Scientific Computing WS 2019/2020

Lecture 26

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de
Why parallelization?

- Clock rate of processors limited due to physical limits
 - \Rightarrow parallelization: main road to increase the amount of data processed
- Parallel systems nowadays ubiquitous: even laptops and smartphones have multicore processors
- Amount of accessible memory per processor is limited \Rightarrow systems with large memory can be created based on parallel processors
TOP 500 2019 rank 1-9

<table>
<thead>
<tr>
<th>Rank</th>
<th>System</th>
<th>Cores</th>
<th>Rmax [TFlop/s]</th>
<th>Rpeak [TFlop/s]</th>
<th>Power [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States</td>
<td>2,414,592</td>
<td>148,600.0</td>
<td>200,794.9</td>
<td>10,096</td>
</tr>
<tr>
<td>2</td>
<td>Sierra - IBM Power System AC922, IBM POWER9 22C 3.10GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States</td>
<td>1,572,480</td>
<td>94,640.0</td>
<td>125,712.0</td>
<td>7,438</td>
</tr>
<tr>
<td>3</td>
<td>Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China</td>
<td>10,649,600</td>
<td>93,014.6</td>
<td>125,435.9</td>
<td>15,371</td>
</tr>
<tr>
<td>4</td>
<td>Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China</td>
<td>4,981,760</td>
<td>61,444.5</td>
<td>100,678.7</td>
<td>18,482</td>
</tr>
<tr>
<td>5</td>
<td>Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Univ. of Texas United States</td>
<td>448,448</td>
<td>23,516.4</td>
<td>38,745.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray/HEP Swiss National Supercomputing Centre (CSCS) Switzerland</td>
<td>380,700</td>
<td>21,200.7</td>
<td>27,154.3</td>
<td>2,374</td>
</tr>
<tr>
<td>7</td>
<td>Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray/HEP DOE/NNSA/LANL/SNL United States</td>
<td>978,072</td>
<td>20,158.7</td>
<td>41,461.2</td>
<td>7,578</td>
</tr>
<tr>
<td>8</td>
<td>AI Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.6GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan</td>
<td>391,480</td>
<td>19,880.0</td>
<td>32,576.6</td>
<td>1,649</td>
</tr>
<tr>
<td>9</td>
<td>SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path, Lenovo Leibniz Rechenzentrum Germany</td>
<td>305,856</td>
<td>19,576.6</td>
<td>26,873.9</td>
<td></td>
</tr>
</tbody>
</table>

- Based on Linpack benchmark: solution of dense linear system
- Typical desktop computer: $R_{\text{max}} \approx 100 \ldots 1000 \text{GFlop/s}$

[Source: www.top500.org]
Parallel paradigms

SIMD
Single Instruction Multiple Data

- prev instruct
- load A(1)
- load B(1)
- C(1)=A(1)*B(1)
- store C(1)
- next instruct

- prev instruct
- load A(2)
- load B(2)
- C(2)=A(2)*B(2)
- store C(2)
- next instruct

- prev instruct
- load A(n)
- load B(n)
- C(n)=A(n)*B(n)
- store C(n)
- next instruct

MIMD
Multiple Instruction Multiple Data

- prev instruct
- load A(1)
- load B(1)
- C(1)=A(1)*B(1)
- store C(1)
- next instruct

- prev instruct
- call funcD
- x=y^2
- sum=x^2
- call sub1(i,j)
- next instruct

- prev instruct
- do 10 i=1,N
- alpha=w*i^3
- zeta=C(i)
- 10 continue
- next instruct

- prev instruct
- next instruct

- prev instruct
- next instruct

Shared memory systems
- IBM Power, Intel Xeon, AMD Opteron . . .
- Smartphones . . .
- Xeon Phi R.I.P.

Distributed memory systems
- interconnected CPUs

"classical" vector systems: Cray, Convex . . .

Graphics processing units (GPU)
Create large computer system by connecting standard mainboards via fast network
- Memory scales with number of CPUs interconnected
- High latency for communication
- Mostly programmed using MPI (Message passing interface)
- Explicit programming of communications: gather data, pack, send, receive, unpack, scatter

MPI_Send(buf, count, type, dest, tag, comm)
MPI_Recv(buf, count, type, src, tag, comm, stat)
MIMD Hardware: Shared Memory

Symmetric Multiprocessing (SMP)/Uniform memory access (UMA)

- Similar processors
- Similar memory access times

Nonuniform Memory Access (NUMA)

- Possibly varying memory access latencies
- Combination of SMP systems
- ccNUMA: Cache coherent NUMA

Shared memory: one (virtual) address space for all processors involved

Communication hidden behind memory access

Not easy to scale large numbers of CPUS

MPI works on these systems as well
Hybrid distributed/shared memory

- Combination of shared and distributed memory approach
- Top 500 computers

Shared memory nodes can be mixed CPU-GPU
Need to master three kinds of programming paradigms:
 - SIMD (GPU)
 - Shared memory
 - Distributed memory
“small” parallel system: this laptop

- 1 NUMANode (aka. CPU chip)
 - 12 MB L3 cache
 - 6 Cores
 - 256KB L2 Cache
 - 32KB L1 Cache
 - Hyperthreading → 2 logical cores (PU)
- 32GB RAM accessible via 3.9 GB/s DMA channels (dma0, dma1)
- Graphics card card0 (NVIDIA T1000) via 4GB/s connect
- SSD nvme0n1 (1TB) via 3.9 GB/s connect
- WIFI (wlp111s0), LAN (em1) . . .
"large" parallel system: WIAS compute server erhard-01

- 4 NUMANodes
 - each node: 256 GB RAM, 30 MB L3 cache, 10 cores
 - each core: 256KB L2 Cache, 32KB L1 Cache, 2 logical cores (PU)
 - Network...
Parallel processes

- Modern operating systems allow to run several programs at once
- Each of these programs corresponds to a process
- Processes can be launched from the command line and require large bookkeeping, each process has its own address space
- On multicore systems, processes can run on different cores, and ideally, they don’t interfere with each other
- Data exchange between different processes needs an extra protocol for inter-process communication
Threads vs processes

- Threads are lightweight subprocesses within a process and share its address space, they can run on a different core.
- Managing a thread requires significantly less bookkeeping and resources compared to a process.
- Parallel programming using threads aka. multithreading is easy, as inter-thread communication can be realized via the common address space.
- Multithreading is hard since threads share data structures that should only be modified by one thread at a time.
Thread based programming model

- pthreads (POSIX threads): widely available on different operating systems
- Threads introduced into C++ standard with C++11
- Cumbersome tuning + synchronization, but very flexible
- Basic structure for higher level interfaces
- Threads in Julia: ‘Threads.@spawn‘ (since Julia 1.3), marked as experimental

```plaintext
... sequential code ...
function run_in_thread(params) // function to be run in separate thread 
...
end
t=start_thread (run_in_thread, params) //
...
wait_and_fetch_result(t)
...
```
Fork-Join programming model

- OpenMP for C++, C, Fortran
- ‘Threads.@threads‘ in Julia
- Compiler directives (pragmas) describe *parallel regions*
- Automatically mapped onto thread based model

```cpp
... sequential code ... // joined code
#pragma omp parallel for // `fork' -> parallel execution
{
    ... parallel code ...
}
(implicit barrier) // wait for tasks to finish
... sequential code ...
```
Fork-join vs thread based

- Usually, the fork-join model is implemented on top of the threading model
- OpenMP essentially performs automatic code transformation
- Well adapted to numerical tasks with large loops
- Easy to handle
- Performance depends on compiler implementation, memory bandwidth etc.
OpenMP $s = u \cdot v$: primitive implementation

```c
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
s+=u[i]*v[i];
```

- Code can be parallelized by introducing compiler directives
- Compiler directives are ignored if not in parallel mode
- Compiler directives are not part of the language
- **Write conflict with $s+=:$ several threads may access the same variable**
Atomic updates are performed only by one thread at a time

```c
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
{
    #pragma omp atomic update
    s+=u[i]*v[i];
}
```

Expensive, parallel program flow is interrupted

Similar to Julia atomic variables
Do it yourself reduction

- Remedy: accumulate partial results per thread, combine them after main loop
- "Reduction"

```c
#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)
    s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{
    int ithread=omp_get_thread_num();
    s0[ithread]+=u[i]*v[i];
}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)
    s+=s0[ithread];
```
In standard situations, reduction variables can be used to avoid write conflicts, no need to organize this by programmer.