, 91)

Detall: Tree Construction

The tree construction is an iterative procedure that
builds the covering tree of the domain

A. Selection of a boundary entity, in ascending order (point, edges, faces).
B. ldentification of the cell in the current tree that contains this entity.

C. Analysis of the cell, if it already contains an entity of the same dimension
then refine the cell (with 4 equally sized cells), otherwise, back to (B)

D. Insertion of the entity in the cell and back to (A).

7 : ’ ' : S~ /
- ; / | : sV /
| 7 | : / I - /7 -
D] I S : 7 W/ :
/ | . I : / \ -
| / | : // \:
/ I s v
| : | e A
|] : :
| i
............. l l
.................................. N
< s
~ -~
2
7~
s/ e = = = = = A -
- B
Sk~ // /
\\/ Y
/
/
7
/ ----------------------------

Fic. 5.1. Ezxamples of crowdedness: solid lines indicate boxes, dotted lines indicate ex(B) for

these boxes, dashed lines indicate the boundary of P, and shading represents the interior of P.
Suppose we are in the separation stage of the phase 0 in the case d = 2. All boxes in the top row
are uncrowded. The first box would be placed into Oqy. The second box would be placed into I1. The
third box in the top row must be duplicated, and then one duplicate would go into Oy and the other

mto Ow. Both boxes in the bottom row are crowded and must be split.

Cell refinement examples [Mitschell & Vavasis 2000]

Detall: ITree Balancing

* The tree resulting from the tree construction procedure

can be rather unbalanced. It is not efficient for future
mesh generation:

* [he size variation between neighbour cells will
iIncrease the searching cost.

* |t complicates the mesh template design

 The 2-to-1 Rule: A tree subdivision is balanced if every

side (edge) of a terminal cell contains at most one
corner (hanging node) .

_—

FIGURE 15.7 Quadtree example before (left) and after (right) one-level difference enforcement.

An example of tree balancing

Detall: Boundary Intersection

* Filtering of the intersecting points

* This step could be very tedious and time
consuming.

Figure 5.10: Insertion of the boundary edges in the tree. Left, two intersection
points are close to the quadrant corner. Right, the points have been merged together
into a single one, the quadrant corner then being moved toward the resulting point.

[Frey & George 2000]

* |nserting boundary edges and tree balancing.

Fic. 6.1. The alignment condition in the case d = 2,k = 1: the boxes in this figure are the
extended orbit of a P-edge E, which s the dashed line. The two large boxes at the ends are protected
boxes for the endpoints of E, protected from phase 0. In this figure, box a must be split because the
alignment condition does not hold for this box. Its close subface, which could be either its lower
left-hand corner or upper right-hand corner, is contained by another box smaller than a. All other
boxes satisfy the alignment condition. For example, box b does not have to be split; its close subface
could be either its bottom edge or right edge. The right edge will have higher priority, since the
alignment condition holds for that edge.

[Mitschell & Vavasis 2000]

Detall: Mesh Generation

The mesh vertices consist of cell corners and intersecting points of cell
sides with boundary edges. Templates are designed to quickly triangulate
the cells.

Figure 5.12: A set of six plausible patterns to trangulate the internal quadrants
(the other patterns can be retrieved using the rotational symmetry properties) and
four patterns used to mesh boundary quadrants (in the last two patterns, the in-
tersection point sees the other quadrant points).

Voo
05} ol 05}
0 Q. 0
-0.5) 0.5} \
4 05 0 05 1 05 0

Software: QMG, Cornell University

Main Difficulties

* Specific consideration must
be given to the interaction of
the cells of the tree and the
geometric domain.

e Determine the intersections of

{
{
{

ne cells of the tree represents
ne most complex aspect of

ne method.

* 3D cases are much more
complicated.

FIGURE 15.4 Options for the interactions of the model boundary with the boundary of the tree cells.

* Mesh quality are degraded at
domain boundary.

* Mesh improvement is
necessary.

05}

i

Advancing Front

lNtroauction

e Advancing Front methods for mesh
generation has been a topic of
research since 1980s, pioneered
by [L0-1985, Perrier et al-1987,
Lohner & Parikh-1988].

e This type of methods is fully
automatic for arbitrary complicated
domains.

e |tis now a very powerful and
mature technique for generating
high-quality unstructured meshes.

ANsys

Introduction (cont’d)

* This method allows for the generation of high
quality (aspect ratio) mesh elements that fit domain
boundary.

* Mesh sizing control is easily adapted by using
mesh spacing control functions. Resulting nicely
graded meshes.

* On the other hand, convergence problems can
occur, especially in 3d, as it is not always
guarantee how to cover the entire domain.

General Principles

» Assume the domain |
boundary has been propel | f\wf\} Rt
subdivided (into) the right et R Al
element shape and size.)

e Form the initial front of all
b O u n d a ry e d g e S (faC e S) . ::G.URE 174 The front updating procedure in two dimensions. (a) The initial generation front. (b) Creation of a

w element: (1) no new point is created; (2) the new point 19 is created. (c) The updating of the front for the case

(b) (2).

[Peraire et al1998]

General Principles

BERERCHCRENCRERER

JLj1z2i k0 _1_34!5161_113 L1
O3 0215 0417|361 18]1¢

Generate new mesh
elements from current front.

Update the front. o N A

. 1% a i E-T.IMTFLTEI)
Repeat 1 and 2 until the front /\3 CERERERT Bl
iS e m pty. - B iﬁi_:_i i_:] :: _:: :: :::; :‘ :_91 ;j

FIGURE 17.4 The front updating procedure in two dimensions. (a) The initial generation front. (b) Creation of a
new element: (1) no new point is created; (2) the new point 19 is created. (¢) The updating of the front for the case

(b) (2).

Advancing Front

A B

*Begin with boundary mesh - define as initial front
*For each edge (face) on front, locate 1deal node C based on front AB

Advancing Front

A B

*Determine if any other nodes on current front are within search
radius 7 of ideal location C (Choose D instead of C)

Advancing Front

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
«Continue until no front edges remain on front

Advancing Front

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
«Continue until no front edges remain on front

Advancing Front

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
«Continue until no front edges remain on front

Advancing Front

*Book-Keeping: New front edges added and deleted from front as
triangles are formed
«Continue until no front edges remain on front

Advancing Front

A
®

B

*Where multiple choices are available, use best quality (closest
shape to equilateral)

*Reject any that would intersect existing front

*Reject any inverted triangles (|JAB X AC| > 0)
*(Lohner,88;96)(L0,91)

Detall: Creation of New Points

. Select a front entity f (based on a specific criterion)
. Determine a "best-point” position P_opt for this entity.

. ldentity it a point P exists in the current mesh that
should be used in preterence to P_opt. It such a point
exists, consider using it as P_opt.

. Form an element K with f and P_opit.

. Check it the element K intersects any mesh entity. If this
check fails, pick a new point P (if any) and return to 4.

FIGURE 17.5 The advancing front technique showing different stages during the triangulation process.

Detall: Finding Optimal Point Location

Figure 6.4: Optimal point creation in two dimensions (left-hand side) and three
dimensions (right-hand side).

Detall: Finding Optimal Point Location

Figure 6.5: Identification of all potential candidates for optimal point creation in
two dimensions. Left : no candidate other than P,y emists. Right . the P;’s
represent all the posstble candidates.

Detail: Avoid Front Collision

4 — 6
S e P
| N 5 . o !
i < 1\’}// - /'// / !
e // ’ 1\/ 3 /
L 6 ~. - |3
1 5(,/ - j’?;/ SN
AT/ 2
P Vs
1 f\j\\ |\ //
\\.2\\;///

 — «—= no solution

Figure 6.7: Schonhardt polyhedron : valid and non-decomposable (without adding
an internal point) constrained triangulation of a regular prism.

Remarks

* The principle of any AFT method is relatively simple
and practical. It generates high quality meshes.

* However, several details to be implemented are all
based on heuristics.

* |n 3d, none of the AFT methods has guarantee that
it will complete.

Delaunay-based
Methods

Delaunay

Triangle
Jonathon Shewchuk
http://lwww-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D
INRIA, France
http://www.simulog.fr/tetmesh/

40

circle (sphere) property

=
o
e
=
=
o)
=
.n LWJ
=-a,
> &
S O
m »
I
-0 O
aWe

-

launay

De

RIS

z

-
>

~ - ~—a -

Non-Delaunay Triangulation

=~

Delaunay

Delaunay

Given a Delaunay
Triangulation of n nodes,
How do I insert node n+1 ?

Lawson Algorithm

L ocate triangle containing X
*Subdivide triangle
*Recursively check adjoining
triangles to ensure empty-
circle property. Swap diagonal
if needed

«(Lawson,77)

Delaunay

Lawson Algorithm

L ocate triangle containing X
*Subdivide triangle
*Recursively check adjoining
triangles to ensure empty-
circle property. Swap diagonal
if needed

«(Lawson,77)

Delaunay

Given a Delaunay
Triangulation of n nodes,
How do I insert node n+1 ?

Bowyer-Watson Algorithm
*Locate triangle that contains
the point

*Search for all triangles whose
circumcircle contain the point
(d<r)

*Delete the triangles (creating a
void in the mesh)

*Form new triangles from the
new point and the void
boundary

*(Watson,81)

Delaunay

*Begin with Bounding Triangles (or Tetrahedra)

Delaunay

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

Delaunay

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

Delaunay

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

Delaunay

Insert boundary nodes using Delaunay method
(Lawson or Bowyer-Watson)

Delaunay

*Recover boundary
*Delete outside triangles
Insert internal nodes

Delaunay

Grid Based

*Nodes introduced based on a regular lattice

Lattice could be rectangular, triangular, quadtree, etc...
*Outside nodes ignored

Node Insertion

Delaunay

Grid Based

*Nodes introduced based on a regular lattice

Lattice could be rectangular, triangular, quadtree, etc...
*Outside nodes ignored

Node Insertion

Delaunay

Centroid

*Nodes introduced at triangle centroids
«Continues until edge length, | = /4

Node Insertion

Delaunay

Centroid

*Nodes introduced at triangle centroids
«Continues until edge length, | = /4

Node Insertion

Delaunay

Circumcenter (“Guaranteed Quality”)

*Nodes introduced at triangle circumcenters

*Order of insertion based on minimum angle of any triangle
*Continues until minimum angle > predefined minimum (g, ~ 3()[%]

Node Insertion (Chew,Ruppert,Shewchuk)

Delaunay

Circumcenter (“Guaranteed Quality”)

*Nodes introduced at triangle circumcenters

*Order of insertion based on minimum angle of any triangle
*Continues until minimum angle > predefined minimum (g, ~ 3()[%]

Node Insertion (Chew,Ruppert,Shewchuk)

Delaunay

Advancing Front
*“Front” structure maintained throughout
*Nodes introduced at ideal location from current front edge

(Marcum,95)

Node Insertion

Delaunay

Advancing Front
*“Front” structure maintained throughout
*Nodes introduced at ideal location from current front edge

(Marcum,95)

Node Insertion

Delaunay

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

Delaunay

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

Delaunay

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

Delaunay

Local Swapping
*Edges swapped between adjacent pairs of triangles until
boundary is maintained

Boundary Constrained

Delaunay

Local Swapping
*Edges swapped between adjacent pairs of triangles until

boundary is maintained
(George,91)(Owen,99)

Boundary Constrained

Del

Local Swapping Example
«Recover edge CD at vector V|

Boundary Constrained

Dele

Local Swapping Example
«Make a list (queue) of all edges E,, that intersect V|

Boundary Constrained

Dele

Local Swapping Example
*Swap the diagonal of adjacent triangle pairs for each edge
in the list

Boundary Constrained

Dele

Local Swapping Example

*Check that resulting swaps do not cause overlapping
triangles. I they do, then place edge at the back of the
queue and try again later

Dele

Local Swapping Example

*Check that resulting swaps do not cause overlapping
triangles. If they do, then place edge at the back of the
queue and try again later

Local Swapping Example
*Final swap will recover the desired edge.

*Resulting triangle quality may be poor if multiple swaps
were necessary

*Does not maintain Delaunay criterion!

Delaunay

Edge Recovery
B *Force edges into triangulation by

DE = edge to b d - i
eage to be recovere performing 2-3 swap transformation

D E

ABC = non-conforming face

A
3D Local Swapping
*Requires both boundary edge recovery and boundary face
recovery

(George,91;99)(0Owen,00)

Boundary Constrained

Delaunay

Edge Recovery
B *Force edges into triangulation by

DE = edge to b d - i
eage to be recovere performing 2-3 swap transformation

D E

2-3 Swap

ABCE

ACBD
ABC = non-conforming face

A
3D Local Swapping
*Requires both boundary edge recovery and boundary face
recovery

(George,91;99)(0Owen,00)

Boundary Constrained

Delaunay

Edge Recovery
*Force edges into triangulation by
performing 2-3 swap transformation

B

DE = edge recovered

D E
2-3 Swap
BAED
jggg — CBED

ACED
3D Local Swapping
*Requires both boundary edge recovery and boundary face
recovery

(George,91;99)(0Owen,00)

Boundary Constrained

Delaunay

Edge Recovery
B *Force edges into triangulation by

DE = ed, d i i
eage recovere performing 2-3 swap transformation

E
2-3 Swap
BAED
jggg — CBED
ECED
A

3D Local Swapping
*Requires both boundary edge recovery and boundary face
recovery

(George,91;99)(0Owen,00)

Boundary Constrained

Delaunay

Edge AB to be recovered

Exploded view of tets
intersected by AB

3D Edge Recovery
*Form queue of faces through which edge AB will pass
*Perform 2-3 swap transformations on all faces in the list

*If overlapping tets result, place back on queue and try again later
o[f still cannot recover edge, then insert “steiner” point

