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• My name is Hang Si. I’m a senior researcher in 
Weierstrass Institute (WIAS) in Berlin.  

• My main research interest is mesh generation for 
scientific computing. I’m developing  the software, 
TetGen -- a Delaunay-based tetrahedral mesh 
generator. It is freely available for academic use at 
http://www.tetgen.org.  

• Homepage: http://www.wias-berlin.de/people/si

http://www.tetgen.org/
http://www.wias-berlin.de/people/si


The topic of this lecture is about 
mesh generation. 

But first, what are meshes?



Meshes in Nature Objects
a view from the airplane

the wing of a dragonfly



Mdeshes in Architechures



Meshes in Daily life



• Meshes are partitions of geometric 
objects. 

• Meshes are discrete representations of 
continuous objects. 

• Meshes may be called differently in 
different areas and literatures, like 
grids, triangulations, etc.



Geo Information Science (GIS)

Google earth



Scientific Visualization



Meshes Are Tools to Solve 
Complicated Problems



Robot Route Plan

15 Visibility Graphs
Finding the Shortest Route

In Chapter 13 we saw how to plan a path for a robot from a given start position
to a given goal position. The algorithm we gave always finds a path if it exists,
but we made no claims about the quality of the path: it could make a large
detour, or make lots of unnecessary turns. In practical situations we would
prefer to find not just any path, but a good path.

Figure 15.1
A shortest path

What constitutes a good path depends on the robot. In general, the longer a
path, the more time it will take the robot to reach its goal position. For a mobile
robot on a factory floor this means it can transport less goods per time unit,
resulting in a loss of productivity. Therefore we would prefer a short path. Often
there are other issues that play a role as well. For example, some robots can only
move in a straight line; they have to slow down, stop, and rotate, before they
can start moving into a different direction, so any turn along the path causes
some delay. For this type of robot not only the path length but also the number
of turns on the path has to be taken into account. In this chapter we ignore
this aspect; we only show how to compute the Euclidean shortest path for a
translating planar robot. 323

H. Bennett & E. Papadoupolou & C. Yap / Planar Minimization Diagrams

Figure 10: These two images show a Voronoi diagram computed

on the same collection of line segments. The first image was pro-

duced with εa set to be relatively large, and with no εg, while the

second image was produced with small εg. The first image shows

that relatively little splitting is necessary to trace bisectors and con-

firm many Voronoi vertices. The second image (in which the grid is

turned off) shows the effect of computing to high geometric preci-

sion (small εg).

Figure 11: A Voronoi diagram with mixed point and line segment

input sites with small εg.

Figure 12: A Voronoi diagram with point sites each equipped with a

different anisotropic metric. Some of the metrics are very different,

leading to disconnected Voronoi regions.

c⃝ 2016 The Author(s)

Computer Graphics Forum c⃝ 2016 The Eurographics Association and John Wiley & Sons Ltd.
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Chapter 15

VISIBILITY GRAPHS

This finishes the description of the algorithm VISIBLEVERTICES to compute
the vertices visible from a given point p.

What is the running time of VISIBLEVERTICES? The time we spent before
line 4 is dominated by the time to sort the vertices in cyclic order around p,
which is O(n logn). Each execution of the loop involves a constant number
of operations on the balanced search tree T, which take O(logn) time, plus a
constant number of geometric tests that take constant time. Hence, one execution
takes O(logn) time, leading to an overall running time of O(n logn).

Recall that we have to apply VISIBLEVERTICES to each of the n vertices of S
in order to compute the entire visibility graph. We get the following theorem:

Theorem 15.4 The visibility graph of a set S of disjoint polygonal obstacles
with n edges in total can be computed in O(n2 logn) time.

15.3 Shortest Paths for a Translating Polygonal Robot

In Chapter 13 we have seen that we can reduce the motion planning problem
for a translating, convex, polygonal robot R to the case of a point robot by
computing the free configuration space Cfree. The reduction involves computing
the Minkowski sum of�R, a reflected copy of R, with each of the obstacles, and
taking the union of the resulting configuration-space obstacles. This gives us a

Figure 15.5
Computing a shortest path for a

polygonal robot

work space configuration space visibility graph

set of disjoint polygons, whose union is the forbidden configuration space. We
can then compute a shortest path with the method we used for a point robot: we
extend the set of polygons with the points in configuration space that correspond
to the start and goal placement, compute the visibility graph of the polygons,
assign each arc a weight which is the Euclidean length of the corresponding
visibility edge, and find a shortest path in the visibility graph using Dijkstra’s
algorithm.

To what running time does this approach lead? Lemma 13.13 states that
the forbidden space can be computed in O(n log2 n) time. Furthermore, the
complexity of the forbidden space is O(n) by Theorem 13.12, so from the330

Voronoi diagram with obstacles



Example: The Art Gallery Problem

• Many additional criteria, e.g. related to energy performance
or fabrication play a role in practice. This shows that in this
area, like elsewhere, there is much demand for robust, fast, and
e�ciently usable multi-criteria optimization tools (for initial re-
sults see §11).

Figure 9: A pioneer of using devel-
opable freeform surfaces is Frank
Gehry. A combination of physi-
cal and digital modeling has been
used for the 1997 Guggenheim Mu-
seum in Bilbao as well as for other
projects like the 2003 Walt Disney
Concert Hall in Los Angeles (at
left, photo by Jon Sullivan).

3. Developable panels and semi-discrete models – skins from

smooth strips

3.1. Developable surfaces as limits of PQ meshes.
Developable surfaces, also known as single-curved surfaces,
can be unfolded into the plane without stretching or tearing.
Thus it is easy to cover them with panels from metal or other
materials with a similar behavior. They are characterized by
containing a family of straight lines, each of which possesses a
constant tangent plane – see Figure 10 for an illustration of this
fact and a limit process which transforms a sequence of planar
quads into a developable strip. Their developability is not the
only property of such surfaces relevant to fabrication: also the
straight lines contained in developables have advantages for the
fabrication of the substructure.

�!

Figure 10: Generating developable strip models by refining a PQ mesh so that
the quads stay planar in all stages. In the limit (right) one gets ruled strips with
a constant tangent plane along each ruling (namely, the limit of a face plane in
the PQ strip).

The work of Frank Gehry (Figures 1, 9, 11) is an excel-
lent example for the use of developable surfaces in architecture
and for the influence of digital technology. The metal cladding
in early projects is less perfect than the one in later projects
where Gehry could already use specialized software for repre-
senting developable surfaces, integrated by Gehry Technologies
into the CAD system Catia [94].

The limiting process that generates a developable strip from
a strip of planar quads, may also be applied to an entire PQ
mesh (see Figure 10). The result is a D-strip model [81]. This
piecewise developable surface can be seen as a semidiscrete sur-
face, smooth in one parameter direction and discrete in the other

one. Computationally, one may not want to work with a repre-
sentation which exhibits very thin quads. It is better to represent
the individual strips as B-spline surfaces of degree (1, n) (usu-
ally n = 3) and optimize them towards developability [81]. For
the rather large literature on developable spline surfaces, see
e.g. [3, 22, 83].

Figure 11: Each of the ‘sails’
of the Fondation Louis Vuitton
by Frank Gehry consists of devel-
opable strips – for a mathematician
this is an example of a semidiscrete
conjugate surface. For the actual
building, the strips were approxi-
mated by cylindrical glass panels
(Photo: Mairie de Paris).

3.2. Special cases of strip models
The strip boundaries and the rulings across the strips represent
a network of curves (much like the edge polylines in a regu-
lar PQ mesh) which is known to be a semidiscrete version of
a network of conjugate curves. Special instances of conjugate
networks correspond to special kinds of D-strip models. For
example, imposing the condition of orthogonality yields the
principal curvature lines, whose semidiscrete counterparts have
properties similar to the circular and conical meshes encoun-
tered earlier [81]. One of them is the existence of a semidiscrete
support structure which is important for fabrication and which
is visualized in Fig. 33: There is a developable approximately
orthogonal to the surface through each strip boundary; such de-
velopables may serve as the sides of curved beams with rect-
angular cross-section which are manufacturable by bending, cf.
[89, 4]. We treat this topic in detail in §6.1.

Figure 12: The Ei↵el Tower Pavil-
lons feature near-deveopable strips;
it follows that this design essen-
tially represents a semidiscrete con-
jugate surface. That property also
led to a very good rationalization
of the developable glass strips by
cylinders. The image shows the de-
sign with one cylinder belonging to
a glass panel.

Another special case are geodesic D-strip models, whose
strips follow geodesic curves, modeling straight strips of pa-
per which are put onto curved surfaces. They have interesting
applications in paneling with wood. Since wooden strips are
easily subject to torsion, they can be modelled as developable
surfaces to a lesser degree than skins made from sheet metal.
Wooden panels in the Burj Khalifa (2010, Dubai) provide an
example, see Figure 13 and [69].
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How many cameras are needed to 
guard a museum?

Subhash Suri UC Santa Barbara

Art Gallery Theorem

22−gon.

7 Guards

Theorem: g(n) = bn/3c

1. Every n-gon can be guarded with bn/3c
vertex guards.

2. Some n-gons require at least bn/3c
(arbitrary) guards.

Necessity Construction

Subhash Suri UC Santa Barbara

Art Gallery Theorem

22−gon.

7 Guards

Theorem: g(n) = bn/3c

1. Every n-gon can be guarded with bn/3c
vertex guards.

2. Some n-gons require at least bn/3c
(arbitrary) guards.

Necessity Construction

Subhash Suri UC Santa Barbara
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• Triangulate P . 3-color it.

• Least frequent color appears at most bn/3c
times.

• Place guards at this color positions—a
triangle has all 3 colors, so seen by a
gaurd.

• In example: Colors 1, 2, 3 appear 9, 8 and
7 times, resp. So, color 3 works.



Meshes are Backbones of 
3D Computations and 

Applications



Solid & Geometric Modeling

Blender



Computer Games



Computer Animations



Geometry Processing

Multiresolution of scanned data (P. Alliez)

Skinning of 3D Objects (A. Jacobson)



Hobbit 3 



Numerical Simulation
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Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and 
Boundary Conditions

4. Computational Analysis 5. Visualization

2 kN
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Adaptive Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and Boundary Conditions

4. Computational Analysis

7. Visualization

2 kN

5. Error Estimation

Error?

6. Remesh/Refine/Improve

Adaptivity Loop

Error < ε

Error > ε

User 
supplies meshing  

parameters

Analysis Code 
supplies meshing  

parameters



Houdini 



What is 
Mesh Generation?



• Mesh generation is a practice of generating a 
polygon or polyhedral mesh that approximates a 
geometric domain.

— Wikipedia



Why Studying 
Mesh Generation?



Mesh Generation is the 
bottleneck of applications:  

No mesh, No Run!



However, the importance of mesh 
generation is often ignored!

• … let’s assume there is a mesh … 

• … let T_h be a triangulation whose size h tends to 
0, …

Typical text which appear in books and literatures: 



• Automatically generating meshes from arbitrary 3d 
geometries is very challenging.

Why Mesh Generation?

All You Always Wanted to Know About Meshing · WIAS Day 2016, February 16 – 17, 2016 · Page 18
(135)



• Mesh generation can take orders of magnitude more 
man-hours — J. Thompson (Prof. of Areospace, Pioneer of 
mesh generation techniques) 

Some CAD models, freely available from  
http://www.grabcad.com

http://www.grabcad.com


• Numerical simulation requires high quality meshes for 
achieving accuracy and efficiency. 

• To generate a ``good quality” mesh for the underlying 
physical problem is a very challenging task.

Anisotropy

Flow features:

• Phenomena concentrated in small regions, mesh size is important

• Anisotropic phenomena: shock waves, boundary layers,...

the mesh is not optimal w/r directions

• Regions move when unsteady phenomena

uniformely fine mesh everywhere

(� general framework)

14th Int. Meshing Roundtable, San Diego, CA, USA September 11-14, 2005 61/ 61

CFD simulations

Adapted meshes and density fields (iter. 0, 9).

14th Int. Meshing Roundtable, San Diego, CA, USA September 11-14, 2005 48/ 61



Example: Adaptive FEM for the Wave Equation

⇢
@2

u

@t

2 � µ�u = f in ⌦ ,
u = 0 in @⌦ ,

here µ = 1., f discrete Dirac function.
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Why Mesh Generation

Math Engineering
Computer

Art
Science

All You Always Wanted to Know About Meshing · WIAS Day 2016, February 16 – 17, 2016 · Page 21
(135)

• Mesh generation is a topic in which a meaningful combination 
of different approaches to problem solving is inevitable — H. 
Edelsbrunner (Prof. of Math & Computer Science, Pioneer of computational 
geometry and topology) 



Resources for Studying 
Mesh Generations



Resources on the web

• S. Owen, survey of mesh generation techniques, 
1998. 

• Mesh research corner, maintained by S. Owen. 

• Mesh generation on the web, maintained by R. 
Schneider.



Literatures, Books



Conferences



Commercial Softwares
• Tetmesh-GHS3D, INRIA, France 

• MeshSim, SCOPEC, RPI, Simmetrix Inc. USA 

• VisTools/Mesh, AreoAstro, MIT, Vki Inc, USA 

• GridPro, USA 

• GridGen, USA 

• …



Open Source Softwares
• Netgen, TU Vienna, Austra 

• Gmsh, Uni. Liege & Uni C. d. Louvain, Belgium 

• GRUMMP, Uni. British Columbia, Canada 

• Triangle, UC Berkeley, USA 

• CGALmesh, INRIA, France 

• TetGen, WIAS Berlin, Germany 

• …


