
02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 1/8

Scienti�c Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 10

Matrices from partial di�ferential equations
Heat conduction in a one-dimensional rod

Finite di�ference approximation
Solution

2D heat conduction
Solution

Matrices from partial di�erential
equations
As we focus in this course on partial di�ferential equations, we need discuss matrices which evolve
from the discretization of PDEs.

Are there any structural or numerical patterns in these matrices we can take advantage of
with regard to memory and time complexity when solving linear systems ?

In this lecture we introduce a relatively simple "drosophila" problem which we will use do discuss
these issues.

For the start we use simple structured disceretization grids and a �nite di�ference approach to the
discretization. Later, this will be generalized to more general grids and to �nite element and
�nite volume discretization methods.

Heat conduction in a one-dimensional rod
Heat source

: ambient temperatures
: boundary heat transfer coe��cient

Second order boundary value problem in :

The solution describes the equilibrium temperature distribution. Behind the second
derivative is Fouriers law and the continuity equation
In math, the boundary conditions are called "Robin" or "third kind". They describe a heat
in/out�lux proportional to the di�ference between rod end temperature and ambient
temperature
Fix a number of discretization points N
Let
Let be discretization points

N 10 =

begin
 using PlutoUI
 using PyPlot
 using DataFrames
end

⋅
⋅
⋅
⋅
⋅

N=10⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 2/8

plotgrid (generic function with 1 method)

Finite di�erence approximation
We can approximate continuous functions by piecewise linear functions de�ned by the values

. Using more points yields a better approximation:

Let approximations for and
We can use a �nite di�ference approximation to approximate

Same approach for second derivative:
Finite di�ference approximation of the PDE:

function plotgrid(N;func=nothing,mirror=false)
 clf()
 ax=PyPlot.axes(aspect=0.5)
 plot([0,1],[0,0],linewidth=3,color="k")
 h=1/(N-1)
 x=collect(0:h:1)
 plot([0,0],[-0.05,0.05],color=:black)
 plot([1,1],[-0.05,0.05],color=:black)
 for i=1:N
 plot([x[i],x[i]],[-0.025,0.025],linewidth=1,color=:black)
 ax.text(x[i],-0.1,"\$x_{$(i)}\$",fontsize=10,color=:blue)
 end
 if mirror
 plot([-h,-h],[-0.025,0.025],color=:gray)
 plot([-h,0],[0,0],linewidth=3,color=:gray)
 ax.text(-h,-0.1,"\$x_{0}\$",fontsize=10,color=:gray)
 plot([1+h,1+h],[-0.025,0.025],color=:gray)
 plot([1,1+h],[0,0],linewidth=3,color=:gray)
 ax.text(1+h,-0.1,"\$x_{$(N+1)}\$",fontsize=10,color=:gray)
 end
 if func!=nothing
 plot(x,func.(x),linewidth=1,color="r")
 end
 PyPlot.axis("off")
 ax.get_xaxis().set_visible(false)
 ax.axes.get_yaxis().set_visible(false)
 fig=PyPlot.gcf()
 fig.set_size_inches(10,2)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

plotgrid(N)⋅

plotgrid(N,func=x->0.5*sin(5*x)^2)⋅

plotgrid(N,mirror=true)⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 3/8

Here, we introduced "mirror values" and in order to approximate the boundary
conditions accurately, such that the �nite di�ference formulas used to approximate or

 are centered around these values.
A�ter rearranging, these values can be expressed via the boundary conditions:

Finally, they can be replaced in

Then, the system a�ter multiplying by is reduced to:

α

The resulting discretization matrix is

Outside of the three diagonals, the entries are zero.

The right hand side is:

Let us de�ne functions assembling these:

heatmatrix1d (generic function with 1 method)
function heatmatrix1d(N;α=1)
 A=zeros(N,N)
 h=1/(N-1)
 A[1,1]=1/h+α
 for i=2:N-1
 A[i,i]=2/h
 end
 for i=1:N-1
 A[i,i+1]=-1/h
 end
 for i=2:N
 A[i,i-1]=-1/h
 end
 A[N,N]=1/h+α
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 4/8

heatrhs1d (generic function with 1 method)

α 100 =

N1 100 =

A 100×100 Matrix{Float64}:
 199.0 -99.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0
 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 -99.0 198.0 … 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 -99.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋮ ⋱ ⋮
 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 … 198.0 -99.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 199.0

 =

b
[0.00505051, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.01
 =

u
[0.005, 0.00999949, 0.0148969, 0.0196924, 0.0243858, 0.0289771, 0.0334665, 0.0378538, 0
 =

Solution

For this example, we created an matrix where all entries outside of the main diagonal and
the two adjacent ones are zero:

Fraction of nonzero entries: 0.0298
In fact, this matrix has nonzero entries, but we store
We solved the problem with a method of complexity of at best

�D heat conduction

function heatrhs1d(N;vl=0,vr=0,func=x->0,α=1)
 h=1/(N-1)
 F=zeros(N)
 F[1]=h/2*func(0)+α*vl
 for i=2:N-1
 F[i]=h*func((i-1)*h)
 end
 F[N]=h/2*func(1)+α*vr
 F
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

α=100⋅

N1=100⋅

A=heatmatrix1d(N1,α=α)⋅

b=heatrhs1d(N1,func=x->1,α=α)⋅

u=A\b⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 5/8

Just pose the heat problem in a 2D domain :

We use 2D regular discretization grid with grid points . The
�nite di�ference approximation yields:

This just comes from summing up the 1D �nite di�ference formula for the and directions.

We do not discuss the boundary conditions here.

The grid leads to an matrix!

plotgrid2d (generic function with 1 method)
function plotgrid2d(N;text=true, func=nothing)
 clf()
 ax=PyPlot.axes(aspect=1)
 x=[(i-1)/(N-1) for i=1:N]
 y=[(i-1)/(N-1) for i=1:N]

 for i=1:N
 plot([x[i],x[i]],[0,1],linewidth=1,color="k")
 plot([0,1],[y[i],y[i]],linewidth=1,color="k")
 end
 if func!=nothing
 f=[func(x[i],y[j]) for i=1:N, j=1:N]
 contourf(x,y,f,cmap="hot")
 end
 if text
 ij=1
 for j=1:N
 for i=1:N
 ax.text(x[i],y[j]-0.035,"\$x_{$(ij)}\$",fontsize=10,color=:blue)
 ij=ij+1
 end
 end
 end
 fig=PyPlot.gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

plotgrid2d(5)⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 6/8

Matrix and right hand side assembly inspired by the �nite volume method which will be covered
later in the course. The result is the same as for the �nite di�ference method with the mirror trick
for the boundary condition.

heatmatrix2d (generic function with 1 method)

heatrhs2d (generic function with 1 method)

n 20 =

function heatmatrix2d(n;α=1)
 function update_pair(A,v,i,j)
 A[i,j]+=-v
 A[j,i]+=-v
 A[i,i]+=v
 A[j,j]+=v
 end
 N=n^2
 h=1.0/(n-1)
 A=zeros(N,N)
 l=1
 for j=1:n
 for i=1:n
 if i<n
 update_pair(A,1.0,l,l+1)
 end
 if i==1|| i==n
 A[l,l]+=α
 end
 if j<n
 update_pair(A,1,l,l+n)
 end
 if j==1|| j==n
 A[l,l]+=α
 end
 l=l+1
 end
 end
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function heatrhs2d(n; rhs=(x,y)->0,bc=(x,y)->0,α=1.0)
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)
 N=n^2
 f=zeros(N)
 for i=1:n-1
 for j=1:n-1
 ij=(j-1)*n+i
 f[ij]+=h^2/4*rhs(x[i],y[j])
 f[ij+1]+=h^2/4*rhs(x[i+1],y[j])
 f[ij+n]+=h^2/4*rhs(x[i],y[j+1])
 f[ij+n+1]+=h^2/4*rhs(x[i+1],y[j+1])
 end
 end

 for i=1:n
 ij=i
 fac=h
 if i==1 || i==n
 fac=h/2
 end
 f[ij]+=fac*α*bc(x[i],0)
 ij=i+(n-1)*n
 f[ij]+=fac*α*bc(x[i],1)
 end
 for j=1:n
 fac=h
 if j==1 || j==n
 fac=h/2
 end
 ij=1+(j-1)*n
 f[ij]+=fac*α*bc(0,y[j])
 ij=n+(j-1)*n
 f[ij]+=fac*α*bc(1,y[j])
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

n=20⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 7/8

b2
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
 =

A2 400×400 Matrix{Float64}:
 202.0 -1.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0
 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 -1.0 103.0 … 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋮ ⋱ ⋮
 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 … 103.0 -1.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 202.0

 =

In order to inspect the matrix, we can turn it into a DataFrame, which can be browsed.

202.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

u2
[1.28855e-7, 1.30143e-5, 2.28006e-5, 2.71143e-5, 2.49065e-5, 1.6704e-5, 4.48045e-6, -8
 =

Solution

x1 x2 x3 x4 x5 x6 x7 x8 x9

b2=heatrhs2d(n,rhs=(x,y)->sin(3*π*x)*sin(3*π*y),α=α)⋅

A2=heatmatrix2d(n,α=α)⋅

DataFrame(A2,:auto)⋅

u2=A2\b2⋅

02.11.21, 22:43 🎈 nb10-pde -matrice s .jl — Pluto.jl

localhos t:1234/e dit?id=bf2331d6-3c22-11e c-0e e 7-95e 9e 373c611 8/8

In order to achieve this, we stored a matrix which has only �ve nonzero diagonals as a full
matrix, where :

Fraction of nonzero entries: 0.012
In fact, this matrix has nonzero entries.

... there must be a better way!

let
 clf()
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)

 contourf(x,y,reshape(u2,n,n),cmap="hot")
 fig=gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

