Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann Notebook 16

using LinearAlgebra

Regular Splittings
Convergence rate comparison
M-Matrices
Main practical M-Matrix criterion
M-Matrix comparison criterion

Regular Splittings

Definiton

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. \sim have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- $B=I-M^{-1} A=M^{-1} N$ is a nonnegative matrix.

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting.
Then $\rho\left(M^{-1} N\right)<1$.

Proof: Let $B=M^{-1} N$. Then $A=M(I-B)$, therefore $I-B$ is nonsingular.
In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-B)^{-1} B
$$

By Perron-Frobenius (for general matrices), $\rho(B)$ is an eigenvalue with a nonnegative eigenvector \vec{x}. Thus,

$$
0 \leq A^{-1} N \vec{x}=\frac{\rho(B)}{1-\rho(B)} \vec{x}
$$

Therefore $0 \leq \rho(B) \leq 1 . \$ Assume that $\rho(B)=1$. Then there exists $\vec{x} \neq \mathbf{0}$ such that $B \vec{x}=\vec{x}$. Consequently, $(I-B) \vec{x}=\mathbf{0}$, contradicting the nonsingularity of $I-B$. Therefore, $\rho(B)<1$.

Convergence rate comparison

Corollary: $\rho\left(M^{-1} N\right)=\frac{\tau}{1+\tau}$ where $\tau=\rho\left(A^{-1} N\right)$.
Proof: Rearrange $\tau=\frac{\rho(B)}{1-\rho(B)}$
Corollary: Let $A^{-1} \geq 0, A=M_{1}-N_{1}$ and $A=M_{2}-N_{2}$ be regular splittings.
If $N_{2} \geq N_{1}$, then $1>\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right)$.

Proof: $\tau_{2}=\rho\left(A^{-1} N_{2}\right) \geq \rho\left(A^{-1} N_{1}\right)=\tau_{1}$
But $\frac{\tau}{1+\tau}$ is strictly increasing.

- Let $A^{-1} \geq 0, A=D-E-F, D>0$ diagonal, $E, F \geq 0$ upper resp. lower triangular parts.
- Jacobi: $M_{J}=D, N_{J}=E+F . M_{J}^{-1}>0 \Rightarrow$ regular splitting
- Gauss-Seidel: $M_{G S}=D-E, N_{G S}=F \geq 0$. Show $M_{G S}^{-1} \geq 0$:

$$
M_{G S}=\left(\begin{array}{ccccc}
d_{11} & -e_{12} & -e_{13} & \ldots & -e_{1 n} \\
& d_{22} & -e_{23} & \ldots & -e_{2 n} \\
& & \ddots & \ddots & \vdots \\
& & & d_{n-1, n-1} & -e_{n-1, n} \\
& & & \ldots & d_{n n}
\end{array}\right)
$$

Elimination steps for $M_{G S} v=r:$

$$
v_{n}=\frac{r_{n}}{d_{n n}}, \quad v_{n-1}=\frac{r_{n}+e_{n-1, n} v_{n}}{d_{n-1, n-1}} \ldots
$$

All coefficients are nonnegative $\Rightarrow M_{G S}-N_{G S}$: regular splitting

- $N_{G S} \leq N_{J} \Rightarrow \rho\left(M_{G S}^{-1} N_{G S}\right) \leq \rho\left(M_{J}^{-1} N_{J}\right)$

M-Matrices

Definition Let A be an $n \times n$ real matrix. A is called M-Matrix if

- (i) $a_{i j} \leq 0$ for $i \neq j$
- (ii) A is nonsingular
- (iii) $A^{-1} \geq 0$

Corollary: If A is an M-Matrix, then $A^{-1}>0 \Leftrightarrow A$ is irreducible.

Proof: See Varga.

Theorem: If A is an M-matrix, then its diagonal $D_{A}>0$ is positive.

Proof: Let $C=A^{-1} \geq 0$. The $A C=I$ and $(A C)_{i i}=1$.

$$
\begin{aligned}
\sum_{k=1}^{n} a_{i k} c_{k i} & =1 \\
a_{i i} c_{i i} & =1-\sum_{k=1, k \neq i}^{n} a_{i k} c_{k i} \geq 1
\end{aligned}
$$

The last inequality is due to $c_{k i} \geq 0$ and $a_{i k}<0$ for $k \neq i$. As $a_{i i} c_{i i} \geq 1$, neither factor can be 0 . So $c_{i i}>0$ and $a_{i i}>0$.

Theorem: (Saad, Th. 1.31) Assume

- (i) $a_{i j} \leq 0$ for $i \neq j$
- (ii) $a_{i i}>0$

Then A is an M-Matrix if and only if $\rho\left(I-D^{-1} A\right)<1$.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then A is an MMatrix.

Proof: We know that A is nonsingular, but we have to show $A^{-1} \geq 0$.

- Let $B=I-D^{-1} A$. Then $\rho(B)<1$, therefore $I-B$ is nonsingular.
- We have for $k>0$:

$$
\begin{aligned}
I-B^{k+1} & =(I-B)\left(I+B+B^{2}+\cdots+B^{k}\right) \\
(I-B)^{-1}\left(I-B^{k+1}\right) & =\left(I+B+B^{2}+\cdots+B^{k}\right)
\end{aligned}
$$

The left hand side for $k \rightarrow \infty$ converges to $(I-B)^{-1}$, therefore

$$
(I-B)^{-1}=\sum_{k=0}^{\infty} B^{k}
$$

As $B \geq 0$, we have $(I-B)^{-1}=A^{-1} D \geq 0$. As $D>0$ we must have $A^{-1} \geq 0$.

M-Matrix comparison criterion

Theorem(Saad, Th. 1.33): Let $A, B n \times n$ matrices such that

- (i) $A \leq B$
- (ii) $b_{i j} \leq 0$ for $i \neq j$.

Then, if A is an M-Matrix, so is B.

Proof: From M-property of A and $A \leq B$ we have $0<D_{A} \leq D_{B}$. We have $D_{B}-B \geq 0$ and

$$
\begin{aligned}
D_{A}-A & \geq D_{B}-B \\
I-D_{A}^{-1} A & \geq D_{A}^{-1}\left(D_{B}-B\right) \\
& \geq D_{B}^{-1}\left(D_{B}-B\right) \\
& \geq I-D_{B}^{-1} B=: G \geq 0
\end{aligned}
$$

Perron-Frobenius $\Rightarrow \rho(G)=\rho\left(I-D_{B}^{-1} B\right) \leq \rho\left(I-D_{A}^{-1} A\right)<1 \backslash \Rightarrow I-G$ is nonsingular. From the proof of the M-matrix criterion, $D_{B}^{-1} B=(I-G)^{-1}=\sum_{k=0}^{\infty} G^{k} \geq 0$. As $D_{B}>0$, we get $B \geq 0$.

Corollary: $A \leq M_{G S} \Rightarrow M_{G S}$ is an M-Matrix.

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible.
- This is mostly the case for elliptic and parabolic PDEs.
- Check if the matrix is strictly or irreducibly diagonally dominant.
- If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
- If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.
- These critera do not depend on the symmetry of the matrix!

$$
A u=\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=f=\left(\begin{array}{c}
\alpha v_{1} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\alpha v_{n}
\end{array}\right)
$$

- idd
- positive main diagonal entries, nonpositive off-diagonal entries
$\Rightarrow A$ is nonsingular, has the M-property, and we can e.g. apply the Jacobi and Gauss-Seidel iterative method to solve it (ok, in 1D we already know this is a bad idea . . .).
\Rightarrow for $f \geq 0$ and $v \geq 0$ it follows that $u \geq 0 . \mid \equiv$ heating and positive environment temperatures cannot lead to negative temperatures in the interior.

```
pyplot (generic function with 1 method)
    - begin
    using PlutoUI
    using PyPlot
    using HypertextLiteral
    using Markdown
    using PlutoUI
    function pyplot(f;width=3,height=3)
    clf()
    f()
    fig=gcf()
    fig.set_size_inches(width,height)
    fig
    end
    end
```

highlight(mdstring, color)= htl"""<blockquote style="padding: 10px; backgroundcolor: \$(color);">\$(mdstring)</blockquote>"""
macro important_str(s) :(highlight(Markdown.parse(\$s),"\#ffcccc")) end macro definition_str(s) :(highlight(Markdown.parse(\$s),"\#ccccff")) end macro statement_str(s) :(highlight(Markdown.parse(\$s),"\#ccffcc")) end
html"""

<style>
h1\{background-color:\#dddddd; padding: 10px; \}
h2\{background-color:\#e7e7e7; padding: 10px;\}
h3\{background-color:\#eeeeee; padding: 10px;\}
h4\{background-color:\#f7f7f7; padding: 10px;\}
</style>
"""
end

