Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann Notebook 14

pyplot (generic function with 1 method)

```
    begin

     using PlutoUI
     using LinearAlgebra
     using SparseArrays
     using GraphPlot
     using LightGraphs
     using Colors
     using PyPlot
     function pyplot(f;width=3,height=3)
         clf()
         f()
         fig=gcf()
         fig.set_size_inches(width,height)
         fig
    end
end
```

Eigenvalue analysis for more general matrices

The Gershgorin Circle Theorem Appliction to Jacobi iteration matrix Matrices and Graphs The Taussky theorem Application to Jacobi iteration matrix

Eigenvalue analysis for more general matrices

For 1D heat conduction we had a very special regular structure of the matrix which allowed exact eigenvalue calculations.

We need a generalization to varying coefficients, nonsymmetric problems, unstructured grids \dots \Rightarrow what can be done for general matrices ?

The Gershgorin Circle Theorem

Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let Λ_i be the sum of the absolute values of the *i*-th row's off-diagonal entries:

$$\Lambda_i = \sum_{\substack{j=1\dots n \ j
eq i}} |a_{ij}|$$

If λ is an eigenvalue of A, then there exists r, $1 \le r \le n$ such that λ lies on the disk defined by the circle of radius Λ_r around a_{rr} :

$$|\lambda-a_{rr}|\leq \Lambda_r$$

🏓 nb14-ite r-ge rs hgorin-ta us s ky.jl — Pluto.jl

Proof: Assume λ is an eigenvalue, $\vec{x} = (x_1 \dots x_n)$ is a corresponding eigenvector. Assume \vec{x} is normalized such that

$$\max_{i=1\ldots n} |x_i| = |x_r| = 1.$$

From $Aec{x}=\lambdaec{x}$ it follows that

$$egin{aligned} \lambda x_i &= \sum_{\substack{j=1\dots n \ j
eq i}} a_{ij} x_j \ (\lambda - a_{ii}) x_i &= \sum_{\substack{j=1\dots n \ j
eq i}} a_{ij} x_j \ &|\lambda - a_{rr}| &= ig| \sum_{\substack{j=1\dots n \ j
eq r}} a_{rj} x_j ig| &\leq \sum_{\substack{j=1\dots n \ j
eq r}} |a_{rj}| |x_j| \leq \sum_{\substack{j=1\dots n \ j
eq r}} |a_{rj}| = \Lambda_r \end{aligned}$$

Corollary Any eigenvalue $\lambda\in\sigma(A)$ lies in the union of the disks defined by the Gershgorin circles

$$\lambda \in igcup_{i=1\dots n} \{\mu \in \mathbb{C}: |\mu - a_{ii}| \leq \Lambda_i \}$$

Corollary The Gershgorin circle theorem allows to estimate the spectral radius $\rho(A)$:

$$egin{aligned} &
ho(A) \leq \max_{i=1\dots n} \sum_{j=1}^n |a_{ij}| = ||A||_\infty, \ &
ho(A) \leq \max_{j=1\dots n} \sum_{i=1}^n |a_{ij}| = ||A||_1. \end{aligned}$$

Proof:

$$|\mu-a_{ii}|\leq \Lambda_i \quad \Rightarrow \quad |\mu|\leq \Lambda_i+|a_{ii}|=\sum_{j=1}^n |a_{ij}|$$

Furthermore, $\sigma(A) = \sigma(A^T)$

This appears to be very easy to use, so let us try:

```
gershgorin_circles (generic function with 1 method)
 function gershgorin_circles(A)
       t=0:0.01*π:2π
       # \alpha is the trasnparency value.
       circle(x,y,r;\alpha=0.3)=fill(x.+r.*cos.(t),y.+r.*sin.(t),alpha=\alpha)
       n=size(A,1)
       for i=1:n
       ∧=0
       for j=1:n
            if j!=i
            A+=abs(A[i,j])
            end
       end
       circle(real(A[i,i]),imag(A[i,i]),\Lambda,\alpha=0.5/n)
       end
       \sigma = eigvals(Matrix(A))
       scatter(real(\sigma), imag(\sigma), sizes=10*ones(n), color=:red)
       xlabel("Re")
       ylabel("Im")
       PyPlot.grid(color=:gray)
   end
```

A1 = {	0.071 1.7 1.4	9245+0 5269+0 2415+0	omplexF6 .0365115 .091967i .0103501	im 0.8 m 1. im 1.	97026+0.0 50978+0.0 60107+0.0	070275i 0266832	n im	1.90 0.397	981+0. 857+0.	0427919i 00341598 0397533i	im m
	1.8	6106+0	.018463i .076491i	m 0.7	.5678+0.0 91319+0.0					0698473i 0354558i	
• A1:	=2 *ra n	d(n1,n1	1)+0.1*r	and(n1,	n1)*1im						
[-0.	81302	-0.0096	596im, 0	.10566	2+0.99842	8im, 0.	13655-	1.0257	8im, C	.144314-	0.0180041im,
)
• e1§	gvals(A1)									
	6										
	4										
:	2	4						+			
				•							
<u></u>	0		-	•							
-:	,			•							
_4	4										
-(6 +	_									
		-4	-2	0	-	4 (5	8			
				R	e						

Appliction to Jacobi iteration matrix

So this is kind of cool! Let us try this out with our heat example and the Jacobi iteration matrix: $B=I-D^{-1}A$

```
heatmatrix1d (generic function with 1 method)
  function heatmatrix1d(N;α=100)

jacobi_iteration_matrix (generic function with 1 method)
  jacobi_iteration_matrix(A)=I-inv(Diagonal(A))*A

N = 10
  N=10
```

🕊 nb14-ite r-ge rs hgorin-ta us s ky.jl — Pluto.jl A2 = 10×10 Tridiagonal{Float64, Vector{Float64}}: 109.0 -9.0 -9.0 -9.0 18.0 . . -9.0 18.0 -9.0 . ٠ -9.0 . -9.0 18.0 . 18.0 -9.0 -9.0 . . 18.0 -9.0 -9.0 . . . -9.0 18.0 . . . -9.0 -9.0 . . -9.0 18.0 -9.0 18.0 -9.0 . . 109.0 . -9.0 . . A2=Tridiagonal(heatmatrix1d(N)) B2 = 10×10 Tridiagonal{Float64, Vector{Float64}}: 0.0 0.0825688 ٠ . ٠ ٠ 0.5 0.5 0.0 . 0.5 0.0 0.5 • ٠ • ٠ 0.0 0.5 0.5 ٠ ٠ . 0.5 0.0 0.5 . 0.5 0.0 0.5 . 0.0 0.5 0.5 ٠ 0.5 0.0 0.5 . ٠ 0.5 0.0 0.5 . ٠

0.0825688

0.0

B2=jacobi_iteration_matrix(A2)

$$\rho 2 = 0.9421026930965894$$

We have
$$b_{ii}=0$$
, $\Lambda_i=egin{cases} rac{1}{1+lpha h}, & i=1,n \ 1 & i=2\dots n-1 \end{cases}$

We see two circles around 0: one with radius 1 and one with radius $\frac{1}{1+ab}$

 \Rightarrow estimate $|\lambda_i| \leq 1$

We can also calculate the value from the estimate: Gershgorin circles of B2 are centered in the origin, and the spectral radius estimate just consists in the maximum of the sum of the absolute values of the row entries.

$\rho 2_gershgorin = 1.0$

```
• ρ2_gershgorin=maximum([sum( abs.(B2[i,:])) for i=1:size(B2,1)])
1.00
```


So the estimate from the Gershgorin Circle theorem is very pessimistic... Can we improve this ?

Matrices and Graphs

- Permutation matrices are matrices which have exactly one non-zero entry in each row and each column which has value 1.
- There is a one-to-one correspondence permutations π of the the numbers $1\dots n$ and n imes n permutation matrices $P=(p_{ij})$ such that

$$p_{ij} = egin{cases} 1, & \pi(i) = j \ 0, & ext{else} \end{cases}$$

- Permutation matrices are orthogonal, and we have $P^{-1}=P^T$
- A o PA permutes the rows of A
- $A
 ightarrow AP^T$ permutes the columns of A

Define a directed graph from the nonzero entries of a matrix $A = (a_{ik})$:

- Nodes: $\mathcal{N} = \{N_i\}_{i=1...n}$
- Directed edges: $\mathcal{E} = \{\overrightarrow{N_kN_l} | a_{kl}
 eq 0\}$
- Matrix entries \equiv weights of directed edges

 \Rightarrow 1:1 equivalence between matrices and weighted directed graphs

Create a bidirectional graph (digraph) from a matrix in Julia. Create edge labels from off-diagonal entries and node labels combined from diagonal entries and node indices.

```
create_graph (generic function with 1 method)
    function create_graph(matrix)
```

rndmatrix

sparse random matrix with entries with limited numbers decimal values

.

	0.0 0.0	0.0	0.0 0.9	0.0	0.0	0.0 0.53	0.0 0.11	
	0.0	0.21	0.14	0.0	0.0	0.0	0.0	
	0.0	0.87	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.64 0.0	0.0 0.0	0.54 0.0	0.0 0.0	0.89 0.0	0.0 0.62	0.66 0.0	
A	3=rndma	trix(7	,0.2)					
					+64 -	conh	1 \n 0.0", "2 \n 0.0", "3 \n 0.14",	"4 \p 0
({7	. 10}	direct	ed sim	nle li	1104 8	aon. I		4 \11 0.

- GraphPlot.gplot(graph3,
 - Matrix graph of A3 is strongly connected: false
 - Matrix graph of A3 is weakly connected: true

• md"""

Definition A square matrix A is *reducible* if there exists a permutation matrix P such that

$$PAP^T = egin{pmatrix} A_{11} & A_{12} \ 0 & A_{22} \end{pmatrix}$$

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is strongly connected, i.e. for each *ordered* pair (N_i, N_j) there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix entries $a_{ik_1}, a_{k_1k_2}, a_{k_2k_3} \dots, a_{k_{r-1}k_r} a_{k_rj}$.

The Taussky theorem

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$\lambda \in \partial igcup_{i=1\dots n} \{\mu \in \mathbb{C}: |\mu - a_{ii}| \leq \Lambda_i \}$$

Then, all *n* Gershgorin circles pass through λ , i.e. for $i = 1 \dots n$,

$$|\lambda - a_{ii}| = \Lambda_i$$

🏓 nb14-ite r-ge rs hgorin-ta us s ky.jl — Pluto.jl

Proof Assume λ is eigenvalue, \vec{x} a corresponding eigenvector, normalized such that $\max_{i=1...n} |x_i| = |x_r| = 1$. From $A\vec{x} = \lambda \vec{x}$ it follows that

$$egin{aligned} & (\lambda-a_{rr})x_r = \sum_{\substack{j=1\ldots n\ j
eq r}} a_{rj}x_j \ & |\lambda-a_{rr}| \leq \sum_{\substack{j=1\ldots n\ j
eq r}} |a_{rj}|\cdot |x_j| \ & \leq \sum_{\substack{j=1\ldots n\ j
eq r}} |a_{rj}| = \Lambda_r \quad (*) \end{aligned}$$

 λ is boundary point $\Rightarrow |\lambda - a_{rr}| = \sum_{\substack{j=1\dots n \ j
eq r}} |a_{rj}| \cdot |x_j| = \Lambda_r$

 \Rightarrow For all p
eq r with $a_{rp}
eq 0$, $|x_p| = 1$.

Contradiction! \Rightarrow $|\lambda_i| < 1$, $\rho(B) < 1$!

Due to irreducibility there is at least one p with $a_{rp} \neq 0$. For this p, $|x_p| = 1$ and equation (*) is valid (with p in place of r) $\Rightarrow |\lambda - a_{pp}| = \Lambda_p$

Due to irreducibility, this is true for all $p=1\dots n$. \Box

Application to Jacobi iteration matrix

Apply this to the Jacobi iteration matrix for the heat conduction problem: We know that $|\lambda_i| \leq 1$, and we can see that the matrix graph is strongly connected.

Assume $|\lambda_i| = 1$. Then λ_i lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{1+ah}$ and 1 around 0.

```
\alpha = 1
 • α=1
N4 = 5

    N4=5

A4 = 5×5 Tridiagonal{Float64, Vector{Float64}}:
       5.0
            -4.0
                         •
            8.0 -4.0
      -4.0
            -4.0
                  8.0
                        -4.0
                  -4.0 8.0 -4.0
• -4.0 5.0
              ٠
 A4=Tridiagonal(heatmatrix1d(N4,α=α))
B4 = 5×5 Tridiagonal{Float64, Vector{Float64}}:
      0.0 0.8
      0.5 0.0 0.5
               0.0 0.5
           0.5
                0.5 0.0 0.5
            ٠
                 .
                     0.8 0.0

    B4=jacobi_iteration_matrix(A4)

\rho 4 = 0.9486832980505135
 o4=maximum(abs.(eigvals(Matrix(B4))))
\rho4_gershgorin = 1.0
 • ρ4_gershgorin=maximum([sum( abs.(B4[i,:])) for i=1:size(B4,1)])
 ({5, 8} directed simple Int64 graph, ["1 \n 0.0", "2 \n 0.0", "3 \n 0.0", "4 \n 0.0"
                                                                                        ۲
•
 graph4,nlabel4,elabel4=create_graph(B4)
```


- GraphPlot.gplot(graph4,
 - Matrix graph is strongly connected: **true**
 - Matrix graph is weakly connected: true

- This theory allows to judge about the spectral radius of the Jacobi iteration matrix and possibly others
- Unfortunately, it does not yield a quantitative estimate we just establish ho < 1
- Advantage: we don't need to assume symmetry of ${\cal A}$ or spectral equivalence estimates

🏓 nb14-ite r-ge rs hgorin-ta us s ky.jl — Pluto.jl