
10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 1/9

Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann
Notebook 23

Contents

Implementation of the finite volume method
Geometrical data for finite volumes

Needed data
Calculation steps for the interface contributions

Steps to the implementation
Triangle form factors
Boundary form factors
Matrix assembly
Graphical representation

Calculation example
Grid generation
Plotting the grid

Desired number of triangles
Solving the problem

Problem data

Implementation of the finite volume
method

Here, we specifically introduce the Voronoi finite volume method on triangular grids.

We discuss the implementation of the method for the problem

Geometrical data for finite volumes
As seen in the previous lecture, we need to be able to calculate the contributions to the Voronoi cell
data for each triangle.

PA=[
3.0
,
3.0
]

begin
	 ENV["LC_NUMERIC"]="C"
	 using PlutoUI ,PyPlot , Triangulate ,SparseArrays , Printf

	 using HypertextLiteral

	 PyPlot.svg(true);
end;

⋅
⋅
⋅
⋅
⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 2/9

Needed data

Edge lengths :

Contributions to lengths of the interfaces between Voronoi cells – : length fo
lines joining the corresponding edge centers with the triangle circumcenter

.
Practically, we need the values of the ratios :

Triangle contributions to the Voronoi cell areas around the respective triangle nodes

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 3/9

Calculation steps for the interface contributions
We show the calculation steps for , the others can be obtained via corresponding permutations.

1. Semiperimeter:

2. Square area (from Heron's formula):

3. Square circumradius:

4. Square of the Voronoi interface contribution via Pythagoras:

5. Square of interface contribution over edge length:

6. Interface contribution over edge length:

7. Calculation of the area contributions

The sign chosen implies a positive value if the angle , and a negative value if it is
obtuse. In the latter case, this corresponds to the negative length of the line between edge
midpoint and circumcenter, which is exactly the value which needs to be added to the
corresponding amount from the opposite triangle in order to obtain the measure of the Voronoi
face.
If an edge between two triangles is not locally Delaunay, the summary contribution from the
two triangles with respect to this edge will become negative.

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 4/9

Steps to the implementation
We describe a triangular discretization mesh by three arrays:

pointlist : floating point array of node coordinates of the triangulations.
pointlist[:,i] then contains the coordinates of point i .
trianglelist : integer array describing which three nodes belong to a given triangle.
trianglelist[:,i] then contains the numbers of nodes belonging to triangle i .
segmentlist : integer array describing which two nodes belong to a given boundary

segment. segmentlist[:,i] contains the numbers of nodes for boundary segment i.

Triangle form factors
For triangle itri , we want to calculate the corresponding form factors and :

trifactors! (generic function with 1 method)

Boundary form factors
Here we need for an interface segment of two points the contributions to the intersection of
the Voronoi cell boundary with the outer boundary which is just the half length:

function trifactors!(ω, e, itri, pointlist, trianglelist)
 # Obtain the node numbers for triangle itri
	 i1=trianglelist[1,itri]
 i2=trianglelist[2,itri]
 i3=trianglelist[3,itri]
	
 # Calculate triangle area:
 # Matrix of edge vectors
 V11= pointlist[1,i2]- pointlist[1,i1]
 V21= pointlist[2,i2]- pointlist[2,i1]

 V12= pointlist[1,i3]- pointlist[1,i1]
 V22= pointlist[2,i3]- pointlist[2,i1]

 V13= pointlist[1,i3]- pointlist[1,i2]
 V23= pointlist[2,i3]- pointlist[2,i2]

 # Compute determinant
 det=V11*V22 - V12*V21

	 # Area
	 area=0.5*det

 # Squares of edge lengths
 dd1=V13*V13+V23*V23 # l32
 dd2=V12*V12+V22*V22 # l31
 dd3=V11*V11+V21*V21 # l21

 # Contributions to e_kl=σ_kl/h_kl
 e[1]= (dd2+dd3-dd1)*0.125/area
 e[2]= (dd3+dd1-dd2)*0.125/area
 e[3]= (dd1+dd2-dd3)*0.125/area

 # Contributions to ω_k
 ω[1]= (e[3]*dd3+e[2]*dd2)*0.25
 ω[2]= (e[1]*dd1+e[3]*dd3)*0.25
 ω[3]= (e[2]*dd2+e[1]*dd1)*0.25
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 5/9

bfacefactors! (generic function with 1 method)

Matrix assembly
The matrix assembly consists of two loops, one over all triangles, and another one over the boundary
segments.

The implementation hints at the possibility to work in different space dimensions

function bfacefactors!(γ,ibface, pointlist, segmentlist)
 i1=segmentlist[1,ibface]
 i2=segmentlist[2,ibface]
 dx=pointlist[1,i1]-pointlist[1,i2]
 dy=pointlist[2,i1]-pointlist[2,i2]
 d=0.5*sqrt(dx*dx+dy*dy)
 γ[1]=d
 γ[2]=d
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 6/9

assemble! (generic function with 1 method)
function assemble!(matrix, # System matrix
 rhs, # Right hand side vector
	 	 δ, # heat conduction coefficient
 f::TF, # Source/sink function
	 	 α, # boundary transfer coefficient
	 	 β::TB, # boundary condition function
 pointlist,
 trianglelist,
 segmentlist) where {TF, TB}

	 num_nodes_per_cell=3;
 num_edges_per_cell=3;
 num_nodes_per_bface=2
 ntri=size(trianglelist,2)
	 nbface=size(segmentlist,2)
	
 # Local edge-node connectivity
 local_edgenodes=[2 3; 3 1; 1 2]'

 # Storage for form factors
 e=zeros(num_nodes_per_cell)
 ω=zeros(num_edges_per_cell)
 γ=zeros(num_nodes_per_bface)

 # Initialize right hand side to zero
 rhs.=0.0

 # Loop over all triangles
 for itri=1:ntri
 trifactors!(ω,e,itri,pointlist,trianglelist)

	 	 # Assemble nodal contributions to right hand side
 for k_local=1:num_nodes_per_cell
 k_global=trianglelist[k_local,itri]
 x=pointlist[1,k_global]
 y=pointlist[2,k_global]
 rhs[k_global]+=f(x,y)*ω[k_local]
 end
	 	
 # Assemble edge contributions to matrix
 for iedge=1:num_edges_per_cell
 k_global=trianglelist[local_edgenodes[1,iedge],itri]
 l_global=trianglelist[local_edgenodes[2,iedge],itri]
 matrix[k_global,k_global]+=δ*e[iedge]
 matrix[l_global,k_global]-=δ*e[iedge]
 matrix[k_global,l_global]-=δ*e[iedge]
 matrix[l_global,l_global]+=δ*e[iedge]
 end
 end

 # Assemble boundary conditions

 for ibface=1:nbface
	 	 bfacefactors!(γ,ibface, pointlist, segmentlist)
 for k_local=1:num_nodes_per_bface
 k_global=segmentlist[k_local,ibface]
 matrix[k_global,k_global]+=α*γ[k_local]
 x=pointlist[1,k_global]

 rhs[k_global]+=β(x,y)*γ[k_local]

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 7/9

Graphical representation
It would be nice to have a graphical representation of the solution data. We can interpret the solution
as a piecewise linear function on the triangulation: each triangle has three nodes each carrying one
solution value.

On the other hand, a linear function of two variables is defined by values in three points. This allows
to define a piecewise linear, continuous solution function. This approach is well known for the finite
element method which we will introduce later.

plot (generic function with 1 method)

An alternative way of showing the result is the 3D plot of the function graph:

plot3d (generic function with 1 method)

Calculation example
Now we are able to solve our intended problem.

Grid generation

make_grid (generic function with 1 method)

function plot(u, pointlist, trianglelist)
 cmap="coolwarm" # color map for color coding function values
 num_isolines=10 # number of isolines for plot
 ax=gca(); ax.set_aspect(1) # don't distort the plot

	 # bring data into format understood by PyPlot
 x=view(pointlist,1,:)
 y=view(pointlist,2,:)
 t=transpose(triout.trianglelist.-1)

	 # Many (50) filled contour lines give the impression of a smooth color scale
 tricontourf(x,y,t,u,levels=50,cmap=cmap)
 colorbar(shrink=0.5) # Put a color bar next to the plot
	
	 # Overlay the plot with isolines
 tricontour(x,y,t,u,levels=num_isolines,colors="k")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function plot3d(u, pointlist, trianglelist)
 cmap="coolwarm"
	 fig=figure(2)
 x=view(pointlist,1,:)
 y=view(pointlist,2,:)
 t=transpose(triout.trianglelist.-1)
 plot_trisurf(x,y,t,u,cmap=cmap)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function make_grid(;maxarea=0.01)
	 triin=TriangulateIO()
 triin.pointlist=Matrix{Cdouble}([-1.0 -1.0; 1.0 -1.0 ; 1.0 1.0 ; -1.0 1.0]')
 triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1]')
 triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
	 a=@sprintf("%f",maxarea)
 (triout, vorout)=triangulate("pqAa$(a)qQD", triin)
	 triin, triout
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 8/9

(TriangulateIO(

pointlist=[-1.0 1.0 1.0 -1.0; -1.0 -1.0 1.0 1.0],

segmentlist=Int32[1 2 3 4; 2 3 4 1],

segmentmarkerlist=Int32[1, 2, 3, 4],

)

, TriangulateIO(

pointlist=[-1.0 1.0 … 0.9375 0.953855
pointmarkerlist=Int32[1, 1, 2, 3, 0,
trianglelist=Int32[142 153 … 1222 117
segmentlist=Int32[2 3 … 1222 1224; 12
segmentmarkerlist=Int32[1, 2, 3, 4, 4
)

Plotting the grid
In the triout data structure, we indeed see a pointlist , a trianglelist and a segmentlist .

We use the plot_in_out function from Triangulate.jl to plot the grid.

Plot grid:

Number of points: 1225, number of triangles: 2320.

Desired number of triangles
From the desired number of triangles, we can claculate a value fo the maximum area constraint
passed to the mesh generator: Desired number of triangles:
1490

Solving the problem

Problem data

f (generic function with 1 method)

β (generic function with 1 method)

δ:
0.1
α:
0.1

solve_example (generic function with 1 method)

triin,triout=make_grid(maxarea=4.0/desired_number_of_triangles)⋅

f(x,y)=sinpi(x)*cospi(y)⋅

 β(x,y)=0⋅

function solve_example(triout)
 n=size(triout.pointlist,2)
 matrix=spzeros(n,n)
 rhs=zeros(n)
 assemble!(matrix,rhs,δ,f,α,β,triout.pointlist,triout.trianglelist,
triout.segmentlist)
 sol=matrix\rhs
end

⋅
⋅
⋅
⋅
⋅

⋅
⋅

10.12.21, 13:03 🎈 nb23-fv.jl — Pluto.jl

localhost:1235/edit?id=32785646-5937-11ec-04d3-8767d22d7a5e 9/9

solution

[0.226248, -0.226091, -0.22537, 0.226207, -0.000127837, -0.427368, 0.00027644, 0.426943, -

 =

3D Plot ?

solution=solve_example(triout)⋅

clf(); plot(solution,triout.pointlist,
triout.trianglelist);gcf().set_size_inches(4,4);gcf()

⋅

if do_3d_plot
	 clf(); plot3d(solution,triout.pointlist,
triout.trianglelist);gcf().set_size_inches(4,4);gcf()
end

⋅
⋅

⋅

