Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann Notebook 20

Partial Differential Equations

Partial Differential Equations

Notations

Basic Differential operators

Lipschitz domains

Divergence theorem (Gauss' theorem)

Species balance in a REV

Continuity equation

Flux expressions

Heat conduction

Diffusion of molecules in a given medium (for low concentrations)

Flow in a saturated porous medium:

Electrical conduction:

Electrostatics in a constant magnetic field:

Second order partial differential equations (PDEs)

Boundary conditions

Dirichlet boundary conditions

Neumann boundary conditions

Robin boundary conditions

Generalizations

Notations

Given: domain $\Omega \subset \mathbb{R}^d$ ($d=1,2,3\ldots$)

- Dot product: for $ec{x}, ec{y} \in \mathbb{R}^d$, $ec{x} \cdot ec{y} = \sum_{i=1}^d x_i y_i$
- Bounded domain $\Omega\subset\mathbb{R}^d$, with piecewise smooth boundary
- Scalar function $u:\Omega
 ightarrow \mathbb{R}$

• Vector function
$$ec{v}=egin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix}:\Omega o \mathbb{R}^d$$
• Partial derivative $\partial_i u=rac{\partial u}{\partial x_i}$

- Second partial derivative $\partial_{ij}u=rac{\partial^2 u}{\partial x_ix_i}$

Basic Differential operators

• Gradient of scalar function $u:\Omega
ightarrow \mathbb{R}$:

$$\operatorname{grad} = ec{
abla} = \begin{pmatrix} \partial_1 \ dots \ \partial_d \end{pmatrix} : u \mapsto ec{
abla} u = \begin{pmatrix} \partial_1 u \ dots \ \partial_d u \end{pmatrix}$$

- Divergence of vector function $ec{v} = \Omega o \mathbb{R}^d$:

$$ext{div} =
abla \cdot : ec{v} = egin{pmatrix} v_1 \ dots \ v_d \end{pmatrix} \mapsto
abla \cdot ec{v} = \partial_1 v_1 + \dots + \partial_d v_d$$

- Laplace operator of scalar function $u:\Omega o\mathbb{R}$

$$\operatorname{div} \cdot \operatorname{grad} = \nabla \cdot \vec{\nabla}$$

= $\Delta : u \mapsto \Delta u = \partial_{11} u + \dots + \partial_{dd} u$

Lipschitz domains

Definition: A connected open subset $\Omega\subset\mathbb{R}^d$ is called *domain*. If Ω is a bounded set, the domain is called *bounded*.

Definition:

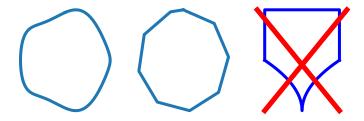
- Let $D\subset\mathbb{R}^n$. A function $f:D\to\mathbb{R}^m$ is called Lipschitz continuous if there exists c>0 such that $||f(x)-f(y)||\leq c||x-y||$ for any $x,y\in D$
- A hypersurface in \mathbb{R}^n is a *graph* if for some k it can be represented on some domain $D\subset\mathbb{R}^{n-1}$ as

$$x_k=f(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$$

• A domain $\Omega \subset \mathbb{R}^n$ is a *Lipschitz domain* if for all $x \in \partial \Omega$, there exists a neigborhood of x on $\partial \Omega$ which can be represented as the graph of a Lipschitz continuous function.

Standard PDE calculus happens in Lipschitz domains

- · Boundaries of Lipschitz domains are continuous
- · Polygonal domains are Lipschitz
- Boundaries of Lipschitz domains have no cusps (e.g. the graph of $y=\sqrt{|x|}$ has a cusp at x=0)



Divergence theorem (Gauss' theorem)

Theorem: Let Ω be a bounded Lipschitz domain and $ec{v}:\Omega o\mathbb{R}^d$ be a continuously differentiable vector function. Let \vec{n} be the outward normal to Ω . Then,

$$\int_{\Omega}
abla \cdot ec{v} \, dec{x} = \int_{\partial \Omega} ec{v} \cdot ec{n} \, ds$$

This is a generalization of the Newton-Leibniz rule of calculus:

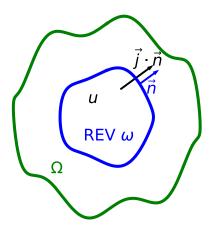
Let d=1, $\Omega=(a,b)$. Then:

- $n_a = (-1)$
- $n_b = (1)$
- $\nabla \cdot v = v'$

$$\int_{\Omega}
abla \cdot ec{v} \, dec{x} = \int_a^b v'(x) \, dx = v(b) - v(a) = v(a) n_a + v(b) n_b$$

Species balance in a REV

- Ω : Domain, (0,T) evolution time interval
- $u(ec{x},t):\Omega imes [0,T] o \mathbb{R}$: time dependent local amount of species
- $f(\vec{x},t):\Omega imes [0,T] o \mathbb{R}$: species sources/sinks
- $\vec{j}(\vec{x},t)$: vector field of the species flux
- $\omega \subset \Omega$: representative elementary volume (REV)
- $(t_0,t_1)\subset (0,T)$: subset of the time interval



- $J(t)=\int_{\partial\omega} \vec{j}(\vec{x},t)\cdot \vec{n}\ ds$: flux of species trough $\partial\omega$ at moment t $U(t)=\int_{\omega} u(\vec{x},t)\ d\vec{x}$: amount of species in ω at moment t
- $F(t) = \int_{\mathcal{U}} f(\vec{x},t) \ d\vec{x}$: rate of creation/destruction at moment t

Continuity equation

Integral form:

Change of amount of species in ω during (t_0,t_1) proportional to the sum of the amount transported through boundary and the amount created/destroyed

$$U(t_1) - U(t_0) + \int_{t_0}^{t_1} J(t) \; dt = \int_{t_0}^{t_1} F(t) \; dt$$

Using the definitions of U, J, F, rewrite this as

$$\int_{\omega} (u(ec{x},t_1) - u(ec{x},t_0)) \, dec{x} + \int_{t_0}^{t_1} \int_{\partial \omega} ec{j}(ec{x},t) \cdot ec{n} \, ds \, dt = \int_{t_0}^{t_1} \int_{\omega} f(ec{x},t) \, ds$$

Using Gauss' theorem, rewrite this as

$$0=\int_{t_0}^{t_1}\int_{\omega}\partial_t u(ec{x},t)\,dec{x}\,dt+\int_{t_0}^{t_1}\int_{\omega}
abla\cdotec{j}(ec{x},t)\,dec{x}\,dt-\int_{t_0}^{t_1}\int_{\omega}f(ec{x},t)\,ds$$

The last equation is true for all $\omega\subset\Omega$, $(t_0,t_1)\subset(0,T)$. This allows to conclude:

Differential form:

$$\partial_t u(ec{x},t) +
abla \cdot ec{j}(ec{x},t) = f(ec{x},t)$$

That means that whenever one encounters the divergence operator, chances are that it describes a conservation law for certain species. This physical meaning is very concrete and, if possible should be preserved during the process of discretizing PDEs.

Flux expressions

As a rule, species flux $\vec{j}(\vec{x},t)$ is proportional to $-\vec{\nabla}u(\vec{x},t)$. This corresponds to the direction of steepest descend.

• Assumption: $\vec{j}=-\delta\vec{\nabla}u$, where $\delta>0$ can be constant, space dependent or even depend on u. For simplicity, we assume δ to be constant, unless stated otherwise.

Heat conduction

- $ullet \ u=T$: temperature
- $\delta=\lambda$: heat conduction coefficient
- f: heat source
- $ec{j} = -\lambda ec{
 abla} T$: Fourier law

Diffusion of molecules in a given medium (for low concentrations)

- u = c: concentration
- $\delta=D$: diffusion coefficient
- ullet f: species source (e.g due to reactions)
- $\vec{j} = -D \vec{\nabla} c$: Fick's law

Flow in a saturated porous medium:

- u=p: pressure
- $\delta = k$: permeability
- $\vec{j} = -k \vec{\nabla} p$: Darcy's law

Electrical conduction:

- u=arphi: electric potential
- $\delta = \sigma$: electric conductivity
- $oldsymbol{ec{j}}=-\sigmaec{
 abla}arphi\equiv$ current density: Ohms's law

Electrostatics in a constant magnetic field:

- u=arphi: electric potential
- $\delta = \varepsilon$: dielectric permittivity
- $\vec{E} = \vec{\nabla} \phi$: electric field
- $ec{j}=ec{D}=arepsilonec{E}=arepsilonec{
 abla}arphi$: electric displacement field: Gauss's Law
- f=
 ho: charge density

Second order partial differential equations (PDEs)

Combine continuity equation with flux expression.

Transient problem: Parabolic PDE:

$$\partial_t u(\vec{x},t) -
abla \cdot (\delta \vec{
abla} u(\vec{x},t)) = f(\vec{x},t)$$

Stationary case: $\partial_t u = 0 \Rightarrow$ Elliptic PDE

$$-\nabla \cdot (\delta \vec{\nabla} u(\vec{x})) = f(\vec{x})$$

For solvability we need additional conditions:

- Initial condition in the time dependent case: $u(ec{x},0)=u_0(ec{x})$
- Boundary conditions: behavior of solution on $\partial\Omega\equiv$ interaction with surroundings

Boundary conditions

• Assume $\partial\Omega=\cup_{i=1}^{N_\Gamma}\Gamma_i$ is the union of a finite number of non-intersecting subsets Γ_i which are locally Lipschitz.

Define boundary conditions on each of Γ_i

Dirichlet boundary conditions

Let $g_i:\Gamma_i o\mathbb{R}$.

$$u(\vec{x},t) = g_i(\vec{x},t) \quad \text{for } \vec{x} \in \Gamma_i$$

- fixed solution at the boundary
- · also called boundary condition of first kind
- called homogeneous for $g_i=0$

Neumann boundary conditions

Let $g_i:\Gamma_i o\mathbb{R}$.

$$-\delta ec{
abla} u(ec{x},t) \cdot ec{n} = g_i(ec{x},t) \quad ext{for } ec{x} \in \Gamma_i$$

- · fixed boundary normal flux
- · also called boundary condition of second kind
- called homogeneous for $g_i=0$

Robin boundary conditions

let $lpha_i>0,g_i:\Gamma_i o\mathbb{R}$

$$-\delta ec{
abla} u(ec{x},t) \cdot ec{n} + lpha_i(ec{x},t) u(ec{x},t) = g_i(ec{x},t) \quad ext{for } ec{x} \in \Gamma_i$$

- · Boundary flux proportional to solution
- · also called third kind boundary condition
 - Neumann boundary conditions are a special case of Robin boundary conditions for $lpha_i=0$
 - Dirichlet boundary conditions can be seen as a limit case $\varepsilon \to 0$ of another special case of Robin boundary conditions:

$$-\delta ec{
abla} u(ec{x},t) \cdot ec{n} + rac{1}{arepsilon} u = rac{1}{arepsilon} g_i^{Dirichlet}$$

• As a consequence, we wil focus on treating Robin boundary conditions.

Generalizations

- δ may depend on $\vec{x}, u, |\vec{\nabla} u| \ldots \Rightarrow$ equations become nonlinear
- Coefficients can depend on other processes
 - temperature can influence conductiity
 - source terms can describe chemical reactions between different species
 - chemical reactions can generate/consume heat
 - Electric current generates heat (``Joule heating")
 - o . . .
 - \Rightarrow coupled PDEs
- Convective terms: $ec{j} = -\delta ec{
 abla} u + u ec{v}$ where $ec{v}$ is a convective velocity
- PDEs for vector unknowns
 - ${\, \circ \,}$ Momentum balance ${\, \Rightarrow \,}$ Navier-Stokes equations for fluid dynamics
 - Elasticity
 - Maxwell's electromagnetic field equations

• begin