
19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 1/10

Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 26

Working with VoronoiFVM.jl

Working with VoronoiFVM.jl
Linear diffusion problem with Dirichlet boundary conditions

1D Discretization grid
System creation and solution
2D Linear diffusion
3D Linear diffusion

Nonlinear diffusion
1D Nonlinear diffusion
2D Nonlinear diffusion
3D Nonlinear diffusion

Behind the scenes
Assembling Jacobi matrices

In the previous lectures we introduced the Voronoi finite volume method, and showed how to
implement it on for a linear diffusion problem on triangular grids, and how to solve nonlinear
systems.

The VoronoiFVM.jl Julia package provides a synthesis of these two.

We show how to define scalar linear and nonlinear diffusion problems in the VoronoiFVM package
and disscuss its inner workings starting with two examples.

For more information, see its documentation.

Linear diffusion problem with Dirichlet
boundary conditions

Regard

The following data characterize the problem:

Flux
Dirichlet data
Source/sink term
Domain

β

β

We recall the geometry behind the method:

begin
	 using PlutoUI​ ,ExtendableGrids​ ,VoronoiFVM​ ,GridVisualize​ , PlutoVista​

	 using HypertextLiteral​

	 GridVisualize.default_plotter!(PlutoVista)
end;

⋅
⋅
⋅
⋅
⋅

https://j-fu.github.io/VoronoiFVM.jl
https://j-fu.github.io/VoronoiFVM.jl/stable/

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 2/10

The package works with multiple interacting species. Therefore we need to define a species index for
this particular problem:

const spec_idx 1 =

Diffusion coefficient :

const D 10.0 =

Diffusion flux .

The following function defines the flux through an interface between two neigboring control volumes
which for the Voronoi finite volume method is equivalent to the flux along a triangulation edge. It
receives the current unknown data in the two-dimensional array u . The first index is the species
number, the second index denotes the local index at the given edge. For our problem, we then have

u[1,1] and u[1,2] .

The result is written into f for species index 1, so this is a mutating function, which guarantees to
cause no allocations.

Additional geometrical data optionally can be obtained from the edge parameter.

diffusion_flux! (generic function with 1 method)

Right hand side function (just for an example). Once again, the species index is 1.

diffusion_source! (generic function with 1 method)

Boundary value β:

β 0.1 =

Here, we use the boundary_dirichlet! function which helps to manage the Dirichlet penalty
method for working with Dirichlet boundary conditions.

dirichlet_bc! (generic function with 1 method)

const spec_idx=1⋅

const D=10.0⋅

function diffusion_flux!(f,u, edge)
	 f[spec_idx]=D*(u[spec_idx,1]-u[spec_idx,2])
end

⋅
⋅
⋅

function diffusion_source!(f,node)
	 f[spec_idx]=1
end

⋅
⋅
⋅

β=0.1⋅

function dirichlet_bc!(f,u,bnode)
 boundary_dirichlet!(f,u,bnode,value=β)
end

⋅
⋅
⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 3/10

1D Discretization grid

Grid in domain consisting of N= 51 points.

X

[0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3

 =

grid1d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 51 cells: 50 bfaces: 2

 =

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c1

b1

b2

System creation and solution
Here, we bring together the "physics" part of the problem desribed in the flux function etc. and the
geometry part described by the discretization grid.

system1d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

Using default settings, the system is solved. Optionally, we can obtain information on the solution
history.

(seconds = 2.89, iters = 2, absnorm = 1.08e-15, relnorm = 9.61e-15, roundoff = 7.41e-15, f

We can plot the solution using the scalarplot method from the GridVisualize.jl package.

0 0.2 0.4 0.6 0.8 1

0.1

0.105

0.11

X=collect(range(0,1,length=N))⋅

grid1d=simplexgrid(X)⋅

gridplot(grid1d,size=(600,200),legend=:lt)⋅

system1d=VoronoiFVM.System(grid1d;
	 	 flux=diffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 solution=solve(system1d,inival=0.0, log=true)
	 history_summary(system1d)
end

⋅
⋅
⋅
⋅

scalarplot(grid1d,solution[spec_idx,:],size=(500,200))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 4/10

2D Linear diffusion
For solving a 2D problem, we just need to replace the 1D grid with a 2D grid.

Grid in domain consisting of N2= 11 points in each coordinate direction

X2 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] =

grid2d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 121 cells: 200 bfaces: 40

 =

We can define and solve the 2D problem with the same physics functions as the 1D problem:

system2d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

(seconds = 2.89, iters = 2, absnorm = 1.08e-15, relnorm = 9.61e-15, roundoff = 7.41e-15, f

3D Linear diffusion

X2=collect(range(0,1,length=N2))⋅

grid2d=simplexgrid(X2,X2)⋅

gridplot(grid2d,size=(300,300))⋅

system2d=VoronoiFVM.System(grid2d;
	 	 flux=diffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 solution2d=solve(system2d, log=true)
	 history_summary(system1d)
end

⋅
⋅
⋅
⋅

scalarplot(grid2d,solution2d[1,:],size=(300,300))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 5/10

grid3d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 3 nodes: 1331 cells: 6000 bfaces: 1200

 =

system3d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

sol3
1×1331 Matrix{Float64}:

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

Nonlinear diffusion
Here, we define a nonlinear diffusion problem with diffusion coefficient depending on the solution:

Let with . In order to obtain the diffusion coefficient along the
discretization edge, we evaluate it a the average of the solutions at both ends of the discretization
edge. Just note that there are more sophisticated ways to define this.

grid3d=simplexgrid(X2,X2, X2)⋅

gridplot(grid3d,xplanes=[0.4],size=(400,400))⋅

system3d=VoronoiFVM.System(grid3d;
	 	 flux=diffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

sol3=solve(system3d;inival=0)⋅

scalarplot(grid3d,sol3,size=(400,400))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 6/10

nlD (generic function with 1 method)

nldiffusion_flux! (generic function with 1 method)

1D Nonlinear diffusion

nlsystem1d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

(seconds = 1.18, iters = 13, absnorm = 8.32e-13, relnorm = 6.66e-14, roundoff = 2.1e-13, f

Here, Newton's method is used in order to solve the nonlinear system of equations. The Jacobi matrix
is assembled from the partial derivatives of the flux function .

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

solution

We can plot the solver history

2 4 6 8 10 12

1e−12

1e−9

1e−6

1e−3

1

2D Nonlinear diffusion

nlsystem2d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

nlD(u)=u^2⋅

function nldiffusion_flux!(f,u, edge)
	 avgu=(u[spec_idx,1]+u[spec_idx,2])/2
	 f[spec_idx]=nlD(avgu)*(u[spec_idx,1]-u[spec_idx,2])
end

⋅
⋅
⋅
⋅

nlsystem1d=VoronoiFVM.System(grid1d;
	 	 flux=nldiffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 nlsolution1d=solve(nlsystem1d,inival=0.1, log=true)
	 nlhistory1d=history(nlsystem1d)
	 summary(nlhistory1d)
end

⋅
⋅
⋅
⋅
⋅

scalarplot(grid1d,nlsolution1d[1,:],size=(500,200),title="solution")⋅

scalarplot(nlhistory1d, yscale=:log, size=(500,200))⋅

nlsystem2d=VoronoiFVM.System(grid2d;
	 	 flux=nldiffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 7/10

(seconds = 1.18, iters = 13, absnorm = 8.32e-13, relnorm = 6.66e-14, roundoff = 2.1e-13, f

2 4 6 8 10 12
1e−12

1e−9

1e−6

1e−3

1

3D Nonlinear diffusion

nlsystem3d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

nlsol3d
1×1331 Matrix{Float64}:

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

begin
 nlsolution2d=solve(nlsystem2d,inival=0.1, log=true)
	 nlhistory2d=history(nlsystem2d)
	 summary(nlhistory1d)
end

⋅
⋅
⋅
⋅
⋅

scalarplot(grid2d,nlsolution2d[1,:],size=(300,300),title="solution")⋅

scalarplot(nlhistory2d, yscale=:log,size=(500,200))⋅

nlsystem3d=VoronoiFVM.System(grid3d;
	 	 flux=nldiffusion_flux!,
	 	 source=diffusion_source!,
	 bcondition=dirichlet_bc!,
	 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

nlsol3d=solve(nlsystem3d, inival=0.1)⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 8/10

Behind the scenes

In the previous lectures, we learned:

how to generate discretization grids
how to assemble linear systems of equations for the finite volume method into sparse matrices
how to solve a nonlinear problem utilizing automatic differentiation

In VoronoiFVM.jl, these things are put together.

We already have shown how to assemble linear systems of equations from the finite volume method.

Assembling Jacobi matrices
We show how to assemble the Jacobi matrix for a nonlinear system of equations coming from the
finite volume method.

Linear system of equations in 1D case:

scalarplot(grid3d,nlsol3d[1,:],size=(400,400))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 9/10

Nonlinear system of equations A(u)=f in 1D case: as in the linear case, the equations only couple
neigboring unknowns.

We have

with , in the case of nonlinear diffusion, so each contribution can be assembled by
a calculation on the the corresponding discretization edge. This works in 1D, 2D, and even 3D case.

For a given equation , the only dependencies come from unknowns in the neigbourhood of a given
discretization point.

-th step of Newton's method:

Calculate residual:
Solve linear system for update:
Update solution:

requires the calculation of the Jacobi matrix. Given the structure described above, we see, that the
Jacobi matrix is sparse and can be assembled from contributions from the discretization edges:

As in the linear case, in the 2D case, assembly of and the Jacobi matrix can be realized by
a loop over all simplices of a triangulation.

Derivatives can be calculated locally, it is sufficient to calculate them from the constitutive functions
on each edge. This is a convenient case to use automatic differentiation locally which can be very well
performed by Julia's ForwardDiff.jl .

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 10/10

