The finite volume method for the discetization of PDEs

The finite volume method for the discetization of PDEs

Motivation
Constructing control volumes
1D case
2D Rectangular domain
2D, polygonal domain
Discretization of second order PDE
Discretization of continuity equation
Approximation of flux between control volumes
Approximation of boundary fluxes
Approximation of right hand side
Discretized system of equations
Matrix properties
Assembly algorithm

Motivation

Regard stationary second order PDE with Robin boundary conditions as a system of two first order equations in a Lipschitz domain Ω :

$$
\begin{aligned}
\nabla \cdot \vec{j} & =f & \text { continuity equation in } \Omega \\
\vec{j} & =-\delta \vec{\nabla} u & \text { flux law in } \Omega \\
-\vec{j} \cdot \vec{n}+\alpha u & =\beta & \text { on } \Gamma
\end{aligned}
$$

- Derivation of the continuity equation was based on the consideration of species balances of an representative elementary volume (REV)
- Why not just subdivide the computational domain into a finite number of REV's ?
- Assign a value of u to each REV
- Approximate $\vec{\nabla} u$ by finite differece of u values in neigboring REVs
- ... call REVs control volumes or finite volumes

Constructing control volumes

Assume $\Omega \subset \mathbb{R}^{d}$ is a polygonal domain such that $\partial \Omega=\bigcup_{m \in \mathcal{G}} \Gamma_{m}$, where Γ_{m} are planar such that $\left.\vec{n}\right|_{\Gamma_{m}}=\vec{n}_{m}$.

Subdivide Ω into into a finite number of control volumes $\bar{\Omega}=\bigcup_{k \in \mathcal{N}} \bar{\omega}_{k}$ such that

- ω_{k} are open convex domains such that $\omega_{k} \cap \omega_{l}=\emptyset$ if $\omega_{k} \neq \omega_{l}$
- $\sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ are either empty, points or straight lines. If $\left|\sigma_{k l}\right|>0$ we say that ω_{k}, ω_{l} are neighbours.
- $\vec{n}_{k l} \perp \sigma_{k l}$: normal of $\partial \omega_{k}$ at $\sigma_{k l}$
- $\mathcal{N}_{k}=\left\{l \in \mathcal{N}:\left|\sigma_{k l}\right|>0\right\}$: set of neighbours of ω_{k}
- $\gamma_{k m}=\partial \omega_{k} \cap \Gamma_{m}$: boundary part of $\partial \omega_{k}$
- $\mathcal{G}_{k}=\left\{m \in \mathcal{G}:\left|\gamma_{k m}\right|>0\right\}$: set of non-empty boundary parts of $\partial \omega_{k}$.
$\Rightarrow \partial \omega_{k}=\left(\cup_{l \in \mathcal{N}_{k}} \sigma_{k l}\right) \bigcup\left(\cup_{m \in \mathcal{G}_{k}} \gamma_{k m}\right)$
To each control volume ω_{k} assign a collocation point: $\vec{x}_{k} \in \bar{\omega}_{k}$ such that \mid
- Admissibility condition:if $l \in \mathcal{N}_{k}$ then the line $\vec{x}_{k} \vec{x}_{l}$ is orthogonal to $\sigma_{k l}$
- For a given function $u: \Omega \rightarrow \mathbb{R}$ this will allow to associate its value $u_{k}=u\left(\vec{x}_{k}\right)$ as the value of an unknown at \vec{x}_{k}.
- For two neigboring control volumes ω_{k}, ω_{l}, this will allow to approximate

$$
\vec{\nabla} u \cdot \vec{n}_{k l} \approx \frac{u_{l}-u_{k}}{h_{k l}}
$$

- Placement of boundary unknowns at the boundary: if ω_{k} is situated at the boundary, i.e. for $\left|\partial \omega_{k} \cap \partial \Omega\right|>0$, then $\vec{x}_{k} \in \partial \Omega$
- This will allow to apply boundary conditions in a direct manner

1D case

Let $\Omega=(a, b)$ be subdivided into intervals by $x_{1}=a<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b$. Then we set

$$
\omega_{k}= \begin{cases}\left(x_{1}, \frac{x_{1}+x_{2}}{2}\right), & k=1 \\ \left(\frac{x_{k-1}+x_{k}}{2}, \frac{x_{k}+x_{k+1}}{2}\right), & 1<k<n \\ \left(\frac{x_{n-1}+x_{n}}{2}, x_{n}\right), & k=n\end{cases}
$$

2D Rectangular domain

- Let $\Omega=(a, b) \times(c, d) \subset \mathbb{R}^{2}$.
- Assume subdivisions $x_{1}=a<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b$ and $y_{1}=c<y_{2}<y_{3}<\cdots<y_{n-1}<y_{n}=d$
- $\Rightarrow 1 \mathrm{D}$ control volumes ω_{k}^{x} and ω_{k}^{y}
- Set $\vec{x}_{k l}=\left(x_{k}, y_{l}\right)$ and $\omega_{k l}=\omega_{k}^{x} \times \omega_{l}^{y}$.

- Green: Control volume boundaries
- Gray: original grid lines and points

2D, polygonal domain

- Obtain a boundary conforming Delaunay triangulation with vertices \vec{x}_{k}
- Construct restricted Voronoi cells ω_{k} with $\vec{x}_{k} \in \omega_{k}$
- Corners of Voronoi cells are either cell circumcenters or midpoints of boundary edges
- Admissibility condition $\vec{x}_{k} \vec{x}_{l} \perp \sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ fulfilled in a natural way
- Triangulation edges \equiv connected neigborhood graph of Voronoi cells
- Triangulation nodes \equiv collocation points
- Boundary placement of collocation points of boundary control volumes

Discretization of second order PDE

Discretization of continuity equation

- Stationary continuity equation: $\nabla \cdot \vec{j}=f$
- Integrate over control volume ω_{k} :

$$
\begin{aligned}
0 & =\int_{\omega_{k}} \nabla \cdot \vec{j} d \omega-\int_{\omega_{k}} f d \omega \\
& =\int_{\partial \omega_{k}} \vec{j} \cdot \vec{n}_{\omega} d s-\int_{\omega_{k}} f d \omega \\
& =\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \vec{j} \cdot \vec{n}_{k l} d s+\sum_{m \in \mathcal{G}_{k}} \int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s-\int_{\omega_{k}} f d \omega \\
& =\text { flux between CV }+ \text { flux in/out of } \Omega-\text { sources }
\end{aligned}
$$

- Utilize flux law: $\vec{j}=-\delta \vec{\nabla} u$
- Admissibility condition $\Rightarrow \vec{x}_{k} \vec{x}_{l} \| \vec{n}_{k l}$
- Let $u_{k}=u\left(\vec{x}_{k}\right), u_{l}=u\left(\vec{x}_{l}\right)$
- $h_{k l}=\left|\vec{x}_{k}-\vec{x}_{l}\right|$: distance between neigboring collocation points
- Finite difference approximation of normal derivative:

$$
\vec{\nabla} u \cdot \vec{n}_{k l} \approx \frac{u_{l}-u_{k}}{h_{k l}}
$$

- \Rightarrow flux between neigboring control volumes:

$$
\begin{aligned}
\int_{\sigma_{k l}} \vec{j} \cdot \vec{n}_{k l} d s & \approx \frac{\left|\sigma_{k l}\right|}{h_{k l}} \delta\left(u_{k}-u_{l}\right) \\
& =: \frac{\left|\sigma_{k l}\right|}{h_{k l}} g\left(u_{k}, u_{l}\right)
\end{aligned}
$$

where $g(\cdot, \cdot)$ is called flux function

Approximation of boundary fluxes

- Utilize boundary condition $\vec{j} \cdot \vec{n}=\alpha u-\beta$
- Assume $\left.\alpha\right|_{\Gamma_{m}}=\alpha_{m},\left.\beta\right|_{\Gamma_{m}}=\beta_{m}$
- Approximation of $\vec{j} \cdot \vec{n}_{m}$ at the boundary of ω_{k} :

$$
\vec{j} \cdot \vec{n}_{m} \approx \alpha_{m} u_{k}-\beta_{m}
$$

- Approximation of flux from ω_{k} through Γ_{m} :

$$
\int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s \approx\left|\gamma_{k m}\right|\left(\alpha_{m} u_{k}-\beta_{m}\right)
$$

Approximation of right hand side

- Let $f_{k}=\frac{1}{\left|\omega_{k}\right|} \int_{\omega_{k}} f(\vec{x}) d \omega$ or $f_{k}=f\left(\vec{x}_{k}\right)$
- Approximate $\int_{\omega_{k}} f d \omega \approx\left|\omega_{k}\right| f_{k}$

Discretized system of equations

- The discrete system of equations then writes for $k \in \mathcal{N}$:

$$
\begin{array}{r}
\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} \delta\left(u_{k}-u_{l}\right)+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \alpha_{m} u_{k}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \beta_{m} \\
u_{k}\left(\delta \sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}}+\alpha_{m} \sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right|\right)-\delta \sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} u_{l}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \beta_{m}
\end{array}
$$

- This can be rewritten as

$$
a_{k k} u_{k}+\sum_{l=1 \ldots} \sum_{l|\mathcal{N}|, l \neq k} a_{k l} u_{l}=b \quad b_{k} \quad \text { for } k=1 \ldots|\mathcal{N}|
$$

with coefficients

$$
\begin{aligned}
a_{k l} & = \begin{cases}\sum_{l^{\prime} \in \mathcal{N}_{k}} \delta \frac{\left|\sigma_{k^{\prime}}\right|}{h_{k l^{\prime}}}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \alpha_{m}, & l=k \\
-\delta \frac{\sigma_{k l}}{h_{k l}}, & l \in \mathcal{N}_{k} \\
0, & \text { else }\end{cases} \\
b_{k} & =\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \beta_{m}
\end{aligned}
$$

Matrix properties

- $N=|\mathcal{N}|$ equations (one for each control volume ω_{k})
- $N=|\mathcal{N}|$ unknowns (one for each collocation point $x_{k} \in \omega_{k}$)
- Matrix is sparse: nonzero entries only for neighboring control volumes
- Matrix graph is connected: nonzero entries correspond to edges in Delaunay triangulation \Rightarrow irreducible
- A is irreducibly diagonally dominant if at least for one $i,\left|\gamma_{i, k}\right| \alpha_{i}>0$
- Main diagonal entries are positive, off diagonal entries are non-positive
- $\Rightarrow A$ has the M-property.
- A is symmetric $\Rightarrow A$ is positive definite

Assembly algorithm

- Due to the connection between Voronoi diagram and Delaunay triangulation, one can assemble the discrete system based on the triangulation
- Assembly in two loops:
- Loop over all triangles, calculate triangle contribution to matrix entries
- Loop over all boundary segments, calculate contribution to matrix entries

1. Loop over all triangles $T \in \mathcal{T}$, add up edge contributions:

Given:

- List of point coordinates \vec{x}_{K}
- List of triangles which for each triangle describes indices of points belonging to triangle
- This induces a mapping of local node numbers of a triangle T to the global ones:

$$
\{1,2,3\} \rightarrow\left\{k_{T, 1}, k_{T, 2}, k_{T, 3}\right\}
$$

for $k, l=1 \ldots N$ set $a_{k l}=0$
for $k=1 \ldots N$ set $b_{k}=0$
for $T \in \mathcal{T}$
for $i \ldots 3$

$$
b_{k_{T, i}}+=\left|\omega_{k_{T, i}} \cap T\right| f_{k_{T, i}}
$$

for $i, j=1 \ldots 3, i \neq j$

$$
\begin{gathered}
\sigma=\sigma_{k_{T, j}, k_{T, i}} \cap T \\
s=\frac{|\sigma|}{h_{k_{T, j}, k_{T, i}}} \\
a_{k_{T, j}, k_{T, j}}+=\delta s \\
a_{k_{T, j}, k_{T, i}}- \\
a_{k_{T, i}, k_{T, j}}-\delta s \\
a_{k_{T, i}, k_{T, n}}
\end{gathered}=\delta s s s
$$

2. Loop over all boundary segments

- Keep list of global node numbers per boundary element γ mapping local node element to the global node numbers: $\{1,2\} \rightarrow\left\{k_{\gamma, 1}, k_{\gamma, 2}\right\}$
- Keep list of boundary part numbers m_{γ} per boundary element
- Loop over all boundary elements $\gamma \in \mathcal{G}$ of the discretization, add up contributions
for $\gamma \in \mathcal{G}$
for $i=1,2$

$$
\begin{aligned}
& a_{k_{\gamma_{i}}, k_{\gamma_{i}}}=\alpha_{m_{\gamma}}\left|\gamma \cap \partial \omega_{k_{\gamma_{i}}}\right| \\
& b_{k_{\gamma_{i}}}+=\beta_{m_{\gamma}}\left|\gamma \cap \partial \omega_{k_{\gamma_{i}}}\right|
\end{aligned}
$$

- One solution value per control volume ω_{k} allocated to the collocation point $x_{k} \Rightarrow$ piecewise constant function on collection of control volumes
- But: x_{k} are at the same time nodes of the corresponding Delaunay mesh \Rightarrow representation as piecewise linear function on triangles

