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Matrices from partial di�ferential equations
Heat conduction in a one-dimensional rod

Finite di�ference approximation
Solution

2D heat conduction
Solution

Matrices from partial di�erential
equations
As we focus in this course on partial di�ferential equations, we need discuss matrices which evolve
from the discretization of PDEs.

Are there any structural or numerical patterns in these matrices we can take advantage of
with regard to memory and time complexity when solving linear systems ?

In this lecture we introduce a relatively simple "drosophila" problem which we will use do discuss
these issues.

For the start we use simple structured disceretization grids and a �nite di�ference approach to the
discretization. Later, this will be generalized to more general grids and to �nite element and
�nite volume discretization methods.

Heat conduction in a one-dimensional rod
Heat source 

: ambient temperatures
: boundary heat transfer coe��cient

Second order boundary value problem in :

The solution  describes the equilibrium temperature distribution. Behind the second
derivative is Fouriers law and the continuity equation
In math, the boundary conditions are called "Robin" or "third kind". They describe a heat
in/out�lux proportional to the di�ference between rod end temperature and ambient
temperature
Fix a number of discretization points N
Let 
Let   be discretization points

N 10 = 

begin 
 using PlutoUI  
 using PyPlot  
 using DataFrames  
end
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⋅
⋅

N=10⋅
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plotgrid (generic function with 1 method)

Finite di�erence approximation
We can approximate continuous functions  by piecewise linear functions de�ned by the values 

. Using more points yields a better approximation:

Let  approximations for  and 
We can use a �nite di�ference approximation to approximate 

Same approach for second derivative: 
Finite di�ference approximation of the PDE:

function plotgrid(N;func=nothing,mirror=false)
 clf()
    ax=PyPlot.axes(aspect=0.5)
  plot([0,1],[0,0],linewidth=3,color="k")
 h=1/(N-1)
 x=collect(0:h:1)
 plot([0,0],[-0.05,0.05],color=:black)
 plot([1,1],[-0.05,0.05],color=:black)
  for i=1:N
  plot([x[i],x[i]],[-0.025,0.025],linewidth=1,color=:black)
        ax.text(x[i],-0.1,"\$x_{$(i)}\$",fontsize=10,color=:blue)
 end
 if mirror
  plot([-h,-h],[-0.025,0.025],color=:gray)
        plot([-h,0],[0,0],linewidth=3,color=:gray)
        ax.text(-h,-0.1,"\$x_{0}\$",fontsize=10,color=:gray)
  plot([1+h,1+h],[-0.025,0.025],color=:gray)
        plot([1,1+h],[0,0],linewidth=3,color=:gray)
        ax.text(1+h,-0.1,"\$x_{$(N+1)}\$",fontsize=10,color=:gray)
 end
 if func!=nothing
  plot(x,func.(x),linewidth=1,color="r")
    end
    PyPlot.axis("off")
    ax.get_xaxis().set_visible(false)
    ax.axes.get_yaxis().set_visible(false)
 fig=PyPlot.gcf()
 fig.set_size_inches(10,2)
 fig
end
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plotgrid(N)⋅

plotgrid(N,func=x->0.5*sin(5*x)^2)⋅

plotgrid(N,mirror=true)⋅
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Here, we introduced "mirror values"  and  in order to approximate the boundary
conditions accurately, such that the �nite di�ference formulas used to approximate  or 

 are centered around these values.
A�ter rearranging, these values can be expressed via the boundary conditions:

Finally, they can be replaced in 

Then, the system a�ter multiplying by  is reduced to:

α

The resulting discretization matrix is

Outside of the three diagonals, the entries are zero.

The right hand side is:

Let us de�ne functions assembling these:

heatmatrix1d (generic function with 1 method)
function heatmatrix1d(N;α=1)
 A=zeros(N,N)
 h=1/(N-1)
 A[1,1]=1/h+α
 for i=2:N-1
  A[i,i]=2/h 
 end
 for i=1:N-1
  A[i,i+1]=-1/h
 end
 for i=2:N
  A[i,i-1]=-1/h
 end
 A[N,N]=1/h+α
 A
end

⋅
⋅
⋅
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heatrhs1d (generic function with 1 method)

α 100 = 

N1 100 = 

A 100×100 Matrix{Float64}:
 199.0  -99.0    0.0    0.0    0.0    0.0  …    0.0    0.0    0.0    0.0    0.0
 -99.0  198.0  -99.0    0.0    0.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0  -99.0  198.0  -99.0    0.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0  -99.0  198.0  -99.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0  -99.0  198.0  -99.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0  -99.0  198.0  …    0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0  -99.0       0.0    0.0    0.0    0.0    0.0
   ⋮                                  ⋮    ⋱    ⋮                         
   0.0    0.0    0.0    0.0    0.0    0.0     -99.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0  …  198.0  -99.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0     -99.0  198.0  -99.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0  -99.0  198.0  -99.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0    0.0  -99.0  198.0  -99.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0    0.0    0.0  -99.0  199.0

 = 

b
[0.00505051, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.01
 = 

u
[0.005, 0.00999949, 0.0148969, 0.0196924, 0.0243858, 0.0289771, 0.0334665, 0.0378538, 0
 = 

Solution

For this example, we created an  matrix where all entries outside of the main diagonal and
the two adjacent ones are zero:

Fraction of nonzero entries: 0.0298
In fact, this matrix has  nonzero entries, but we store 
We solved the problem with a method of complexity of at best 

�D heat conduction

function heatrhs1d(N;vl=0,vr=0,func=x->0,α=1)
 h=1/(N-1)
 F=zeros(N)
 F[1]=h/2*func(0)+α*vl
 for i=2:N-1
  F[i]=h*func((i-1)*h)
 end
 F[N]=h/2*func(1)+α*vr
 F
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

α=100⋅

N1=100⋅

A=heatmatrix1d(N1,α=α)⋅

b=heatrhs1d(N1,func=x->1,α=α)⋅

u=A\b⋅
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Just pose the heat problem in a 2D domain :

We use 2D regular discretization  grid with grid points . The
�nite di�ference approximation yields:

This just comes from summing up the 1D �nite di�ference formula for the  and  directions.

We do not discuss the boundary conditions here.

The  grid leads to an  matrix!

plotgrid2d (generic function with 1 method)
function plotgrid2d(N;text=true, func=nothing)
 clf()
    ax=PyPlot.axes(aspect=1)
  x=[(i-1)/(N-1) for i=1:N]
 y=[(i-1)/(N-1) for i=1:N]
 
  for i=1:N
  plot([x[i],x[i]],[0,1],linewidth=1,color="k")
   plot([0,1],[y[i],y[i]],linewidth=1,color="k")
  end
 if func!=nothing
  f=[func(x[i],y[j]) for i=1:N, j=1:N]
  contourf(x,y,f,cmap="hot")
 end
 if text
   ij=1
   for j=1:N
  for i=1:N
    ax.text(x[i],y[j]-0.035,"\$x_{$(ij)}\$",fontsize=10,color=:blue)
   ij=ij+1
   end
    end
 end
 fig=PyPlot.gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
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plotgrid2d(5)⋅
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Matrix and right hand side assembly inspired by the �nite volume method which will be covered
later in the course. The result is the same as for the �nite di�ference method with the mirror trick
for the boundary condition.

heatmatrix2d (generic function with 1 method)

heatrhs2d (generic function with 1 method)

n 20 = 

function heatmatrix2d(n;α=1)
    function update_pair(A,v,i,j)
  A[i,j]+=-v
  A[j,i]+=-v
  A[i,i]+=v
  A[j,j]+=v
    end
 N=n^2
 h=1.0/(n-1)
 A=zeros(N,N)
    l=1
        for j=1:n
            for i=1:n
                if i<n
                    update_pair(A,1.0,l,l+1)
                end
                if i==1|| i==n
                    A[l,l]+=α
                end
                if j<n
                    update_pair(A,1,l,l+n)
                end
                if j==1|| j==n
                    A[l,l]+=α
                end
                l=l+1
            end
        end
    A
end

⋅
⋅
⋅
⋅
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function heatrhs2d(n; rhs=(x,y)->0,bc=(x,y)->0,α=1.0) 
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)
 N=n^2
 f=zeros(N)
 for i=1:n-1
  for j=1:n-1
   ij=(j-1)*n+i
   f[ij]+=h^2/4*rhs(x[i],y[j])
   f[ij+1]+=h^2/4*rhs(x[i+1],y[j])
   f[ij+n]+=h^2/4*rhs(x[i],y[j+1])
   f[ij+n+1]+=h^2/4*rhs(x[i+1],y[j+1])
  end
 end
 
 for i=1:n
  ij=i
  fac=h
  if i==1 || i==n 
   fac=h/2
  end
  f[ij]+=fac*α*bc(x[i],0)
  ij=i+(n-1)*n
  f[ij]+=fac*α*bc(x[i],1)
 end
 for j=1:n
  fac=h
  if j==1 || j==n 
   fac=h/2
  end
  ij=1+(j-1)*n
  f[ij]+=fac*α*bc(0,y[j])
  ij=n+(j-1)*n
  f[ij]+=fac*α*bc(1,y[j])
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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⋅
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⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

n=20⋅
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b2
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
 = 

A2 400×400 Matrix{Float64}:
 202.0   -1.0    0.0    0.0    0.0    0.0  …    0.0    0.0    0.0    0.0    0.0
  -1.0  103.0   -1.0    0.0    0.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0   -1.0  103.0   -1.0    0.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0   -1.0  103.0   -1.0    0.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0   -1.0  103.0   -1.0       0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0   -1.0  103.0  …    0.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0   -1.0       0.0    0.0    0.0    0.0    0.0
   ⋮                                  ⋮    ⋱    ⋮                         
   0.0    0.0    0.0    0.0    0.0    0.0      -1.0    0.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0  …  103.0   -1.0    0.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0      -1.0  103.0   -1.0    0.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0   -1.0  103.0   -1.0    0.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0    0.0   -1.0  103.0   -1.0
   0.0    0.0    0.0    0.0    0.0    0.0       0.0    0.0    0.0   -1.0  202.0

 = 

In order to inspect the matrix, we can turn it into a DataFrame, which can be browsed.

202.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

u2
[1.28855e-7, 1.30143e-5, 2.28006e-5, 2.71143e-5, 2.49065e-5, 1.6704e-5, 4.48045e-6, -8
 = 

Solution

x1 x2 x3 x4 x5 x6 x7 x8 x9

b2=heatrhs2d(n,rhs=(x,y)->sin(3*π*x)*sin(3*π*y),α=α)⋅

A2=heatmatrix2d(n,α=α)⋅

DataFrame(A2,:auto)⋅

u2=A2\b2⋅
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In order to achieve this, we stored a matrix which has only �ve nonzero diagonals as a full 
matrix, where :

Fraction of nonzero entries: 0.012
In fact, this matrix has  nonzero entries.

... there must be a better way!

let
 clf()
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)
 
 contourf(x,y,reshape(u2,n,n),cmap="hot")
 fig=gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅


