Partial Differential Equations

Partial Differential Equations

Notations
Basic Differential operators
Lipschitz domains
Divergence theorem (Gauss' theorem)
Species balance in a REV
Continuity equation
Flux expressions
Heat conduction
Diffusion of molecules in a given medium (for low concentrations)
Flow in a saturated porous medium:
Electrical conduction:
Electrostatics in a constant magnetic field:
Second order partial differential equations (PDEs)
Boundary conditions
Dirichlet boundary conditions
Neumann boundary conditions
Robin boundary conditions
Generalizations

Notations

Given: domain $\Omega \subset \mathbb{R}^{d}(d=1,2,3 \ldots)$

- Dot product: for $\vec{x}, \vec{y} \in \mathbb{R}^{d}, \vec{x} \cdot \vec{y}=\sum_{i=1}^{d} x_{i} y_{i}$
- Bounded domain $\Omega \subset \mathbb{R}^{d}$, with piecewise smooth boundary
- Scalar function $u: \Omega \rightarrow \mathbb{R}$
- Vector function $\vec{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{d}\end{array}\right): \Omega \rightarrow \mathbb{R}^{d}$
- Partial derivative $\partial_{i} u=\frac{\partial u}{\partial x_{i}}$
- Second partial derivative $\partial_{i j} u=\frac{\partial^{2} u}{\partial x_{i} x_{j}}$

Basic Differential operators

- Gradient of scalar function $u: \Omega \rightarrow \mathbb{R}$:

$$
\operatorname{grad}=\vec{\nabla}=\left(\begin{array}{c}
\partial_{1} \\
\vdots \\
\partial_{d}
\end{array}\right): u \mapsto \vec{\nabla} u=\left(\begin{array}{c}
\partial_{1} u \\
\vdots \\
\partial_{d} u
\end{array}\right)
$$

- Divergence of vector function $\vec{v}=\Omega \rightarrow \mathbb{R}^{d}$:

$$
\operatorname{div}=\nabla \cdot: \vec{v}=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{d}
\end{array}\right) \mapsto \nabla \cdot \vec{v}=\partial_{1} v_{1}+\cdots+\partial_{d} v_{d}
$$

- Laplace operator of scalar function $u: \Omega \rightarrow \mathbb{R}$

$$
\begin{aligned}
\operatorname{div} \cdot \operatorname{grad} & =\nabla \cdot \vec{\nabla} \\
& =\Delta: u \mapsto \Delta u=\partial_{11} u+\cdots+\partial_{d d} u
\end{aligned}
$$

Lipschitz domains

Definition: A connected open subset $\Omega \subset \mathbb{R}^{d}$ is called domain. If Ω is a bounded set, the domain is called bounded.

Definition:

- Let $D \subset \mathbb{R}^{n}$. A function $f: D \rightarrow \mathbb{R}^{m}$ is called Lipschitz continuous if there exists $c>0$ such that $\|f(x)-f(y)\| \leq c\|x-y\|$ for any $x, y \in D$
- A hypersurface in \mathbb{R}^{n} is a graph if for some k it can be represented on some domain $D \subset \mathbb{R}^{n-1}$ as

$$
x_{k}=f\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)
$$

- A domain $\Omega \subset \mathbb{R}^{n}$ is a Lipschitz domain if for all $x \in \partial \Omega$, there exists a neigborhood of x on $\partial \Omega$ which can be represented as the graph of a Lipschitz continuous function.

Standard PDE calculus happens in Lipschitz domains

- Boundaries of Lipschitz domains are continuous
- Polygonal domains are Lipschitz
- Boundaries of Lipschitz domains have no cusps (e.g. the graph of $y=\sqrt{|x|}$ has a cusp at $x=0$)

Divergence theorem (Gauss' theorem)

Theorem: Let Ω be a bounded Lipschitz domain and $\vec{v}: \Omega \rightarrow \mathbb{R}^{d}$ be a continuously differentiable vector function. Let \vec{n} be the outward normal to Ω. Then,

$$
\int_{\Omega} \nabla \cdot \vec{v} d \vec{x}=\int_{\partial \Omega} \vec{v} \cdot \vec{n} d s
$$

This is a generalization of the Newton-Leibniz rule of calculus:
Let $d=1, \Omega=(a, b)$. Then:

- $n_{a}=(-1)$
- $n_{b}=(1)$
- $\nabla \cdot v=v^{\prime}$

$$
\int_{\Omega} \nabla \cdot \vec{v} d \vec{x}=\int_{a}^{b} v^{\prime}(x) d x=v(b)-v(a)=v(a) n_{a}+v(b) n_{b}
$$

Species balance in a REV

- Ω : Domain, $(0, T)$ evolution time interval
- $u(\vec{x}, t): \Omega \times[0, T] \rightarrow \mathbb{R}$: time dependent local amount of species
- $f(\vec{x}, t): \Omega \times[0, T] \rightarrow \mathbb{R}$: species sources/sinks
- $\vec{j}(\vec{x}, t)$: vector field of the species flux
- $\omega \subset \Omega$: representative elementary volume (REV)
- $\left(t_{0}, t_{1}\right) \subset(0, T)$: subset of the time interval

- $J(t)=\int_{\partial \omega} \vec{j}(\vec{x}, t) \cdot \vec{n} d s$: flux of species trough $\partial \omega$ at moment t
- $U(t)=\int_{\omega} u(\vec{x}, t) d \vec{x}$: amount of species in ω at moment t
- $F(t)=\int_{\omega} f(\vec{x}, t) d \vec{x}$: rate of creation/destruction at moment t

Continuity equation

Integral form:

Change of amount of species in ω during $\left(t_{0}, t_{1}\right)$ proportional to the sum of the amount transported through boundary and the amount created/destroyed

$$
U\left(t_{1}\right)-U\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} J(t) d t=\int_{t_{0}}^{t_{1}} F(t) d t
$$

Using the definitions of U, J, F, rewrite this as

$$
\int_{\omega}\left(u\left(\vec{x}, t_{1}\right)-u\left(\vec{x}, t_{0}\right)\right) d \vec{x}+\int_{t_{0}}^{t_{1}} \int_{\partial \omega} \vec{j}(\vec{x}, t) \cdot \vec{n} d s d t=\int_{t_{0}}^{t_{1}} \int_{\omega} f(\vec{x}, t) d s
$$

Using Gauss' theorem, rewrite this as

$$
0=\int_{t_{0}}^{t_{1}} \int_{\omega} \partial_{t} u(\vec{x}, t) d \vec{x} d t+\int_{t_{0}}^{t_{1}} \int_{\omega} \nabla \cdot \vec{j}(\vec{x}, t) d \vec{x} d t-\int_{t_{0}}^{t_{1}} \int_{\omega} f(\vec{x}, t) d s
$$

The last equation is true for all $\omega \subset \Omega,\left(t_{0}, t_{1}\right) \subset(0, T)$. This allows to conclude:

Differential form:

$$
\partial_{t} u(\vec{x}, t)+\nabla \cdot \vec{j}(\vec{x}, t)=f(\vec{x}, t)
$$

That means that whenever one encounters the divergence operator, chances are that it describes a conservation law for certain species. This physical meaning is very concrete and, if possible should be preserved during the process of discretizing PDEs

Flux expressions

As a rule, species flux $\vec{j}(\vec{x}, t)$ is proportional to $-\vec{\nabla} u(\vec{x}, t)$. This corresponds to the direction of steepest descend

- Assumption: $\vec{j}=-\delta \vec{\nabla} u$, where $\delta>0$ can be constant, space dependent or even depend on u. For simplicity, we assume δ to be constant, unless stated otherwise.

Heat conduction

- $u=T$: temperature
- $\delta=\lambda$: heat conduction coefficient
- f : heat source
- $\vec{j}=-\lambda \vec{\nabla} T$: Fourier law

Diffusion of molecules in a given medium (for low concentrations)

- $u=c$: concentration
- $\delta=D$: diffusion coefficient
- f : species source (e.g due to reactions)
- $\vec{j}=-D \vec{\nabla} c$: Fick's law

Flow in a saturated porous medium:

- $u=p$: pressure
- $\delta=k$: permeability
- $\vec{j}=-k \vec{\nabla} p$: Darcy's law

Electrical conduction:

- $u=\varphi$: electric potential
- $\delta=\sigma$: electric conductivity
- $\vec{j}=-\sigma \vec{\nabla} \varphi \equiv$ current density: Ohms's law

Electrostatics in a constant magnetic field:

- $u=\varphi$: electric potential
- $\delta=\varepsilon$: dielectric permittivity
- $\vec{E}=\vec{\nabla} \phi$: electric field
- $\vec{j}=\vec{D}=\varepsilon \vec{E}=\varepsilon \vec{\nabla} \varphi$: electric displacement field: Gauss's Law
- $f=\rho$: charge density

Second order partial differential equations (PDEs)

Combine continuity equation with flux expression.

Transient problem: Parabolic PDE:

$$
\partial_{t} u(\vec{x}, t)-\nabla \cdot(\delta \vec{\nabla} u(\vec{x}, t))=f(\vec{x}, t)
$$

Stationary case: $\partial_{t} u=0 \Rightarrow$ Elliptic PDE

$$
-\nabla \cdot(\delta \vec{\nabla} u(\vec{x}))=f(\vec{x})
$$

For solvability we need additional conditions:

- Initial condition in the time dependent case: $u(\vec{x}, 0)=u_{0}(\vec{x})$
- Boundary conditions: behavior of solution on $\partial \Omega \equiv$ interaction with surroundings

Boundary conditions

- Assume $\partial \Omega=\cup_{i=1}^{N_{\Gamma}} \Gamma_{i}$ is the union of a finite number of non-intersecting subsets Γ_{i} which are locally Lipschitz.

Define boundary conditions on each of Γ_{i}

Dirichlet boundary conditions

Let $g_{i}: \Gamma_{i} \rightarrow \mathbb{R}$.

$$
u(\vec{x}, t)=g_{i}(\vec{x}, t) \quad \text { for } \vec{x} \in \Gamma_{i}
$$

- fixed solution at the boundary
- also called boundary condition of first kind
- called homogeneous for $g_{i}=0$

Neumann boundary conditions

Let $g_{i}: \Gamma_{i} \rightarrow \mathbb{R}$.

$$
-\delta \vec{\nabla} u(\vec{x}, t) \cdot \vec{n}=g_{i}(\vec{x}, t) \quad \text { for } \vec{x} \in \Gamma_{i}
$$

- fixed boundary normal flux
- also called boundary condition of second kind
- called homogeneous for $g_{i}=0$

Robin boundary conditions

$$
\text { let } \begin{aligned}
\alpha_{i}>0, g_{i}: \Gamma_{i} \rightarrow & \mathbb{R} \\
& -\delta \vec{\nabla} u(\vec{x}, t) \cdot \vec{n}+\alpha_{i}(\vec{x}, t) u(\vec{x}, t)=g_{i}(\vec{x}, t) \quad \text { for } \vec{x} \in \Gamma_{i}
\end{aligned}
$$

- Boundary flux proportional to solution
- also called third kind boundary condition
- Neumann boundary condtions are a special case of Robin boundary condtions for $\alpha_{i}=0$
- Dirichlet boundary conditions can be seen as a limit case $\varepsilon \rightarrow 0$ of another special case of Robin boundary condtions:

$$
-\delta \vec{\nabla} u(\vec{x}, t) \cdot \vec{n}+\frac{1}{\varepsilon} u=\frac{1}{\varepsilon} g_{i}^{\text {Dirichlet }}
$$

- As a consequence, we wil focus on treating Robin boundary conditions.

Generalizations

- δ may depend on $\vec{x}, u,|\vec{\nabla} u| \ldots \Rightarrow$ equations become nonlinear
- Coefficients can depend on other processes
- temperature can influence conductvity
- source terms can describe chemical reactions between different species
- chemical reactions can generate/consume heat
- Electric current generates heat (``Joule heating")

。 ...
\Rightarrow coupled PDEs

- Convective terms: $\vec{j}=-\delta \vec{\nabla} u+u \vec{v}$ where \vec{v} is a convective velocity
- PDEs for vector unknowns
- Momentum balance \Rightarrow Navier-Stokes equations for fluid dynamics
- Elasticity
- Maxwell's electromagnetic field equations

