
TRIANGULATIONS IN R2

HANG SI

Contents

1. Introduction 1
2. Triangulations 2
2.1. Simplical Complexes 2
2.2. Euler’s Formula 3
2.3. Line-sweep Algorithm 4
3. Delaunay Triangulations 5
3.1. Voronoi Diagrams 5
3.2. The Empty Circumcircle Property 7
3.3. The Lifting Map and Convex Hulls 8
3.4. Primitives for Delaunay Triangulation Algorithms 9
3.5. Lawson’s Edge Flip Algorithm 10
3.6. Randomized Incremental Algorithm 13
3.7. Divide-and-Conquer Algorithm 18

1. Introduction

Triangulations of topological and geometric objects are central topics in many
different parts of mathematics and computer science. They are the natural way to
represent a region of interest into smaller, easy-to-handle pieces. Many problems
like collision detection, ray tracing, shortest path, and so on are efficiently solved
by triangulations.

Triangulations of point sets are fundamental objects studied and used in compu-
tational geometry. They are the primitive types of unstructured meshes. Typically,
given a set of points in space, we would like to connect them in a nice way. The
meaning of “nice” depends on the applications in which the meshes to be used.
Geometrically, one would like to connect the nearest neighbours and to avoid small
angles. This leads to the introduction of the well-known Delaunay triangulations,
which have many of these nice properties. We discuss efficient algorithms to com-
pute Delaunay triangulations.

1

2 HANG SI

2. Triangulations

In this section, we formally define triangulations of point sets as a special type
of simplical complexes. We then introduce the Euler’s formula as the basic tool for
understanding the complexity of triangulations. A line-sweep algorithm is given
for efficiently constructing a triangulation for a pint set in the plane.

2.1. Simplical Complexes. Recall the convex hull of a set X of points is the
most smallest convex set that contains the set X.

Recall a set X = {u0, . . . ,uk} of points is said to be affinely independent if the
set Y = {u1 − u0, . . . ,uk − u0} of vectors are linearly independent (the reverse is
not true).

Recall the dimension of an affine space is the dimension of its associated vector
space. This means that {x0,x1, ...,xn} is an affine basis of an affine space if and
only if {x1 − x0, ...,xn − x0} is a linear basis of the associated line space.

Definition 1. A k-simplex σ is the convex hull of k+1 affinely independent points,
where k is the dimension of σ.

For examples, a 0-, 1-, 2-, and 3-simplex is a point, line segment (edge), a
triangle, and a tetrahedron, respectively, see Figure 2.1.

0 321
Figure 1. From left to right, a 0-, 1-, 2-, and 3-simplex.

Definition 2. The k + 1 points that define a k-simplex σ are called vertices of σ.
The convex hull of any i+ 1 vertices of σ is called an i-face of σ.

For examples, an 0-, 1-, and 2-faces are vertex, edge, and triangle, respectively.
Note that the empty set is also a face (of dimension −1) of σ.
A i-face is itself an i-simplex.
Exercise. Count the number of all faces of a triangle (1 + 3 + 3 + 1 = 8 faces).

A k-simplex has
∑k

i=−1
(
k+1
i+1

)
= 2k+1 faces.

Definition 3. A simplicial complex K is a set of simplifies such that

(1) σ ∈ K −→ ∀τ ∈ K, where τ is a face of σ; and
(2) σ, τ ∈ K −→ σ ∩ τ ∈ K.

The dimension of a simplicial complex K is the largest dimension of it simplices.
The union of all simplices of K is called the underlying space of K, which is

denoted as |K|.

TRIANGULATIONS IN R2 3

Definition 4. Given a point set V in R2, a triangulation of V is a 2-dimensional
simplicial complex T such that

(1) V is the vertex set of T ; and
(2) |T | is the convex hull of V .

In this definition of triangulations, we do not require that a triangulation of V
uses all vertices of V . However, in the following discussion (unless stated explic-
itly), we assume that all vertices of V are used.

2.2. Euler’s Formula. This section gives some basic facts and formulas about the
combinatorial structures of a triangulation using well developed theories in graph
theory. The most important fact is the famous Euler’s formula which bounds the
number of vertices, edges, and faces of a triangulation. These results are necessary
analysing triangulation algorithms.

Recall a graph G = (V,E) is a set V of vertices, and a set E of edges, each a
pair of vertices of V . A graph is simple if every edge has two distinct vertices and
no two edges have the same vertices. A simple graph is connected if there is a path
(a sequence of edges) that connecting every pair of its vertices.

A triangulation in R2 is a planar graph, which is a graph that can be drawn in
the plane without crossing edges. In other words, the graph is planar if it has an
embedding in the plane without crossing edges. For example, the complete graphs
K4 is planar but K5 is not planar.

Let G = (V,E) be a planar graph. It decomposes the plane into a set of regions,
which are called faces of G. Let v, e, and f denote the number of vertices, edges,
and faces of G. Euler’s formula is a linear relation between these numbers.

Theorem 1. Every connected planar graph G = (V,E) satisfies

(1) v − e+ f = 2.

This formula is well-known as the Euler’s formula for planar graphs and convex
3d polytopes. There are plenty of proofs, see a collecttion of different proofs of
this formula by D. Eppstein’s “Geometry Junkyard” 1. Below we give one of the
proofs based on dual graphs.

Proof. Let G = (V,E) be a connected planar graph. Define the dual graph G∗ =
(V ∗, E∗) of G, such that every vertex in V ∗ corresponds to a face of G, and every
edge in E∗ corresponds to two adjacent faces of G. Let F be the set of faces of G,
we have V ∗ and F are bijective, and E∗ and E are bijective.

Choose any spanning tree T of G. It has v vertices, and v − 1 edges. The dual
edges of (G − T)∗ is also a spanning tree of G∗. The two spanning trees together
have v − 1 + f − 1 edges. �

1https://www.ics.uci.edu/~eppstein/junkyard/euler/

4 HANG SI

Figure 2. A proof of Euler’s formula through the spanning trees
of dual graphs.

A triangulation T of a set of vertices in R2 is a maximumly connected planar
graph, which means by adding any one more edge to T will violate the planarity.
Using the Euler’s formula, we can get upper bounds on the number of edges and
faces of T in terms of the number of vertices of it vertex set.

In a triangulation T , every face have three edges, every interior edge is shared
by two faces, and every convex hull edge is shared by one face, we have:

(2) 3f = 2e− h,
where h is the number of edges on the convex hull of T . Since h > 0, then,

(3) 3f < 2e.

Using the Euler’s formula and the above inequality, we can bound the total number
of edges and faces of T , which are

(4)
e ≤ 3v − 6,
f ≤ 2v − 4.

2.3. Line-sweep Algorithm. In this section, we introduce a simple and efficient
algorithm using line-sweeping [?] to construct triangulations from a set of points.

The basic idea is to sort the point set along a fixed direction (for example, the
x-axis), then use a (vertical) line that sweeps over the plane from left to right.
The triangulation is created online during the line sweeping. An invariant is: at
any moment in time, the partial triangulation contains all points to the left of the
line. When the line hits a new vertex (an event), the triangulation is augmented
by creating new triangles connecting to this new vertex. The algorithm is given in
Figure 3.

In line 1, the vertices in L are ordered in such a way, that no conflict will occur
during the algorithm. A simple order is the lexicographic (dictionary) order along

TRIANGULATIONS IN R2 5

Algorithm: LineSweep(V , s)
Input: A set V of n points in the plane, s is normal of sweep line;
Output: A triangulation T of V ;
1 sort the points in V into a sequence L := {v1, . . .vn} along s;
2 initialize T with only one triangle {v1,v2,v3};
3 for i = 4 to n do
4 let Q be the set of all hull edges that sees vi;
5 create new triangles to T by each edge in Q and vi;
6 endfor

Figure 3. The sweep line triangulation algorithm.

the x- or y-axis. To efficiently obtain the set Q (in line 4), one could start from
the last newly created triangle, which must contain a hull edge e. Then the set of
all hull edges which are visible by vi can be collected by a breadth search from e.

The sort of a set of vertices along the sweep line can be done in time O(n log n).
The number of hull edges which are visible by each vi is a constant independent
of n. The total number of newly created triangles is less than 2n − 4. Thus this
line sweep algorithm constructs a triangulation in O(n log n) time.

Once the triangulation of V is constructed, we also obtain the convex hull of
the point set V by outputting the set of edges which only shared by one triangle.
An algorithm to output convex hull is described in the next section.

3. Delaunay Triangulations

This section focus on Delaunay triangulations for finite point sets in the plane.
The Delaunay triangulation of a point set is introduced by the Russian mathe-
matician Boris Nikolaevich Delone (1890–1980) in 1934. It is a triangulation with
many nice properties. There are many ways to define Delaunay triangulations. We
first introduce them as duals of Voronoi diagrams, then introduce other equivalent
definitions while showing their properties.

3.1. Voronoi Diagrams. Voronoi diagrams are named after the Russian and
Ukrainian mathematician Georgy Feodosevich Voronoy (1868–1908) in 1907. Voronoi
diagrams arise in nature in various situations, see an example in Figure 3.1. They
are the one of the most fundamental data structures in computational geometry.

Voronoi diagram divides the plane according to the nearest-neighbour rule: Each
point is associated with region of the plane closet to it.

Consider the simplest case of two points p and q in the plane. The set of points
that are at least as close to p as to q is the half-space:

Hpq = {x ∈ R2 : ‖x− p‖ ≤ ‖x− q‖},
where ‖ · ‖ means Euclidean distance.

6 HANG SI

Figure 4. At the moment when a bullet hits a glass, the smashed
glass forms a structure resembles a Voronoi diagram.

Definition 5. Let S be a set of n points (called sites) in R2. the Voronoi region
of a site p ∈ S is the set of points x ∈ R2 that are as close to p as to any other
site in S, that is

Vp = {x ∈ R2 : ‖x− p‖ ≤ ‖x− q‖,∀q ∈ S},
The Voronoi region of p is the intersection of a set of half-spaces. It follows that

it is a convex polygonal region, possibly unbounded, with at most n− 1 edges.
Each point x ∈ R2 has at least one nearest site in S, so it belongs to at least one

Voronoi region. It follows that the Voronoi regions cover the entire plane. Two
Voronoi regions lie on opposite sides of the perpendicular bisector separating the
two generating points.

Definition 6. The Voronoi regions together with their edges and vertices form the
Voronoi diagram of S.

Voronoi diagram is a planar graph with n regions and minimum vertex degree
3. Each of the e edges has two vertices, and each of the v vertices belongs to at
least three edges. Hence 2e ≥ 3v. Euler’s formula n+ v− e = 2 implies e ≤ 3n− 6
and v ≤ 2n − 4. In average, the number of edges of each Voronoi regions is less
than 6.

Voronoi diagrams are important and useful in a wide variety of fields inside
and outside computer science, such as the post-office location problem, collision
detections, and so on, see e.g., [?].

We get a dual diagram if we draw a straight line connecting p and q in S if
their Voronoi regions share a common line segment. In general, if no four sites of
S share a common circle, i.e., S is in general position, the dual diagram is a 2-
dimensional simplicial complex which decompose the convex hull of S. It is called
the Delaunay triangulation of S, see Figure 3.1 for an example.

TRIANGULATIONS IN R2 7Voronoi Diagrams ● 347

Figure 1. Voronoi diagram for eight sites in the
plane.

Since the regions are coming from in-
tersecting n – 1 half planes, they are
convex polygons. Thus the boundary of a
region consists of at most n – 1 edges
(maximal open straight-line segments)
and vertices (their endpoints). Each point
on an edge is equidistant from exactly
two sites, and each vertex is equidistant
from at least three. As a consequence,
the regions are edge to edge and vertex
to vertex, that is to say, they form a
polygonal partition of the plane. This
partition is called the Voronoi diagram,
V(S), of the finite point-set S (Figure 1).
Note that a region, say reg(p), cannot

be empty since it contains all points of
the plane at least as close to p as to any
other sites in S. In particular, p e reg(p).
It follows that V(S) contains exactly n
regions. Some of them are necessarily
unbounded. They are defined by sites ly.
ing on the boundary of the convex hull of
S because just for those sites there exist
points arbitrarily far away but still clos-
est.1 No vertices occur if and only if all
sites in S lie on a single straight line.
Such degenerate configurations also im-
ply the existence of regions with only one
(unbounded) edge. Otherwise, three or
more edges meet at a common vertex. It

lThe conuex hull of S is the smallest convex polY-
gon that contains S.

should be observed that each vertex is
the center of a circle that passes through
at least three sites but encloses no site.
Although n sites give rise to

();=
0(n2) separators, only linearly many
separators contribute an edge to V(S).
This can be seen by viewing a Voronoi
diagram as a planar graph with n re-
gions and minimum vertex degree 3.
Each of the e edges has two vertices, and
each of the u vertices belongs to at least
three edges. Hence, 2 e >3 U. Euler’s re-
lation n + v – e ? 2 now implies e < 3n
– 6 and u s 2 n – 4, Thus, for example,
the average number of edges of a region
does not achieve six; there are less than
3 n edges, and each of them belongs to
exactly two of the n regions.
The linear behavior of the size of the

Voronoi diagram in the plane means that,
roughly speaking, this structure is not
much more complex than the underlying
configuration of sites. This is one of the
main reasons for the frequent use of
Voronoi diagrams. A second reason is
that V(S) comprises the entire proximity
information about S in an explicit and
computationally useful manner. For ex-
ample, its applicability to the important
post-office problem (see below) is based
on the trivial observation that a point x
falls into the region of a site p if and
only if p is closest to x among all sites in
S. Moreover, if site p is closest to site q,
then reg(p) and reg(q) share a common
edge. This particularly implies that the
closest pair of sites in S gives rise to
some edge of V(S).

Applications in Computer Science

To substantiate the usefulness of the
Voronoi diagram in computer science, we
briefly describe four situations where this
structure is used. The practicality y and
diversity of these applications will
impart the appeal of Voronoi diagrams.

Associative File Searching

Consider some file of n two-attribute
records referring, for example, to latitude
and longitude of a city or to age and

ACM Computmg Surveys, Vol. 23, No 3, September 1991

Figure 5. Voronoi diagram for eight points in the plane.
358 ● Franz Aurenhammer

\ /
‘i\ //

‘. /’
I /e1’ //\ /

‘Y’
\/’ _- A--! , -.

---- \ ~y/ ‘.\
\’~ x.

‘.
Y’ \ . .

/’ \
/ \
/ \
/ \

Figure 14. Voronoi diagram and Delaunay trian-
gulation are duals,

catalog of properties of higher dimen-
sional Delaunay triangulations arising
from site lattices see Gruber and
Lekkerkerker [19881.
Several interesting properties are

known for the Delaunay triangulation
in the plane. It was first observed by
Sibson [1977] that this triangulation
is locally equiangular. This property
holds when, for any two triangles whose
union is a convex quadrilateral, the re-
placement of their common edge by the
alternative diagonal does not increase the
minimum of the six interior angles con-
cerned. Actually, the Delaunay triangu-
lation is the only one with this property
that particularly shows its uniqueness.
For sites being in general position (the
Delaunay triangulation may contain
more-sided faces if four sites are cocircu-
lar), Edelsbrunner [19871 showed that lo-
cal equiangularity is equivalent to global
equiangularity. The triangles define the
lexicographically largest list of sorted
angles. A similar result holds if only the
smallest angle of each triangle is consid-
ered [Lawson 1977]. Note that the Delau-
nay triangulation thus maximizes the
minimum angle over all triangulations
of a given set of sites. On the other hand,
a simple example shows that the maxi-
mum angle is not minimized. It is inter-
esting to note that, by the empty circle
property, any triangulation without
obtuse angles must be Delaunay. Tri-

angulations without “extreme” an-
gles are desirable in finite element
and interpolation methods.
Lawson [1972] gave a counterexample

to Shames and Hoey’s [1975] conjecture
that the Delaunay triangulation has
minimum total edge length. It does not
even approximate the shortest triangula-
tion [Manacher and Zobrist 1979], and in
fact it may be as long as any triangula-
tion [Kirkpatrick 1980]. It is, however,
close to optimal on the average [Lingas
1986a]. A different criterion of optimal-
ity is mentioned in McLain [1976]. For
each triangle, all its points should be at
least as close to one of its defining sites
as to any other site. This property is not
shared by the Delaunay triangulation, as
is claimed there.
As an important fact, the Delaunay

triangulation is a supergraph of several
well-known and widely used graphs
spanned by a set of sites in the plane.
Among them are the minimum spanning
tree (or Prim shortest connection net-
work) introduced by Kruskal [1956] and
Prim [1957], the Gabriel graph intro-
duced by Gabriel and Sokal [1969], and
the relative neigh borhood graph intro-
duced by Toussaint [19801. Section 2.4
gives definitions of these graphs and
describes their interrelations.
The Delaunay triangulation can be ex-

ploited to find certain linear combina-
tions among its defining sites. Each site
not on the convex hull can be repre-
sented as a weighted mass center of the
sites adjacent in the triangulation; see
Sibson [1980] who mentions applications
to surface smoothing. Aurenhammer
[1988b] generalized this result to power
diagrams and their order-k modifica-
tions. In particular, Gale transforms of
the sites may be derived in this way
[Aurenhammer 1990bl. Gale transforms
are a versatile tool in the investigation of
high-dimensional convex polyhedra
[Grunbaum 19671.
The generalized Delaunay triangula-

tion obtained from power diagrams gains
in importance from the following recog-
nition problem: Given some cell complex,
can it be interpreted as a Voronoi dia-
gram? A cell complex in R d may be

ACM Computmg Surveys, Vol. 23, No 3, September 1991

Figure 6. The dual of Voronoi diagram is the Delaunay triangulation.

There is an ambiguity in the definition of Delaunay triangulation if four or more
Voronoi regions meet at a common point, i.e., four sites of S share a common circle.
Probabilistically, the chance of picking four points on the circle is zero because the
circle defined by first three points has zero measure in R2. A common way to say
the same thing is that four points in a common circle for a degeneracy or a special
case. An arbitrary small perturbation suffices to remove the degeneracy and to
reduce the special to general case.

We will often assume general position, which is the absence of any degeneracy.
This really means that we delay the treatment of degenerate cases to later.

Exercise: Show that If S is in general position, the Delaunay triangulation of S
is unique.

3.2. The Empty Circumcircle Property. Alternatively, Delaunay triangula-
tions can be defined through the so-called empty circumcircle property.

The circumcircle, or circumscribing circle of a simplex σ is the circle that passes
through all vertices of σ. In plane, a triangle has a unique circumcircle, while an
edge has infinitely many circumcircles.

8 HANG SI

Definition 7. Let S be a set of n points (called sites) in R2. A simplex σ whose
vertices are in S is Delaunay if it has a circumcircle that encloses no site in S.
We say, that σ has an empty circumcircle.

Definition 8. If S is in general position, then the set of all Delaunay simplices of
S form a simplical complex whose union is the convex hull of S, it is the Delaunay
triangulaiton of S.

Note that if S is not in general position, then the set of all Delaunay simplices
of S is not a simplical complex. There are simplicies overlapping each other. In
this case, one could still obtain a Delaunay subduevsion by deleting all Delaunay
simplifies which are overlapping each other.

3.2.1. A trivial algorithm. One immediately application of this empty circumcircle
property is that it gives you a trivial way to find the Delaunay triangulation of
a point set. Assuming the point set is in general position. One can find all
the Delaunay triangles from the set of all

(
n
3

)
triangles by checking the empty

circumcircle property. However, this way needs O(n4) time. We will discuss more
efficient algorithms later.

3.2.2. Minimum spanning trees. Delaunay triangulation tends to connect the near-
est neighbours. However, it is not the minimum distance triangulation of the point
set. A counter example is given by Lawson [1972]. Instead, the problem to find
minimum weighted triangulation is NP-hard [?].

As an important fact, Delaunay triangulation is a supergraph of the minimum
spanning tree that spanned by the set of vertices in the plane.

Recall a tree is an undirected graph in which any two vertices are connected
by exactly one path. In other words, any connected graph without simple cycles
is a tree. A complete graph is a simple undirected graph in which every pair of
distinct vertices is connected by a unique edge. A spanning tree of that graph is a
subgraph that is a tree and connects all the vertices together.

Take the complete graph of the set of points and define the length of an edge
as the Euclidean distance between its endpoints. A Euclidean minimum spanning
tree of that graph is then a spanning tree with edge length less than or equal to
the edge length of every other spanning tree.

Theorem 2. All edges of every Euclidean minimum spanning tree belong to the
Delaunay triangulation of the same point set.

We leave the proof as an exercise.

3.3. The Lifting Map and Convex Hulls. The convex hull of a finite set S of
points is the smallest convex set that contains S. It is also the intersection of all
half-spaces containing S. In this section, we introduce the relation of Delaunay
triangulations and the convex hulls.

TRIANGULATIONS IN R2 9

Let S be a set of n points (called sites) in R2. We now consider, for each site
p = (px, py) ∈ S, a point p̂ = (px, py, pz) ∈ R3, where pz := p2x+p2y, i.e., p̂ is a point

on the paraboloid z = x2 + y2 in R3, and p is the projection of p̂ into the plane by
removing its z-coordinate, see Figure 3.3. We call this map f : p ∈ R2 → p̂ ∈ R3

the lifting map.

a b

c
d

Figure 7. The lifting map that takes a point in the plane to a
paraboloid in R3.

We have the following fact which gives the relation between circles in R2 and
plane in R3.

Proposition 1. Point d lies inside the circumcircle of the triangle with vertices
a, b, and c if and only if point d̂ lies vertically below the plane passing through
the points â, b̂, and ĉ.

Proof. ... �

Due to the above fact, we can easily show the nice relation between Delaunay
triangulation and convex hulls.

Let Ŝ be the set of all sites resulting obtained by the lifting map on S. The
convex hull of Ŝ is a 3d convex polytope, denoted as conv(Ŝ). A lower face of

conv(Ŝ) if there is no point of conv(Ŝ) below it with respect to the z-axis. The

projection of the set of lower faces of conv(Ŝ) into the xy-plane gives a subdivision
of the convex hull of S. If S is in general position, then this subdivision is a
simplical complex T and the circumcircle of every triangle in T is empty (due
to Proposition), hence T is the Delaunay triangulation of S. Figure 8 shows an
example.

3.4. Primitives for Delaunay Triangulation Algorithms. This section de-
scribes two geometric primitives, the “orientation test” and the “incircle test”,
that are sufficient for implementing many Delaunay triangulation algorithms.

The orientation of a sequence of d+ 1 points (p1, . . . ,pd+1) in Rd is either −1,
0, or +1. It is 0 if the set of d + 1 points lies on a common k-flat for k < d. In
R2, three points (p1,p2,p3) has positive orientation if p3 lies to the left of the line

10 HANG SI

V

z

+V

Figure 8. The parabolic lifting map. In this example, a two-
dimensional vertex set V is lifted to a paraboloid in R3. The un-
derside of the convex hull of the lifted vertices projects down to a
Delaunay triangulation of V .

directed from p1 to p2, or equivalently, if p1,p2,p3 are in counterclockwise order.
Orientation is preserved under an even permutation of the points and negated
under an odd permutation. The orientation of p1,p2,p3 is given by the sign of
the determinant ∣∣∣∣∣∣

p11 p12 1
p21 p32 1
p31 p32 1

∣∣∣∣∣∣
The value of this determinant is twice of the signed area of the triangle with

vertices p1,p2,p3.
Suppose the sequence of 3 points (p1,p2,p3) in R2 has positive orientation. By

the above Proposition, a point p4 lies outside the circumcircle of p1,p2,p3 exactly
if p̂4 lies above the plane passing though p̂1, p̂2, p̂3 in R3. In this case, p̂4 sees
p̂1, p̂2, p̂3 form a counterclockwise order in the plane. It is exactly the orientation
test of 4 points (p̂1, p̂2, p̂3, p̂4) in R3, which is∣∣∣∣∣∣

p11 p12 p211 + p212 1
p21 p32 p221 + p222 1
p31 p32 p231 + p232 1

∣∣∣∣∣∣
The evaluation of the sign of this determinant is the incircle test for points p1,p2,p3,p4.
If the determinant is 0, then p1,p2,p3,p4 are co-circular.

3.5. Lawson’s Edge Flip Algorithm. This section introduces a local condition
for edges, shows it implies a triangulation is Delaunay, and derives an algorithm
based on edge flipping. The correctness of this algorithm implies two important
results of planar triangulations, (1) among all triangulations of the same point set,

TRIANGULATIONS IN R2 11

the Delaunay triangulation maximises the minimum angle; and (2) the set of all
triangulations of the point set is connected by edge flips.

Definition 9. Let K be a triangulation of a point set S in R2. An edge ab ∈ K
is locally Delaunay if

(i) it belongs to only one triangle and therefore bounds the convex hull, or
(ii) it belongs to triangles, abc and abd, and d lies outside the circumcircle of

abc.

This definition is illustrated in Figure 3.5. A locally Delaunay edge is not
necessary a Delaunay edge. However, if every edge is locally Delaunay, then we
can show that all are Delaunay edges.

a a

d

d

cc

bb

a
c

b
p

x

Figure 9. To the left ab is locally Delaunay and to the right it is not.

Theorem 3 (Delaunay Lemma). If every edge of K is locally Delaunay, then K
is the Delaunay triangulation of S.

Proof. ... �

3.5.1. The Edge-flip Algorithm. If an edge ab is not locally Delaunay, let the two
triangles sharing at ab are abc and abd. The union of these two triangles must
be a convex quadrangle. We can flip ab to cd. Formally, this means we remove
ab, abc, and abd from the triangulation, and add cd, cda, and cdb to the
triangulation. The resulting edge cd must be locally Delaunay.

We can use edge flips as elementary operations to convert an arbitrary triangu-
lation K to the Delaunay triangulation. The algorithm uses a stack to maintains
all edges which may be locally non-Delaunay. Initially, all edges of K are pushed
on the stack.

3.5.2. Termination and Running Time. Flipping ab to cd is likely gluing a tetra-
hedron âb̂ĉd̂ from below to âb̂ĉ and âb̂d̂. The algorithm can be understood as
gluing a sequence of tetrahedra. Once we glue âb̂ĉd̂ we cannot glue another tetra-
hedron right below âb̂. In other words, once we flip ab we cannot introduce ab
again by some other flip. This implies that the Lawson’s edge-flip algorithm will

12 HANG SI

Algorithm: LawsonFlip(L)
Input: a stack L of edges of a triangulation K;
Output: the modified triangulation K;
1 while L 6= ∅ do
2 pop an edge ab from L;
3 if ab is not locally Delaunay then;
4 flip ab to cd;
5 push edges ac, cb, db, da on L;
6 endif
7 endwhile

Figure 10. The Lawson edge-flip algorithm.

eventually terminate when all locally non-Delaunay edges are flipped. By the De-
launay lemma, the triangulation is Delaunay. This also implies there are at most
as many flips as there are edges connecting n points, namely

(
n
2

)
. Each flip takes

constant time, hence the total running time is O(n2).

3.5.3. Maxmin Angle Property. We illustrate an optimal property of the Delaunay
triangulation.

Theorem 4. Among all triangulation of a finite point set S ⊂ R2, the Delaunay
triangulation maximises the minimum angle.

Proof. A flip substitute two new triangles for two old triangles. It therefore changes
six of the angles, see Figure 3.5.3. The six old angles are:

α1, β1, γ1 + γ2, α2, β2, δ1 + δ2,

and the six new angles are

γ1, δ1, β1 + β2, γ2, δ2, α1 + α2.

We show that for each of the six new angles there is an old angle that is at least
as small. At first, γ1 ≥ α2, since both angles are opposite the same edge bd, and
a lies outside the circumcircle of bdc. Similarly, δ1 ≥ α1, γ2 ≥ β2, δ2 ≥ β1, and
for trivial α1 + α2 > α1, and β1 + β2 ≥ β1.

It follows that a flip does not decrease the smallest angle in a triangulation.
Since we can transform any triangulation K of S to the Delaunay triangulation,
this implies that the smallest angle in K is no larger than the smallest angle in the
Delaunay triangulation. �

3.5.4. The Flip Graph. One can use flips to traverse the set of all triangulations
of S. We can form a flip-graph G of S. Each triangulation is a node of G, and
each edge of G between two nodes u and v means there is a flip that changes the
triangulation u to v. The termination of Lawson’s flip algorithm implies that the

TRIANGULATIONS IN R2 13

Figure 11. Flipping ab to cd changes six of the angles.

flip-graph is connected. Moreover, one can go from any triangulation of S to any
other triangulation in less than O(n2) flips.

3.6. Randomized Incremental Algorithm. In this section, we introduce an
algorithm that construct Delaunay triangulations incrementally, using edge flips
and randomisation. After explain the algorithm, we present a detailed analysis of
the expected running time.

The basic step of this algorithm is to interleave flipping edges and adding points.
Denote the points in S ⊂ R2 as p1,p2, . . . ,pn, and assume general position. To
reduce the outside to the inside case, we start with a triangulation D0 that con-
sists of a single and sufficiently large triangle xyz. The algorithm is a for-loop

adding the points in sequence. After adding a point, it uses edge flips to satisfy
the Delaunay lemma before the next point is added. The algorithm is given in
Figure 12.

Algorithm: IncrementalFlip(S = {p1, . . . ,pn})
Input: a sequence S of n points in R2;
Output: the Delaunay triangulation Dn of S;
1 initialize D0 with only one larger triangle xyz;
2 for i = 1 to n do
3 find the triangle τ ∈ Di−1 containing pi;
4 split τ into three triangles containing pi;
5 initial the stack L with three link edges of pi;
6 LawsonFlip(L);
7 endfor
8 remove all triangles containing x, y, and z from Dn;

Figure 12. The incremental-flip algorithm.

14 HANG SI

3.6.1. Number of Flips. The running time of this algorithm consists of two parts:
(1) the time to locate the triangle τ containing the vertex pi; and (2) the time to
perform flips. In this section, we study the total number of flips that will be done
in this algorithm. We consider two cases: the worst case and the expected case
when vertices are inserted in a random order.

Note that every new triangle in Di has pi as vertex. Indeed, if abc is a triangle
in Di−1 and its circumcircle does not contain pi, then it must be also a triangle in
Di. This implies that all flips during the insertion of pi occur right around pi. This
implies the number of edges flips is related to the degree of pi, i.e. the number of
edges which have pi as a vertex. It is denoted as deg(pi). In the incremental flip
algorithm, each edge flip increases the degree of pi by 1. Since the initial degree
of pi is 3 (creating by splitting the triangle τ), then the number of edge flips to
add pi in Di is equal to deg(pi)− 3.

We first consider the worst case. Figure 3.6.1 shows such an example. Assuming
the sequence of vertices is ordered first from left to right, then from bottom to top.
The degree of each successive vertices can be Θ(n), hence the total number of flips
is Θ(n2). This shows that if the insertion order of the vertices are chosen badly,
the incremental flip algorithm can take Θ(n2) time.

The Running Time of Vertex Insertion 51

Figure 3.8: Enclosing the vertices in a large triangular bounding box.

Figure 3.9: Each vertex insertion can delete Θ(n) triangles and create Θ(n) others.

Figure 3.9 illustrates the worst case. A single vertex insertion can delete Θ(n) triangles and create Θ(n)
others, taking Θ(n) time. Moreover, this dismal performance can be repeated for Θ(n) successive vertex
insertions. Therefore, the incremental insertion algorithm for constructing a Delaunay triangulation takes
Θ(n2) time if the vertices and their insertion order are chosen badly. The grid arrangement and vertex
ordering in the figure are common in practice.

Fortunately, there are better ways to order the vertex insertion operations. The randomized incremental
insertion algorithm inserts the vertices in random order, with each permutation of the vertices being equally
likely. Surprisingly, the expected number of triangles created by each successive vertex insertion operation
is less than six, as Theorem 21 below shows. The catch is that all the vertices must be known in advance, so
that a random permutation can be computed. The randomized algorithm is excellent for creating an initial
triangulation of the vertices of a domain, but its analysis does not apply to the vertices that are subsequently
generated during mesh generation, because their order cannot be randomized. Nevertheless, the theorem
provides intuition for why constant-time vertex insertion is so commonly observed in mesh generation.

Theorem 21. Let V be a set of n vertices in the plane. Let ⟨v1, v2, . . . , vn⟩ be a permutation of V chosen
uniformly at random from the set of all such permutations. For i ∈ [0, n], letTi be the Delaunay triangulation
constructed by inserting the first i vertices in order. When vi is inserted into Ti−1 to create Ti, the expected
number of new triangles (including ghost triangles) created is less than six. An expected total of O(n)
triangles are created and deleted during the n vertex insertions that construct Tn.

This theorem is most easily proved with backward analysis, a remarkable analysis technique that Sei-
del [110] summarizes thus: “Analyze an algorithm as if it was running backwards in time, from output to
input.” Imagine that instead of inserting a randomly chosen vertex into Ti−1, you are deleting a randomly
chosen vertex from Ti. Because a random permutation written backward is still a random permutation, each
vertex in Ti is deleted with equal probability.

Figure 13. Each vertex insertion can case θ(n) flips.

3.6.2. Basic Definitions of Probability. Here let’s review the basic definitions of a
probability space. What is an “outcome”, what is the “probability of an outcome”,
what is an “event”, etc. The following figure from MIT open course is very helpful.
Sample space, outcome, event. . A countable sample space, S, is a nonempty
countable set. An element w ∈ S is called an outcome. A subset of S is called an
event.
Probability space. . A probability function on a sample space S, is a total
function Pr{} : S → R such that

• Pr{w} ≥ 0 for all w ∈ S, and

TRIANGULATIONS IN R2 15416 CHAPTER 18. INTRODUCTION TO PROBABILITY

car
location

player’s
initial
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

probability

1/18

1/18

1/9

1/9

1/9

1/18

1/18

1/9

1/9

1/9

1/18

1/18

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Specifying the probability of each outcome amounts to defining a function that
maps each outcome to a probability. This function is usually called Pr. In these
terms, we’ve just determined that:

1
Pr {(A, A,B)} =

18
1

Pr {(A, A,C)} =
18
1

Pr {(A, B, C)} =
9

etc.

18.1.6 Step 4: Compute Event Probabilities

We now have a probability for each outcome, but we want to determine the prob-
ability of an event which will be the sum of the probabilities of the outcomes in it.
The probability of an event, E, is written Pr {E}. For example, the probability of

Figure 14. The tree diagram of the four-step method. Step (1),
find the sample space, Step (2) define the events of interest, Step (3)
Determine the outcome probablities, Step (4) Compute event prob-
abilities.

• ∑w∈S Pr{w} = 1.

The sample space together with a probability function is called a probability space.
Conditional probability. (Optional). A conditional probability is the probability
that one event happens, given that some other event definitely happens. For
example, the question like: what is the probability that two rolled dice sum to 10,
given that both are odd?

42518.3. CONDITIONAL PROBABILITY

18.3 Conditional Probability

Suppose that we pick a random person in the world. Everyone has an equal chance
of being selected. Let A be the event that the person is an MIT student, and let B
be the event that the person lives in Cambridge. What are the probabilities of these
events? Intuitively, we’re picking a random point in the big ellipse shown below
and asking how likely that point is to fall into region A or B:

A
B

set of all people
in the world

set of people who
live in Cambridge

set of MIT
students

The vast majority of people in the world neither live in Cambridge nor are MIT
students, so events A and B both have low probability. But what is the probability
that a person is an MIT student, given that the person lives in Cambridge? This
should be much greater— but what is it exactly?

What we’re asking for is called a conditional probability; that is, the probability
that one event happens, given that some other event definitely happens. Questions
about conditional probabilities come up all the time:

• What is the probability that it will rain this afternoon, given that it is cloudy
this morning?

• What is the probability that two rolled dice sum to 10, given that both are
odd?

• What is the probability that I’ll get four-of-a-kind in Texas No Limit Hold
’Em Poker, given that I’m initially dealt two queens?

There is a special notation for conditional probabilities. In general, Pr {A | B}
denotes the probability of event A, given that event B happens. So, in our example,
Pr {A | B} is the probability that a random person is an MIT student, given that
he or she is a Cambridge resident.

How do we compute Pr {A | B}? Since we are given that the person lives in
Cambridge, we can forget about everyone in the world who does not. Thus, all
outcomes outside event B are irrelevant. So, intuitively, Pr {A | B} should be the
fraction of Cambridge residents that are also MIT students; that is, the answer

Figure 15. Conditional Probability.

16 HANG SI

In general, Pr{A|B} denotes the probability of event A, given that event B
happens, where

Pr{A|B} :=
Pr{A ∩B}

Pr{B} .

Note that if Pr{B} = 0 that the conditional probability Pr{A|B} is undefined.
Random variable. . A random variable, R, on a probability space is a total
function whose domain is the sample space.

The codomain (range) of R can be anything, but will usually be a subset of the
real numbers.

3.6.3. The Expected Number of Flips. We next show if the vertices are inserted
in a random order, the expected total number of flips is only O(n). Random
does not mean arbitrary but rather that every permutation of the n points is
equally likely. There are total n! permutations. Let S1, . . . , Sm be the m = n!
permutations of n points. Let Fi be the total number of flips resulted by the
incremental-flip algorithm on Si. Let F is the random variable which is a function
from the finite probability space P = {S1, . . . , Sm} to the total number of flips.
Since we assume every permutation is equally likely, then the probability of any
particularly sequence is Pr{Si} = 1

n!
. Hence the expected number of flips of the

incremental-flip algorithm is

(5) E[F] :=
m∑
i=1

Fi Pr{Si} = (F1 + F2 + · · ·+ Fm)
1

n!
.

For an example, let R (a random variable) be the number comes up with a fair,
six sided die. The expected value of R is:

E[R] :=
6∑

i=1

i Pr{Ri = i} = 1
1

6
+ 2

1

6
+ · · ·+ 6

1

6
=

7

2
.

The technique we use to analyse the algorithm is called the backward analysis.
Consider inserting the last point pn. The sum of degrees of all possible last

points is the same as the sum of degrees of all points in Dn (due to the uniqueness
of the Delaunay triangulation). The latter is equal to twice the number of edges,
which is

n∑
i=1

deg(pi) ≤ 2(3n− 6) ≤ 6n.

Note that each of the last point appears (n− 1)! times in all the n! permutations.
Therefore the number of flips for adding all last points is at most:

fn ≤ (6n− 3n)(n− 1)! ≤ 3n(n− 1)!,

TRIANGULATIONS IN R2 17

Then the total number of flips is:∑n
i=1 fi = fn + fn−1 + · · ·+ f1

≤ 3n · (n− 1)! + 3(n− 1)(n− 2)! + · · ·+ 0
≤ 3n · ((n− 1)! + (n− 2)! + · · ·+ 0)
≤ 3n · n · (n− 1)!
= 3n · n!

The expected number of edge flips for adding n points is

E[R] ≤ 3n · n! · 1

n!
= 3n.

There is a simple way to say the same thing. If points are inserted in a random
order, the expected number of flips for the last point is at most 3. Hence the total
number of edge flips for adding n points is O(n).

3.6.4. Point location. The point location is another important fact for running
time. A simple point location scheme is called “straight walk”. More precisely,
the algorithm starting from an arbitrary triangle σ ∈ Di, and search the triangle
τ that containing pi by walking along the ray starting from an interior point of σ
toward to pi, see Figure 3.6.4 Left.

Figure 16. Locating a point by straight line walk. (Images from
[Devillers, Pion & Teillaud 2001])

How much time will this searching algorithm uses? We assume that each triangle
is visited by only once. Then each point location will visit at most the number
of triangles of the triangulation which is less than 2n. One can show that this is
possible by the triangulation shown in Figure 3.6.4 Right. Hence the location of
n points by this algorithm may take O(n2) time. It is too slow.

A way to improve the point location is to build a history graph point-location
data structure (as a helper). A simple approach is based on the idea of maintaining
the uninsured points in a set of buckets. Think of each triangle of the current
triangulation as a bucket that holds all the uninsured points that lie inside this
triangle. Whenever a triangle is split or an edge is flipped, some old triangles are
destroyed and replaced by new triangles. When this happens, lump together all

18 HANG SI

the points in the deleted triangles and re-distributed them into the new triangles.
Since the number of new triangles is O(1) (3 for split and 2 for flip). This process
requires O(1) time for each point that is re-bucketed.

To analyse the expected running time of this algorithm we need to bound two
quantities: (1) how many structural changes are made in the triangulation on
average with the addition of each new point, which is O(1) by randomised insertion.
(2) How many effort is spent in re-bucketing points. Next we argue that the total
expected time spent in re-bucketing points is O(n log n).

To do this, we will show that the expected number if times that any point is
re-bucketed is O(log n). Again this is done by backward analysis. Let’s fix a point
q ∈ S. Consider the case just after the insertion of pi, i.e., the i-th point in
the sequence. If q is already inserted, then it is not involved in the re-bucketing
process. Assume q is not yet inserted. Also, we assume that any of the existing
points is equally likely to be the last point inserted.

We claim that the probability that q was re-bucketed as a result of the last
insertion is at most 3/i. To see this, let σ be the triangle containing q after the
insertion of pi. All of newly created triangles are now incident to pi. σ will come
into existence as a result of the last insertion if and only if one of its three vertices
is pi. Since every three vertices of σ is equally likely to be pi, it follows that the
probability that σ came into existence if 3/i. Thus the probability that q required
re0bucketing after inserting pi is 3/i.

After inserting of ith points pi, there are still n− i points to be inserted. Hence
q might be re-bucketed at most n− i times, and each has probability 3/i of being
re-bucketed. Thus the expected number of points that require re-bucketing as part
of the last insertion is at most (n− i)3/i. By the linearity of expectation, the total
number of re-bucketing is

n∑
i=1

3

i
(n− i) ≤

n∑
i=1

3

i
n = 3n

n∑
i=1

1

i
= 3n lnn+O(1).

Thus the total expected time spent in re-bucketing n points O(n log n), as desired.
Hence the randomised incremental flip algorithm constructs Delaunay triangu-

lation in expected O(n log n) time.

3.7. Divide-and-Conquer Algorithm. There are many Delaunay triangulation
algorithms, some of which are surveyed and evaluated by Fortune [7] and Su and
Drysdale [18]. Their results indicate a rough parity in speed among the incremental
insertion algorithm of Lawson [11], the divide-and-conquer algorithm of Lee and
Schachter [12], and the plane-sweep algorithm of Fortune [6]; As Su and Drysdale
[18] also found, the divide-and-conquer algorithm is fastest, with the sweepline
algorithm second. The incremental algorithm performs poorly, spending most
of its time in point location. (Su and Drysdale produced a better incremental

TRIANGULATIONS IN R2 19

insertion implementation by using bucketing to perform point location, but it still
ranks third.

An important optimization to the divide-and-conquer algorithm, adapted from
Dwyer [5], is to partition the vertices with alternating horizontal and vertical cuts
(Lee and Schachter?s algorithm uses only vertical cuts). Alternating cuts speed the
algorithm and, when exact arithmetic is disabled, reduce its likelihood of failure.

[5] Rex A. Dwyer. A Faster Divide-and-Conquer Algo- rithm for Constructing
Delaunay Triangulations. Algo- rithmica 2(2):137?151, 1987.

[12] D. T. Lee and B. J. Schachter. Two Algorithms for Con- structing a Delau-
nay Triangulation. International Jour- nal of Computer and Information Sciences
9(3):219? 242, 1980.

[18] Peter Su and Robert L. Scot Drysdale. A Compari- son of Sequential Delau-
nay Triangulation Algorithms. Proceedings of the Eleventh Annual Symposium
on Computational Geometry, pages 61?70. Association for Computing Machinery,
June 1995.

