
19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 1/9

Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 27

Transient problems

Transient problems
Time dependent Robin boundary value problem
Time discretization for a homogeneous Neumann problem

Stability condition
Discrete Maximum principle
Nonnegativity
Mass conservation

Examples in VoronoiFVM.jl
General settings
Diffusion problem
Reaction-diffusion problem

Time dependent Robin boundary value
problem

Choose final time . Regard functions .

This is an initial boundary value problem: besides of the boundary conditions, we need to
specify an inital state of the system
Discretization options:

Rothe method: first discretize in time, then in space
Method of lines: first discretize in space, get a huge ODE system, then apply methods for
solution of systems of ordinary differential equations

This difference is more or less formal

begin
	 using PlutoUI​ ,PlutoVista​ ,ExtendableGrids​ ,VoronoiFVM​ ,GridVisualize​ ,
HypertextLiteral​

end;

⋅
⋅

⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 2/9

Choose time discretization points Set .
Approximate the time derivative by a finite difference in time. Evaluate the main part of the
equation for a value interpolated between the old and the new timestep.

For , solve

where

: backward (implicit) Euler method: Solve PDE problem in each timestep. First
order accuracy in time.

: Crank-Nicolson scheme: Solve PDE problem in each timestep. Second order
accuracy in time.

: forward (explicit) Euler method: First order accurate in time. This does not
involve the solution of a PDE problem Cheap? What do we have to pay for this ?

Time discretization for a homogeneous
Neumann problem

Search function such that and

Given control volume , integrate equation over space-time control volume ,
divide by :

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 3/9

Resulting matrix equation:

, with

 is strictly diagonally dominant!

Lemma Assume has positive main diagonal entries, nonpositive off-diagonal entries and
row sum zero. Then, .

Proof: Assume that . is an irreducible -matrix, thus has
positive entries.

Then for being the entries of ,

Let be a row where the maximum is reached. Let . Then for we have
that , and for all . The th equation of then looks like

This contradiction enforces .

Stability condition

When can we have an estimate ?

Regard the matrix equation again:

with

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 4/9

From the lemma we have and we need to
estimate

For the entries of , we have

In any case, for because
Assume If in addition , one can estimate Then

For a shape regular triangulation in , we can assume that , and
, thus for some constant

 gives

A sufficient condition is that for some ,

Method stability:
Implicit Euler: unconditional stability !
Explicit Euler: CFL condition
Crank-Nicolson: CFL condition

We see a tradeoff between stability and accuracy.

 is called Courant-Friedrichs-Levy (CFL) condition
Explicit (forward) Euler method can be applied on very fast systems (GPU), with small time step
comes a high accuracy in time.
Implicit Euler: unconditional stability – helpful when stability is of utmost importance, and
accuracy in time is less important
For hyperbolic systems (pure convection without diffusion), the CFL conditions is and
therefore easier to fulfill, thus in this case explicit computations are mostly preferred

Discrete Maximum principle
Regard the implicit Euler method

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 5/9

Provided, the right hand side is zero, the solution in a given node is bounded by the value from
the old timestep, and by the solution in the neigboring points.
No new local maxima can appear during time evolution
There is a continuous counterpart which can be derived from weak solution theory
Sign pattern is crucial for the proof.

Nonnegativity

 is an M-Matrix
If , then

Mass conservation

Continuous case:
Discrete equivalent:

 :
Discrete equivalent:

The amount of "species" in the domain remains constant.

Examples in VoronoiFVM.jl

General settings
Initial value problem with homgeneous Neumann boundary conditions

Define function for initial value with two methods - for 1D and 2D problems

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 6/9

fpeak (generic function with 2 methods)

Create discretization grid in 1D or 2D

create_grid (generic function with 1 method)

Diffusion problem

diffusion (generic function with 1 method)

dim 1 =

TransientSolution{Float64, 3, Vector{Matrix{Float64}}, Vector{Float64}}

begin
	 fpeak(x)=exp(-100*(x-0.25)^2)
	 fpeak(x,y)=exp(-100*((x-0.25)^2+(y-0.25)^2))
end

⋅
⋅
⋅
⋅

function create_grid(nx,dim)
	 X=collect(0:1.0/nx:1)
	 if dim==1
 grid=simplexgrid(X)
	 else
 grid=simplexgrid(X,X)
	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function diffusion(;n=100,dim=1,tstep=1.0e-4,tend=1, D=1.0)
	 grid=create_grid(n,dim)
	
 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 f[1]=D*(u[1,1]-u[1,2])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, species=[1])

	 inival=unknowns(sys)
	
	 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

	 control=VoronoiFVM.SolverControl()
	 control.Δt_min=0.01*tstep
	 control.Δt=tstep
	 control.Δt_max=0.1*tend
	 control.Δu_opt=0.05
	
	 tsol=solve(sys,inival=inival,times=[0,tend];control=control)
	 return grid,tsol
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

dim=1⋅

grid_diffusion,tsol_diffusion=diffusion(dim=dim,n=50);⋅

typeof(tsol_diffusion)⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 7/9

t: 44-element Vector{Float64}:

 0.0

 0.0001

 0.00022

 0.000364

 0.0005368

 0.00074416

 0.000992992

 ⋮

 0.5098373499892658

 0.6098373499892658

 0.7098373499892657

 0.8098373499892657

 0.9098373499892657

 1.0

u: 44-element Vector{Matrix{Float64}}:

 [0.0019304541362277093 0.005041760259690979 … 7.18533563590225e-24 3.7233631217505106e-25
 [0.003387008809660418 0.006300118156525835 … 2.0008275372882336e-19 6.669449946714916e-20
 [0.00514807562457328 0.008083186982761384 … 6.878526294212977e-18 2.621131422496832e-18]

 [0.007404041865364755 0.010537328310908471 … 1.4776955885734591e-16 6.338093825568941e-17
 [0.010400625445238012 0.013868893477498723 … 2.497032429670681e-15 1.1914254063793755e-15
 [0.014449460531084734 0.01835458696419307 … 3.573404400316756e-14 1.8774785069159207e-14]

 [0.019935610876004123 0.02434513243667107 … 4.455948816039796e-13 2.5540340838690913e-13]

 ⋮

 [0.18090105364719605 0.18089376259079934 … 0.17351852237753165 0.1735112313151921]

 [0.17906602640228114 0.17906235634779133 … 0.17534992921643835 0.17534625916074723]

 [0.17814234043496177 0.17814049306302712 … 0.17627179262173392 0.1762699452495563]

 [0.17767739057964502 0.17767646067993437 … 0.17673582502921079 0.17673489512945098]

 [0.1774433517750711 0.17744288369746195 … 0.1769694020166165 0.17696893393899743]

 [0.17733167831956984 0.1773314306040125 … 0.17708085511104252 0.17708060739548298]

Documentation for SolverControl
Documentation for solve
Documentation for TransientSolution

Timestep: 1

Time: 0.0

sol_diffusion

[0.00193045, 0.00504176, 0.0121552, 0.0270518, 0.0555762, 0.105399, 0.18452, 0.298197, 0.4

 =

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

tsol_diffusion⋅

md"""
Timestep: $(@bind t_diffusion
Slider(1:length(tsol_diffusion),default=1,show_value=true))
"""

⋅
⋅

⋅

sol_diffusion=tsol_diffusion[1,:,t_diffusion]⋅

visd=GridVisualizer(Plotter=PlutoVista,resolution=(400,300),dim=dim);visd⋅

scalarplot!(visd,grid_diffusion,sol_diffusion,limits=(0,1),show=true,levels=20,
colormap=:summer,xlabel="x")

⋅

https://j-fu.github.io/VoronoiFVM.jl/https://j-fu.github.io/VoronoiFVM.jl/stable/solver/#VoronoiFVM.SolverControl
https://j-fu.github.io/VoronoiFVM.jl/stable/solver/#VoronoiFVM.solve-Tuple{VoronoiFVM.AbstractSystem}
https://j-fu.github.io/VoronoiFVM.jl/stable/solutions/#VoronoiFVM.TransientSolution

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 8/9

Reaction-diffusion problem
Diffusion + physical process which "eats" species

reaction_diffusion (generic function with 1 method)

Timestep: 1

Time: 0.0

sol_rd

[0.00193045, 0.00315111, 0.00504176, 0.00790705, 0.0121552, 0.0183156, 0.0270518, 0.039163

 =

function reaction_diffusion(;
	 	 n=100,
	 	 dim=1,
	 	 tstep=1.0e-4,
	 	 tend=1,
	 	 D=1.0,
	 	 R=10.0)

	 grid=create_grid(n,dim)
 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 f[1]=D*(u[1,1]-u[1,2])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 ## Reaction term
 function reaction!(f,u,node)
 f[1]=R*u[1]
 end
 sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, reaction=reaction!, species=
[1])

 ## Create a solution array
 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

	
	
	 control=VoronoiFVM.SolverControl()
	 control.Δt_min=0.01*tstep
	 control.Δt=tstep
	 control.Δt_max=0.1*tend
	 control.Δu_opt=0.1
	
	 tsol=solve(sys, inival=inival, times=[0,tend], control=control)
	 return grid,tsol
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

grid_rd,tsol_rd=reaction_diffusion(dim=dim,n=100,R=10);⋅

19.01.22, 22:18 🎈 nb27-transient.jl — Pluto.jl

localhost:1234/edit?id=bdce2186-78ab-11ec-1eb7-018d1222cf07 9/9

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

visrd=GridVisualizer(Plotter=PlutoVista,resolution=(400,300),dim=dim,xlabel="x");visrd⋅

