
Lecture 2 Slide 1

TU Berlin, Scientific Computing
Winter Semester 2021/2022

Slide lecture 2

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de



Lecture 2 Slide 2

Hardware aspects

Inspired by “Introduction to High-Performance Scientific Computing” by Victor
Eijkhout (http://pages.tacc.utexas.edu/˜eijkhout/istc/istc.html)

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html


Lecture 2 Slide 3

von Neumann Architecture

CPU Core Memory (RAM)

Bus

USB Controller GPU

Monitor

IO Controller

Control

ALU

REG

Cache

REG REG REG

USB IO Mouse Keyboard

HDD/SSD

Data and code stored in the same
memory ⇒ encoded in the same
way, stored as binary numbers
Instruction cycle:

Instruction decode: determine
operation and operands
Get operands from memory
Perform operation
Write results back
Continue with next instruction

Controlled by clock: “heartbeat” of
CPU
Traditionally: one instruction per
clock cycle



Lecture 2 Slide 4

Multicore CPU

Modern CPU. From: https://www.hartware.de/review_1411_2.html

Several computational cores on one CPU

Cache: fast intermediate memory for often used operands

https://www.hartware.de/review_1411_2.html


Lecture 2 Slide 5

Multicore CPU: this Laptop

Obtained with lstopo from the Portable Hardware Locality (hwloc) project
https://www.open-mpi.org/projects/hwloc/

Three cache levels

6 Cores with similar pathways to memory

https://www.open-mpi.org/projects/hwloc/


Lecture 2 Slide 6

NUMA Architecture: compute server

NUMA: Non
Uniform Memory
Access
Several packages
with 1 NUMA
node each
Each NUMA node
has part of the
system RAM
attached to it.



Lecture 2 Slide 7

Modern CPU workings

Levels of parallelism

Multicore parallelism: independent parallel computations on different cores
On-core parallelism: Multiple floating point units in one core
Pipelining

A single floating point instruction takes several clock cycles to complete:
Steps to execute a floating point instruction:

Instruction decode
Operand exponent align
Actual operation
Normalize

Pipeline: separate piece of hardware for each step
Like assembly line

Complex instructions, e.g. one multiplication + one addition

Consequences for performance:

Peak performance is several operations/clock cycle for well optimized code
Operands can be in memory, cache, register ⇒ influence on perfomance
Performance depends on availability of data from memory



Lecture 2 Slide 8

Memory Hierachy

Main memory access is slow compared to the processor
100–1000 cycles latency before data arrive
Data stream maybe 1/4 floating point number/cycle;
processor wants 2 or 3 for full performance

Faster memory is expensive

Cache is a small piece of fast memory for intermediate storage of data

Operands are moved to CPU registers immediately before operation

Memory hierarchy:

Registers in different cores
Fast on-CPU cache memory (L1, L2, L3)

Main memory
Registers are filled with data from main memory via cache:

L1 Cache: Data cache closest to registers
L2 Cache: Secondary data cache, stores both data and instructions
Data from L2 has to go through L1 to registers
L2 is 10 to 100 times larger than L1
Multiple cores on one NUMA node share L3 cache , ≈10x larger than L2



Lecture 2 Slide 9

Cache line

Smallest unit of data transferred between main memory and the caches (or
between levels of cache)

Fixed number of sequentially stored bytes. A floating point number typically
uses 8 bytes, and cache lines can be e.g. 128 bytes long (16 numbers)
If you request one number you get several numbers at once - the whole
cache line

For performance, make sure to use all data arrived, you’ve paid for them in
bandwidth
Sequential access good, “strided” access ok, random access bad

Cache hit: location referenced is found in the cache

Cache miss: location referenced is not found in cache
Triggers access to the next higher cache or memory

Cache thrashing
Two data elements can be mapped to the same cache line: loading the
second “evicts” the first
Now what if this code is in a loop? “thrashing”: really bad for performance

Performance is limited by data transfer rate

High performance if data items are used multiple times



Lecture 2 Slide 10

Schönauer Vector Triad

After an idea of G. Hager, see https://blogs.fau.de/hager/archives/7825

Let A, B, C , D vectors of length N. Compute Ai = Bi + CiDi for i fron 1 to N.

102 103 104 105 106 107 108

Array length N

2

4

6

8

10

12

14

16

18

GF
lo

ps
/s

Vector triad Ai = Bi + Ci Di (i = 1 N)
 Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz

1 core

N < 103: L1-cache
103 < N < 104: L2-cache
104 < N < 2 · 105: L3-cache

Four performance zones defined by memory access:
L1-cache, L2 cache, L3 cache, memory bound

https://blogs.fau.de/hager/archives/7825


Lecture 2 Slide 11

Conclusion

Achieving peak performance on modern CPUs is nontrivial

Caring about performance means caring about data layout and memory
access

This is for your information - there is no time to go deeper here, if you are
interested, Victor Eijhout’s page
http://pages.tacc.utexas.edu/˜eijkhout/istc/istc.html is a good
starting point

We will revisit this topic when we talk about parallelization

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

