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Iterative methods

Let  be equipped with the inner product . Let  be an  nonsingular matrix.

Solve  iteratively. For this purpose, two components are needed:

Preconditioner: a matrix  "approximating" the matrix  but with the property that
the system  is easy to solve

Iteration scheme: algorithmic sequence using  and  which updates the solution step by
step

Simple iteration scheme

using LinearAlgebra 
 ⋅
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Assume we know the exact solution : .

Then it must fulfill the identity

 iterative scheme: put the "old" value on the right hand side and the ""new" value on the left
hand side:

Obviously, if , the process would be stationary.

Otherwise it leads to a sequence of approximations

Implementation: solve  with tolerance :

1. Choose initial value , set 
2. Calculate residuum 
3. Test convergence: if  set , finish
4. Calculate update: solve 
5. Update solution: , set , repeat with step 2.

The Jacobi method

Let , where : main diagonal, : negative lower triangular part :
negative upper triangular part
Preconditioner: , where  is the main diagonal of  

Equivalent to the succesive (row by row) solution of

Already calculated results not taken into account
Variable ordering does not matter

jacobi_sweep1! (generic function with 1 method)

jacobi_sweep2! (generic function with 1 method)

jacobi_sweep1!(unew,uold,A,b)= unew.= uold - inv(Diagonal(A))*(A*uold-b)⋅

function jacobi_sweep2!(unew,uold,A,b)
	 	 n=size(A,2)
	 	 for i=1:n
	 	 	 unew[i]=uold[i]+b[i]/A[i,i]
	 	 	 for j=1:n
	 	 	     unew[i]-=A[i,j]*uold[j]/A[i,i]	
	 	 	 end
	 	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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simple_iteration (generic function with 1 method)

N 100 = 

randmatrix (generic function with 1 method)

0.043894549

1.2915606225074314e-10

plothistory (generic function with 1 method)

The Gauss-Seidel method

function simple_iteration(A,b,u0, sweep;tol=1.0e-10,maxiter=100)
	 unew=similar(u0)
	 uold=copy(u0)
	 residual=Inf
	 history=zeros(0)
	 for i=1:maxiter
	 	 sweep(unew,uold,A,b)
	 	 residual=norm(A*unew-b)
	 	 push!(history,residual)
	 	 if residual<tol
	 	 	 return unew,history
	 	 end
	 	 uold.=unew
	 end
	 return unew,history
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

N=100⋅

randmatrix(N;δ=1.0)=Diagonal(ones(N))-rand(N,N)/(δ*N)⋅

A=randmatrix(N,δ=1);⋅

û=rand(N);⋅

b=A*û;⋅

@elapsed (u,history)=simple_iteration(A,b,zeros(N),jacobi_sweep2!)⋅

norm(u-û)⋅

plothistory(history)⋅
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-Solve for main diagonal element row by row

Take already calculated results into account
Run in ascending order: forward GS

Run in descending order: backward GS

May be it is faster ?
Variable order probably matters

gauss_seidel_sweep (generic function with 1 method)

0.067975229

7.127068274648113e-11

Richardson method

for some well chosen 

Variants

function gauss_seidel_sweep(unew,uold,A,b)
	 	 n=size(A,2)
	     unew.=uold # we could do this in-place and save space for one vector
	 	 for i=1:n
 	 	 	 unew[i]=b[i]/A[i,i]
	 	     for j=1:i-1
 	 	 	 	 unew[i]-=A[i,j]*unew[j]/A[i,i]
	 	 	 end
	 	 	 for j=i+1:n
	 	 	     unew[i]-=A[i,j]*unew[j]/A[i,i]	
	 	 	 end
	 	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

@elapsed (u_gs,history_gs)=simple_iteration(A,b,zeros(N),gauss_seidel_sweep)⋅

norm(u_gs-û)⋅

plothistory(history_gs)⋅
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SOR: Successive overrelaxation: solve  and use splitting

SSOR: Symmetric successive overrelaxation

Block methods
Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a
partition of the system matrix into larger blocks,
The blocks on the diagonal should be square matrices, and invertible
Interesting variant for systems of partial differential equations, where multiple
species interact with each other

Convergence

Let  be the solution of .

Let  be the error of the -th iteration step. Then:

resulting in

So when does  converge to zero for  ?
Denote 

Jordan canonical form and spectral radius

Notations:

: eigenvalues of 
: spectrum of 

: algebraic multiplicity of : multiplicity as zero of the characteristic polynomial 

 geometric multiplicity of : dimension of 
: index of the eigenvalue: the smallest integer for which 
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Theorem  (Saad, Th. 1.8)  can be transformed to a block diagonal matrix consisting of 
diagonal blocks , each associated with a distinct eigenvalue .

Each of the diagonal blocks  has itself a block diagonal structure consisting of 
Jordan blocks .
Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding  with 

 on the diagonal and 1 on the first upper diagonal.

Each  is of size  and corresponds to a different eigenvector of .

Definition  The spectral radius  is the largest absolute value of any eigenvalue of :
.

Theorem  (Saad, Th. 1.10):

Proof  :

Let  be a unit eigenvector associated with an eigenvalue . Then

so we must have  
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Proof  :

Take the Jordan form . Then .

Sufficient to regard Jordan block  where  and .

Let . Then

But  is a polynomial of degree  in  where the Stirling

numbers of the first kind are given by

, , .

Thus,  as exponential decay beats polynomial growth 

Corollary  (Saad, Th. 1.12):

Sufficient condition for iterative method convergence:

Convergence rate
Assume  with  is the largest eigenvalue and has a single Jordan block
of size . Then the convergence rate is dominated by this Jordan block, and therein by the term

with the lowest possible power in  which due to  is . Then,

and the "worst case" convergence factor  equals the spectral radius:

Depending on , the rate may be faster, though

Optimal parameter α
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Assume  has positive real eigenvalues .

E.g.  is symmetric, positive definite (spd).

Let ,   

Then for the eigenvalues  of  one has:

We also need , so we must have .

Theorem.  The Richardson iteration converges for any  with .

The asymptotic convergence rate is .

Due to  and ,

 is monotonically decreasing, the  increases, so the minimum
must be at the intersection

Theorem  The optimal parameter is

For this parameter, the convergence factor is

where  is the spectral condition number of 
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A_rich
100×100 Symmetric{Float64, Matrix{Float64}}:
  0.995048     -0.00731417   -0.00126435  -0.000127444  …  -0.00124874   -0.00840498
 -0.00731417    0.992691     -0.0092514   -0.000877535     -0.00498363   -0.000775311
 -0.00126435   -0.0092514     0.996483    -0.00974054      -0.00232105   -0.00964262
 -0.000127444  -0.000877535  -0.00974054   0.9952          -0.00711445   -0.00338844
 -0.00299973   -0.0052567    -0.0016976   -0.00455641      -0.00819544   -0.00648116
 -0.00305736   -0.00175138   -0.00879216  -0.000466981  …  -0.000932459  -0.00316856
 -0.00340156   -0.00655285   -0.00870986  -0.00871876      -0.00844533   -0.00490182
  ⋮                                                     ⋱                
 -0.00992772   -0.00783047   -0.00269474  -0.00202993      -0.00199126   -0.0059112
 -0.00522591   -6.0182e-5    -0.00758992  -0.00918784   …  -0.00030877   -0.00100392
 -0.00521487   -0.00412213   -0.0029189   -0.00504286      -0.00581213   -0.00922209
 -0.0080989    -0.00796063   -0.00608553  -0.00852207      -0.00775608   -0.00655473
 -0.00124874   -0.00498363   -0.00232105  -0.00711445       0.996874     -0.00141893
 -0.00840498   -0.000775311  -0.00964262  -0.00338844      -0.00141893    0.993018

 = 

(0.506621, 1.05702)

κ 2.086406151490358 = 

α_opt 1.2790692999218964 = 

ρ_opt 0.3519971443051188 = 

1.762814167338075e-10

Parameter for preconditioned iteration

Theorem: ,  spd. Assume the spectral equivalence estimate

Then for the eigenvalues  of  we have

and 

A_rich=Symmetric(randmatrix(N,δ=1))⋅

(λ_min, λ_max)=extrema(eigvals(A_rich))⋅

κ=λ_max/λ_min⋅

α_opt=2/(λ_min+λ_max)⋅

ρ_opt=(λ_max- λ_min)/(λ_max + λ_min)⋅

b_rich=A_rich*û;⋅

richardson_sweep!(unew,uold, A,b)= unew .= uold - α_opt*(A*uold-b);⋅

(u_rich,history_rich)=simple_iteration(A_rich,b_rich,zeros(N),richardson_sweep!,ma
xiter=1000);

⋅

plothistory(history_rich)⋅

norm(û-u_rich)⋅
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Proof: Let the inner product  be defined via . In this inner product,
 is self-adjoint:

Minimum and maximum eigenvalues can be obtained as Ritz values in the  scalar product

Matrix preconditioned Richardson iteration:  ,  spd.

Scaled Richardson iteration with preconditioner 

Spectral equivalence estimate

 

 optimal parameter 

Relative condition number estimate: 

Convergence rate with optimal parameter: 

Example: Jacobi method and 1D Heat conduction

Regard the  1D heat conduction matrix with  and  (easier to analyze).

Eigenvalues (tri-diagonal Toeplitz matrix):

{\tiny Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005}

Express them in :  



09.11.21, 23:25 🎈 nb13-ite r.jl — Pluto.jl

localhos t:1240/e dit?id=9291cb6c-41ab-11e c-0f50-891fd9b45c34# 11/15

For , the argument of  is in 
 is monotonically decreasing in , so we get  for  and  for 

Therefore:

Here, we used the Taylor expansion

and 

The Jacobi preconditioner just multiplies by , therefore for :

Optimal parameter:  
Good news:  is independent of  resp. 

No need for spectral estimate in order to work with optimal parameter.
Is this true beyond this special case ?

Condition number + spectral radius

Bad news:  

α

Typical situation with second order PDEs:

Mean square error of approximation , in the simplest case .

Estimating iterative solver complexity

Solve linear system iteratively until . Estimate the necessary
number of iteration steps:

 we need at least  iteration steps to reach accuracy 
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The ideal iterative solver:

 independent of  resp.    independent of .
 sparse  matrix-vector multiplication  has complexity 

Solution of  has complexity .

 Number of iteration steps  independent of  Each iteration step has complexity 
  Overall complexity 

Simple iterative solvers

 
 

: space dimension:

 
 complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

 Overall complexity =
Typical scaling for simple iteration schem:  (Jacobi, Gauss-Seidel )
Does a hypothetical "Improved iteration scheme" with  exist ?

Overview on complexity estimates

Complexity scaling in 1D

Sparse direct solvers, tridiagonal solvers are asymptotically optimal
Non-ideal iterative solvers significantly worse than optimal
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Complexity scaling in 2D

Sparse direct solvers better than simple nonideal iterative solvers ( ) – Jacobi
etc.
Sparse direct solvers on par with hypothetical improved iteration scheme ( )

Complexity scaling in 3D

Sparse LU factorization is expensive: going from  to  increases  by a factor of
8 and operation count by a factor of 64!
Sparse LU solve on par with hypothetical improved iteration scheme

What is to be done?
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Questions

Find ideal preconditioner with  independent of , 
Find "improved preconditioner'' with   
Find "improved iterative scheme'' with . This would have a similar effect as :

For Jacobi, we had  where .

true

pyplot (generic function with 1 method)

begin 
    using PlutoUI 

    using HypertextLiteral 

    using LaTeXStrings 

    using PyPlot 

    PyPlot.svg(true)
end

 
 

 
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅

function pyplot(f;width=300,height=300)
	 	 clf()
	 	 f()
	 	 fig=gcf()
	 	 fig.set_size_inches(width/100,height/100)
	 	 fig
	 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin
     
    highlight(mdstring,color)= htl"""<blockquote style="padding: 10px; background-
color: $(color);">$(mdstring)</blockquote>"""
	
	 macro important_str(s)	 :(highlight(Markdown.parse($s),"#ffcccc")) end
	 macro definition_str(s)	:(highlight(Markdown.parse($s),"#ccccff")) end
	 macro statement_str(s)	 :(highlight(Markdown.parse($s),"#ccffcc")) end
	 	
	 	
    html"""
    <style>
     h1{background-color:#dddddd;  padding: 10px;}
     h2{background-color:#e7e7e7;  padding: 10px;}
     h3{background-color:#eeeeee;  padding: 10px;}
     h4{background-color:#f7f7f7;  padding: 10px;}
    </style>
"""
end

⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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