Scientific Computing TU Berlin Winter 2021/22 \odot Jürgen Fuhrmann Notebook 13

• using LinearAlgebra

÷

Iterative methods

Simple iteration scheme The Jacobi method The Gauss-Seidel method Richardson method Variants Convergence Jordan canonical form and spectral radius Convergence rate Optimal parameter a Parameter for preconditioned iteration Example: Jacobi method and 1D Heat conduction Estimating iterative solver complexity Complexity scaling in 1D Complexity scaling in 2D Complexity scaling in 3D What is to be done?

Iterative methods

Let $V = \mathbb{R}^n$ be equipped with the inner product (\cdot, \cdot) . Let A be an n imes n nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:

- **Preconditioner**: a matrix $M \approx A$ "approximating" the matrix A but with the property that the system Mv = f is easy to solve
- Iteration scheme: algorithmic sequence using M and A which updates the solution step by step

Simple iteration scheme

🞐 nb13-ite r.jl — Pluto.jl

Assume we know the exact solution \hat{u} : $A\hat{u} = b$.

Then it must fulfill the identity

$$\hat{u} = \hat{u} - M^{-1}(A\hat{u} - b)$$

 \Rightarrow iterative scheme: put the "old" value on the right hand side and the ""new" value on the left hand side:

 $u_{k+1} = u_k - M^{-1}(Au_k - b) \quad (k = 0, 1 \ldots)$

Obviously, if $u_k = \hat{u}$, the process would be stationary.

Otherwise it leads to a sequence of approximations

 $u_0, u_1, \ldots, u_k, u_{k+1}, \ldots$

Implementation: solve Au = b with tolerance ε :

- 1. Choose initial value u_0 , set k=0
- 2. Calculate residuum $r_k = A u_k b$
- 3. Test convergence: if $||r_k|| < arepsilon$ set $u = u_k$, finish
- 4. Calculate update: solve $Mv_k = r_k$
- 5. Update solution: $u_{k+1} = u_k v_k$, set k = k+1, repeat with step 2.

The Jacobi method

- Let A = D E F, where D: main diagonal, E: negative lower triangular part F: negative upper triangular part
- Preconditioner: M=D, where D is the main diagonal of A \Rightarrow

$$u_{k+1,i} = u_{k,i} - rac{1}{a_{ii}} \left(\sum_{j=1...n} a_{ij} u_{k,j} - b_i
ight) \quad (i = 1...n)$$

• Equivalent to the succesive (row by row) solution of

$$a_{ii}u_{k+1,i}+\sum_{j=1\ldots n, j
eq i}a_{ij}u_{k,j}=b_i \quad (i=1\ldots n)$$

- Already calculated results not taken into account
- Variable ordering does not matter

jacobi_sweep1! (generic function with 1 method)
 jacobi_sweep1!(unew,uold,A,b)= unew.= uold - inv(Diagonal(A))*(A*uold-b)

```
simple_iteration (generic function with 1 method)
 function simple_iteration(A,b,u0, sweep;tol=1.0e-10,maxiter=100)
       unew=similar(u0)
       uold=copy(u0)
       residual=Inf
       history=zeros(0)
       for i=1:maxiter
           sweep(unew,uold,A,b)
           residual=norm(A*unew-b)
           push!(history,residual)
           if residual<tol</pre>
               return unew,history
           end
           uold.=unew
       end
       return unew,history
  end
N = 100
 • N=100
randmatrix (generic function with 1 method)
```

```
randmatrix(N; \delta=1.0)=Diagonal(ones(N))-rand(N,N)/(\delta*N)
```

```
    A=randmatrix(N,δ=1);
```

```
• û=rand(N);
```

```
∘ b=A*û;
```

```
0.043894549
```

```
@elapsed (u,history)=simple_iteration(A,b,zeros(N),jacobi_sweep2!)
```

```
1.2915606225074314e-10
```

```
∘ norm(u-û)
```

```
plothistory (generic function with 1 method)
```


The Gauss-Seidel method

🏓 nb13-ite r.jl — Pluto.jl

-Solve for main diagonal element row by row

- Take already calculated results into account
- Run in ascending order: forward GS

$$a_{ii}u_{k+1,i} + \sum_{j < i} a_{ij}u_{k+1,j} + \sum_{j > i} a_{ij}u_{k,j} = b_i \qquad (i = 1 \dots n) \ (D - E)u_{k+1} - Fu_k = b \ M = D - E$$

• Run in descending order: backward GS

$$a_{ii}u_{k+1,i} + \sum_{j>i}a_{ij}u_{k+1,j} + \sum_{j< i}a_{ij}u_{k,j} = b_i \qquad (i=n\dots 1) \ (D-F)u_{k+1} - Eu_k = b \ M = D-F$$

- May be it is faster ?
- Variable order probably matters

```
gauss_seidel_sweep (generic function with 1 method)
```

```
function gauss_seidel_sweep(unew,uold,A,b)
n=size(A,2)
unew.=uold # we could do this in-place and save space for one vector
for i=1:n
         unew[i]=b[i]/A[i,i]
         for j=1:i-1
              unew[i]-=A[i,j]*unew[j]/A[i,i]
         end
         for j=i+1:n
              unew[i]-=A[i,j]*unew[j]/A[i,i]
         end
         end
```

0.067975229

```
@elapsed (u_gs,history_gs)=simple_iteration(A,b,zeros(N),gauss_seidel_sweep)
```

```
7.127068274648113e-11
```

```
• norm(u_gs-û)
```


Richardson method

$$M = \frac{1}{\alpha}I$$

for some well chosen α

Variants

🞐 nb13-ite r.jl — Pluto.jl

- SOR: Successive overrelaxation: solve $\omega A = \omega B$ and use splitting

$$egin{aligned} & \omega A = (D-\omega E) - (\omega F + (1-\omega D)) \ & (D-\omega E) u_{k+1} = (\omega F + (1-\omega D)) u_k + \omega b \ & M = rac{1}{\omega} (D-\omega E) \end{aligned}$$

• SSOR: Symmetric successive overrelaxation

$$egin{aligned} &(D-\omega E)u_{k+rac{1}{2}}=(\omega F+(1-\omega D))u_k+\omega b\ &(D-\omega F)u_{k+1}=(\omega E+(1-\omega D))u_{k+rac{1}{2}}+\omega b\ &M=rac{1}{\omega(2-\omega)}(D-\omega E)D^{-1}(D-\omega F) \end{aligned}$$

- Block methods
 - Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the system matrix into larger blocks,
 - The blocks on the diagonal should be square matrices, and invertible
 - Interesting variant for systems of partial differential equations, where multiple species interact with each other

Convergence

Let \hat{u} be the solution of Au = b.

Let $e_k = u_k - \hat{u}$ be the error of the k-th iteration step. Then:

$$egin{aligned} u_{k+1} &= u_k - M^{-1}(Au_k - b) \ &= (I - M^{-1}A)u_k + M^{-1}b \ u_{k+1} - \hat{u} &= u_k - \hat{u} - M^{-1}(Au_k - A\hat{u}) \ &= (I - M^{-1}A)(u_k - \hat{u}) \ &= (I - M^{-1}A)^k(u_0 - \hat{u}) \end{aligned}$$

resulting in

$$e_{k+1} = (I - M^{-1}A)^k e_0$$

- So when does $(I-M^{-1}A)^k$ converge to zero for $k o\infty$?
- Denote $B = I M^{-1}A$

Jordan canonical form and spectral radius

Notations:

- $\lambda_i \; (i=1\dots p)$: eigenvalues of B
- $\sigma(B) = \{\lambda_1 \dots \lambda_p\}$: spectrum of B
- μ_i : algebraic multiplicity of λ_i : multiplicity as zero of the characteristic polynomial $\det(B \lambda I)$
- γ_i geometric multiplicity of λ_i : dimension of $\operatorname{Ker}(B \lambda I)$
- l_i : index of the eigenvalue: the smallest integer for which $\operatorname{Ker}(B-\lambda I)^{l_i+1}=\operatorname{Ker}(B-\lambda I)^{l_i}$
- $l_i \leq \mu_i$

👂 nb13-ite r.ji — Pluto.ji

Theorem (Saad, Th. 1.8) B can be transformed to a block diagonal matrix consisting of p diagonal blocks $D_1 \dots D_p$, each associated with a distinct eigenvalue λ_i .

- Each of the diagonal blocks D_i has itself a block diagonal structure consisting of γ_i Jordan blocks $J_{i,1} \dots J_{i,\gamma_i}$.
- Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding l_i with λ_i on the diagonal and 1 on the first upper diagonal.

$$\begin{split} X^{-1}BX = J = \begin{pmatrix} D_1 & & & \\ & D_2 & & \\ & & \ddots & \\ & & & D_p \end{pmatrix} \\ D_i = \begin{pmatrix} J_{i,1} & & & \\ & J_{i,2} & & \\ & & J_{i,2} & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & J_{i,\gamma_i} \end{pmatrix} \\ J_{i,k} = \begin{pmatrix} \lambda_i & 1 & & \\ & \lambda_i & 1 & \\ & & \ddots & 1 \\ & & & & \lambda_i \end{pmatrix} \end{split}$$

Each $J_{i,k}$ is of size $\leq l_i$ and corresponds to a different eigenvector of B.

Definition The spectral radius $\rho(B)$ is the largest absolute value of any eigenvalue of B: $\rho(B) = \max_{\lambda \in \sigma(B)} |\lambda|.$

Theorem (Saad, Th. 1.10):

$$\lim_{k o\infty}B^k=0 \Leftrightarrow
ho(B)<1.$$

 $\textbf{Proof} \Rightarrow:$

Let u_i be a unit eigenvector associated with an eigenvalue $\lambda_i.$ Then

$$egin{aligned} Bu_i &= \lambda_i u_i \ B^2 u_i &= \lambda_i B_i u_i = \lambda_i^2 u_i \ &dots \ B^k u_i &= \lambda_i^k u_i \ &dots \ B^k u_i &= \lambda_i^k u_i \ &dots \ Herefore & ||B^k u_i||_2 &= |\lambda_i^k| \ &dots \ dots \ \| \lambda_i^k \| &= 0 \ \end{aligned}$$

so we must have ho(B) < 1 \Box

Proof \Leftarrow :

Take the Jordan form $X^{-1}BX = J$. Then $X^{-1}B^kX = J^k$.

Sufficient to regard Jordan block $J_i = \lambda I + E$ where $|\lambda| < 1$ and $E^{l_i} = 0$.

Let $k \geq l_i$. Then

$$J_i^k = \sum_{j=0}^{l_{i-1}} {k \choose j} \lambda^{k-j} E^j
onumber \ ||J_i||^k \leq \sum_{j=0}^{l_{i-1}} {k \choose j} |\lambda|^{k-j} ||E||^j$$

But $\binom{k}{j} = \frac{k!}{j!(k-j)!} = \sum_{i=0}^{j} {j \brack i} \frac{k^i}{j!} = p_j(k)$ is a polynomial of degree j in k where the Stirling numbers of the first kind are given by

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \quad \begin{bmatrix} j \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ j \end{bmatrix} = 0, \quad \begin{bmatrix} j+1 \\ i \end{bmatrix} = j \begin{bmatrix} j \\ i \end{bmatrix} + \begin{bmatrix} j \\ i-1 \end{bmatrix}.$$

Thus, $p_j(k)|\lambda|^{k-j} o 0 \; (k o\infty)$ as exponential decay beats polynomial growth \Box

Corollary (Saad, Th. 1.12):

$$\lim_{k\to\infty}||B^k||^{\frac{1}{k}}=\rho(B)$$

Sufficient condition for iterative method convergence:

$$\rho(I - M^{-1}A) < 1$$

Convergence rate

Assume λ with $|\lambda| = \rho(I - M^{-1}A) < 1$ is the largest eigenvalue and has a single Jordan block of size l. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^l = 0$ is $\lambda^{k-l+1} {k \choose l-1} E^{l-1}$. Then,

$$||(I-M^{-1}A)^k(u_0-\hat{u})|| = Oigg(|\lambda^{k-l+1}|igg(k-1)igg)igg)$$

and the "worst case" convergence factor ho equals the spectral radius:

$$egin{aligned} &
ho = \lim_{k o \infty} \left(\max_{u_0} rac{||(I - M^{-1}A)^k (u_0 - \hat{u})||}{||u_0 - \hat{u}||}
ight)^rac{1}{k} \ &= \lim_{k o \infty} ||(I - M^{-1}A)^k||^rac{1}{k} \ &=
ho(I - M^{-1}A) \end{aligned}$$

Depending on u_0 , the rate may be faster, though

Optimal parameter α

🎐 nb13-ite r.jl — Pluto.jl

Assume A has positive real eigenvalues $0 < \lambda_{min} \leq \lambda_i \leq \lambda_{max}$.

E.g. A is symmetric, positive definite (spd).

Let
$$lpha>0$$
 , $M=rac{1}{lpha}I\Rightarrow I-M^{-1}A=I-lpha A$

Then for the eigenvalues μ_i of $I - \alpha A$ one has:

$$egin{array}{ll} 1-lpha\lambda_{max} \leq \mu_i \leq 1-lpha\lambda_{min} \ \mu_i < 1 \end{array}$$

We also need $1-lpha\lambda_{max}>-1$, so we must have $0<lpha<rac{2}{\lambda_{max}}.$

Theorem. The Richardson iteration converges for any lpha with $0 < lpha < rac{2}{\lambda_{max}}.$

The asymptotic convergence rate is $ho=\max(|1-lpha\lambda_{max}|,|1-lpha\lambda_{min}|).$

• Due to
$$-(1 - \alpha \lambda_{max}) > -(1 - \alpha \lambda_{min})$$
 and $+(1 - \alpha \lambda_{min}) > +(1 - \alpha \lambda_{max})$,
 $\rho = \max(|1 - \alpha \lambda_{max}|, |1 - \alpha \lambda_{min}|)$
 $= \max((1 - \alpha \lambda_{max}), -(1 - \alpha \lambda_{min}))$

• $1 - \alpha \lambda_{max}$ is monotonically decreasing, the $-(1 - \alpha \lambda_{min})$ increases, so the minimum must be at the intersection

$$egin{array}{ll} 1-lpha\lambda_{max}=-1+lpha\lambda_{min}\ 2=lpha(\lambda_{max}+\lambda_{min}) \end{array}$$

Theorem The optimal parameter is

$$lpha_{opt} = rac{2}{\lambda_{min} + \lambda_{max}}$$

For this parameter, the convergence factor is

$$ho_{opt} = rac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}} = rac{\kappa - 1}{\kappa + 1}$$

where $\kappa = \kappa(A) = rac{\lambda_{max}}{\lambda_{min}}$ is the spectral condition number of A

A_rich = 100×100 Symmet 0.995048 -0.00731417 -0.00126435 -0.00305736 -0.00305736 -0.00340156 : -0.00522591 -0.00521487 -0.0080989 -0.00124874 -0.00840498	<pre>tric{Float64, M -0.00731417 0.992691 -0.0092514 -0.000877535 -0.0052567 -0.00175138 -0.00655285 -0.00783047 -6.0182e-5 -0.00412213 -0.00796063 -0.00498363 -0.000775311</pre>	latrix{Float64 -0.00126435 -0.0092514 0.996483 -0.00974054 -0.0016976 -0.00879216 -0.00870986 -0.00269474 -0.00758992 -0.0029189 -0.0029189 -0.00232105 -0.00232105 -0.00964262	<pre>}}: -0.000127444 -0.000877535 -0.00974054 0.9952 -0.00455641 -0.000466981 -0.00871876 -0.00202993 -0.00918784 -0.00501286 -0.00852207 -0.00711445 -0.00338844</pre>		-0.00124874 -0.00498363 -0.00232105 -0.00711445 -0.00819544 -0.000932459 -0.00844533 -0.00199126 -0.0030877 -0.00581213 -0.0075608 0.996874 -0.00141893	-0.00840498 -0.000775311 -0.00964262 -0.00338844 -0.00648116 -0.00316856 -0.00490182 -0.0059112 -0.0059112 -0.00100392 -0.00922209 -0.00655473 -0.00141893 0.993018			
 A_rich=Symmetry 	<pre>netric(randmatr</pre>	$ix(N,\delta=1))$							
(0.506621, 1.05702)									
<pre>(λ_min, λ_max)=extrema(eigvals(A_rich))</pre>									
κ = 2.086406151490358									
κ=λ_max/λ_min									
α_opt = 1.2790692999218964									
$\alpha_{opt=2}/(\lambda_{min+\lambda_{max}})$									
<pre>p_opt = 0.3519971443051188</pre>									
• $\rho_{opt}=(\lambda_{max}-\lambda_{min})/(\lambda_{max}+\lambda_{min})$									
<pre>b_rich=A_rich*û:</pre>									
<u> </u>									
<pre> richardson_sweep!(unew,uold, A,b)= unew .= uold - α_opt*(A*uold-b);</pre>									
 (u_rich,history_rich)=simple_iteration(A_rich,b_rich,zeros(N),richardson_sweep!,ma xiter=1000); 									
					- 0.35				
10-2 -	\sim				5				
q 10 ⁻⁵				ontra	action - 0.34				
				orrer	outr				
10-8 -	rocidual				- 0 33				
	residual								
0	5	10 iteration	15 2	20					
<pre>plothistory(history_rich)</pre>									
1.762814167338075e-10									
• norm(u-u_r	lcn)								

Parameter for preconditioned iteration

 $\mathbf{Theorem}: M, A \text{ spd. Assume the } \textit{spectral equivalence estimate}$

 $0 < \gamma_{min}(Mu,u) \leq (Au,u) \leq \gamma_{max}(Mu,u)$

Then for the eigenvalues μ_i of $M^{-1}A$ we have

 $\gamma_{min} \leq \mu_{min} \leq \mu_i \leq \mu_{max} \leq \gamma_{max}$

and $\kappa(M^{-1}A) \leq rac{\gamma_{max}}{\gamma_{\min}}$

👂 nb13-ite r.ji — Pluto.ji

Proof: Let the inner product $(\cdot, \cdot)_M$ be defined via $(u, v)_M = (Mu, v)$. In this inner product, $C = M^{-1}A$ is self-adjoint:

$$(Cu,v)_M = (MM^{-1}Au,v) = (Au,v) = (M^{-1}Mu,Av) = (Mu,M^{-1}Av) = (u,M^{-1}A)_M = (u,Cv)_M$$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot,\cdot)_M$ scalar product

$$egin{aligned} \mu_{min} &= \min_{u
eq 0} rac{(Cu,u)_M}{(u,u)_M} = \min_{u
eq 0} rac{(Au,u)}{(Mu,u)} \geq \gamma_{min} \ \mu_{max} &= \max_{u
eq 0} rac{(Cu,u)_M}{(u,u)_M} = \max_{u
eq 0} rac{(Au,u)}{(Mu,u)} \leq \gamma_{max} \end{aligned}$$

Matrix preconditioned Richardson iteration: M, A spd.

Scaled Richardson iteration with preconditioner ${\cal M}$

$$u_{k+1} = u_k - \alpha M^{-1} (Au_k - b)$$

Spectral equivalence estimate

$$0 < \gamma_{min}(Mu, u) \leq (Au, u) \leq \gamma_{max}(Mu, u)$$

 $\Rightarrow \gamma_{min} \leq \lambda_i \leq \gamma_{max}$

 \Rightarrow optimal parameter $lpha=rac{2}{\gamma_{max}+\gamma_{min}}$

Relative condition number estimate: $\kappa(M^{-1}A) \leq rac{\gamma_{max}}{\gamma_{min}}$

Convergence rate with optimal parameter: $ho \leq rac{\kappa(M^{-1}A)-1}{\kappa(M^{-1}A)+1}$

Example: Jacobi method and 1D Heat conduction

Regard the n imes n 1D heat conduction matrix with $h=rac{1}{n-1}$ and $lpha=rac{1}{h}$ (easier to analyze).

$$A = \begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & \ddots & \ddots & \ddots & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \end{pmatrix}$$

Eigenvalues (tri-diagonal Toeplitz matrix):

$$\lambda_i = \frac{2}{h} \left(1 + \cos\left(\frac{i\pi}{n+1}\right) \right) \quad (i = 1 \dots n)$$

{\tiny Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005}

Express them in $h:n+1=rac{1}{h}+2=rac{1+2h}{h}$ \Rightarrow

$$\lambda_i = \frac{2}{h} \left(1 + \cos\left(\frac{ih\pi}{1+2h}\right) \right) \quad (i = 1 \dots n)$$

👎 nb13-ite r.ji — Pluto.ji

- For $i = 1 \dots n$, the argument of \cos is in $(0, \pi)$
- \cos is monotonically decreasing in $(0,\pi)$, so we get λ_{max} for i=1 and λ_{min} for $i = n = \frac{1+h}{h}$
- Therefore:

$$\lambda_{max} = \frac{2}{h} \left(1 + \cos\left(\pi \frac{h}{1+2h}\right) \right) \approx \frac{2}{h} \left(2 - \frac{\pi^2 h^2}{2(1+2h)^2} \right)$$
$$\lambda_{min} = \frac{2}{h} \left(1 + \cos\left(\pi \frac{1+h}{1+2h}\right) \right) \approx \frac{2}{h} \left(\frac{\pi^2 h^2}{2(1+2h)^2}\right)$$

Here, we used the Taylor expansion

$$cos(\delta) = 1 - rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0) \ cos(\pi - \delta) = -1 + rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0)$$

and $\frac{1+h}{1+2h} = \frac{1+2h}{1+2h} - \frac{h}{1+2h} = 1 - \frac{h}{1+2h}$

• The Jacobi preconditioner just multiplies by $rac{h}{2}$, therefore for $M^{-1}A$:

$$egin{split} \mu_{max} &pprox 2 - rac{\pi^2 h^2}{2(1+2h)^2} \ \mu_{min} &pprox rac{\pi^2 h^2}{2(1+2h)^2} \end{split}$$

- Optimal parameter: $lpha=rac{2}{\lambda_{max}+\lambda_{min}}pprox 1~(h
 ightarrow 0)$ Good news: a_{opt} is independent of h resp. n
- - No need for spectral estimate in order to work with optimal parameter.
 - Is this true beyond this special case ?
- Condition number + spectral radius

$$egin{aligned} \kappa(M^{-1}A) &= \kappa(A) pprox rac{4(1+2h)^2}{\pi^2 h^2} - 1 = O(h^{-2}) \quad (h o 0) \
ho(I-M^{-1}A) &= rac{\kappa-1}{\kappa+1} = 1 - rac{\pi^2 h^2}{2(1+2h)^2} = 1 - O(h^2) \quad (h o 0) \end{aligned}$$

• Bad news:
$$ho o 1 \quad (h o 0)$$

• Typical situation with second order PDEs:

$$\kappa(A) = O(h^{-2}) \quad (h o 0) \
ho(I - D^{-1}A) = 1 - O(h^2) \quad (h o 0)$$

- Mean square error of approximation $||u-u_h||_2 < h^\gamma$, in the simplest case $\gamma=2$.

Estimating iterative solver complexity

Solve linear system iteratively until $||e_k|| = ||(I - M^{-1}A)^k e_0|| \le \epsilon$. Estimate the necessary number of iteration steps:

$$egin{aligned} &
ho^k e_0 \leq \epsilon \ &k \ln
ho < \ln \epsilon - \ln e_0 \ &k \geq k_
ho = \left\lceil rac{\ln e_0 - \ln \epsilon}{\ln
ho}
ight
ceil \end{aligned}$$

 \Rightarrow we need at least $k_
ho$ iteration steps to reach accuracy ϵ

The ideal iterative solver:

- $ho(I-M^{-1}A) <
 ho_0 < 1$ independent of h resp. $N \Rightarrow k_{
 ho}$ independent of N.
- $A \operatorname{sparse} \Rightarrow \operatorname{matrix-vector} \operatorname{multiplication} Au \operatorname{has} \operatorname{complexity} O(N)$
- Solution of Mv = r has complexity O(N).

 \Rightarrow Number of iteration steps $k_{
ho}$ independent of N Each iteration step has complexity $O(N) \Rightarrow$ Overall complexity O(N)

Simple iterative solvers

$$egin{aligned} oldsymbol{
ho} &= 1 - h^\delta \ &\circ &\Rightarrow \ln
ho pprox - h^\delta \ &\circ &\Rightarrow k_
ho &= O(h^{-\delta}) \end{aligned}$$

• *d*: space dimension:

$$\circ~Npprox n^d$$

• $h \approx rac{1}{n} pprox N^{-rac{1}{d}}$

$$\circ \Rightarrow k_{
ho} = O(N^{rac{\delta}{d}})$$

- O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
- \Rightarrow Overall complexity $O(N^{1+\frac{\delta}{d}})=O(N^{\frac{d+\delta}{d}})$
 - $\circ\;$ Typical scaling for simple iteration schem: $\delta=2$ (Jacobi, Gauss-Seidel . . .)
 - $\circ~$ Does a hypothetical "Improved iteration scheme" with $\delta=1$ exist ?

Overview on complexity estimates

	$\delta = 2$	$\delta = 1$		
Space dim	$ ho=1-O(h^2)$	ho = 1 - O(h)	LU fact	LU solve
1	$O(N^3)$	$O(N^2)$	O(N)	O(N)
2	$O(N^2)$	$O(N^{rac{3}{2}})$	$O(N^{\frac{3}{2}})$	$O(N \log N)$
3	$O(N^{rac{5}{3}})$	$O(N^{rac{4}{3}})$	$O(N^2)$	$O(N^{rac{4}{3}})$
Tendency with d \uparrow	\downarrow	\downarrow	$\uparrow\uparrow$	1

Complexity scaling in 1D

- Sparse direct solvers, tridiagonal solvers are asymptotically optimal
- Non-ideal iterative solvers significantly worse than optimal

Complexity scaling in 2D

- Sparse direct solvers better than simple nonideal iterative solvers ($\delta=2$) Jacobi etc.
- Sparse direct solvers on par with hypothetical improved iteration scheme ($\delta=1$)

Complexity scaling in 3D

- Sparse LU factorization is expensive: going from h to h/2 increases N by a factor of 8 and operation count by a factor of 64!
- Sparse LU solve on par with hypothetical improved iteration scheme

What is to be done?

Questions

- Find ideal preconditioner with $ho \leq
 ho_0 < 1$ independent of h,N
- Find "improved preconditioner" with $\kappa(M^{-1}A) = O(h^{-1}) \Rightarrow \delta = 1$
- Find "improved iterative scheme" with $ho = rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$. This would have a similar effect as $\delta = 1$:

For Jacobi, we had $\kappa = X^2 - 1$ where $X = rac{2(1+2h)}{\pi h} = O(h^{-1}).$

$$\begin{split} \rho &= 1 + \frac{\sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} - 1 \\ &= 1 + \frac{\sqrt{X^2 - 1} - 1 - \sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} \\ &= 1 - \frac{1}{\sqrt{X^2 - 1} + 1} = 1 - \frac{1}{X\left(\sqrt{1 - \frac{1}{X^2}} + \frac{1}{X}\right)} \\ &= 1 - O(h) \quad (h \to 0) \end{split}$$

true

begin
 using PlutoUI
 using HypertextLiteral
 using LaTeXStrings
 using PyPlot
 PyPlot.svg(true)
 end

pyplot (generic function with 1 method)

```
- function pyplot(f;width=300,height=300)
- clf()
- f()
- fig=gcf()
- fig.set_size_inches(width/100,height/100)
- fig
- end
```

```
    begin
```

```
•
      highlight(mdstring,color)= htl"""<blockquote style="padding: 10px; background-</pre>
.
  color: $(color);">$(mdstring)</blockquote>"""
      macro important_str(s) :(highlight(Markdown.parse($s),"#ffcccc")) end
      macro definition_str(s) :(highlight(Markdown.parse($s), "#ccccff")) end
      macro statement_str(s) :(highlight(Markdown.parse($s),"#ccffcc")) end
     html"""
      <style>
      h1{background-color:#dddddd; padding: 10px;}
      h2{background-color:#e7e7e7; padding: 10px;}
      h3{background-color:#eeeeee; padding: 10px;}
      h4{background-color:#f7f7f7; padding: 10px;}
      </style>
 .....
.
end
```

09.11.21, 23:25

🞐 nb13-ite r.jl — Pluto.jl