Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
 Notebook 27

```
begin
using PlutoUI ,PlutoVista ,ExtendableGrids ,VoronoiFVM ,GridVisualize , HypertextLiteral end;
```


Transient problems

Transient problems

Time dependent Robin boundary value problem
Time discretization for a homogeneous Neumann problem
Stability condition
Discrete Maximum principle
Nonnegativity
Mass conservation
Examples in VoronoiFVM.jl
General settings
Diffusion problem
Reaction-diffusion problem

Time dependent Robin boundary value problem

- Choose final time $T>0$. Regard functions $(x, t) \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot D \nabla u & =f \quad \text { in } \Omega \times[0, T] \\
D \nabla u \cdot \vec{n}+\alpha u & =g \quad \text { on } \partial \Omega \times[0, T] \\
u(x, 0) & =u_{0}(x) \quad \text { in } \Omega
\end{aligned}
$$

- This is an initial boundary value problem: besides of the boundary conditions, we need to specify an inital state of the system
- Discretization options:
- Rothe method: first discretize in time, then in space
- Method of lines: first discretize in space, get a huge ODE system, then apply methods for solution of systems of ordinary differential equations
This difference is more or less formal

Choose time discretization points $0=t^{0}<t^{1} \cdots<t^{N}=T$ Set $\tau^{n}=t^{n}-t^{n-1}$.
Approximate the time derivative by a finite difference in time. Evaluate the main part of the equation for a value interpolated between the old and the new timestep.

For $n=1 \ldots N$, solve

$$
\begin{aligned}
\frac{u^{n}-u^{n-1}}{\tau^{n}}-\nabla \cdot D \nabla u^{\theta}=f & \text { in } \Omega \times[0, T] \\
D \nabla u^{\theta} \cdot \vec{n}+\alpha u^{\theta}=g & \text { on } \partial \Omega \times[0, T]
\end{aligned}
$$

where $u^{\theta}=\theta u^{n}+(1-\theta) u^{n-1}$

- $\theta=1$: backward (implicit) Euler method: Solve PDE problem in each timestep. First order accuracy in time.
- $\theta=\frac{1}{2}$: Crank-Nicolson scheme: Solve PDE problem in each timestep. Second order accuracy in time.
- $\theta=0$: forward (explicit) Euler method: First order accurate in time. This does not involve the solution of a PDE problem \Rightarrow Cheap? What do we have to pay for this ?

Time discretization for a homogeneous Neumann problem

Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{array}{rll}
\partial_{t} u-\nabla \cdot D \nabla u=0 & \text { in } \Omega \times[0, T] \\
D \nabla u \cdot \vec{n}=0 & \text { on } \Gamma \times[0, T]
\end{array}
$$

- Given control volume ω_{k}, integrate equation over space-time control volume $\omega_{k} \times\left(t^{n-1}, t^{n}\right)$, divide by τ^{n} :

$$
\begin{aligned}
0 & =\int_{\omega_{k}}\left(\frac{1}{\tau^{n}}\left(u^{n}-u^{n-1}\right)-\nabla \cdot D \nabla u^{\theta}\right) d \omega \\
& =\frac{1}{\tau^{n}} \int_{\omega_{k}}\left(u^{n}-u^{n-1}\right) d \omega-\int_{\partial \omega_{k}} D \nabla u^{\theta} \cdot \vec{n}_{k} d \gamma \\
& =-\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} D \nabla u^{\theta} \cdot \vec{n}_{k l} d \gamma-\int_{\gamma_{k}} D \nabla u^{\theta} \cdot \vec{n} d \gamma-\frac{1}{\tau^{n}} \int_{\omega_{k}}\left(u^{n}-u^{n-1}\right) d \omega \\
& \approx \underbrace{\frac{\left|\omega_{k}\right|}{\tau^{n}}\left(u_{k}^{n}-u_{k}^{n-1}\right)}_{\rightarrow M}+\underbrace{\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}}\left(u_{k}^{\theta}-u_{l}^{\theta}\right)}_{\rightarrow A}
\end{aligned}
$$

- Resulting matrix equation:

$$
\begin{aligned}
\frac{1}{\tau^{n}}\left(M u^{n}-M u^{n-1}\right)+A u^{\theta} & =0 \\
\frac{1}{\tau^{n}} M u^{n}+\theta A u^{n} & =\frac{1}{\tau^{n}} M u^{n-1}+(\theta-1) A u^{n-1} \\
u^{n}+\tau^{n} M^{-1} \theta A u^{n} & =u^{n-1}+\tau^{n} M^{-1}(\theta-1) A u^{n-1}
\end{aligned}
$$

- $M=\left(m_{k l}\right), A=\left(a_{k l}\right)$ with

$$
\begin{aligned}
& a_{k l}= \begin{cases}\sum_{l^{\prime} \in \mathcal{N}_{k}} D \frac{\left|\sigma_{k l^{\prime} \mid}\right|}{h_{k l}} & l=k \\
-D \frac{\sigma_{k l}}{h_{k l}}, & l \in \mathcal{N}_{k} \\
0, & \text { else }\end{cases} \\
& m_{k l}= \begin{cases}\left|\omega_{k}\right| & l=k \\
0, & \text { else }\end{cases}
\end{aligned}
$$

- $\Rightarrow \theta A+M$ is strictly diagonally dominant!
- $\sum_{l=1}^{n} a_{k l}=0$

Lemma Assume A has positive main diagonal entries, nonpositive off-diagonal entries and row sum zero. Then, $\left\|(I+A)^{-1}\right\|_{\infty} \leq 1$.

Proof: Assume that $\left\|(I+A)^{-1}\right\|_{\infty}>1 . I+A$ is an irreducible M-matrix, thus $(I+A)^{-1}$ has positive entries.

Then for $\alpha_{i j}$ being the entries of $(I+A)^{-1}$,

$$
\max _{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j}>1
$$

Let k be a row where the maximum is reached. Let $e=(1 \ldots 1)^{T}$. Then for $v=(I+A)^{-1} e$ we have that $v>0, v_{k}>1$ and $v_{k} \geq v_{j}$ for all $j \neq k$. The k th equation of $e=(I+A) v$ then looks like

$$
\begin{aligned}
1 & =v_{k}+v_{k} \sum_{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{j} \\
& \geq v_{k}+v_{k} \sum_{j \neq k}^{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{k} \\
& =v_{k} \\
& >1
\end{aligned}
$$

This contradiction enforces $\left\|(I+A)^{-1}\right\|_{\infty} \leq 1$.

Stability condition

When can we have an estimate $\left\|u^{n}\right\|_{\infty}<\left\|u^{n-1}\right\|_{\infty}$?
Regard the matrix equation again:

$$
\begin{aligned}
u^{n}+\tau^{n} M^{-1} \theta A u^{n} & =u^{n-1}+\tau^{n} M^{-1}(\theta-1) A u^{n-1}=: B^{n} u^{n-1} \\
u^{n} & =\left(I+\tau^{n} M^{-1} \theta A\right)^{-1} B^{n} u^{n-1}
\end{aligned}
$$

with $B^{n}=I+\tau^{n} M^{-1} A$

From the lemma we have $\left\|\left(I+\tau^{n} M^{-1} \theta A\right)^{-1}\right\|_{\infty} \leq 1 \Rightarrow\left\|u^{n}\right\|_{\infty} \leq\left\|B^{n} u^{n-1}\right\|_{\infty}$ and we need to estimate $\|B\|_{\infty}$

- For the entries $b_{k l}^{n}$ of B^{n}, we have

$$
b_{k l}^{n}= \begin{cases}1+\frac{\tau^{n}}{m_{k k}}(\theta-1) a_{k k}, & k=l \\ \frac{\tau^{n}}{m_{k k}}(\theta-1) a_{k l}, & \text { else }\end{cases}
$$

- In any case, $b_{k l} \geq 0$ for $k \neq l$ because $a_{k l} \leq 0$
- Assume If in addition $b_{k k} \geq 0$, one can estimate $\|B\|_{\infty}=\max _{k=1}^{N} \sum_{l=1}^{N} b_{k l}$. Then

$$
\sum_{l=1}^{N} b_{k l}=1+(\theta-1) \frac{\tau^{n}}{m_{k k}}\left(a_{k k}+\sum_{l \in \mathcal{N}_{k}} a_{k l}\right)=1 \quad \text { and }\|B\|_{\infty}=1
$$

For a shape regular triangulation in \mathbb{R}^{d}, we can assume that $m_{k k}=\left|\omega_{k}\right| \sim h^{d}$, and $a_{k l}=\frac{\left|\sigma_{k k}\right|}{h_{k l}} \sim \frac{h^{d-1}}{h}=h^{d-2}$, thus $\frac{a_{k k}}{m_{k k}} \leq \frac{1}{C h^{2}}$ for some constant C

- $b_{k k} \geq 0$ gives

$$
(1-\theta) \frac{\tau^{n}}{m_{k k}} a_{k k} \leq 1
$$

- A sufficient condition is that for some $C>0$,

$$
\begin{aligned}
(1-\theta) \frac{\tau^{n}}{C h^{2}} & \leq 1 \\
(1-\theta) \tau^{n} & \leq C h^{2}
\end{aligned}
$$

- Method stability:
- Implicit Euler: $\theta=1 \Rightarrow$ unconditional stability !
- Explicit Euler: $\theta=0 \Rightarrow$ CFL condition $\tau \leq C h^{2}$
- Crank-Nicolson: $\theta=\frac{1}{2} \Rightarrow$ CFL condition $\tau \leq 2 C h^{2}$

We see a tradeoff between stability and accuracy.

- $\tau \leq C h^{2}$ is called Courant-Friedrichs-Levy (CFL) condition
- Explicit (forward) Euler method can be applied on very fast systems (GPU), with small time step comes a high accuracy in time.
- Implicit Euler: unconditional stability - helpful when stability is of utmost importance, and accuracy in time is less important
- For hyperbolic systems (pure convection without diffusion), the CFL conditions is $\tau \leq C h$ and therefore easier to fulfill, thus in this case explicit computations are mostly preferred

Discrete Maximum principle

Regard the implicit Euler method

$$
\begin{aligned}
\frac{1}{\tau^{n}} M u^{n}+A u^{n} & =\frac{1}{\tau} M u^{n-1} \\
\frac{1}{\tau^{n}} m_{k k} u_{k}^{n}+a_{k k} u_{k}^{n} & =\frac{1}{\tau^{n}} m_{k k} u_{k}^{n-1}+\sum_{k \neq l}\left(-a_{k l}\right) u_{l}^{n} \\
u_{k}^{n} & =\frac{1}{\frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right)}\left(\frac{1}{\tau^{n}} m_{k k} u_{k}^{n-1}+\sum_{l \neq k}\left(-a_{k l}\right) u_{l}^{n}\right) \\
& \leq \frac{\frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right)}{\frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right)} \max \left(\left\{u_{k}^{n-1}\right\} \cup\left\{u_{l}^{n}\right\}_{l \in \mathcal{N}_{k}}\right) \\
& \leq \max \left(\left\{u_{k}^{n-1}\right\} \cup\left\{u_{l}^{n}\right\}_{l \in \mathcal{N}_{k}}\right)
\end{aligned}
$$

- Provided, the right hand side is zero, the solution in a given node is bounded by the value from the old timestep, and by the solution in the neigboring points.
- No new local maxima can appear during time evolution
- There is a continuous counterpart which can be derived from weak solution theory
- Sign pattern is crucial for the proof.

Nonnegativity

$$
\begin{aligned}
u^{n}+\tau^{n} M^{-1} A u^{n} & =u^{n-1} \\
u^{n} & =\left(I+\tau^{n} M^{-1} A\right)^{-1} u^{n-1}
\end{aligned}
$$

- $\left(I+\tau^{n} M^{-1} A\right)$ is an M-Matrix
- If $u_{0}>0$, then $u^{n}>0 \forall n>0$

Mass conservation

- Continuous case: $\int_{\Omega} \nabla \cdot D \nabla u d \vec{x}=\int_{\partial \Omega} D \nabla u \cdot \vec{n} d \gamma=0$
- Discrete equivalent:

$$
\begin{aligned}
\sum_{k=1}^{N}\left(a_{k k} u_{k}+\sum_{l \in \mathcal{N}_{k}} a_{k l} u_{l}\right) & =\sum_{k=1}^{N} \sum_{l=1, l \neq k}^{N} a_{k l}\left(u_{l}-u_{k}\right) \\
& =\sum_{k=1}^{N} \sum_{l=1, l<k}^{N}\left(a_{k l}\left(u_{l}-u_{k}\right)+a_{l k}\left(u_{k}-u_{l}\right)\right) \\
& =0
\end{aligned}
$$

- $\Rightarrow \int_{\Omega} u^{n} d \vec{x}=\int_{\Omega} u^{n-1} d \vec{x}$:
- Discrete equivalent: $\sum_{k=1}^{N} m_{k k} u_{k}^{n}=\sum_{k=1}^{N} m_{k k} u_{k}^{n-1}$

The amount of "species" in the domain remains constant.

Examples in VoronoiFVM.jl

General settings

Initial value problem with homgeneous Neumann boundary conditions

$$
\begin{gathered}
\Omega=(0,1)^{d}, d=1,2 \\
T=\left[0, t_{\text {end }}\right]
\end{gathered}
$$

Define function for initial value u_{0} with two methods - for 1D and 2D problems
fpeak (generic function with 2 methods)

- begin
fpeak $(x)=\exp \left(-100 *(x-0.25)^{\wedge} 2\right)$
fpeak $(x, y)=\exp \left(-100 *\left((x-0.25)^{\wedge} 2+(y-0.25)^{\wedge} 2\right)\right)$
end
Create discretization grid in 1D or 2D
create_grid (generic function with 1 method)
- function create_grid(nx,dim)
$X=\operatorname{collect}(0: 1.0 / n x: 1)$
if $\operatorname{dim}==1$
grid=simplexgrid(X)
else
grid=simplexgrid(X,X)
end
end

Diffusion problem

```
                                    \partial _ { t } u - \nabla \cdot D \nabla u = 0 \text { in } \Omega
                                    D\nablau\cdot\vec{n}=0\mathrm{ on }\partial\Omega
                                    u}\mp@subsup{|}{t=0}{}=\mp@subsup{u}{0}{
diffusion (generic function with 1 method)
    function diffusion(;n=100,dim=1,tstep=1.0e-4,tend=1, D=1.0)
        grid=create_grid(n,dim)
        ## Diffusion flux between neigboring control volumes
        function flux!(f,u,edge)
            f[1]=D*(u[1,1]-u[1,2])
        end
    ## Storage term (under time derivative)
    function storage!(f,u,node)
        f[1]=u[1]
    end
    sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, species=[1])
    inival=unknowns(sys)
    ## Broadcast the initial value
    inival[1,:].=map(fpeak,grid)
    control=VoronoiFVM.SolverControl()
    control.\Deltat_min=0.01*tstep
    control.\Deltat=tstep
    control.\Deltat_max=0.1*tend
    control.\Deltau_opt=0.05
    tsol=solve(sys,inival=inival,times=[0,tend];control=control)
    return grid,tsol
    end
dim = 1
    dim=1
    - grid_diffusion,tsol_diffusion=diffusion(dim=dim,n=50);
TransientSolution{Float64, 3, Vector{Matrix{Float64}}, Vector{Float64}}
    - typeof(tsol_diffusion)
```

t: 44-element Vector\{Float64\}:
0.0
0.0001
0.00022
0.000364
0.0005368
0.00074416
0.000992992
:
0.5098373499892658
0.6098373499892658
0.7098373499892657
0.8098373499892657
0.9098373499892657
1.0
u: 44-element Vector\{Matrix\{Float64\}\}:
[0.0019304541362277093 0.005041760259690979 ... 7.18533563590225e-24 3.7233631217505106e-25 [0.003387008809660418 0.006300118156525835 ... 2.0008275372882336e-19 6.669449946714916e-20 [0.00514807562457328 0.008083186982761384 ... 6.878526294212977e-18 2.621131422496832e-18] [0.007404041865364755 0.010537328310908471 ... 1.4776955885734591e-16 6.338093825568941e-17 [0.010400625445238012 0.013868893477498723 ... $2.497032429670681 \mathrm{e}-15$ 1.1914254063793755e-15 [0.014449460531084734 0.01835458696419307 ... $3.573404400316756 \mathrm{e}-141.8774785069159207 \mathrm{e}-14]$ [0.019935610876004123 0.02434513243667107 ... 4.455948816039796e-13 2.5540340838690913e-13]
[0.18090105364719605 0.18089376259079934 ... 0.173518522377531650 .1735112313151921$]$
[0.17906602640228114 0.17906235634779133 ... 0.175349929216438350 .17534625916074723] [0.17814234043496177 0.17814049306302712 ... 0.17627179262173392 0.1762699452495563] $[0.177677390579645020 .17767646067993437$... 0.176735825029210790 .17673489512945098] [0.1774433517750711 0.17744288369746195 ... 0.17696940201661650 .17696893393899743$]$ [0.17733167831956984 0.1773314306040125 ... 0.17708085511104252 0.17708060739548298]
tsol_diffusion

- Documentation for SolverControl
- Documentation for solve
- Documentation for TransientSolution

Timestep: $\longrightarrow 1$

md"""
Timestep: \$(@bind t_diffusion
slider(1:length(tsol_diffusion), default=1, show_value=true)) """

Time: 0.0
sol_diffusion =
[$0.00193045,0.00504176,0.0121552,0.0270518,0.0555762,0.105399,0.18452,0.298197,0.4$
sol_diffusion=tsol_diffusion[1,: ,t_diffusion]

visd=GridVisualizer(Plotter=PlutoVista, resolution=(400,300), dim=dim);visd

- scalarplot! (visd,grid_diffusion, sol_diffusion, limits=(0,1), show=true, levels=20, colormap=:summer, xlabel="x")

Reaction-diffusion problem

Diffusion + physical process which "eats" species

```
                    \partialt}u-\nabla\cdotD\nablau+Ru=0 in 
    D\nablau\cdot\vec{n}=0\mathrm{ on }\partial\Omega
    u}\mp@subsup{|}{t=0}{}=\mp@subsup{u}{0}{
reaction_diffusion (generic function with 1 method)
    function reaction_diffusion(;
                n=100,
                dim=1,
                tstep=1.0e-4,
                tend=1,
                D=1.0,
                R=10.0)
    grid=create_grid(n,dim)
    ## Diffusion flux between neigboring control volumes
    function flux!(f,u,edge)
        f[1]=D*(u[1,1]-u[1,2])
    end
    ## Storage term (under time derivative)
    function storage!(f,u,node)
        f[1]=u[1]
    end
    ## Reaction term
    function reaction!(f,u,node)
        f[1]=R*u[1]
    end
sys=VoronoiFVM.System(grid,flux=flux!,storage=storage!, reaction=reaction!, species=
[1])
    ## Create a solution array
    inival=unknowns(sys)
    ## Broadcast the initial value
    inival[1,:].=map(fpeak,grid)
    control=VoronoiFVM.SolverControl()
    control.\Deltat_min=0.01*tstep
    control.\Deltat=tstep
    control.\Deltat_max=0.1*tend
    control.\Deltau_opt=0.1
    tsol=solve(sys, inival=inival, times=[0,tend], control=control)
    return grid,tsol
    end
    grid_rd,tsol_rd=reaction_diffusion(dim=dim,n=100,R=10);
Timestep:
1
```


Time: 0.0

sol_rd =

[0.00193045, $0.00315111,0.00504176,0.00790705,0.0121552,0.0183156,0.0270518,0.03916$ گ

. visrd=GridVisualizer(Plotter=PlutoVista, resolution=(400,300), dim=dim,xlabel="x");visrd

