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Notations

Given: domainQ ¢ R*(d =1,2,3..))

« Dot product: forZ,5 € R%, z - § = Zle TiYi
« Bounded domain Q C R?, with piecewise smooth boundary
o Scalar functionu : @ — R

U1
+ Vector functionv = | : | : Q — R?
Vd
o Partial derivative 8;u = %
' 2
« Second partial derivative 9;;u = 24
P ) Ozix;

Basic Differential operators
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o Gradient of scalar functionu : Q — R:
81 01u
grad = V= ]l ru Vu :
Bd adu

« Divergence of vector function ¥ = ) — R

U1

« =011+ + Oqug

|
I
<

div=V.:49
Vg
« Laplace operator of scalar function u :  — R

—

div-grad =V -V
=A:u— Au=0u-+---+ Ogqu

Lipschitz domains

Definition: A connected open subset  C R% is called domain. If Q is a bounded set, the

domain is called bounded.

Definition:

« Let D C R"™ Afunction f : D — R™ is called Lipschitz continuous if there exists ¢ > 0

such that || f(z) — f(v)|| < c||z — yl|| forany z,y € D
« A hypersurface in R" is a graph if for some k it can be represented on some domain
DcR"las

= f(ZT1,. . T, Tht1y - -+ Tn)

o Adomain  C R"is a Lipschitz domain if for all z € O, there exists a neigborhood of

x on O which can be represented as the graph of a Lipschitz continuous function.
Standard PDE calculus happens in Lipschitz domains

« Boundaries of Lipschitz domains are continuous

« Polygonal domains are Lipschitz

« Boundaries of Lipschitz domains have no cusps (e.g. the graph of y = 4/|z| has a cusp
atz = 0)
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Divergence theorem (Gauss' theorem)

Theorem: Let €2 be a bounded Lipschitz domainand ¥ :  — R% be a continuously
differentiable vector function. Let 73 be the outward normal to 2. Then,

/V~ﬁd§:‘:/ U-nds
Q o0

This is a generalization of the Newton-Leibniz rule of calculus:

letd =1,Q = (a,b). Then:

+ ng=(-1)
. Ny = ]_)
« Vov=1

Species balance in a REV

« Q: Domain, (0, T") evolution time interval

o u(@,t): Q x [0,T] — R:time dependent local amount of species
o f(Z,t) : Q x [0,T] — R: species sources/sinks

« 7(&,1t): vector field of the species flux

o w C $: representative elementary volume (REV)

« (to,t1) C (0,T): subset of the time interval

dZ: amount of species in w at moment ¢

dZ: rate of creation/destruction at moment ¢

Continuity equation

localhost: 1235/edit?id=8b128162-5432-11ec-159b-bb92c092a864

3/7



03.12.21, 13:28

® nb20-pde.jl — Pluto.jl

Integral form:

Change of amount of species in w during (to, t1) proportional to the sum of the amount
transported through boundary and the amount created/destroyed

Ult) — Ulty) + /t " () di = /t ") di

Using the definitions of U, J, F, rewrite this as

/w(u(ic’,tl)—u(a‘é,tg))da_é—k/t:l /aw}:(i,t)-ﬁdsdt:/t:l/wf(i:’,t)ds

Using Gauss' theorem, rewrite this as

t1 t1 ty
0:/ /6tu(a:~’,t)d:3dt+/ /V-}’(:E,t)d&:’dt—/ /f(:f,t)ds
to w to w to w

The last equation is true for all w C Q, (to,¢1) C (0,T'). This allows to conclude:

Differential form:

8tu(557 t) +V. 3(55775) = f(.’i’,t)

That means that whenever one encounters the divergence operator, chances are that it describes a
conservation law for certain species. This physical meaning is very concrete and, if possible should be

preserved during the process of discretizing PDEs.

Flux expressions

As a rule, species flux j(Z, t) is proportional to —Vu(&, ). This corresponds to the direction of
steepest descend.

o Assumption: 3 = —§Vu, where § > 0 can be constant, space dependent or even depend on u.

For simplicity, we assume 4 to be constant, unless stated otherwise.

Heat conduction

o u = T': temperature

« § = X heat conduction coefficient
« f:heatsource

e 7 = —AVT: Fourier law

Diffusion of molecules in a given medium (for low
concentrations)

e U = c: concentration
« & = D: diffusion coefficient
« f:species source (e.g due to reactions)

. 7= —DVe: Fick's law
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Flow in a saturated porous medium:

« u = p: pressure
« § = k: permeability
. j= —k@p: Darcy's law

Electrical conduction:

« u = : electric potential
« § = o: electric conductivity

. 3 = —aﬁ(p = current density: Ohms's law

Electrostatics in a constant magnetic field:

o u = : electric potential
« § = e: dielectric permittivity
« E = V¢: electric field

=

j=D= eE = s@cp: electric displacement field: Gauss's Law
o f = p: charge density

Second order partial differential equations
(PDEs)

Combine continuity equation with flux expression.

Transient problem: Parabolic PDE:

Oru(Z,t) — V - (8Vu(Z, 1)) = f(Z,1)

Stationary case: 0;u = 0 = Elliptic PDE

—V - (§Vu(@)) = (@)

For solvability we need additional conditions:

- Initial condition in the time dependent case: u(Z, 0) = u (%)
« Boundary conditions: behavior of solution on 9§} = interaction with surroundings

Boundary conditions

o Assume 0f) = uf‘j‘lri is the union of a finite number of non-intersecting subsets I'; which are
locally Lipschitz.

Define boundary conditions on each of I';
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Dirichlet boundary conditions
Let g; : I, — R
u(Z,t) = g;(&,t) forZ €T}

« fixed solution at the boundary
« also called boundary condition of first kind
« called homogeneous for g; = 0

Neumann boundary conditions
letg; : I'; = R.
—6Vu(z,t) -7 = gi(Z,t) forz el

« fixed boundary normal flux
« also called boundary condition of second kind

« called homogeneous for g; = 0

Robin boundary conditions
leta; > 0,9, :T; = R
—6Vu(Z,t) - it + oy (Z, t)u(Z, t) = gi(,t) forZ e T

« Boundary flux proportional to solution
« also called third kind boundary condition

« Neumann boundary condtions are a special case of Robin boundary condtions for
oy = 0
« Dirichlet boundary conditions can be seen as a limit case ¢ — 0 of another special case
of Robin boundary condtions:
1 _ l Dirichlet

—oVu(Z,t) -7+ —u= —g
€ 5

« Asa consequence, we wil focus on treating Robin boundary conditions.
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Generalizations

« ¢ may depend on Z, u, \§u| ... = equations become nonlinear

« Coefficients can depend on other processes
o temperature can influence conductvity
o source terms can describe chemical reactions between different species
o chemical reactions can generate/consume heat
o Electric current generates heat (" “Joule heating”)
o ...

= coupled PDEs

« Convective terms: 3 — —6Vu + uT where 7 is a convective velocity

» PDEs for vector unknowns
o Momentum balance = Navier-Stokes equations for fluid dynamics
o Elasticity
o Maxwell's electromagnetic field equations

begin
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