
17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 1/10

Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 24

Finite volume method: further
aspects

Julia packages supporting PDE solution
Up to now we used the Triangulate.jl in order to access mesh generation, for all other functionality,
standard Julia packages were used.

There are a number of PDE solution packages in Julia, in particular for the finite element method.
During this course, we will use a number of recently developed packages supporting basic
functionality for the solution of PDEs. They emerged from the WIAS pdelib project and from scientific
computing courses from previous years. These are:

ExtendableGrids.jl: unstructured grid management library
GridVisualize.jl: grid and function visualization related to ExtendableGrids.jl
PlutoVista.jl Efficient plotting in Pluto notebooks bases on Javascript and WebGL. Alternative to
PyPlot and able to work with GridVisualize.jl.
SimplexGridFactory.jl: unified high level mesh generator interface
ExtendableSparse.jl: convenient and efficient sparse matrix assembly

We will use all of them in this lecture.

Contents

Finite volume method: further aspects
Julia packages supporting PDE solution
Dirichlet boundary conditions

Three main possibilities to implement Dirichlet boundary conditions:
Algebraic manipulation
Modification of boundary equations
Penalty method: the "lazy" way
Matrix assembly

Calculation example
Grid generation

Desired number of triangles
Solving the problem

Problem data
Convergence test

Conclusions

begin
 ENV["LC_NUMERIC"]="C"
 using PlutoUI , PyPlot , Triangulate ,SimplexGridFactory ,ExtendableGrids

,ExtendableSparse ,GridVisualize ,SparseArrays , Printf , HypertextLiteral
,PlutoVista

end;

⋅
⋅
⋅

⋅

https://github.com/j-fu/ExtendableGrids.jl
https://github.com/j-fu/GridVisualize.jl
https://github.com/j-fu/PlutoVista.jl
https://github.com/j-fu/SimplexGridFactory.jl
https://github.com/j-fu/ExtendableSparse.jl

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 2/10

Dirichlet boundary conditions
So far, we discussed the implementation of Robin boundary conditions for the finite volume method.
Neumann boundary conditions are a special case.

Dirichlet boundary conditions already have been qualified as a limiting case. We will discuss this issue
here.

Assume the Dirichlet boundary value problem

β

Three main possibilities to implement Dirichlet
boundary conditions:

Eliminate Dirichlet BC algebraically after building of the matrix, i.e. fix ``known unknowns'' at
the Dirichlet boundary highly technical when only a part of the boundary is affected
Modifiy matrix such that equations at boundary exactly result in Dirichlet values loss of
symmetry of the matrix
Penalty method: replace the Dirichlet boundary condition by a Robin boundary condition with
high transfer coefficient

We discuss these possibilities for a 1D problem in with tridiagonal matrix:

β
β

Algebraic manipulation

Matrix of homogeneous Neumann problem - no regard to boundary values.

 is diagonally dominant, but neither idd, nor sdd.
Introduce the Dirichlet boundary conditions by fixing the value of and eliminating the
corresponding equation:

 is idd and stays symmetric

This operation is quite technical to implement, even more so for triangular meshes or for systems with
multiple PDEs.

β

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 3/10

Modification of boundary equations

Modify equation at boundary to exactly represent Dirichlet values

 is not anymore irreducible
Loss of symmetry problem e.g. with CG method

Penalty method: the "lazy" way
This corresponds to replacing the Dirichlet boundary condition with a Robin boundary
condition

In practice we perform this operation on a discrete level:

 is idd, symmetric, and the realization is technically easy.
If is small enough, will be satisfied exactly within floating point accuracy.
Drawback: formally, this creates a large condition number
Iterative methods should be initialized with Dirichlet values, so we start in a subspace where
this is not relevant
Works also nonlinear problems, finite volume methods

β

β

β

β

Matrix assembly

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 4/10

function trifactors!(ω, e, itri, pointlist, trianglelist)
 # Obtain the node numbers for triangle itri
 i1=trianglelist[1,itri]
 i2=trianglelist[2,itri]
 i3=trianglelist[3,itri]
	
 # Calculate triangle area:
 # Matrix of edge vectors
 V11= pointlist[1,i2]- pointlist[1,i1]
 V21= pointlist[2,i2]- pointlist[2,i1]

 V12= pointlist[1,i3]- pointlist[1,i1]
 V22= pointlist[2,i3]- pointlist[2,i1]

 V13= pointlist[1,i3]- pointlist[1,i2]
 V23= pointlist[2,i3]- pointlist[2,i2]

 # Compute determinant
 det=V11*V22 - V12*V21

 # Area
 area=0.5*det

 # Squares of edge lengths
 dd1=V13*V13+V23*V23 # l32
 dd2=V12*V12+V22*V22 # l31
 dd3=V11*V11+V21*V21 # l21

 # Contributions to e_kl=σ_kl/h_kl
 e[1]= (dd2+dd3-dd1)*0.125/area
 e[2]= (dd3+dd1-dd2)*0.125/area
 e[3]= (dd1+dd2-dd3)*0.125/area

 # Contributions to ω_k
 ω[1]= (e[3]*dd3+e[2]*dd2)*0.25
 ω[2]= (e[1]*dd1+e[3]*dd3)*0.25
 ω[3]= (e[2]*dd2+e[1]*dd1)*0.25
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function bfacefactors!(γ,ibface, pointlist, segmentlist)
 i1=segmentlist[1,ibface]
 i2=segmentlist[2,ibface]
 dx=pointlist[1,i1]-pointlist[1,i2]
 dy=pointlist[2,i1]-pointlist[2,i2]
 d=0.5*sqrt(dx*dx+dy*dy)
 γ[1]=d
 γ[2]=d
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 5/10

assemble! (generic function with 1 method)

Calculation example
Now we are able to solve our intended problem. This time, we create the discretization grid using the
package SimplexGridFactory.jl which provides and easier interface to mesh generation via
Triangulate.jl .

Grid generation

function assemble!(matrix, # System matrix
 rhs, # Right hand side vector
	 	 δ, # heat conduction coefficient
 f::Tf, # Source/sink function
	 	 β::Tβ, # boundary condition function
 pointlist,
 trianglelist,
 segmentlist) where{Tf,Tβ}
 penalty=1.0e30
 num_nodes_per_cell=3;
 num_edges_per_cell=3;
 num_nodes_per_bface=2
 ntri=size(trianglelist,2)
 nbface=size(segmentlist,2)

 # Local edge-node connectivity
 local_edgenodes=[2 3; 3 1; 1 2]'

 # Storage for form factors
 e=zeros(num_nodes_per_cell)
 ω=zeros(num_edges_per_cell)
 γ=zeros(num_nodes_per_bface)

 # Initialize right hand side to zero
 rhs.=0.0

 # Loop over all triangles
 for itri=1:ntri
 trifactors!(ω,e,itri,pointlist,trianglelist)
 	 # Assemble nodal contributions to right hand side
 for k_local=1:num_nodes_per_cell
 k_global=trianglelist[k_local,itri]
 x=pointlist[1,k_global]
 y=pointlist[2,k_global]
 rhs[k_global]+=f(x,y)*ω[k_local]
 end
	
 # Assemble edge contributions to matrix
 for iedge=1:num_edges_per_cell
 k_global=trianglelist[local_edgenodes[1,iedge],itri]
 l_global=trianglelist[local_edgenodes[2,iedge],itri]
 matrix[k_global,k_global]+=δ*e[iedge]
 matrix[l_global,k_global]-=δ*e[iedge]
 matrix[k_global,l_global]-=δ*e[iedge]
 matrix[l_global,l_global]+=δ*e[iedge]
 end
 end

 # Assemble boundary conditions

 for ibface=1:nbface
 for k_local=1:num_nodes_per_bface
 k_global=segmentlist[k_local,ibface]
 matrix[k_global,k_global]+=penalty
 x=pointlist[1,k_global]
 y=pointlist[2,k_global]
 rhs[k_global]+=penalty*β(x,y)
 end
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 6/10

describe_grid (generic function with 1 method)

builder

SimplexGridBuilder(Triangulate, 4, 1, 1.0, 1.0e-12, [1, 2, 3, 4], [[1, 2], [2, 3], [3, 4],

 =

We can plot the input and the possible output of the builder.

The simplexgrid method creates an object of type ExtendableGrid which is defined in
ExtendableGrids.jl. We can overwrite the maxvolume default which we used in describe_grid .

grid ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 24 cells: 30 bfaces: 16

 =

Desired number of triangles
From the desired number of triangles, we can calculate a value fo the maximum area constraint
passed to the mesh generator: Desired number of triangles:
20

We use the SimplexGridBuilder from SimplexGridFactory.jl
function describe_grid()
	 # Create a SimplexGridBuilder structure which can collect
	 # geometry information
 builder=SimplexGridBuilder(Generator=Triangulate)

 # Add points, record their numbers
 p1=point!(builder,-1,-1)
 p2=point!(builder,1,-1)
 p3=point!(builder,1,1)
 p4=point!(builder,-1,1)

 # Connect points by respective facets (segments)
 facetregion!(builder,1)
 facet!(builder,p1,p2)
 facetregion!(builder,2)
 facet!(builder,p2,p3)
 facetregion!(builder,3)
 facet!(builder,p3,p4)
 facetregion!(builder,4)
 facet!(builder,p4,p1)
 options!(builder,maxvolume=0.1)
 builder
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

builder=describe_grid()⋅

builderplot(builder,Plotter=PyPlot)
⋅
⋅

grid=simplexgrid(builder,maxvolume=4/desired_number_of_triangles)
⋅
⋅

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 7/10

Solving the problem

Problem data

f (generic function with 1 method)

β (generic function with 1 method)

δ 1 =

Data of the grid are accessed in a Dictionary like fashion. Coordinates , CellNodes and BFaceNodes
are abstract types defined in ExtendableGrids.jl . Behind this is a dictionary with types as keys
allowing type-stable access of the contents like in a struct and easy extension by defining additional
key types. See here for more information.

solve_example (generic function with 1 method)

solution
[7.58983e-63, -1.58037e-62, 1.56301e-62, -1.8106e-62, 0.00546284, 1.23156e-32, -2.0255e-33

 =

scalarplot from GridVisualize.jl allows easy handling of plotting on unstructured grids with
reasonable defaults.

gridplot(grid, Plotter=PlutoVista,resolution=(300,300))⋅

f(x,y)=sinpi(x)*sinpi(y)⋅

 β(x,y)=0⋅

function solve_example(grid)
 # Initialize sparse matrix and right hand side
 n=num_nodes(grid)
 matrix=spzeros(n,n)
 rhs=zeros(n)
	 # Call the assemble function.
 assemble!(matrix,rhs,δ,f,β,
	 grid[Coordinates],
	 grid[CellNodes],
	 grid[BFaceNodes])
 # Solve
 sol=matrix\rhs
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

solution=solve_example(grid)⋅

https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://j-fu.github.io/ExtendableGrids.jl/stable/tdict/

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 8/10

Convergence test
How good is our implementation and the choice of the penalty method for Dirichlet boundary
conditions ? - Perform a convergence test on ever finer grids!

For this purpose we need to calculate error norms. Based on the L2-Norm

we implement a discrete analogon for a discrete solution

Further, we implement the "h1"-norm

wich measures the error in the gradient, and its discrete analogon We may discuss the details later.

fvnorms (generic function with 1 method)

scalarplot(grid,solution,Plotter=PlutoVista,resolution=
(300,300),isolines=11,colormap=:bwr)

⋅
⋅

function fvnorms(u,pointlist,trianglelist)
 local_edgenodes=[2 3; 3 1; 1 2]'
 num_nodes_per_cell=3;
 num_edges_per_cell=3;
 e=zeros(num_nodes_per_cell)
 ω=zeros(num_edges_per_cell)
 l2norm=0.0
 h1norm=0.0
 ntri=size(trianglelist,2)
 for itri=1:ntri
 trifactors!(ω,e,itri,pointlist,trianglelist)
 for k_local=1:num_nodes_per_cell
 k=trianglelist[k_local,itri]
 x=pointlist[1,k]
 y=pointlist[2,k]
 l2norm+=u[k]^2*ω[k_local]
 end
 for iedge=1:num_edges_per_cell
 k=trianglelist[local_edgenodes[1,iedge],itri]
 l=trianglelist[local_edgenodes[2,iedge],itri]
 h1norm+=(u[k]-u[l])^2*e[iedge]
 end
 end
 return (sqrt(l2norm),sqrt(h1norm));
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 9/10

Define an exact solution of the homogeneous Dirichlet boundary value problem on

The right corresponding hand side is

Run convergence test for a number of grid refinement levels

convergence_test (generic function with 1 method)

([0.316228, 0.158114, 0.0790569, 0.0395285, 0.0197642, 0.00988212, 0.00494106], [0.265187,

k=1; l=1;⋅

fexact(x,y)=sinpi(k*x)*sinpi(l*y);⋅

frhs(x,y)=(k^2+l^2)*pi^2*fexact(x,y);⋅

function convergence_test(;nref0=0, nref1=1,k=1,l=1,extsparse=false)
 allh=[]
 alll2=[]
 allh1=[]

 β(x,y)=0

 for iref=nref0:nref1
 	 # define the refinement level via the maximum area constraint
	 	 area=0.1*2.0^(-2*iref)
	 	 h=sqrt(area)
	 	 grid=simplexgrid(builder,maxvolume=area)

	 	 n=num_nodes(grid)
 rhs=zeros(n)

	 	 # Optionally, use the sparse matrix from ExtendableGrids
	 	 if extsparse
 	 		 matrix=ExtendableSparseMatrix(n,n)
	 	 else
	 	 matrix=spzeros(n,n)
	 	 end
 rhs=zeros(n)

 assemble!(matrix,rhs,δ,frhs,β,
	 	 grid[Coordinates],grid[CellNodes],grid[BFaceNodes])
 	 	 sol=matrix\rhs
	 	 uexact=map(fexact,grid)

 (l2norm,h1norm)=fvnorms(uexact-sol,grid[Coordinates],grid[CellNodes])

	 	 push!(allh,h)
 push!(allh1,h1norm)
 push!(alll2,l2norm)
 end
 allh,alll2,allh1
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

allh,alll2,allh1=convergence_test(nref0=0,nref1=6,extsparse=true)⋅

17.12.21, 14:39 🎈 nb24-fv-dirichlet.jl — Pluto.jl

localhost:1236/edit?id=bffdf2fa-5ead-11ec-2b49-3f3a1318f52b 10/10

Conclusions

We see the second order convergence of the solution and first order convergence of the gradient. This
is the typical behavior which we also would expect from the finite element method.

Concerning the complexity, the ExtendableSparseMatrix uses an intermediate data structure for
collecting the matrix entries. If we directly insert data into a compressed column data structure, there
is a considerable overhead for reorganization of the long arrays describing the matrix.

