
19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 1/10

Scienti�c Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 26

Working with VoronoiFVM.jl

Working with VoronoiFVM.jl
Linear di�fusion problem with Dirichlet boundary conditions

1D Discretization grid
System creation and solution
2D Linear di�fusion
3D Linear di�fusion

Nonlinear di�fusion
1D Nonlinear di�fusion
2D Nonlinear di�fusion
3D Nonlinear di�fusion

Behind the scenes
Assembling Jacobi matrices

In the previous lectures we introduced the Voronoi �nite volume method, and showed how to
implement it on for a linear di�fusion problem on triangular grids, and how to solve nonlinear
systems.

The VoronoiFVM.jl Julia package provides a synthesis of these two.

We show how to de�ne scalar linear and nonlinear di�fusion problems in the VoronoiFVM package
and disscuss its inner workings starting with two examples.

For more information, see its documentation.

Linear di�usion problem with Dirichlet
boundary conditions

Regard

The following data characterize the problem:

Flux
Dirichlet data
Source/sink term
Domain

β

β

We recall the geometry behind the method:

begin
 using PlutoUI ,ExtendableGrids ,VoronoiFVM ,GridVisualize , PlutoVista
 using HypertextLiteral
 GridVisualize.default_plotter!(PlutoVista)
end;

⋅
⋅
⋅
⋅
⋅

https://j-fu.github.io/VoronoiFVM.jl
https://j-fu.github.io/VoronoiFVM.jl/stable/

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 2/10

The package works with multiple interacting species. Therefore we need to de�ne a species index for
this particular problem:

const spec_idx 1 =

Di�fusion coe��cient :

const D 10.0 =

Di�fusion �lux .

The following function de�nes the �lux through an interface between two neigboring control volumes
which for the Voronoi �nite volume method is equivalent to the �lux along a triangulation edge. It
receives the current unknown data in the two-dimensional array u . The �rst index is the species
number, the second index denotes the local index at the given edge. For our problem, we then have

u[1,1] and u[1,2] .

The result is written into f for species index 1, so this is a mutating function, which guarantees to
cause no allocations.

Additional geometrical data optionally can be obtained from the edge parameter.

diffusion_flux! (generic function with 1 method)

Right hand side function (just for an example). Once again, the species index is 1.

diffusion_source! (generic function with 1 method)

Boundary value β:

β 0.1 =

Here, we use the boundary_dirichlet! function which helps to manage the Dirichlet penalty
method for working with Dirichlet boundary conditions.

dirichlet_bc! (generic function with 1 method)

const spec_idx=1⋅

const D=10.0⋅

function diffusion_flux!(f,u, edge)
 f[spec_idx]=D*(u[spec_idx,1]-u[spec_idx,2])
end

⋅
⋅
⋅

function diffusion_source!(f,node)
 f[spec_idx]=1
end

⋅
⋅
⋅

β=0.1⋅

function dirichlet_bc!(f,u,bnode)
 boundary_dirichlet!(f,u,bnode,value=β)
end

⋅
⋅
⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 3/10

�D Discretization grid

Grid in domain consisting of N= 51 points.

X

[0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3

 =

grid1d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 51 cells: 50 bfaces: 2

 =

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c1

b1

b2

System creation and solution
Here, we bring together the "physics" part of the problem desribed in the �lux function etc. and the
geometry part described by the discretization grid.

system1d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

Using default settings, the system is solved. Optionally, we can obtain information on the solution
history.

(seconds = 2.89, iters = 2, absnorm = 1.08e-15, relnorm = 9.61e-15, roundoff = 7.41e-15, f

We can plot the solution using the scalarplot method from the GridVisualize.jl package.

0 0.2 0.4 0.6 0.8 1

0.1

0.105

0.11

X=collect(range(0,1,length=N))⋅

grid1d=simplexgrid(X)⋅

gridplot(grid1d,size=(600,200),legend=:lt)⋅

system1d=VoronoiFVM.System(grid1d;
 flux=diffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 solution=solve(system1d,inival=0.0, log=true)
 history_summary(system1d)
end

⋅
⋅
⋅
⋅

scalarplot(grid1d,solution[spec_idx,:],size=(500,200))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 4/10

�D Linear di�usion
For solving a 2D problem, we just need to replace the 1D grid with a 2D grid.

Grid in domain consisting of N2= 11 points in each coordinate direction

X2 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] =

grid2d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 121 cells: 200 bfaces: 40

 =

We can de�ne and solve the 2D problem with the same physics functions as the 1D problem:

system2d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

(seconds = 2.89, iters = 2, absnorm = 1.08e-15, relnorm = 9.61e-15, roundoff = 7.41e-15, f

�D Linear di�usion

X2=collect(range(0,1,length=N2))⋅

grid2d=simplexgrid(X2,X2)⋅

gridplot(grid2d,size=(300,300))⋅

system2d=VoronoiFVM.System(grid2d;
 flux=diffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 solution2d=solve(system2d, log=true)
 history_summary(system1d)
end

⋅
⋅
⋅
⋅

scalarplot(grid2d,solution2d[1,:],size=(300,300))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 5/10

grid3d ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 3 nodes: 1331 cells: 6000 bfaces: 1200

 =

system3d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

sol3
1×1331 Matrix{Float64}:
 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

Nonlinear di�usion
Here, we de�ne a nonlinear di�fusion problem with di�fusion coe��cient depending on the solution:

Let with . In order to obtain the di�fusion coe��cient along the
discretization edge, we evaluate it a the average of the solutions at both ends of the discretization
edge. Just note that there are more sophisticated ways to de�ne this.

grid3d=simplexgrid(X2,X2, X2)⋅

gridplot(grid3d,xplanes=[0.4],size=(400,400))⋅

system3d=VoronoiFVM.System(grid3d;
 flux=diffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

sol3=solve(system3d;inival=0)⋅

scalarplot(grid3d,sol3,size=(400,400))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 6/10

nlD (generic function with 1 method)

nldiffusion_flux! (generic function with 1 method)

�D Nonlinear di�usion

nlsystem1d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

(seconds = 1.18, iters = 13, absnorm = 8.32e-13, relnorm = 6.66e-14, roundoff = 2.1e-13, f

Here, Newton's method is used in order to solve the nonlinear system of equations. The Jacobi matrix
is assembled from the partial derivatives of the �lux function .

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

solution

We can plot the solver history

2 4 6 8 10 12

1e−12

1e−9

1e−6

1e−3

1

�D Nonlinear di�usion

nlsystem2d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

nlD(u)=u^2⋅

function nldiffusion_flux!(f,u, edge)
 avgu=(u[spec_idx,1]+u[spec_idx,2])/2
 f[spec_idx]=nlD(avgu)*(u[spec_idx,1]-u[spec_idx,2])
end

⋅
⋅
⋅
⋅

nlsystem1d=VoronoiFVM.System(grid1d;
 flux=nldiffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

begin
 nlsolution1d=solve(nlsystem1d,inival=0.1, log=true)
 nlhistory1d=history(nlsystem1d)
 summary(nlhistory1d)
end

⋅
⋅
⋅
⋅
⋅

scalarplot(grid1d,nlsolution1d[1,:],size=(500,200),title="solution")⋅

scalarplot(nlhistory1d, yscale=:log, size=(500,200))⋅

nlsystem2d=VoronoiFVM.System(grid2d;
 flux=nldiffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 7/10

(seconds = 1.18, iters = 13, absnorm = 8.32e-13, relnorm = 6.66e-14, roundoff = 2.1e-13, f

2 4 6 8 10 12
1e−12

1e−9

1e−6

1e−3

1

�D Nonlinear di�usion

nlsystem3d
VoronoiFVM.System{Float64, Int32, Int64, Matrix{Int32}, Matrix{Float64}}(num_species=1)

 =

nlsol3d
1×1331 Matrix{Float64}:
 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

begin
 nlsolution2d=solve(nlsystem2d,inival=0.1, log=true)
 nlhistory2d=history(nlsystem2d)
 summary(nlhistory1d)
end

⋅
⋅
⋅
⋅
⋅

scalarplot(grid2d,nlsolution2d[1,:],size=(300,300),title="solution")⋅

scalarplot(nlhistory2d, yscale=:log,size=(500,200))⋅

nlsystem3d=VoronoiFVM.System(grid3d;
 flux=nldiffusion_flux!,
 source=diffusion_source!,
 bcondition=dirichlet_bc!,
 species=[spec_idx])

⋅
⋅
⋅
⋅
⋅

nlsol3d=solve(nlsystem3d, inival=0.1)⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 8/10

Behind the scenes

In the previous lectures, we learned:

how to generate discretization grids
how to assemble linear systems of equations for the �nite volume method into sparse matrices
how to solve a nonlinear problem utilizing automatic di�ferentiation

In VoronoiFVM.jl, these things are put together.

We already have shown how to assemble linear systems of equations from the �nite volume method.

Assembling Jacobi matrices
We show how to assemble the Jacobi matrix for a nonlinear system of equations coming from the
�nite volume method.

Linear system of equations in 1D case:

scalarplot(grid3d,nlsol3d[1,:],size=(400,400))⋅

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 9/10

Nonlinear system of equations A(u)=f in 1D case: as in the linear case, the equations only couple
neigboring unknowns.

We have

with , in the case of nonlinear di�fusion, so each contribution can be assembled by
a calculation on the the corresponding discretization edge. This works in 1D, 2D, and even 3D case.

For a given equation , the only dependencies come from unknowns in the neigbourhood of a given
discretization point.

-th step of Newton's method:

Calculate residual:
Solve linear system for update:
Update solution:

requires the calculation of the Jacobi matrix. Given the structure described above, we see, that the
Jacobi matrix is sparse and can be assembled from contributions from the discretization edges:

As in the linear case, in the 2D case, assembly of and the Jacobi matrix can be realized by
a loop over all simplices of a triangulation.

Derivatives can be calculated locally, it is su��cient to calculate them from the constitutive functions
on each edge. This is a convenient case to use automatic di�ferentiation locally which can be very well
performed by Julia's ForwardDiff.jl .

19.01.22, 22:24 🎈 nb26-voronoifvm.jl — Pluto.jl

localhost:1236/edit?id=ed044a30-796d-11ec-3556-e3e000ac05ba 10/10

