Scientific Computing TU Berlin Winter 2021/22 $\scriptstyle ©$ J ürgen Fuhrmann Notebook 16

using LinearAlgebra

-

Regular Splittings Convergence rate comparison M-Matrices Main practical M-Matrix criterion M-Matrix comparison criterion

Regular Splittings

Definiton

- A = M N is a regular splitting if
 - $\circ M$ is nonsingular
 - $\circ~M^{-1}$, N are nonnegative, i.e.~have nonnegative entries
- Regard the iteration $u_{k+1} = M^{-1}Nu_k + M^{-1}b$. • $B = I - M^{-1}A = M^{-1}N$ is a nonnegative matrix.

Theorem: Assume A is nonsingular, $A^{-1} \ge 0$, and A = M - N is a regular splitting. Then $ho(M^{-1}N) < 1$.

Proof: Let $B = M^{-1}N$. Then A = M(I - B), therefore I - B is nonsingular.

In addition

$$A^{-1}N = (M(I - M^{-1}N))^{-1}N = (I - M^{-1}N)^{-1}M^{-1}N = (I - B)^{-1}B$$

By Perron-Frobenius (for general matrices), ho(B) is an eigenvalue with a nonnegative eigenvector $ec{x}$. Thus,

$$0\leq A^{-1}Nec{x}=rac{
ho(B)}{1-
ho(B)}ec{x},$$

Therefore $0 \le \rho(B) \le 1$.\ Assume that $\rho(B) = 1$. Then there exists $\vec{x} \ne 0$ such that $B\vec{x} = \vec{x}$. Consequently, $(I - B)\vec{x} = 0$, contradicting the nonsingularity of I - B. Therefore, $\rho(B) < 1$. \Box

Convergence rate comparison

Corollary: $\rho(M^{-1}N) = \frac{\tau}{1+\tau}$ where $\tau = \rho(A^{-1}N)$.

Proof: Rearrange $\tau = \frac{\rho(B)}{1-\rho(B)}$

Corollary: Let $A^{-1} \ge 0$, $A = M_1 - N_1$ and $A = M_2 - N_2$ be regular splittings.

If $N_2 \ge N_1$, then $1 >
ho(M_2^{-1}N_2) \ge
ho(M_1^{-1}N_1)$.

Proof: $au_2 =
ho(A^{-1}N_2) \ge
ho(A^{-1}N_1) = au_1$

But $\frac{\tau}{1+\tau}$ is strictly increasing. \Box

- Let $A^{-1} \ge 0$, A = D E F, D > 0 diagonal, $E, F \ge 0$ upper resp. lower triangular parts.
- Jacobi: $M_J=D,\,N_J=E+F.\,M_J^{-1}>0$ \Rightarrow regular splitting
- Gauss-Seidel: $M_{GS}=D-E$, $N_{GS}=F\geq 0$. Show $M_{GS}^{-1}\geq 0$:

Elimination steps for $M_{GS}v = r$:

$$v_n = rac{r_n}{d_{nn}}, \qquad v_{n-1} = rac{r_n + e_{n-1,n} v_n}{d_{n-1,n-1}} \dots$$

All coefficients are nonnegative $\Rightarrow M_{GS} - N_{GS}$: regular splitting

• $N_{GS} \le N_J \Rightarrow
ho(M_{GS}^{-1}N_{GS}) \le
ho(M_J^{-1}N_J)$

M-Matrices

Definition Let A be an n imes n real matrix. A is called M-Matrix if

- (i) $a_{ij} \leq 0$ for $i \neq j$
- (ii) A is nonsingular
- (iii) $A^{-1} \geq 0$

Corollary: If A is an M-Matrix, then $A^{-1} > 0 \Leftrightarrow A$ is irreducible.

Proof: See Varga. 🗌

Theorem: If A is an M-matrix, then its diagonal $D_A > 0$ is positive.

Proof: Let $C = A^{-1} \ge 0$. The AC = I and $(AC)_{ii} = 1$.

$$\sum_{k=1}^n a_{ik}c_{ki}=1
onumber \ a_{ii}c_{ii}=1-\sum_{k=1,k
eq i}^n a_{ik}c_{ki}\geq 1$$

The last inequality is due to $c_{ki} \ge 0$ and $a_{ik} < 0$ for $k \ne i$. As $a_{ii}c_{ii} \ge 1$, neither factor can be 0. So $c_{ii} > 0$ and $a_{ii} > 0$.

Theorem: (Saad, Th. 1.31) Assume

- (i) $a_{ij} \leq 0$ for $i \neq j$
- (ii) $a_{ii} > 0$

Then A is an M-Matrix if and only if $\rho(I - D^{-1}A) < 1$.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{ii}>0$ and $a_{ij}\leq 0$ for i
eq j. Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show $A^{-1} \ge 0$.

- Let $B = I D^{-1}A$. Then $\rho(B) < 1$, therefore I B is nonsingular.
- We have for k > 0:

$$I - B^{k+1} = (I - B)(I + B + B^2 + \dots + B^k)$$
$$(I - B)^{-1}(I - B^{k+1}) = (I + B + B^2 + \dots + B^k)$$

The left hand side for $k o \infty$ converges to $(I-B)^{-1}$, therefore

$$(I-B)^{-1} = \sum_{k=0}^{\infty} B^k$$

As $B\geq 0$, we have $(I-B)^{-1}=A^{-1}D\geq 0$. As D>0 we must have $A^{-1}\geq 0.$ \Box

M-Matrix comparison criterion

Theorem(Saad, Th. 1.33): Let A, $B n \times n$ matrices such that

- (i) $A \leq B$
- (ii) $b_{ij} \leq 0$ for $i \neq j$.

Then, if A is an M-Matrix, so is B.

Proof: From M-property of A and $A \leq B$ we have $0 < D_A \leq D_B$. We have $D_B - B \geq 0$ and

$$egin{aligned} D_A - A &\geq D_B - B \ I - D_A^{-1} A &\geq D_A^{-1} (D_B - B) \ &\geq D_B^{-1} (D_B - B) \ &\geq I - D_B^{-1} B =: G \geq 0 \end{aligned}$$

Perron-Frobenius $\Rightarrow \rho(G) = \rho(I - D_B^{-1}B) \le \rho(I - D_A^{-1}A) < 1 \land \Rightarrow I - G$ is nonsingular. From the proof of the M-matrix criterion, $D_B^{-1}B = (I - G)^{-1} = \sum_{k=0}^{\infty} G^k \ge 0$. As $D_B > 0$, we get $B \ge 0$.

Corollary: $A \leq M_{GS} \Rightarrow M_{GS}$ is an M-Matrix.

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible.
 - $\circ~$ This is mostly the case for elliptic and parabolic PDEs.
- Check if the matrix is strictly or irreducibly diagonally dominant.
 If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
 - If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.
- These critera do not depend on the symmetry of the matrix!

$$Au = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{1}{h} + \alpha \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-2} \\ u_{N-1} \\ u_N \end{pmatrix} = f = \begin{pmatrix} \alpha v_1 \\ hf_2 \\ hf_3 \\ \vdots \\ hf_{N-2} \\ hf_{N-1} \\ \alpha v_n \end{pmatrix}$$

- idd
- positive main diagonal entries, nonpositive off-diagonal entries

 \Rightarrow A is nonsingular, has the M-property, and we can e.g. apply the Jacobi and Gauss-Seidel iterative method to solve it (ok, in 1D we already know this is a bad idea . . .).

 \Rightarrow for $f \ge 0$ and $v \ge 0$ it follows that $u \ge 0$. \exists heating and positive environment temperatures cannot lead to negative temperatures in the interior.

pyplot (generic function with 1 method)

```
begin
using PlutoUI
using PyPlot
using HypertextLiteral
using Markdown
using PlutoUI
function pyplot(f;width=3,height=3)
clf()
f()
fig=gcf()
fig.set_size_inches(width,height)
fig
end
end
```

```
begin

highlight(mdstring,color)= htl"""<blockquote style="padding: 10px; background-
color: $(color);">$(mdstring)</blockquote>"""

macro important_str(s) :(highlight(Markdown.parse($s),"#ffcccc")) end

macro definition_str(s) :(highlight(Markdown.parse($s),"#cccffc")) end

macro statement_str(s) :(highlight(Markdown.parse($s),"#ccffcc")) end

html"""

<style>

h1{background-color:#dddddd; padding: 10px;}

h2{background-color:#eeeee; padding: 10px;}

h3{background-color:#f7f7f7; padding: 10px;}

</style>

"""

end
```