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Linear System Solution
Let  be a real  matrix, .
Solve 

Direct methods:

Exact up to machine precision
Sometimes expensive, sometimes not

Iterative methods:

"Only" approximate
With good convergence and proper accuracy control, results may be not worse than for
direct methods
Sometimes expensive, sometimes not
Convergence guarantee is problem dependent and can be tricky

Matrix & vector norms

Vector norms
let 

v [0.2, 0.3, 1.0] = 

: sum norm, -norm

1.5

begin 
    using PlutoUI  
    using PlutoVista  
    using BenchmarkTools  
    using LinearAlgebra  
end

 
 

 
 

⋅
⋅
⋅
⋅
⋅
⋅

v=[0.2, 0.3,  1.0]⋅

norm(v 1)
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: Euclidean norm, -norm

(1.06301, 1.06301)

: maximum norm, -norm

1.0

Matrix norms
Given a matrix 

A matrix is a representation of a linear operator in the basis de�ned by the unit vectors:
 is de�ned via  with 

Vector norm  induces corresponding matrix norm:

A0 3×3 Matrix{Float64}:
 3.0  2.0  3.0
 0.1  0.3  0.5
 0.6  2.0  3.0

 = 

: maximum of column sums of absolute values of entries

6.5

 with : largest eigenvalue of .

(5.78018, 5.78018, 5.78018)

: maximum of row sums of absolute values of entries

(8.0, 8.0)

norm(v,1)⋅

norm(v,2),norm(v)⋅

norm(v,Inf)⋅

A0=[3.0 2.0 3.0; 
   0.1 0.3 0.5; 
   0.6 2.0 3.0]

⋅
⋅
⋅

opnorm(A0,1)⋅

opnorm(A0,2), opnorm(A0),sqrt(maximum(eigvals(A0'*A0)))⋅

opnorm(A0,Inf),opnorm(A0',1)⋅
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Condition number and error propagation
Solve , where  is inexact
Let  be the error in  and  be the resulting error in  such that

Since , we get  and 

where  is the condition number  of .

This means that the relative error in the solution is proportional to the relative error of the right
hand side. The proportionality factor  is usually larger (and in many relevant cases
signi�cantly larger) than one.

Just remark that this estimates does not assume inexact arithmetics.

Let us have an example. We use alternatively rational or �loating point arithmetic:

Rational: 

a 1000000//1 = 

pert_b 1//1000000000 = 

A 2×2 Matrix{Rational{Int64}}:
       1//1       -1//1
 1000000//1  1000000//1

 = 

2×2 Matrix{Rational{Int64}}:
  1//2  1//2000000
 -1//2  1//2000000

Assume a solution vector:

x [1, 1] = 

Create corresponding right hand side:

b [0//1, 2000000//1] = 

De�ne a perturbation of the right hand side:

Δb [1//1000000000, 1//1000000000] = 

Calculate the error with respect to the unperturbed solution:

Δx [1000001//2000000000000000, -999999//2000000000000000] = 

T_test=use_rational ? Rational{Int64} : Float64;⋅

a=T_test(1_000_000)⋅

pert_b=T_test(1//1_000_000_000)⋅

A=[ 1 -1;
    a  a]

⋅
⋅

inv(A)⋅

x=[1,1]⋅

b=A*x⋅

Δb=[pert_b, pert_b]⋅

Δx=inv(A)*(b+Δb)-x⋅



02.11.21, 22:20 🎈 nb09-dire ct-solve rs .jl — Pluto.jl

localhos t:1237/e dit?id=4b682814-3c1d-11e c-3c14-430df5398780 4/10

Relative error of right hand side:

δb 7.071067811865475e-16 = 

Relative error of solution:

δx 5.000000000002499e-10 = 

Comparison with condition number based estimate:

κ 1.0e6 = 

(1.0e6, 7.07107e5)

Complexity: "big O notation"
Let  be some functions, where  or .

Write

if there exists a constant  and  such that 

O�ten, one skips the part " "

Examples:

Addition of two vectors: 
Straightforward matrix-vector multiplication (for matrix where all entries are assumed to be
nonzero): 

A Direct method: Cramer's rule
Solve  by Cramer's rule:

This takes  operations...

LU decomposition

Gaussian elimination
So let us have a look at Gaussian elimination to solve . The elementary matrix
manipulation step in Gaussian elimination ist the multiplication of row k by  and its
addition to row j such that element  in the resulting matrix becomes zero. If this is done at once
for all , we can express this operation as the le�t multiplication of  by a lower triangular
Gauss transformation matrix .

Δx inv(A)*(b+Δb) x

δb=norm(Δb)/norm(b)⋅

δx=norm(Δx)/norm(x)⋅

κ=opnorm(A)*opnorm(inv(A))⋅

κ,δx/δb⋅
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Use rational numbers for the following examples: 

T_lu Rational{Int64} = 

De�ne a test matrix:

A1 4×4 Matrix{Rational{Int64}}:
 2//1  1//1  3//1  4//1
 5//1  6//1  7//1  8//1
 7//1  6//1  8//1  5//1
 3//1  4//1  2//1  2//1

 = 

This is the Gauss transform for �rst column:

4×4 UnitLowerTriangular{Rational{Int64}, Matrix{Rational{Int64}}}:
  1//1   ⋅     ⋅     ⋅  
 -5//2  1//1   ⋅     ⋅  
 -7//2  0//1  1//1   ⋅  
 -3//2  0//1  0//1  1//1

Applying it then sets all elements in the �rst column to zero besides of the main diagonal
element:

U1 4×4 Matrix{Rational{Int64}}:
 2//1  1//1   3//1   4//1
 0//1  7//2  -1//2  -2//1
 0//1  5//2  -5//2  -9//1
 0//1  5//2  -5//2  -4//1

 = 

We can repeat this with the second column:

U2 4×4 Matrix{Rational{Int64}}:
 2//1  1//1    3//1    4//1
 0//1  7//2   -1//2   -2//1
 0//1  0//1  -15//7  -53//7
 0//1  0//1  -15//7  -18//7

 = 

And the third column:

U3 4×4 Matrix{Rational{Int64}}:
 2//1  1//1    3//1    4//1
 0//1  7//2   -1//2   -2//1
 0//1  0//1  -15//7  -53//7
 0//1  0//1    0//1    5//1

 = 

And here, we arrived at a triangular matrix. In the standard Gaussian elimination we would have
manipulated the right hand side accordingly.

From here on we would start the backsubstitution which in fact is the solution of a triangular
system of equations.

Thus,  with

function M(A,k)
 n=size(A,1)
 m=UnitLowerTriangular(Matrix{eltype(A)}(one(eltype(A))I,n,n))
 for j=k+1:n
  m[j,k]=-A[j,k]/A[k,k]
 end
 m
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

T_lu= lu_use_rational ? Rational{Int64} : Float64⋅

A1=T_lu[2 1 3 4;
        5 6 7 8;
        7 6 8 5;
        3 4 2 2;] 

⋅
⋅
⋅
⋅

M(A1,1)⋅

U1=M(A1,1)*A1⋅

U2=M(U1,2)*U1⋅

U3=M(U2,3)*U2⋅
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L 4×4 UnitLowerTriangular{Rational{Int64}, Matrix{Rational{Int64}}}:
 1//1   ⋅     ⋅     ⋅  
 5//2  1//1   ⋅     ⋅  
 7//2  5//7  1//1   ⋅  
 3//2  5//7  1//1  1//1

 = 

U 4×4 Matrix{Rational{Int64}}:
 2//1  1//1    3//1    4//1
 0//1  7//2   -1//2   -2//1
 0//1  0//1  -15//7  -53//7
 0//1  0//1    0//1    5//1

 = 

0.0

true

A �rst LU decomposition
We can put this together into a function:

(
4×4 UnitLowerTriangular{Rational{Int64}, Matrix{Rational{Int64}}}:
 1//1   ⋅     ⋅     ⋅  
 5//2  1//1   ⋅     ⋅  
 7//2  5//7  1//1   ⋅  
 3//2  5//7  1//1  1//1
4×4 UpperTriangular{Rational{Int64}, Matrix{Rational{Int64}}}:
 2//1  1//1    3//1    4//1
  ⋅    7//2   -1//2   -2//1
  ⋅     ⋅    -15//7  -53//7
  ⋅     ⋅       ⋅      5//1

)

1:

2:

Check for correctness:

0.0

true

Solving  then amounts to solve two triangular systems:

L=inv(M(A1,1))*inv(M(U1,2))*inv(M(U2,3))⋅

U=U3⋅

norm(L*U-A1)⋅

iszero(L*U-A1)⋅

function my_first_lu_decomposition(A)
    n=size(A,1)
 L=Matrix(one(eltype(A))I,n,n) # L=I
 U=A
 for k=1:n-1
    Mtran=M(U,k)
    L=L*inv(Mtran)
    U=Mtran*U
 end
 # Check if matrices are triangular
 Ltri=UnitLowerTriangular(L)
 @assert iszero(Ltri-L) 
    Utri=UpperTriangular(U)
 @assert iszero(Utri-U)
 Ltri,Utri
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Lx,Ux=my_first_lu_decomposition(A1)⋅

norm(Lx*Ux-A1)⋅

iszero(Lx*Ux-A1)⋅
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my_first_lu_solve (generic function with 1 method)

b1 [1, 2, 3, 4] = 

x1 [182//75, -7//75, -154//75, 3//5] = 

Check...

[0//1, 0//1, 0//1, 0//1]

... in order to be didactical, in this example, we made a very ine��cient implementation by creating
matrices in each step. We even cheated by using inv  in order to solve a triangular system.

Doolittles method

Doolittles method (Adapted from wikipedia: LU_decomposition)
This allows to perform LU decomposition in-place.

doolittle_lu_decomposition! (generic function with 1 method)

doolittle_lu_solve (generic function with 1 method)

function my_first_lu_solve(L,U,b)
   y=inv(L)*b
   x=inv(U)*y
end

⋅
⋅
⋅
⋅

b1=[1,2,3,4]⋅

x1=my_first_lu_solve(Lx,Ux,b1)⋅

A1*x1-b1⋅

function doolittle_lu_decomposition!(LU)
 n = size(LU,1)
    # decomposition of matrix, Doolittle’s Method
 for i = 1:n
        for j = 1:(i - 1)
            alpha = LU[i,j];
            for k = 1:(j - 1)
                alpha = alpha - LU[i,k]*LU[k,j];
            end
            LU[i,j] = alpha/LU[j,j];
        end
        for j = i:n
            alpha = LU[i,j];
            for k = 1:(i - 1)
                alpha = alpha - LU[i,k]*LU[k,j];
            end
            LU[i,j] = alpha;
        end
    end

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function doolittle_lu_solve(LU,b)
    n = length(b);
    x = zeros(eltype(LU),n);
    y = zeros(eltype(LU),n);
    # LU= L+U-I
    # find solution of Ly = b
    for i = 1:n
        alpha = zero(eltype(LU));
        for k = 1:i
            alpha = alpha + LU[i,k]*y[k];
        end
        y[i] = b[i] - alpha;
    end
    # find solution of Ux = y
    for i = n:-1:1
        alpha = zero(eltype(LU));
        for k = (i + 1):n
            alpha = alpha + LU[i,k]*x[k];
        end
        x[i] = (y[i] - alpha)/LU[i, i];
    end    
 x
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://en.wikipedia.org/wiki/LU_decomposition#MATLAB_code_examples
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We can then implement a method for linear system solution:

doolittle_solve (generic function with 1 method)

x2 [182//75, -7//75, -154//75, 3//5] = 

[0//1, 0//1, 0//1, 0//1]

Pivoting
So far, we ignored the possibility that a diagonal element becomes zero during the LU
factorization procedure.

Pivoting tries to remedy the problem that during the algorithm, diagonal elements can become
zero. Before undertaking the next Gauss transformation step, we can exchange rows such that we
always divide by the largest of the remaining diagonal elements. This would then in fact result in
a decompositon

where  is a permutation matrix which can be stored in an integer vector. This approach is called
"partial pivoting". Full pivoting in addition would perform column permutations. This would result
in another permutation matrix  and the decomposition

Almost all practically used LU decomposition implementations use partial pivoting.

LU Factorization from Julia library
Julia implements a pivoting LU factorization

lu1 LU{Rational{Int64}, Matrix{Rational{Int64}}}
L factor:
4×4 Matrix{Rational{Int64}}:
 1//1   0//1    0//1  0//1
 5//7   1//1    0//1  0//1
 3//7   5//6    1//1  0//1
 2//7  -5//12  -1//2  1//1
U factor:
4×4 Matrix{Rational{Int64}}:
 7//1   6//1   8//1    5//1
 0//1  12//7   9//7   31//7
 0//1   0//1  -5//2  -23//6
 0//1   0//1   0//1    5//2

 = 

Like in matlab, the backslash opertor "solves", in this case it solves the LU factorization:

[182//75, -7//75, -154//75, 3//5]

Of course we can apply \  directly to a matrix. However, behind this always LU decomposition and
LU solve are called:

x3 [182//75, -7//75, -154//75, 3//5] = 

LU vs. inv

In principle we could work with the inverse matrix as well:

end⋅

function doolittle_solve(A,b)
 LU=copy(A)
 doolittle_lu_decomposition!(LU)
 doolittle_lu_solve(LU,b)
end

⋅
⋅
⋅
⋅
⋅

x2=doolittle_solve(A1,b1)⋅

A1*x2-b1⋅

lu1\b1⋅

x3=A1\b1⋅
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A1inv 4×4 Matrix{Rational{Int64}}:
  68//75  -2//3   2//25   49//75
 -43//75   1//3  -2//25    1//75
 -46//75   1//3   6//25  -53//75
   2//5    0//1  -1//5     1//5

 = 

[182//75, -7//75, -154//75, 3//5]

However, inversion is more complex than the LU factorization.

Some performance tests.
rand_Ab (generic function with 1 method)

perftest_inv (generic function with 1 method)

perftest_doolittle (generic function with 1 method)

test_and_plot (generic function with 1 method)

4 5 6 7 8 9
100

2 3 4 5 6 7 8 9
1e+3

2 3 4

1e−4

0.01

1

100 inv(A)*b

A\b

doolittle

O(N^3)

O(N^2.75)

Experimental complexity of dense linear system solution

Number of unknowns N

E
xe

cu
tio

n 
tim

e 
t/s

A1inv=inv(A1)⋅

A1inv*b1⋅

rand_Ab(n)=(100.0I(n)+rand(n,n),rand(n))⋅

function perftest_lu(n)
 A,b=rand_Ab(n)
 @elapsed A\b
end;

⋅
⋅
⋅
⋅

function perftest_inv(n)
    A,b=rand_Ab(n)
    @elapsed inv(A)*b
end

⋅
⋅
⋅
⋅

function perftest_doolittle(n)
    A,b=rand_Ab(n)
    @elapsed doolittle_solve(A,b)
end

⋅
⋅
⋅
⋅

function test_and_plot(powmax)
    N= 2 .^collect(5:powmax)
    t_inv=perftest_inv.(N)
    t_lu=perftest_lu.(N)
    t_doo=perftest_doolittle.(N)
    
    p=plot(dim=1,resolution=(600,300),
           xscale=:log, yscale=:log,
           title="Experimental complexity of dense linear system solution",
           xlabel="Number of unknowns N",
           ylabel="Execution time t/s",
           legend=:lt)
    plot!(p,N,t_inv,label="inv(A)*b")
    plot!(p,N,t_lu,label="A\\b")
    plot!(p,N,t_doo,label="doolittle")
    plot!(p,N,1.0e-9*N.^3,label="O(N^3)",linestyle=:dot)
    plot!(p,N,1.0e-9*N.^2.75,label="O(N^2.75)",linestyle=:dot) 
    p
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

test and plot(12)
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The complexity for the built-in factorization is around  which is in the region of
some theoretical estimates.
For standard �loating point types, Julia uses highly optimized versions of LINPACK and BLAS

Same for python/numpy and many other coding environments
A good implementation is hard to get right, straightforward code performs worse than the
system implementation
Using inversion instead of factorization is signi�cantly slower (log scale in the plot!)

test_and_plot(12)⋅

http://www.netlib.org/linpack/
http://www.netlib.org/blas

