Scientific Computing TU Berlin Winter 2021/22 © Jürgen Fuhrmann Notebook 14

```
pyplot (generic function with 1 method)
    - begin
        using PlutoUI
        using LinearAlgebra
        using SparseArrays
        using GraphPlot
        using LightGraphs
        using Colors
        using PyPlot
        function pyplot(f;width=3,height=3)
        clf()
        f()
        fig=gcf()
        fig.set_size_inches(width,height)
        fig
    end
    end
```


Eigenvalue analysis for more general matrices

The Gershgorin Circle Theorem
Appliction to Jacobi iteration matrix
Matrices and Graphs
The Taussky theorem
Application to Jacobi iteration matrix

Eigenvalue analysis for more general matrices

For 1D heat conduction we had a very special regular structure of the matrix which allowed exact eigenvalue calculations.

We need a generalization to varying coefficients, nonsymmetric problems, unstructured grids . . . \Rightarrow what can be done for general matrices ?

The Gershgorin Circle Theorem

Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let Λ_{i} be the sum of the absolute values of the i-th row's off-diagonal entries:

$$
\Lambda_{i}=\sum_{\substack{j=1 \ldots . n \\ j \neq i}}\left|a_{i j}\right|
$$

If λ is an eigenvalue of A, then there exists $r, 1 \leq r \leq n$ such that λ lies on the disk defined by the circle of radius Λ_{r} around $a_{r r}$:

$$
\left|\lambda-a_{r r}\right| \leq \Lambda_{r}
$$

Proof: Assume λ is an eigenvalue, $\vec{x}=\left(x_{1} \ldots x_{n}\right)$ is a corresponding eigenvector. Assume \vec{x} is normalized such that

$$
\max _{i=1 \ldots n}\left|x_{i}\right|=\left|x_{r}\right|=1
$$

From $A \vec{x}=\lambda \vec{x}$ it follows that

$$
\begin{aligned}
\lambda x_{i} & =\sum_{\substack{j \ldots . \ldots n}} a_{i j} x_{j} \\
\left(\lambda-a_{i i}\right) x_{i} & =\sum_{\substack{j=1 \ldots . n \\
j \neq i}} a_{i j} x_{j} \\
\left|\lambda-a_{r r}\right| & =\left|\sum_{\substack{j=1 \ldots . . n \\
j \neq r}} a_{r j} x_{j}\right| \leq \sum_{\substack{j=1 \ldots . . n \\
j \neq r}}\left|a_{r j}\right|\left|x_{j}\right| \leq \sum_{\substack{j=1 \ldots . . n \\
j \neq r}}\left|a_{r j}\right|=\Lambda_{r}
\end{aligned}
$$

Corollary Any eigenvalue $\lambda \in \sigma(A)$ lies in the union of the disks defined by the Gershgorin circles

$$
\lambda \in \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Corollary The Gershgorin circle theorem allows to estimate the spectral radius $\rho(A)$:

$$
\begin{aligned}
\rho(A) & \leq \max _{i=1 \ldots n} \sum_{j=1}^{n}\left|a_{i j}\right|=\|A\|_{\infty}, \\
\rho(A) & \leq \max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|=\|A\|_{1} .
\end{aligned}
$$

Proof:

$$
\left|\mu-a_{i i}\right| \leq \Lambda_{i} \quad \Rightarrow \quad|\mu| \leq \Lambda_{i}+\left|a_{i i}\right|=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

Furthermore, $\sigma(A)=\sigma\left(A^{T}\right)$
This appears to be very easy to use, so let us try:

```
gershgorin_circles (generic function with 1 method)
    function gershgorin_circles(A)
        t=0:0.01*\pi:2\pi
        # \alpha is the trasnparency value.
        circle(x,y,r;\alpha=0.3)=fill(x.+r.*cos.(t),y.+r.*sin.(t),alpha=\alpha)
        n=size(A,1)
        for i=1:n
        \Lambda=0
        for j=1:n
            if j!=i
            \Lambda+=abs(A[i,j])
            end
        end
        circle(real(A[i,i]),imag(A[i,i]),^,\alpha=0.5/n)
        end
        \sigma=eigvals(Matrix(A))
        scatter(real(\sigma),imag(\sigma),sizes=10*ones(n),color=:red)
        xlabel("Re")
        ylabel("Im")
        PyPlot.grid(color=:gray)
    end
```

n1 $=5$

- n1=5

A1 $=5 \times 5$ Matrix\{ComplexF64\}:

$0.0719245+0.0365115 \mathrm{im}$	$0.897026+0.0605215 \mathrm{im}$..	$1.32347+0.0427919 \mathrm{im}$
$1.75269+0.091967 \mathrm{im}$	$1.50978+0.070275 \mathrm{im}$	$1.90981+0.00341598 \mathrm{im}$	
$1.42415+0.0103501 \mathrm{im}$	$1.60107+0.0266832 \mathrm{im}$	$0.397857+0.0397533 \mathrm{im}$	
$0.530038+0.018463 \mathrm{im}$	$1.5678+0.0672516 \mathrm{im}$	$0.893942+0.0698473 \mathrm{im}$	
$1.86106+0.076491 \mathrm{im}$	$0.791319+0.0281828 \mathrm{im}$	$1.13717+0.0354558 \mathrm{im}$	

- $A 1=2 * \operatorname{rand}(n 1, n 1)+0.1 * \operatorname{rand}(n 1, n 1) * 1 i m$
[-0.81302-0.0096596im, 0.105662+0.998428im, $0.13655-1.02578 i m, 0.144314-0.0180041 i m, ~ \epsilon$
4
- eigvals(A1)


```
pyplot(width=5, height=5) do
    gershgorin_circles(A1)
end
```


Appliction to Jacobi iteration matrix

So this is kind of cool! Let us try this out with our heat example and the Jacobi iteration matrix: $B=I-D^{-1} A$
heatmatrix1d (generic function with 1 method)

- function heatmatrix1d(N; $\alpha=100)$
jacobi_iteration_matrix (generic function with 1 method)
- jacobi_iteration_matrix $(A)=I-i n v(\operatorname{Diagonal}(A)) * A$
$\mathrm{N}=10$
$\mathrm{N}=10$

We have $b_{i i}=0, \Lambda_{i}= \begin{cases}\frac{1}{1+\alpha h}, & i=1, n \\ 1 & i=2 \ldots n-1\end{cases}$
We see two circles around 0 : one with radius 1 and one with radius $\frac{1}{1+\alpha h}$
\Rightarrow estimate $\left|\lambda_{i}\right| \leq 1$

We can also calculate the value from the estimate: Gershgorin circles of $B 2$ are centered in the origin, and the spectral radius estimate just consists in the maximum of the sum of the absolute values of the row entries.

م2_gershgorin = 1.0
م2_gershgorin=maximum([sum(abs.(B2[i,:])) for i=1:size(B2,1)])

pyplot(width=5, height=5) do

So the estimate from the Gershgorin Circle theorem is very pessimistic... Can we improve this ?

Matrices and Graphs

- Permutation matrices are matrices which have exactly one non-zero entry in each row and each column which has value 1 .
- There is a one-to-one correspondence permutations π of the the numbers $1 \ldots n$ and $n \times n$ permutation matrices $P=\left(p_{i j}\right)$ such that

$$
p_{i j}= \begin{cases}1, & \pi(i)=j \\ 0, & \text { else }\end{cases}
$$

- Permutation matrices are orthogonal, and we have $P^{-1}=P^{T}$
- $A \rightarrow P A$ permutes the rows of A
- $A \rightarrow A P^{T}$ permutes the columns of A

Define a directed graph from the nonzero entries of a matrix $A=\left(a_{i k}\right)$:

- Nodes: $\mathcal{N}=\left\{N_{i}\right\}_{i=1 \ldots n}$
- Directed edges: $\mathcal{E}=\left\{\overrightarrow{N_{k} \vec{N}_{l}} \mid a_{k l} \neq 0\right\}$
- Matrix entries \equiv weights of directed edges
\Rightarrow 1:1 equivalence between matrices and weighted directed graphs
Create a bidirectional graph (digraph) from a matrix in Julia. Create edge labels from off-diagonal entries and node labels combined from diagonal entries and node indices.

```
create_graph (generic function with 1 method)
- function create_graph(matrix)
```


rndmatrix

sparse random matrix with entries with limited numbers decimal values

```
. """
A3 = 7\times7 Matrix{Float64}:
    0.0 0.0 0.0 0.0}00.0 0.0 0.0 
    0.0}00.0 0.9 0.0 0.0 0.53 0.11
    0.0
    0.0
    0.0 0.0 0.0 0.0 0.0 0.0 0.0
```



```
    0.0
    A3=rndmatrix(7,0.2)
    ({7, 10} directed simple Int64 graph, ["1 \n 0.0", "2 \n 0.0", "3 \n 0.14", "4 \n 0.0'
    graph3,nlabel3,elabel3=create_graph(A3)
```


GraphPlot.gplot(graph3,

- Matrix graph of $A 3$ is strongly connected: false
- Matrix graph of $A 3$ is weakly connected: true
md" " "

Definition A square matrix A is reducible if there exists a permutation matrix P such that
$P A P^{T}=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right)$
A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is strongly connected, i.e. for each ordered pair $\left(N_{i}, N_{j}\right)$ there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix entries $a_{i k_{1}}, a_{k_{1} k_{2}}, a_{k_{2} k_{3} \ldots,}, a_{k_{r-1} k_{r}} a_{k_{r} j}$

The Taussky theorem

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$
\lambda \in \partial \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Then, all n Gershgorin circles pass through λ, i.e. for $i=1 \ldots n$,

$$
\left|\lambda-a_{i i}\right|=\Lambda_{i}
$$

Proof Assume λ is eigenvalue, \vec{x} a corresponding eigenvector, normalized such that $\max _{i=1 \ldots n}\left|x_{i}\right|=\left|x_{r}\right|=1$. From $A \vec{x}=\lambda \vec{x}$ it follows that

$$
\begin{align*}
\left(\lambda-a_{r r}\right) x_{r} & =\sum_{\substack{j=1 \ldots . \ldots \\
j \neq r}} a_{r j} x_{j} \\
\left|\lambda-a_{r r}\right| & \leq \sum_{\substack{j=1 \ldots . n \\
j \neq r}}\left|a_{r j}\right| \cdot\left|x_{j}\right| \\
& \leq \sum_{\substack{j=1 \ldots . n \\
j \neq r}}\left|a_{r j}\right|=\Lambda_{r} \tag{*}
\end{align*}
$$

λ is boundary point $\Rightarrow\left|\lambda-a_{r r}\right|=\sum_{\substack{j=1 \ldots . . n \\ j \neq r}}\left|a_{r j}\right| \cdot\left|x_{j}\right|=\Lambda_{r}$
\Rightarrow For all $p \neq r$ with $a_{r p} \neq 0,\left|x_{p}\right|=1$.
Due to irreducibility there is at least one p with $a_{r p} \neq 0$. For this $p,\left|x_{p}\right|=1$ and equation (*) is valid (with p in place of r) $\Rightarrow\left|\lambda-a_{p p}\right|=\Lambda_{p}$

Due to irreducibility, this is true for all $p=1 \ldots n$.

Application to Jacobi iteration matrix

Apply this to the Jacobi iteration matrix for the heat conduction problem: We know that $\left|\lambda_{i}\right| \leq 1$, and we can see that the matrix graph is strongly connected.

Assume $\left|\lambda_{i}\right|=1$. Then λ_{i} lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{1+\alpha h}$ and 1 around o .

Contradiction! $\Rightarrow\left|\lambda_{i}\right|<1, \rho(B)<1$!
$\alpha=1$

- $\alpha=1$

N4 $=5$

- $\mathbf{N} 4=5$

A4 $=5 \times 5$ Tridiagonal\{Float64, Vector\{Float64\}\}:
$\begin{array}{rrrcc}5.0 & -4.0 & . & \cdot & \text { • } \\ -4.0 & 8.0 & -4.0 & . & . \\ . & -4.0 & 8.0 & -4.0 & . \\ . & . & -4.0 & 8.0 & -4.0\end{array}$
$\begin{array}{rlrr}. & -4.0 & 8.0 & -4.0 \\ . & . & -4.0 & 5.0\end{array}$

- A4=Tridiagonal(heatmatrix1d(N4, $\alpha=\alpha)$)

B4 $=5 \times 5$ Tridiagonal\{Float64, Vector\{Float64\}\}:
$0.0 \quad 0.8 \quad$ • •
$0.5 \quad 0.0 \quad 0.5 \quad$ • •

- $0.5 \quad 0.0 \quad 0.5$ -
$\begin{array}{llll}. & 0 . & 0.5 & 0.5 \\ . & . & 0.8 & 0.0\end{array}$
- B4=jacobi_iteration_matrix(A4)
$\rho 4=0.9486832980505135$
- $\rho 4=$ maximum(abs. (eigvals(Matrix(B4))))
p4_gershgorin $=1.0$

(\{5, 8\} directed simple Int64 graph, ["1 \n 0.0", "2 \n 0.0", "3 \n 0.0", "4 \n 0.0",
graph4, nlabel4, elabel4=create_graph(B4)

GraphPlot.gplot(graph4,

- Matrix graph is strongly connected: true
- Matrix graph is weakly connected: true

pyplot(width=5, height=5) do
- This theory allows to judge about the spectral radius of the Jacobi iteration matrix and possibly others
- Unfortunately, it does not yield a quantitative estimate - we just establish $\rho<1$
- Advantage: we don't need to assume symmetry of A or spectral equivalence estimates

