
17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 1/11

Scienti�c Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 25

Contents

Nonlinear systems of equations
Automatic di�ferentiation

Dual numbers
Dual numbers in Julia

A custom dual number type
ForwardDi�f.jl

Solving nonlinear systems of equations
Fixpoint iteration scheme:

Example problem
Newton iteration scheme
Linear and quadratic convergence
Automatic di�ferentiation for Newton's method

A Newton solver with automatic di�ferentiation
Damped Newton iteration
Parameter embedding

Nonlinear systems of equations

Automatic di�erentiation

Dual numbers

We all know the �eld of complex numbers : they extend the real numbers based on the
introduction of with .

Dual numbers are de�ned by extending the real numbers by formally introducing a number
with :

Dual numbers form a ring, not a �eld.

begin
 ENV["LANG"]="C"
 using PlutoUI
 using PyPlot
 using LinearAlgebra
 using ForwardDiff
 using DiffResults
 PyPlot.svg(true)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 2/11

Evaluating polynomials on dual numbers: Let . Then

This can be generalized to any analytical function. automatic evaluation of function and
derivative at once

 forward mode automatic di�ferentiation
Multivariate dual numbers: generalization for partial derivatives

Dual numbers in Julia

A custom dual number type
Nathan Krislock provided a simple dual number arithmetic example in Julia.

De�ne a struct parametrized with type T. This is akin a template class in C++
The type shall work with all methods working with Number
In order to construct a Dual number from arguments of di�ferent types, allow promotion aka
"parameter type homogenization"

De�ne a way to convert a Real to DualNumber

Simple arithmetic for dual numbers:

All these de�nitions add methods to the functions +, /, *, -, inv which allow them to work for
DualNumber

begin
 struct DualNumber{T} <: Number where {T <: Real}
 value::T
 deriv::T
 end
 DualNumber(v,d) = DualNumber(promote(v,d)...)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅

Base.promote_rule(::Type{DualNumber{T}}, ::Type{<:Real}) where T<:Real = DualNumber{T}⋅

Base.convert(::Type{DualNumber{T}}, x::Real) where T<:Real = DualNumber(x,zero(T))⋅
⋅

begin
 import Base: +, /, *, -, inv
 +(x::DualNumber, y::DualNumber) = DualNumber(x.value + y.value, x.deriv + y.deriv)

 -(y::DualNumber) = DualNumber(-y.value, -y.deriv)

 -(x::DualNumber, y::DualNumber) = x + -y

 *(x::DualNumber, y::DualNumber) = DualNumber(x.value*y.value, x.value*y.deriv +
x.deriv*y.value)

 inv(y::DualNumber{T}) where T<:Union{Integer, Rational} = DualNumber(1//y.value,
(-y.deriv)//y.value^2)

 inv(y::DualNumber{T}) where T<:Union{AbstractFloat,AbstractIrrational} =
DualNumber(1/y.value, (-y.deriv)/y.value^2)

 /(x::DualNumber, y::DualNumber) = x*inv(y)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅
⋅
⋅

https://julialang.zulipchat.com/#narrow/stream/225542-helpdesk/topic/Comparing.20julia.20and.20numpy/near/209143302

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 3/11

Constructing a dual number:

d DualNumber(2, 1) =

Accessing its components:

(2, 1)

De�ne a function for comparison with known derivative:

testdual (generic function with 1 method)

Polynomial expressions:

p (generic function with 1 method)

dp (generic function with 1 method)

((f = 34, f_dual = 34), (df = 29, df_dual = 29))

Standard functions:

((f = 0.420167, f_dual = 0.420167), (df = 0.907447, df_dual = 0.907447))

((f = 2.56495, f_dual = 2.56495), (df = 0.0769231, df_dual = 0.0769231))

Function composition:

((f = -0.506366, f_dual = -0.506366), (df = 17.2464, df_dual = 17.2464))

If we apply dual numbers in the right way, we can do calculations with derivatives of
complicated nonlinear expressions without the need to write code to calculate derivatives.

ForwardDi�.jl

The ForwardDi�f.jl package provides a full implementation of these facilities.

testdual1 (generic function with 1 method)

(f = 0.14112, df = -0.989992, df_dual = -0.989992)

Base.sin(x::DualNumber{T}) where T= DualNumber(sin(x.value),cos(x.value)*x.deriv);⋅

Base.log(x::DualNumber{T}) where T = DualNumber(log(x.value),x.deriv/x.value)⋅

d=DualNumber(2,1)⋅

d.value,d.deriv⋅

function testdual(x,f,df)
 xdual=DualNumber(x,1)
 fdual=f(xdual)
 (f=f(x),f_dual=fdual.value),(df=df(x),df_dual=fdual.deriv)
end

⋅
⋅
⋅
⋅
⋅

p(x)=x^3+2x+1⋅

dp(x)=3x^2+2⋅

testdual(3,p,dp)⋅

testdual(13,sin,cos)⋅

testdual(13,log, x->1/x)⋅

testdual(10,x->sin(x^2),x->2x*cos(x^2))⋅

function testdual1(x,f,df)
 (f=f(x),df=df(x),df_dual=ForwardDiff.derivative(f,x))
end

⋅
⋅
⋅

testdual1(3,sin,cos)⋅

https://github.com/JuliaDiff/ForwardDiff.jl

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 4/11

Let us plot some complicated function:

g (generic function with 1 method)

X -5.0:0.01:5.0 =

Solving nonlinear systems of equations

Let be functions depending on unknowns . Solve the system of nonlinear
equations:

 can be seen as a nonlinar operator where is its domain of de�nition.

There is no analogon to Gaussian elimination, so we need to solve iteratively.

g(x)=sin(exp(0.2*x)+cos(3x))⋅

X=(-5:0.01:5)⋅

let
 clf()
 grid()
 plot(X,g.(X),label="g(x)")
 plot(X,ForwardDiff.derivative.(g,X), label="g'(x)")
 legend()
 gcf().set_size_inches(5,3)
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 5/11

Fixpoint iteration scheme:
Assume where for each , is a linear operator.

Then we can de�ne the iteration scheme: choose an initial value and at each iteration step, solve

Terminate if

or

Large domain of convergence
Convergence may be slow
Smooth coe��cients not necessary

fixpoint! (generic function with 1 method)

Example problem

M (generic function with 1 method)

F [1, 3] =

([1.28822, 1.61348], [3.16228, 26.9072, 1.45019, 1.87735, 0.614397, 0.471544, 0.229973, 0.

contraction (generic function with 1 method)

function fixpoint!(u,M,f; imax=100, tol=1.0e-10)
 history=Float64[]
 for i=1:imax
 res=norm(M(u)*u-f)
 push!(history,res)
 if res<tol
 return u,history
 end
 u=M(u)\f
 end
 error("No convergence after $imax iterations")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function M(u)
 [1+1.2*(u[1]^2+u[2]^2) -(u[1]^2+u[2]^2);
 -(u[1]^2+u[2]^2) 1+1*(u[1]^2+u[2]^2)]
end

⋅
⋅
⋅
⋅

F=[1,3]⋅

fixpt_result,fixpt_history=fixpoint!([0,0],M,F,imax=1000,tol=1.0e-10)⋅

contraction(h)=h[2:end]./h[1:end-1]⋅

function plothistory(history::Vector{<:Number})
 clf()
 semilogy(history)
 xlabel("steps")
 ylabel("residual")
 grid()
 gcf()
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 6/11

[8.50882, 0.0538958, 1.29456, 0.327268, 0.76749, 0.487702, 0.640077, 0.548586, 0.60068, 0.

[1.85807e-11, -8.93863e-11]

Newton iteration scheme
The �xed point iteration scheme assumes a particular structure of the nonlinear system. In addition,
one would need to investigate convergence conditions for each particular operator. Can we do better ?

Let be the Jacobi matrix of �rst partial derivatives of at point :

'with

Then, one calculates in the -th iteration step:

One can split this a follows:

Calculate residual:
Solve linear system for update:
Update solution:

General properties are:

Potenially small domain of convergence - one needs a good initial value
Possibly slow initial convergence
Quadratic convergence close to the solution

contraction(fixpt_history)⋅

plothistory(fixpt_history)⋅

M(fixpt_result)*fixpt_result-F⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 7/11

Linear and quadratic convergence
Let .

Linear convergence: observed for e.g. linear systems: Asymptotically constant error contraction
rate

Quadratic convergence: such that ,
As decreases, the contraction rate decreases:

In practice, we can watch or

Automatic di�erentiation for Newton's
method

This is the situation where we could apply automatic di�ferentiation for vector functions of vectors.

A (generic function with 1 method)

Create a result bu�fer for

dresult
MutableDiffResult([6.8994571147445e-310, 0.0], ([6.8996392119662e-310 6.899515458974e-310;

 =

Calculate function and derivative at once:

MutableDiffResult([5.199999999999999, 2.0], ([12.2 -6.4; -8.0 9.0],))

[5.2, 2.0]

2×2 Matrix{Float64}:
 12.2 -6.4
 -8.0 9.0

A Newton solver with automatic di�erentiation

A(u)=M(u)*u⋅

dresult=DiffResults.JacobianResult(ones(2))⋅

ForwardDiff.jacobian!(dresult,A,[2.0, 2.0])⋅

DiffResults.value(dresult)⋅

 DiffResults.jacobian(dresult)⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 8/11

newton (generic function with 1 method)

([1.28822, 1.61348], [3.02185, 0.846373, 0.432681, 0.102853, 0.0030576, 3.19945e-6, 3.3511

[0.280085, 0.511218, 0.237711, 0.0297278, 0.00104639, 1.04742e-6, 0.000170942]

[8.88178e-16, 8.88178e-16]

Let us take a more complicated example with an operator dependent on a parameter λ which allows
to adjust the "severity" of the nonlinearity. For λ=0, it is linear, for λ=1 it is strongly nonlinear.

A2λ (generic function with 1 method)

A2 (generic function with 1 method)

F2 [0.1, 0.1, 0.1] =

U02 [1.0, 1.0, 1.0] =

function newton(A,b,u0; tol=1.0e-12, maxit=100)
 result=DiffResults.JacobianResult(u0)
 history=Float64[]
 u=copy(u0)
 it=1
 while it<maxit
 ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
 res=DiffResults.value(result)
 jac=DiffResults.jacobian(result)
 h=jac\res
 u-=h
 nm=norm(h)
 push!(history,nm)
 if nm<tol
 return u,history
 end

 it=it+1
 end
 throw("convergence failed")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

newton_result,newton_history=newton(A,F,[0,0.1],tol=1.e-13)⋅

contraction(newton_history)⋅

plothistory(newton_history)⋅

A(newton_result)-F⋅

A2λ(x,λ)= [x[1]+10λ*x[1]^5+3*x[2]*x[3],
 0.1*x[2]+10λ*x[2]^5-3*x[1]-x[3],
 10λ*x[3]^5+10λ*x[1]*x[2]*x[3]+x[3]/100]

⋅
⋅
⋅

A2(x)=A2λ(x,1)⋅

F2=[0.1,0.1,0.1]⋅

U02=[1,1.0,1.0]⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 9/11

([-0.188484, 0.198519, 0.488388], [0.39077, 0.345694, 0.389908, 0.977557, 0.300465, 0.1952

[0.0, 8.32667e-17, -5.55112e-17]

Newton steps: 86

Here, we observe that we have to use lots of iteration steps and see a rather erratic behaviour of the
residual. A�ter 80 steps we arrive in the quadratic convergence region where convergence is fast.

Damped Newton iteration
There are may ways to improve the convergence behaviour and/or to increase the convergence radius
in such a case. The simplest ones are:

�nd a good estimate of the initial value
damping: do not use the full update, but damp it by some factor which we increase during the
iteration process until it reaches 1

dnewton (generic function with 1 method)

res2,hist2=newton(A2,F2,U02)⋅

A2(res2)-F2⋅

plothistory(hist2)⋅

function dnewton(A,b,u0; tol=1.0e-12,maxit=100,damp=0.01,damp_growth=1)
 result=DiffResults.JacobianResult(u0)
 history=Float64[]
 u=copy(u0)
 it=1
 while it<maxit
 ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
 res=DiffResults.value(result)
 jac=DiffResults.jacobian(result)
 h=jac\res
 u-=damp*h
 nm=norm(h)
 push!(history,nm)
 if nm<tol
 return u,history
 end

 it=it+1
 damp=min(damp*damp_growth,1.0)
 end
 throw("convergence failed")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 10/11

([-0.188484, 0.198519, 0.488388], [0.39077, 0.365701, 0.34648, 0.347045, 0.908798, 0.51711

Newton steps: 13

[2.77556e-17, -1.38778e-16, 0.0]

The example shows: damping indeed helps to improve the convergece behaviour. If we would keep
the damping parameter less than 1, we loose the quadratic convergence behavior.

A more sophisticated strategy would be line search: automatic detection of a damping factor which
prevents the residual from increasing.

Parameter embedding

Another option is the use of parameter embedding for parameter dependent problems.

Problem: solve for .
Assume can be easily solved.
Choose step size

�. Solve
�. Set
�. Solve with initial value
�. Set
�. If repeat with 3.

If is small enough, we can ensure that is a good initial value for .
Possibility to adapt depending on Newton convergence

embed_newton (generic function with 1 method)

res3,hist3=dnewton(A2,F2,U02,damp=0.5,damp_growth=1.1)⋅

plothistory(hist3)⋅

A2(res3)-F2⋅

 function embed_newton(A,F,U0; δ=0.1, λ0=0,λ1=1)
 U=copy(U0)
allhist=Vector[]
 for λ=λ0:δ:λ1
 U,hist=newton(x->A(x,λ),F,U)
 push!(allhist,hist)
 end
 U,allhist
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:38 🎈 nb25-nonlin-ad.jl — Pluto.jl

localhost:1240/edit?id=d8f8b4bc-5eb1-11ec-3912-f77db2ef6fae# 11/11

([-0.188484, 0.198519, 0.488388], [[13.3828, 7.87804, 4.57156e-16], [2.11017, 1.68647, 1.3

Newton steps: 63

plothistory (generic function with 2 methods)

Parameter embedding + damping + update based convergence control go a long way to solve
even strongly nonlinear problems!
A similar approach can be used for time dependent problems.

res4,hist4=embed_newton(A2λ,F2,U02,δ=0.1,λ0=0)⋅

plothistory(hist4)⋅

