
09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 1/15

Scientific Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 13

Iterative methods
Simple iteration scheme

The Jacobi method
The Gauss-Seidel method
Richardson method
Variants
Convergence

Jordan canonical form and spectral radius
Convergence rate

Optimal parameter α
Parameter for preconditioned iteration
Example: Jacobi method and 1D Heat conduction

Estimating iterative solver complexity
Complexity scaling in 1D
Complexity scaling in 2D
Complexity scaling in 3D
What is to be done?

Iterative methods

Let be equipped with the inner product . Let be an nonsingular matrix.

Solve iteratively. For this purpose, two components are needed:

Preconditioner: a matrix "approximating" the matrix but with the property that
the system is easy to solve

Iteration scheme: algorithmic sequence using and which updates the solution step by
step

Simple iteration scheme

using LinearAlgebra
 ⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 2/15

Assume we know the exact solution : .

Then it must fulfill the identity

 iterative scheme: put the "old" value on the right hand side and the ""new" value on the left
hand side:

Obviously, if , the process would be stationary.

Otherwise it leads to a sequence of approximations

Implementation: solve with tolerance :

1. Choose initial value , set
2. Calculate residuum
3. Test convergence: if set , finish
4. Calculate update: solve
5. Update solution: , set , repeat with step 2.

The Jacobi method

Let , where : main diagonal, : negative lower triangular part :
negative upper triangular part
Preconditioner: , where is the main diagonal of

Equivalent to the succesive (row by row) solution of

Already calculated results not taken into account
Variable ordering does not matter

jacobi_sweep1! (generic function with 1 method)

jacobi_sweep2! (generic function with 1 method)

jacobi_sweep1!(unew,uold,A,b)= unew.= uold - inv(Diagonal(A))*(A*uold-b)⋅

function jacobi_sweep2!(unew,uold,A,b)
	 	 n=size(A,2)
	 	 for i=1:n
	 	 	 unew[i]=uold[i]+b[i]/A[i,i]
	 	 	 for j=1:n
	 	 	 unew[i]-=A[i,j]*uold[j]/A[i,i]	
	 	 	 end
	 	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 3/15

simple_iteration (generic function with 1 method)

N 100 =

randmatrix (generic function with 1 method)

0.043894549

1.2915606225074314e-10

plothistory (generic function with 1 method)

The Gauss-Seidel method

function simple_iteration(A,b,u0, sweep;tol=1.0e-10,maxiter=100)
	 unew=similar(u0)
	 uold=copy(u0)
	 residual=Inf
	 history=zeros(0)
	 for i=1:maxiter
	 	 sweep(unew,uold,A,b)
	 	 residual=norm(A*unew-b)
	 	 push!(history,residual)
	 	 if residual<tol
	 	 	 return unew,history
	 	 end
	 	 uold.=unew
	 end
	 return unew,history
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

N=100⋅

randmatrix(N;δ=1.0)=Diagonal(ones(N))-rand(N,N)/(δ*N)⋅

A=randmatrix(N,δ=1);⋅

û=rand(N);⋅

b=A*û;⋅

@elapsed (u,history)=simple_iteration(A,b,zeros(N),jacobi_sweep2!)⋅

norm(u-û)⋅

plothistory(history)⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 4/15

-Solve for main diagonal element row by row

Take already calculated results into account
Run in ascending order: forward GS

Run in descending order: backward GS

May be it is faster ?
Variable order probably matters

gauss_seidel_sweep (generic function with 1 method)

0.067975229

7.127068274648113e-11

Richardson method

for some well chosen

Variants

function gauss_seidel_sweep(unew,uold,A,b)
	 	 n=size(A,2)
	 unew.=uold # we could do this in-place and save space for one vector
	 	 for i=1:n
 	 	 	 unew[i]=b[i]/A[i,i]
	 	 for j=1:i-1
 	 	 	 	 unew[i]-=A[i,j]*unew[j]/A[i,i]
	 	 	 end
	 	 	 for j=i+1:n
	 	 	 unew[i]-=A[i,j]*unew[j]/A[i,i]	
	 	 	 end
	 	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

@elapsed (u_gs,history_gs)=simple_iteration(A,b,zeros(N),gauss_seidel_sweep)⋅

norm(u_gs-û)⋅

plothistory(history_gs)⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 5/15

SOR: Successive overrelaxation: solve and use splitting

SSOR: Symmetric successive overrelaxation

Block methods
Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a
partition of the system matrix into larger blocks,
The blocks on the diagonal should be square matrices, and invertible
Interesting variant for systems of partial differential equations, where multiple
species interact with each other

Convergence

Let be the solution of .

Let be the error of the -th iteration step. Then:

resulting in

So when does converge to zero for ?
Denote

Jordan canonical form and spectral radius

Notations:

: eigenvalues of
: spectrum of

: algebraic multiplicity of : multiplicity as zero of the characteristic polynomial

 geometric multiplicity of : dimension of
: index of the eigenvalue: the smallest integer for which

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 6/15

Theorem (Saad, Th. 1.8) can be transformed to a block diagonal matrix consisting of
diagonal blocks , each associated with a distinct eigenvalue .

Each of the diagonal blocks has itself a block diagonal structure consisting of
Jordan blocks .
Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding with

 on the diagonal and 1 on the first upper diagonal.

Each is of size and corresponds to a different eigenvector of .

Definition The spectral radius is the largest absolute value of any eigenvalue of :
.

Theorem (Saad, Th. 1.10):

Proof :

Let be a unit eigenvector associated with an eigenvalue . Then

so we must have

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 7/15

Proof :

Take the Jordan form . Then .

Sufficient to regard Jordan block where and .

Let . Then

But is a polynomial of degree in where the Stirling

numbers of the first kind are given by

, , .

Thus, as exponential decay beats polynomial growth

Corollary (Saad, Th. 1.12):

Sufficient condition for iterative method convergence:

Convergence rate
Assume with is the largest eigenvalue and has a single Jordan block
of size . Then the convergence rate is dominated by this Jordan block, and therein by the term

with the lowest possible power in which due to is . Then,

and the "worst case" convergence factor equals the spectral radius:

Depending on , the rate may be faster, though

Optimal parameter α

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 8/15

Assume has positive real eigenvalues .

E.g. is symmetric, positive definite (spd).

Let ,

Then for the eigenvalues of one has:

We also need , so we must have .

Theorem. The Richardson iteration converges for any with .

The asymptotic convergence rate is .

Due to and ,

 is monotonically decreasing, the increases, so the minimum
must be at the intersection

Theorem The optimal parameter is

For this parameter, the convergence factor is

where is the spectral condition number of

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 9/15

A_rich
100×100 Symmetric{Float64, Matrix{Float64}}:
 0.995048 -0.00731417 -0.00126435 -0.000127444 … -0.00124874 -0.00840498
 -0.00731417 0.992691 -0.0092514 -0.000877535 -0.00498363 -0.000775311
 -0.00126435 -0.0092514 0.996483 -0.00974054 -0.00232105 -0.00964262
 -0.000127444 -0.000877535 -0.00974054 0.9952 -0.00711445 -0.00338844
 -0.00299973 -0.0052567 -0.0016976 -0.00455641 -0.00819544 -0.00648116
 -0.00305736 -0.00175138 -0.00879216 -0.000466981 … -0.000932459 -0.00316856
 -0.00340156 -0.00655285 -0.00870986 -0.00871876 -0.00844533 -0.00490182
 ⋮ ⋱
 -0.00992772 -0.00783047 -0.00269474 -0.00202993 -0.00199126 -0.0059112
 -0.00522591 -6.0182e-5 -0.00758992 -0.00918784 … -0.00030877 -0.00100392
 -0.00521487 -0.00412213 -0.0029189 -0.00504286 -0.00581213 -0.00922209
 -0.0080989 -0.00796063 -0.00608553 -0.00852207 -0.00775608 -0.00655473
 -0.00124874 -0.00498363 -0.00232105 -0.00711445 0.996874 -0.00141893
 -0.00840498 -0.000775311 -0.00964262 -0.00338844 -0.00141893 0.993018

 =

(0.506621, 1.05702)

κ 2.086406151490358 =

α_opt 1.2790692999218964 =

ρ_opt 0.3519971443051188 =

1.762814167338075e-10

Parameter for preconditioned iteration

Theorem: , spd. Assume the spectral equivalence estimate

Then for the eigenvalues of we have

and

A_rich=Symmetric(randmatrix(N,δ=1))⋅

(λ_min, λ_max)=extrema(eigvals(A_rich))⋅

κ=λ_max/λ_min⋅

α_opt=2/(λ_min+λ_max)⋅

ρ_opt=(λ_max- λ_min)/(λ_max + λ_min)⋅

b_rich=A_rich*û;⋅

richardson_sweep!(unew,uold, A,b)= unew .= uold - α_opt*(A*uold-b);⋅

(u_rich,history_rich)=simple_iteration(A_rich,b_rich,zeros(N),richardson_sweep!,ma
xiter=1000);

⋅

plothistory(history_rich)⋅

norm(û-u_rich)⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 10/15

Proof: Let the inner product be defined via . In this inner product,
 is self-adjoint:

Minimum and maximum eigenvalues can be obtained as Ritz values in the scalar product

Matrix preconditioned Richardson iteration: , spd.

Scaled Richardson iteration with preconditioner

Spectral equivalence estimate

 optimal parameter

Relative condition number estimate:

Convergence rate with optimal parameter:

Example: Jacobi method and 1D Heat conduction

Regard the 1D heat conduction matrix with and (easier to analyze).

Eigenvalues (tri-diagonal Toeplitz matrix):

{\tiny Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005}

Express them in :

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 11/15

For , the argument of is in
 is monotonically decreasing in , so we get for and for

Therefore:

Here, we used the Taylor expansion

and

The Jacobi preconditioner just multiplies by , therefore for :

Optimal parameter:
Good news: is independent of resp.

No need for spectral estimate in order to work with optimal parameter.
Is this true beyond this special case ?

Condition number + spectral radius

Bad news:

α

Typical situation with second order PDEs:

Mean square error of approximation , in the simplest case .

Estimating iterative solver complexity

Solve linear system iteratively until . Estimate the necessary
number of iteration steps:

 we need at least iteration steps to reach accuracy

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 12/15

The ideal iterative solver:

 independent of resp. independent of .
 sparse matrix-vector multiplication has complexity

Solution of has complexity .

 Number of iteration steps independent of Each iteration step has complexity
 Overall complexity

Simple iterative solvers

: space dimension:

 complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

 Overall complexity =
Typical scaling for simple iteration schem: (Jacobi, Gauss-Seidel)
Does a hypothetical "Improved iteration scheme" with exist ?

Overview on complexity estimates

Complexity scaling in 1D

Sparse direct solvers, tridiagonal solvers are asymptotically optimal
Non-ideal iterative solvers significantly worse than optimal

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 13/15

Complexity scaling in 2D

Sparse direct solvers better than simple nonideal iterative solvers () – Jacobi
etc.
Sparse direct solvers on par with hypothetical improved iteration scheme ()

Complexity scaling in 3D

Sparse LU factorization is expensive: going from to increases by a factor of
8 and operation count by a factor of 64!
Sparse LU solve on par with hypothetical improved iteration scheme

What is to be done?

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 14/15

Questions

Find ideal preconditioner with independent of ,
Find "improved preconditioner'' with
Find "improved iterative scheme'' with . This would have a similar effect as :

For Jacobi, we had where .

true

pyplot (generic function with 1 method)

begin
 using PlutoUI

 using HypertextLiteral

 using LaTeXStrings

 using PyPlot

 PyPlot.svg(true)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

function pyplot(f;width=300,height=300)
	 	 clf()
	 	 f()
	 	 fig=gcf()
	 	 fig.set_size_inches(width/100,height/100)
	 	 fig
	 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin

 highlight(mdstring,color)= htl"""<blockquote style="padding: 10px; background-
color: $(color);">$(mdstring)</blockquote>"""
	
	 macro important_str(s)	 :(highlight(Markdown.parse($s),"#ffcccc")) end
	 macro definition_str(s)	:(highlight(Markdown.parse($s),"#ccccff")) end
	 macro statement_str(s)	 :(highlight(Markdown.parse($s),"#ccffcc")) end
	 	
	 	
 html"""
 <style>
 h1{background-color:#dddddd; padding: 10px;}
 h2{background-color:#e7e7e7; padding: 10px;}
 h3{background-color:#eeeeee; padding: 10px;}
 h4{background-color:#f7f7f7; padding: 10px;}
 </style>
"""
end

⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 15/15

