Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
 Notebook 25

```
begin
    ENV["LANG"]="C"
    using PlutoUI
    using PyPlot
    using LinearAlgebra
    using ForwardDiff
    using DiffResults
    PyPlot.svg(true)
end;
```


Contents

Nonlinear systems of equations

Automatic differentiation

Dual numbers
Dual numbers in Julia
A custom dual number type
ForwardDiff.jl
Solving nonlinear systems of equations
Fixpoint iteration scheme:
Example problem
Newton iteration scheme
Linear and quadratic convergence
Automatic differentiation for Newton's method
A Newton solver with automatic differentiation
Damped Newton iteration
Parameter embedding

Nonlinear systems of equations

Automatic differentiation

Dual numbers

We all know the field of complex numbers \mathbb{C} : they extend the real numbers \mathbb{R} based on the introduction of i with $i^{2}=-1$.

Dual numbers are defined by extending the real numbers by formally introducing a number ε with $\varepsilon^{2}=0$:

$$
\mathbb{D}=\{a+b \varepsilon \mid a, b \in \mathbb{R}\}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} \subset \mathbb{R}^{2 \times 2}
$$

Dual numbers form a ring, not a field.

- Evaluating polynomials on dual numbers: Let $p(x)=\sum_{i=0}^{n} p_{i} x^{i}$. Then

$$
\begin{aligned}
p(a+b \varepsilon) & =\sum_{i=0}^{n} p_{i} a^{i}+\sum_{i=1}^{n} i p_{i} a^{i-1} b \varepsilon \\
& =p(a)+b p^{\prime}(a) \varepsilon
\end{aligned}
$$

- This can be generalized to any analytical function. \Rightarrow automatic evaluation of function and derivative at once
- \Rightarrow forward mode automatic differentiation
- Multivariate dual numbers: generalization for partial derivatives

Dual numbers in Julia

A custom dual number type

Nathan Krislock provided a simple dual number arithmetic example in Julia.

- Define a struct parametrized with type T. This is akin a template class in C++
- The type shall work with all methods working with Number
- In order to construct a Dual number from arguments of different types, allow promotion aka "parameter type homogenization"

```
begin
    struct DualNumber{T} <: Number where {T <: Real}
        value::T
        deriv::T
    end
    DualNumber(v,d) = DualNumber(promote(v,d)...)
end;
```

Define a way to convert a Real to DualNumber

```
    - Base.promote_rule(::Type{DualNumber{T}}, ::Type{<:Real}) where T<:Real = DualNumber{T}
    Base.convert(::Type{DualNumber{T}}, x::Real) where T<:Real = DualNumber(x,zero(T))
```

Simple arithmetic for dual numbers:

All these definitions add methods to the functions $+, /, *,-$, inv which allow them to work for DualNumber

```
begin
    import Base: +, /, *, -, inv
    +(x::DualNumber, y::DualNumber) = DualNumber(x.value + y.value, x.deriv + y.deriv)
    -(y::DualNumber) = DualNumber(-y.value, -y.deriv)
    -(x::DualNumber, y::DualNumber) = x + -y
    *(x::DualNumber, y::DualNumber) = DualNumber(x.value*y.value, x.value*y.deriv +
    x.deriv*y.value)
    inv(y::DualNumber{T}) where T<:Union{Integer, Rational} = DualNumber(1//y.value,
(-y.deriv)//y.value^2)
    inv(y::DualNumber{T}) where T<:Union{AbstractFloat,AbstractIrrational} =
DualNumber(1/y.value, (-y.deriv)/y.value^2)
    /(x::DualNumber, y::DualNumber) = x*inv(y)
end;
```

```
- Base.sin(x::DualNumber{T}) where T= DualNumber(sin(x.value), cos(x.value)*x.deriv);
    Base.log(x::DualNumber{T}) where T = DualNumber(log(x.value),x.deriv/x.value)
```

Constructing a dual number:
$\mathbf{d}=\operatorname{DualNumber}(2,1)$

- d=DualNumber $(2,1)$

Accessing its components:

```
(2, 1)
- d.value,d.deriv
```

Define a function for comparison with known derivative:

```
testdual (generic function with 1 method)
    - function testdual(x,f,df)
        xdual=DualNumber (x,1)
        fdual=f(xdual)
        (f=f(x),f_dual=fdual.value),(df=df(x),df_dual=fdual.deriv)
    end
```

Polynomial expressions:
p (generic function with 1 method)

- $p(x)=x^{\wedge} 3+2 x+1$
dp (generic function with 1 method)
$\mathrm{dp}(\mathrm{x})=3 \mathrm{x}^{\wedge} 2+2$
$\left(\left(f=34, f _d u a l=34\right),\left(d f=29, d f _d u a l=29\right)\right)$
testdual (3,p,dp)
Standard functions:

```
((f = 0.420167, f_dual = 0.420167), (df = 0.907447, df_dual = 0.907447))
- testdual(13,sin,cos)
((f = 2.56495, f_dual = 2.56495), (df = 0.0769231, df_dual = 0.0769231))
- testdual(13,log, x->1/x)
```

Function composition:

```
((f = -0.506366, f_dual = -0.506366), (df = 17.2464, df_dual = 17.2464))
- testdual(10,x->sin(x^2),x->2x*\operatorname{cos}(x^2))
```

If we apply dual numbers in the right way, we can do calculations with derivatives of complicated nonlinear expressions without the need to write code to calculate derivatives.

ForwardDiff.jl

The ForwardDiff.jl package provides a full implementation of these facilities.

```
testdual1 (generic function with 1 method)
    function testdual1(x,f,df)
        (f=f(x),df=df(x),df_dual=ForwardDiff.derivative(f,x))
    end
    (f = 0.14112, df = -0.989992, df_dual = -0.989992)
- testdual1(3,sin,cos)
```

Let us plot some complicated function:

$$
\text { g (generic function with } 1 \text { method) }
$$

$$
g(x)=\sin (\exp (0.2 * x)+\cos (3 x))
$$

$$
x=-5.0: 0.01: 5.0
$$

$$
\mathrm{X}=(-5: 0.01: 5)
$$


```
- let
        clf()
        grid()
        plot(X,g.(X),label="g(x)")
        plot(X,ForwardDiff.derivative.(g,X), label="g'(x)")
        legend()
        gcf().set_size_inches(5,3)
        gcf()
    end
```


Solving nonlinear systems of equations

Let $A_{1} \ldots A_{n}$ be functions depending on n unknowns $u_{1} \ldots u_{n}$. Solve the system of nonlinear equations:

$$
A(u)=\left(\begin{array}{c}
A_{1}\left(u_{1} \ldots u_{n}\right) \\
A_{2}\left(u_{1} \ldots u_{n}\right) \\
\vdots \\
A_{n}\left(u_{1} \ldots u_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=f
$$

$A(u)$ can be seen as a nonlinar operator $A: D \rightarrow \mathbb{R}^{n}$ where $D \subset \mathbb{R}^{n}$ is its domain of definition.
There is no analogon to Gaussian elimination, so we need to solve iteratively.

Fixpoint iteration scheme:

Assume $A(u)=M(u) u$ where for each $u, M(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator.
Then we can define the iteration scheme: choose an initial value u_{0} and at each iteration step, solve

$$
M\left(u^{i}\right) u^{i+1}=f
$$

Terminate if

$$
\left\|A\left(u^{i}\right)-f\right\|<\varepsilon \quad \text { (residual based) }
$$

or

$$
\left\|u_{i+1}-u_{i}\right\|<\varepsilon \quad \text { (update based). }
$$

- Large domain of convergence
- Convergence may be slow
- Smooth coefficients not necessary

```
fixpoint! (generic function with 1 method)
    function fixpoint!(u,M,f; imax=100, tol=1.0e-10)
        history=Float64[]
        for i=1:imax
            res=norm(M(u)*u-f)
            push!(history,res)
            if res<tol
                return u,history
            end
            u=M(u)\f
        end
        error("No convergence after $imax iterations")
    end
```


Example problem

```
M (generic function with 1 method)
    - function M(u)
        [ 1+1.2*(u[1]^2+u[2]^2) -(u[1]^2+u[2]^2);
            -(u[1\mp@subsup{]}{}{\wedge}2+u[2\mp@subsup{]}{}{\wedge}2) 1+1*(u[1\mp@subsup{]}{}{\wedge}2+u[2\mp@subsup{]}{}{\wedge}2)]
    end
F=[1,3]
    - F=[1,3]
    ([1.28822, 1.61348], [3.16228, 26.9072, 1.45019, 1.87735, 0.614397, 0.471544, 0.229973, 0.
. fixpt_result,fixpt_history=fixpoint!([0,0],M,F,imax=1000,tol=1.0e-10)
contraction (generic function with 1 method)
    contraction(h)=h[2:end]./h[1:end-1]
    function plothistory(history::Vector{<:Number})
        clf()
        semilogy(history)
        xlabel("steps")
        ylabel("residual")
        grid()
        gcf()
    end;
```


plothistory(fixpt_history)
[1.85807e-11, -8.93863e-11]

- M(fixpt_result) $*$ fixpt_result-F

Newton iteration scheme

The fixed point iteration scheme assumes a particular structure of the nonlinear system. In addition, one would need to investigate convergence conditions for each particular operator. Can we do better ?

Let $A^{\prime}(u)$ be the Jacobi matrix of first partial derivatives of A at point u :

$$
A^{\prime}(u)=\left(a_{k l}\right)
$$

'with

$$
a_{k l}=\frac{\partial}{\partial u_{l}} A_{k}\left(u_{1} \ldots u_{n}\right)
$$

Then, one calculates in the i-th iteration step:

$$
u_{i+1}=u_{i}-\left(A^{\prime}\left(u_{i}\right)\right)^{-1}\left(A\left(u_{i}\right)-f\right)
$$

One can split this a follows:

- Calculate residual: $r_{i}=A\left(u_{i}\right)-f$
- Solve linear system for update: $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$
- Update solution: $u_{i+1}=u_{i}-h_{i}$

General properties are:

- Potenially small domain of convergence - one needs a good initial value
- Possibly slow initial convergence
- Quadratic convergence close to the solution

Linear and quadratic convergence

Let $e_{i}=u_{i}-\hat{u}$.

- Linear convergence: observed for e.g. linear systems: Asymptotically constant error contraction rate

$$
\frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|} \sim \rho<1
$$

- Quadratic convergence: $\exists i_{0}>0$ such that $\forall i>i_{0}, \frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|^{2}} \leq M<1$.
- As $\left\|e_{i}\right\|$ decreases, the contraction rate decreases:

$$
\frac{\frac{\left\|e_{i+1}\right\|}{\left\|e_{i}\right\|}}{\frac{\left\|e_{i}\right\|}{\left\|e_{i-1}\right\|}}=\frac{\left\|e_{i+1}\right\|}{\frac{\left\|e_{i}\right\|^{2}}{\left\|e_{i-1}\right\|}} \leq\left\|e_{i-1}\right\| M
$$

- In practice, we can watch $\left\|r_{i}\right\|$ or $\left\|h_{i}\right\|$

Automatic differentiation for Newton's method

This is the situation where we could apply automatic differentiation for vector functions of vectors.

```
A (generic function with 1 method)
```

 - \(A(u)=M(u) * u\)
 Create a result buffer for $n=2$
dresult =
MutableDiffResult([6.8994571147445e-310, 0.0], ([6.8996392119662e-310 6.899515458974e-310;
dresult=DiffResults.JacobianResult(ones(2))

Calculate function and derivative at once:

```
MutableDiffResult([5.199999999999999, 2.0], ([12.2 -6.4; -8.0 9.0],))
```

- ForwardDiff.jacobian! (dresult,A,[2.0, 2.0])
[5.2, 2.0]
- DiffResults.value(dresult)
2×2 Matrix\{Float64\}:
$12.2-6.4$
-8.0 9.0
- DiffResults.jacobian(dresult)

A Newton solver with automatic differentiation

newton (generic function with 1 method)

```
function newton(A,b,u0; tol=1.0e-12, maxit=100)
    result=DiffResults.JacobianResult(u0)
    history=Float64[]
    u=copy (u0)
    it=1
    while it<maxit
        ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
        res=DiffResults.value(result)
        jac=DiffResults.jacobian(result)
        h=jac\res
        u-=h
        nm=norm(h)
        push!(history,nm)
        if nm<tol
            return u,history
        end
        it=it+1
    end
    throw("convergence failed")
end
```

$([1.28822,1.61348],[3.02185,0.846373,0.432681,0.102853,0.0030576,3.19945 e-6,3.3511$
newton_result, newton_history=newton(A,F,[0,0.1], tol=1.e-13)
[0.280085, $0.511218,0.237711,0.0297278,0.00104639,1.04742 \mathrm{e}-6,0.000170942]$

- contraction(newton_history)

> plothistory(newton_history)
[8.88178e-16, 8.88178e-16]

- A(newton_result)-F

Let us take a more complicated example with an operator dependent on a parameter λ which allows to adjust the "severity" of the nonlinearity. For $\lambda=0$, it is linear, for $\lambda=1$ it is strongly nonlinear.

A2 λ (generic function with 1 method)

$$
\begin{aligned}
\therefore & A 2 \lambda(x, \lambda) \\
= & {\left[x[1]+10 \lambda * x[1]^{\wedge} 5+3 * x[2] * x[3]\right.} \\
& 0.1 * x[2]+10 \lambda * x[2]^{\wedge} 5-3 * x[1]-x[3] \\
& \left.10 \lambda * x[3]^{\wedge} 5+10 \lambda * x[1] * x[2] * x[3]+x[3] / 100\right]
\end{aligned}
$$

A2 (generic function with 1 method)

- $\mathrm{A} 2(\mathrm{x})=\mathrm{A} 2 \lambda(\mathrm{x}, 1)$
$\mathrm{F} 2=[0.1,0.1,0.1]$
- $\mathrm{F} 2=[0.1,0.1,0.1]$
$\mathrm{U} 02=[1.0,1.0,1.0]$
$\mathrm{U} 02=[1,1.0,1.0]$
[0.0, 8.32667e-17, -5.55112e-17]
- A2(res2)-F2

Newton steps: 86

plothistory(hist2)

Here, we observe that we have to use lots of iteration steps and see a rather erratic behaviour of the residual. After ≈ 80 steps we arrive in the quadratic convergence region where convergence is fast.

Damped Newton iteration

There are may ways to improve the convergence behaviour and/or to increase the convergence radius in such a case. The simplest ones are:

- find a good estimate of the initial value
- damping: do not use the full update, but damp it by some factor which we increase during the iteration process until it reaches 1

```
dnewton (generic function with 1 method)
    function dnewton(A,b,u0; tol=1.0e-12,maxit=100,damp=0.01,damp_growth=1)
    result=DiffResults.JacobianResult(u0)
    history=Float64[]
    u=copy (u0)
    it=1
    while it<maxit
        ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
        res=DiffResults.value(result)
        jac=DiffResults.jacobian(result)
        h=jac\res
        u-=damp*h
        nm=norm(h)
        push!(history,nm)
        if nm<tol
            return u,history
            end
            it=it+1
            damp=min(damp*damp_growth,1.0)
    end
    throw("convergence failed")
    end
```

Newton steps: 13

plothistory(hist3)
[2.77556e-17, -1.38778e-16, 0.0]

- A2 (res3)-F2

The example shows: damping indeed helps to improve the convergece behaviour. If we would keep the damping parameter less than 1 , we loose the quadratic convergence behavior.

A more sophisticated strategy would be line search: automatic detection of a damping factor which prevents the residual from increasing.

Parameter embedding

Another option is the use of parameter embedding for parameter dependent problems.

- Problem: solve $A\left(u_{\lambda}, \lambda\right)=f$ for $\lambda=1$.
- Assume $A\left(u_{0}, 0\right)$ can be easily solved.
- Choose step size δ

1. Solve $A\left(u_{0}, 0\right)=f$
2. Set $\lambda=0$
3. Solve $A\left(u_{\lambda+\delta}, \lambda+\delta\right)=f$ with initial value u_{λ}
4. Set $\lambda=\lambda+\delta$
5. If $\lambda<1$ repeat with 3 .

- If δ is small enough, we can ensure that u_{λ} is a good initial value for $u_{\lambda+\delta}$.
- Possibility to adapt δ depending on Newton convergence

```
embed_newton (generic function with 1 method)
    function embed_newton(A,F,U0; \delta=0.1, \lambda0=0,\lambda1=1)
    U=copy (U0)
    - allhist=Vector[]
    for \lambda=\lambda0:\delta:\lambda1
        U,hist=newton(x->A(x,\lambda),F,U)
            push!(allhist,hist)
        end
            U,allhist
    end
```

Newton steps: 63
plothistory (generic function with 2 methods)

plothistory (hist4)

- Parameter embedding + damping + update based convergence control go a long way to solve even strongly nonlinear problems!
- A similar approach can be used for time dependent problems.

