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Tridiagonal systems
Прогонка: derivation
Прогонка: realization
Tridiagonal matrices in Julia

Tridiagonal systems
In the previous lecture (nb10) we introudced the discretization matrix for the 1D heat conduction
problem. In general form it can be written as a tridiagonal matrix 

and stored in three arrays , , .

Gaussian elimination using arrays  as matrix storage ?

From what we have seen, this question arises in a quite natural way, and historically, the
answer has been given several times and named di�ferently
TDMA (tridiagonal matrix algorithm)
"Thomas algorithm" (Llewellyn H. Thomas, 1949 (?))
"Progonka method" (from Russian "прогонка": "run through"; Gelfand, Lokutsievski, 1952,
published 1960)

begin 
 using LinearAlgebra  
end

 
⋅
⋅
⋅
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Прогонка: derivation
Write solution of  as

where we de�ne , .

For , assume there are coe��cients  such that

.

Re-arranging, we can express  and  via :

This is true for arbitrary  if 

Re-arranging gives for :

Прогонка: realization

Initialization of forward sweep:

Forward sweep: for :

Initialization of backward sweep: 
Backward sweep: for :

Properties:

 unknowns, one forward sweep, one backward sweep   operations vs. 
 for algorithm using full matrix

No pivoting  possible stability issues
Stability for diagonally dominant matrices (where )
Stability for symmetric positive de�nite matrices
In fact, this is a realization of Gaussian elimination on a particular data structure.

Tridiagonal matrices in Julia
In Julia, solution of a tridiagonal system is based on the LU factorization in the LAPACK routine
dgtsv  which also does pivoting.
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N 5 = 

LU Factorization in the case of a tridiagonal matrix with random diagonal entries

A 5×5 Tridiagonal{Float64, Vector{Float64}}:
 0.826507  0.530799   ⋅         ⋅           ⋅ 
 0.171621  0.435719  0.148829   ⋅           ⋅ 
  ⋅        0.209967  0.983414  0.487814     ⋅ 
  ⋅         ⋅        0.999922  0.00324454  0.753167
  ⋅         ⋅         ⋅        0.72857     0.796718

 = 

LU{Float64, Tridiagonal{Float64, Vector{Float64}}}
L factor:
5×5 Matrix{Float64}:
 1.0       0.0       0.0      0.0       0.0
 0.207646  1.0       0.0      0.0       0.0
 0.0       0.0       1.0      0.0       0.0
 0.0       0.0       0.0      1.0       0.0
 0.0       0.645058  0.88748  0.665598  1.0
U factor:
5×5 Matrix{Float64}:
 0.826507  0.530799  0.0       0.0          0.0
 0.0       0.325501  0.148829  0.0          0.0
 0.0       0.0       0.999922  0.00324454   0.753167
 0.0       0.0       0.0       0.72857      0.796718
 0.0       0.0       0.0       0.0         -1.19871

[1, 2, 4, 5, 3]

[-0.256495, 2.28334, 0.330078, 0.401734, 0.887778]

Solving this system with a positive right hand side can yield negative solution components.

We see that the in order to maintain stability, pivoting is performed: the LU factorization is
performed as  where  is a permutation matrix. The underlying permutation can be
obtained as lu(A).p)

De�ne a diagonally dominant matrix with random entries with positive main diagonal and
nonpositive o�f-diagonal elements:

A1 5×5 Tridiagonal{Float64, Vector{Float64}}:
  2.91279   -0.504152    ⋅          ⋅          ⋅ 
 -0.525128   2.28999   -0.369268    ⋅          ⋅ 
   ⋅        -0.300724   2.26384   -0.726375    ⋅ 
   ⋅          ⋅        -0.766008   2.02693   -0.950966
   ⋅          ⋅          ⋅        -0.768946   2.02579

 = 

LU{Float64, Tridiagonal{Float64, Vector{Float64}}}
L factor:
5×5 Matrix{Float64}:
  1.0        0.0        0.0        0.0       0.0
 -0.180284   1.0        0.0        0.0       0.0
  0.0       -0.136749   1.0        0.0       0.0
  0.0        0.0       -0.346087   1.0       0.0
  0.0        0.0        0.0       -0.433076  1.0
U factor:
5×5 Matrix{Float64}:
 2.91279  -0.504152   0.0        0.0        0.0
 0.0       2.1991    -0.369268   0.0        0.0
 0.0       0.0        2.21334   -0.726375   0.0
 0.0       0.0        0.0        1.77555   -0.950966
 0.0       0.0        0.0        0.0        1.61395

[1, 2, 3, 4, 5]

N=5⋅

A=Tridiagonal(rand(N-1),rand(N),rand(N-1))⋅

lu(A)⋅

lu(A).p⋅

A\ones(N)⋅

A1=Tridiagonal(-rand(N-1),rand(N).+2,-rand(N-1))⋅

lu(A1)⋅

lu(A1).p⋅
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Here we see, that no permutation is needed to maintain stability, con�rming the statement made.
In this case, the underlying algorithm is equivalent to Progonka, and the resulting LU
factorization can be stored in three diagonals.

[0.464078, 0.697727, 0.958885, 1.32292, 0.995784]

Here we get only nonnegative solution values, though the matrix o�f-diagonal elements are
nonpositive. Later we will see that this is a theorem for this type of matrices.

5×5 Matrix{Float64}:
 0.357884    0.0808208  0.0154647  0.00674271  0.00316522
 0.0841835   0.46695    0.0893487  0.0389567   0.0182874
 0.0131181   0.0727638  0.532097   0.231999    0.108907
 0.00603167  0.0334566  0.244657   0.706924    0.33185
 0.00228949  0.0126994  0.0928663  0.268332    0.619596

The inverse is a nonnegative full matrix! This is a theorem as well.

A1\ones(N)⋅

inv(A1)⋅

begin
    using HypertextLiteral  
 using PlutoUI  
end
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