
19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 1/9

Scienti�c Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 27

Transient problems

Transient problems
Time dependent Robin boundary value problem
Time discretization for a homogeneous Neumann problem

Stability condition
Discrete Maximum principle
Nonnegativity
Mass conservation

Examples in VoronoiFVM.jl
General settings
Di�fusion problem
Reaction-di�fusion problem

Time dependent Robin boundary value
problem

Choose �nal time . Regard functions .

This is an initial boundary value problem: besides of the boundary conditions, we need to
specify an inital state of the system
Discretization options:

Rothe method: �rst discretize in time, then in space
Method of lines: �rst discretize in space, get a huge ODE system, then apply methods for
solution of systems of ordinary di�ferential equations

This di�ference is more or less formal

begin
 using PlutoUI ,PlutoVista ,ExtendableGrids ,VoronoiFVM ,GridVisualize ,
HypertextLiteral
end;

⋅
⋅

⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 2/9

Choose time discretization points Set .
Approximate the time derivative by a �nite di�ference in time. Evaluate the main part of the
equation for a value interpolated between the old and the new timestep.

For , solve

where

: backward (implicit) Euler method: Solve PDE problem in each timestep. First
order accuracy in time.

: Crank-Nicolson scheme: Solve PDE problem in each timestep. Second order
accuracy in time.

: forward (explicit) Euler method: First order accurate in time. This does not
involve the solution of a PDE problem Cheap? What do we have to pay for this ?

Time discretization for a homogeneous
Neumann problem

Search function such that and

Given control volume , integrate equation over space-time control volume ,
divide by :

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 3/9

Resulting matrix equation:

, with

 is strictly diagonally dominant!

Lemma Assume has positive main diagonal entries, nonpositive o�f-diagonal entries and
row sum zero. Then, .

Proof: Assume that . is an irreducible -matrix, thus has
positive entries.

Then for being the entries of ,

Let be a row where the maximum is reached. Let . Then for we have
that , and for all . The th equation of then looks like

This contradiction enforces .

Stability condition

When can we have an estimate ?

Regard the matrix equation again:

with

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 4/9

From the lemma we have and we need to
estimate

For the entries of , we have

In any case, for because
Assume If in addition , one can estimate Then

For a shape regular triangulation in , we can assume that , and
, thus for some constant

 gives

A su��cient condition is that for some ,

Method stability:
Implicit Euler: unconditional stability !
Explicit Euler: CFL condition
Crank-Nicolson: CFL condition

We see a tradeo�f between stability and accuracy.

 is called Courant-Friedrichs-Levy (CFL) condition
Explicit (forward) Euler method can be applied on very fast systems (GPU), with small time step
comes a high accuracy in time.
Implicit Euler: unconditional stability – helpful when stability is of utmost importance, and
accuracy in time is less important
For hyperbolic systems (pure convection without di�fusion), the CFL conditions is and
therefore easier to ful�ll, thus in this case explicit computations are mostly preferred

Discrete Maximum principle
Regard the implicit Euler method

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 5/9

Provided, the right hand side is zero, the solution in a given node is bounded by the value from
the old timestep, and by the solution in the neigboring points.
No new local maxima can appear during time evolution
There is a continuous counterpart which can be derived from weak solution theory
Sign pattern is crucial for the proof.

Nonnegativity

 is an M-Matrix
If , then

Mass conservation

Continuous case:
Discrete equivalent:

 :
Discrete equivalent:

The amount of "species" in the domain remains constant.

Examples in VoronoiFVM.jl

General settings
Initial value problem with homgeneous Neumann boundary conditions

De�ne function for initial value with two methods - for 1D and 2D problems

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 6/9

fpeak (generic function with 2 methods)

Create discretization grid in 1D or 2D

create_grid (generic function with 1 method)

Di�usion problem

diffusion (generic function with 1 method)

dim 1 =

TransientSolution{Float64, 3, Vector{Matrix{Float64}}, Vector{Float64}}

begin
 fpeak(x)=exp(-100*(x-0.25)^2)
 fpeak(x,y)=exp(-100*((x-0.25)^2+(y-0.25)^2))
end

⋅
⋅
⋅
⋅

function create_grid(nx,dim)
 X=collect(0:1.0/nx:1)
 if dim==1
 grid=simplexgrid(X)
 else
 grid=simplexgrid(X,X)
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function diffusion(;n=100,dim=1,tstep=1.0e-4,tend=1, D=1.0)
 grid=create_grid(n,dim)

 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 f[1]=D*(u[1,1]-u[1,2])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, species=[1])

 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

 control=VoronoiFVM.SolverControl()
 control.Δt_min=0.01*tstep
 control.Δt=tstep
 control.Δt_max=0.1*tend
 control.Δu_opt=0.05

 tsol=solve(sys,inival=inival,times=[0,tend];control=control)
 return grid,tsol
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

dim=1⋅

grid_diffusion,tsol_diffusion=diffusion(dim=dim,n=50);⋅

typeof(tsol_diffusion)⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 7/9

t: 44-element Vector{Float64}:
 0.0
 0.0001
 0.00022
 0.000364
 0.0005368
 0.00074416
 0.000992992
 ⋮
 0.5098373499892658
 0.6098373499892658
 0.7098373499892657
 0.8098373499892657
 0.9098373499892657
 1.0
u: 44-element Vector{Matrix{Float64}}:
 [0.0019304541362277093 0.005041760259690979 … 7.18533563590225e-24 3.7233631217505106e-25
 [0.003387008809660418 0.006300118156525835 … 2.0008275372882336e-19 6.669449946714916e-20
 [0.00514807562457328 0.008083186982761384 … 6.878526294212977e-18 2.621131422496832e-18]
 [0.007404041865364755 0.010537328310908471 … 1.4776955885734591e-16 6.338093825568941e-17
 [0.010400625445238012 0.013868893477498723 … 2.497032429670681e-15 1.1914254063793755e-15
 [0.014449460531084734 0.01835458696419307 … 3.573404400316756e-14 1.8774785069159207e-14]
 [0.019935610876004123 0.02434513243667107 … 4.455948816039796e-13 2.5540340838690913e-13]
 ⋮
 [0.18090105364719605 0.18089376259079934 … 0.17351852237753165 0.1735112313151921]
 [0.17906602640228114 0.17906235634779133 … 0.17534992921643835 0.17534625916074723]
 [0.17814234043496177 0.17814049306302712 … 0.17627179262173392 0.1762699452495563]
 [0.17767739057964502 0.17767646067993437 … 0.17673582502921079 0.17673489512945098]
 [0.1774433517750711 0.17744288369746195 … 0.1769694020166165 0.17696893393899743]
 [0.17733167831956984 0.1773314306040125 … 0.17708085511104252 0.17708060739548298]

Documentation for SolverControl
Documentation for solve
Documentation for TransientSolution

Timestep: 1

Time: 0.0

sol_diffusion

[0.00193045, 0.00504176, 0.0121552, 0.0270518, 0.0555762, 0.105399, 0.18452, 0.298197, 0.4

 =

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

tsol_diffusion⋅

md"""
Timestep: $(@bind t_diffusion
Slider(1:length(tsol_diffusion),default=1,show_value=true))
"""

⋅
⋅

⋅

sol_diffusion=tsol_diffusion[1,:,t_diffusion]⋅

visd=GridVisualizer(Plotter=PlutoVista,resolution=(400,300),dim=dim);visd⋅

scalarplot!(visd,grid_diffusion,sol_diffusion,limits=(0,1),show=true,levels=20,
colormap=:summer,xlabel="x")

⋅

https://j-fu.github.io/VoronoiFVM.jl/https://j-fu.github.io/VoronoiFVM.jl/stable/solver/#VoronoiFVM.SolverControl
https://j-fu.github.io/VoronoiFVM.jl/stable/solver/#VoronoiFVM.solve-Tuple{VoronoiFVM.AbstractSystem}
https://j-fu.github.io/VoronoiFVM.jl/stable/solutions/#VoronoiFVM.TransientSolution

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 8/9

Reaction-di�usion problem
Di�fusion + physical process which "eats" species

reaction_diffusion (generic function with 1 method)

Timestep: 1

Time: 0.0

sol_rd

[0.00193045, 0.00315111, 0.00504176, 0.00790705, 0.0121552, 0.0183156, 0.0270518, 0.039163

 =

function reaction_diffusion(;
 n=100,
 dim=1,
 tstep=1.0e-4,
 tend=1,
 D=1.0,
 R=10.0)

 grid=create_grid(n,dim)
 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 f[1]=D*(u[1,1]-u[1,2])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 ## Reaction term
 function reaction!(f,u,node)
 f[1]=R*u[1]
 end
 sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, reaction=reaction!, species=
[1])

 ## Create a solution array
 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

 control=VoronoiFVM.SolverControl()
 control.Δt_min=0.01*tstep
 control.Δt=tstep
 control.Δt_max=0.1*tend
 control.Δu_opt=0.1

 tsol=solve(sys, inival=inival, times=[0,tend], control=control)
 return grid,tsol
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

grid_rd,tsol_rd=reaction_diffusion(dim=dim,n=100,R=10);⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 9/9

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

visrd=GridVisualizer(Plotter=PlutoVista,resolution=(400,300),dim=dim,xlabel="x");visrd⋅

