
Lecture 3 Slide 1

TU Berlin, Scientific Computing
Winter Semester 2021/2022

Slide lecture 3

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 3 Slide 2

Some general remarks on computer languages

Lecture 3 Slide 3

Machine code

Detailed instructions for the actions of the CPU are provided as binary code
(mostly written in hexadecimal form)
Not human readable, but programming started with hand-coding
instructions like this:

534c 29e5 31db 48c1 fd03 4883 ec08 e85d
feff ff48 85ed 741e 0f1f 8400 0000 0000
4c89 ea4c 89f6 4489 ff41 ff14 dc48 83c3
0148 39eb 75ea 4883 c408 5b5d 415c 415d
415e 415f c390 662e 0f1f 8400 0000 0000
f3c3 0000 4883 ec08 4883 c408 c300 0000
0100 0200 4865 6c6c 6f20 776f 726c 6400
011b 033b 3400 0000 0500 0000 20fe ffff
8000 0000 60fe ffff 5000 0000 4dff ffff

Sample types of instructions:
Transfer data between memory location and register
Perform arithmetic/logic operations with data in register
Check if data in register fulfills some condition
Conditionally change the memory address from where instructions are fetched
≡ “jump” to address

Save all register context and take instructions from different memory location
until return ≡ “call”

Lecture 3 Slide 4

My first programmable computer

SER2d by VEB Elektronische Rechenmaschinen
Karl-Marx-Stadt (around 1962)

My secondary school owned one around 1975

I started programming this
way
Instructions were supplied
on punched tape
Output was printed on a
typewriter
The magnetic drum could
store 127 numbers and 127
instructions

Lecture 3 Slide 5

Assembler code

Human readable representation of CPU instructions
Some write it by hand . . .

Code close to abilities and structure of the machine
Handle constrained resources (embedded systems, early computers)

Translated to machine code by a programm called assembler

.file "code.c"

.section .rodata

.LC0:

.string "Hello world"

.text

...
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
movl $.LC0, %edi
movl $0, %eax
call printf

Lecture 3 Slide 6

Compiled high level languages

Algorithm description using mix of mathematical formulas and statements
inspired by human language
Translated to machine code (resp. assembler) by compiler

#include <stdio.h>
int main (int argc, char *argv[])
{

printf("Hello world");
}

“Far away” from CPU ⇒ the compiler is responsible for creation of
optimized machine code
Fortran, COBOL, C, Pascal, Ada, Modula2, C++, Go, Rust, Swift . . .
Strongly typed
Tedious workflow: compile - link - run

source3.c

source2.c

source1.c

source3.o

source2.o

source1.o

executable output

compile

compile

compile

link run as system executable

Lecture 3 Slide 7

Compiling. . .

. . . from xkcd

Lecture 3 Slide 8

Compiled languages in Scientific Computing

Fortran: FORmula TRANslator (1957)
Fortran4: really dead
Fortran77: large number of legacy libs: BLAS, LAPACK, ARPACK . . .
Fortran90, Fortran2003, Fortran 2008

Catch up with features of C/C++ (structures,allocation,classes,inheritance,
C/C++ library calls)
Lost momentum among new programmers
In many aspects very well adapted to numerical computing
Well designed multidimensional arrays
Still used in several subfields of scientific computing

C: General purpose language
K&R C (1978) weak type checking
ANSI C (1989) strong type checking
Had structures and allocation early on
Numerical methods support via libraries
Fortran library calls possible

C++: The powerful general purpose object oriented language used (not
only) in scientific computing

Superset of C (in a first approximation)
Classes, inheritance, overloading, templates (generic programming)
C++11: ≈ 2011 Quantum leap: smart pointers, threads, lambdas,
anonymous functions
Since then: C++14, C++17, C++20 – moving target . . .
With great power comes the possibility of great failure. . .

Lecture 3 Slide 9

High level scripting languages

Algorithm description using mix of mathematical formulas and statements
inspired by human language
Often: simpler syntax, less ”boiler plate”

print("Hello world")

Need intepreter in order to be executed
Very far away from CPU ⇒ usually significantly slower compared to
compiled languages
Matlab, Python, R, Lua
Less strict type checking, powerful introspection capabilities
Immediate workflow: “just run”

in fact: first compiled to bytecode which can be interpreted more efficiently

module1.py

module2.py

module3.py

main.py bytecode output

import
bytecode compilation run in interpreter

Lecture 3 Slide 10

JIT based languages

Byte code interpretation is a perfomance bottleneck.
Common practice: use compiled language for performance critical parts - e.g.
use C for performance critical part of Python
“two language problem”:

need for three skill sets: two languages + interfacing
complex tooling for installation, porting and maintenance

Just In Time compilation (JIT): compile to machine code instead of
byte code “on the fly”

Many languages try to add JIT technology after they have been designed:
javascript, Lua, Java, Smalltalk, Python/NUMBA
Julia (v1.0 since August, 2018) was designed for JIT

Module1

Module2

Module3

Main.jl machine code output

import
JIT compilation run on processor

Lecture 3 Slide 11

Julia History & Resources

2009-02: V0.1 Development started in
2009 at MIT (S. Bezanson, S. Karpinski, V.
Shah, A. Edelman)
2012: V0.1
2016-10: V0.5 experimental threading
support
2017-02: SIAM Review: Julia - A Fresh
Approach to Numerical Computing
2018-08: V1.0
2018 Wilkinson Prize for numerical software

Homepage incl. download link: https://julialang.org/

Wikibook: https://en.wikibooks.org/wiki/Introducing_Julia

https://julialang.org/
https://en.wikibooks.org/wiki/Introducing_Julia

Lecture 3 Slide 12

Julia - a first characterization

“Like matlab, but faster”

“Like matlab, but open source”

“Like python + numpy, but faster and counting from 1”

Main purpose: performant numerics

Multidimensional arrays as first class objects
(like Fortran, Matlab; unlike C++, Swift, Rust, Go . . .)

Array indices counting from 1
(like Fortran, Matlab; unlike C++, python) - but it seems this becomes
more flexible

Array slicing etc.

Extensive library of standard functions, linear algebra operations

Growing package ecosystem

Lecture 3 Slide 13

. . . there is more to the picture

Developed from scratch using modern knowledge in language development

Strongly typed ⇒ JIT compilation to performant code

Multiple dispatch: all functions are essentialy templates

Parallelization: SIMD, threading, distributed memory

Reflexive: one can loop over struct elements

Module system, module precompilation

REPL (Read-Eval-Print-Loop)
Ecosystem:

Package manager with github integration

Foreign function interface to C, Fortran, wrapper methods for C++

PyCall.jl: loading of python modules via reflexive proxy objects (e.g. plotting)

Intrinsic tools for documentation, profiling, testing

Code inspection of LLVM and native assembler codes

IDE integration with Visual Studio Code

Jupyter, Pluto notebooks

Lecture 3 Slide 14

Conclusion

. . . R. Hamming (of “Hamming code” and “Hamming distance” fame, who
started his carrier programming in Los Alamos) in 1968:

“Indeed, one of my major complaints about the computer field is that whereas
Newton could say,”If I have seen a little farther than others, it is because I have
stood on the shoulders of giants,” I am forced to say, “Today we stand on each
other’s feet.” Perhaps the central problem we face in all of computer
science is how we are to get to the situation where we build on top of the
work of others rather than redoing so much of it in a trivially different
way. Science is supposed to be cumulative, not almost endless duplication of the
same kind of things.” (1968)

In addition to it’s take on performance, Julia focuses on composability of
packages from different authors, moreover, it allows to interface existing
codes in C,C++, Python, R and other languages

Of all “new” languages (like Rust, Swift, Go etc.) Julia is the only one
designed for numerical computing

C++ still lacks standardizes basic infrastructure like versatile
multidiemensional arrays

So let us give Julia a try...

