
02.11.21, 22:49 🎈 nb07-me mory.jl — Pluto.jl

localhos t:1234/e dit?id=82f80a2a-3c26-11e c-1b7e -af1114fa909b 1/4

Scienti�c Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 07

Memory handling: allocations and all that
The stack

Stack space is scarce!
The heap - the place for large amounts of data

Allocations are expensive!
How to release allocated memory ?

Memory handling: allocations and all
that
All variable data of running computer code is stored in the main memory (RAM). This is true for
almost any computer language.

There are however details of the way data is stored which have a heavy impact on code
performance and �lexibility of code design.

The stack
The stack is a memory region created when a program starts, which is implicitely passed to
all functions subsequently called, providing memory space for storing local variables
The name comes from the data structure behind. Besides of the memory it is characterized
by a stack pointer which separated the unused space from the used one.

When putting data on the stack, these are copied to the position indicated by the
stack pointer, and its value is increased accordingly
Removing data from the stack just amounts to decreasing the stack pointer

Any time a function is called, the current position in the instruction stream is stored in the
stack as the return address, and the called function is allowed to work with the stack space
following this storage location

function DrawLine(x0,y0,x1,y1)
 ... perform some drawing ...
end

function DrawSquare(x0,y0,a)
 xa=x0+a
 ya=y0+a
 DrawLine(x0,y0,xa,y0)
 DrawLine(xa,y0,xa,ya)
 DrawLine(xa,ya,x0,ya)
 DrawLine(x0,ya,x0,y0)
end

Parameters for
DrawSquare

Locals of
DrawSquare

Return Address

Parameters for
DrawLine

Locals of
DrawLine

Return Address

stack frame
for

DrawLine
subroutine

stack frame
for

DrawSquare
subroutine

Frame Pointer

Stack Pointer top of stack

D rawing by R. S. Shaw, Public D omain

begin
 using PlutoUI
 using HypertextLiteral
 using StaticArrays
 using BenchmarkTools
end

⋅
⋅
⋅
⋅
⋅
⋅

02.11.21, 22:49 🎈 nb07-me mory.jl — Pluto.jl

localhos t:1234/e dit?id=82f80a2a-3c26-11e c-1b7e -af1114fa909b 2/4

DrawSquarw takes space from the stack to store its local variables xa and ya .
In the four calls to DrawLine , each time, the parameters are copied on the stack, and
current pointer in the instruction stream is stored on the stack as the address to return to
a�ter �nishing the call
During execution, DrawLine ma put its own local variables on the stack and call other
functions
A�ter returning from the call, everything on top of the local data of DrawSquare is
"forgotten"

Let us calculate Euler's number in a recursive manner:

euler_sum_stack (generic function with 1 method)

Did we do the right thing ?

8.149037000748649e-13

Now let us try to become more accurate:

StackOverflowError:

1. var"#euler_sum_stack#1"(::Float64, ::Int64, ::Float64,
::typeof(Main.workspace#2.euler_sum_stack), ::Int64) Other: 4@

Stack space is scarce!
When a program starts, it obtains from the system a �xed amount of memory for its stack.
During program run it cannot be increased. It's size however can be con�gured before the
program starts.

The heap - the place for large amounts of data
Chunks from free system memory can be reserved – "allocated" – on demand in order to
provide memory space for data
Unlike the handling of the stack pointer, allocating memory is connected with lots of
bookkeeping, so it is quite expensive
In languages like C, C++, this is an explicit operation (malloc , new)
In Julia, the placement depends on the data type, though in principle the compiler could
optimize allocations away if it knows that this is save

heap: Arrays, Dicts, mutable structs
stack: Numbers, Tuples, structs, Arrays from StaticArrays.jl, array views
also see this Discourse thread

Allocations are expensive!
normal_array (generic function with 1 method)

function euler_sum_stack(n; e=1.0,k=1,kfac=1.0)
 if k<n
 kfac=kfac*k
 euler_sum_stack(n,e=e+1/kfac,k=k+1,kfac=kfac)
 else
 e
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

abs(euler_sum_stack(15)-ℯ)⋅

euler_sum_stack(100_000)⋅

function normal_array()
 arr = [1.,2.0,3.0]
 return arr.^2
end

⋅
⋅
⋅
⋅

https://github.com/JuliaArrays/StaticArrays.jl
https://discourse.julialang.org/t/a-nice-explanation-of-memory-stack-vs-heap/53915/2

02.11.21, 22:49 🎈 nb07-me mory.jl — Pluto.jl

localhos t:1234/e dit?id=82f80a2a-3c26-11e c-1b7e -af1114fa909b 3/4

static_array (generic function with 1 method)

BenchmarkTools.Trial: 10000 samples with 990 evaluations.
 Range (min … max): 46.794 ns … 1.175 μs ┊ GC (min … max): 0.00% … 90.81%
 Time (median): 48.536 ns ┊ GC (median): 0.00%
 Time (mean ± σ): 55.287 ns ± 57.171 ns ┊ GC (mean ± σ): 6.90% ± 6.39%

 ▂█▆▃▂▂▁▁ ▁
 █████████▇█▇▆▆▆▆▅▆▇▇▇▅▆▅▅▅▃▅▅▅▄▅▄▄▃▄▃▄▅▄▅▄▅▅▆▅▅▆▆▆▄▆██▆▅▅▄▄ █
 46.8 ns Histogram: log(frequency) by time 106 ns <

 Memory estimate: 224 bytes, allocs estimate: 2.

BenchmarkTools.Trial: 10000 samples with 1000 evaluations.
 Range (min … max): 0.015 ns … 14.699 ns ┊ GC (min … max): 0.00% … 0.00%
 Time (median): 0.017 ns ┊ GC (median): 0.00%
 Time (mean ± σ): 0.019 ns ± 0.147 ns ┊ GC (mean ± σ): 0.00% ± 0.00%

 █
 ▂▁▁▁▄▁▁▁█▁▁▁▁▆▁▁▁▂▁▁▁▁▁▁▁▁▂▁▁▁▁▂▁▁▁▂▁▁▁▁▂▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▁▂ ▂
 0.015 ns Histogram: frequency by time 0.028 ns <

 Memory estimate: 0 bytes, allocs estimate: 0.

We see a signi�cant increase of runtime: an allocation can be several hundred times more
expensive than a �loating point operation
Avoiding allocations is an important step when optimizing Julia code
One strategy is to work with tuples and SVectors which however must have their size �xed
at compile time
Alternatively, turn functions into mutating functions which work on space passed to them
which has been allocated before

a [1.0, 2.0, 3.0] =

functional_function (generic function with 1 method)

mutating_function! (generic function with 1 method)

BenchmarkTools.Trial: 10000 samples with 994 evaluations.
 Range (min … max): 32.654 ns … 1.436 μs ┊ GC (min … max): 0.00% … 94.16%
 Time (median): 33.614 ns ┊ GC (median): 0.00%
 Time (mean ± σ): 38.277 ns ± 49.413 ns ┊ GC (mean ± σ): 6.13% ± 4.66%

 ▆█▄▂▁ ▁ ▁
 ██████████▇▇▇▆▆▆▅▅▅▄▅▆▆▆▅▆▅▄▄▄▅▆▇███▇▅▅▇██▆▆▆▅▃▅▅▃▅▄▄▄▂▅▃▃▄ █
 32.7 ns Histogram: log(frequency) by time 74.5 ns <

 Memory estimate: 112 bytes, allocs estimate: 1.

result [0.0, 0.0, 0.0] =

function static_array()
 arr = StaticArrays.SVector(1.,2,3)
 return arr.^2
end

⋅
⋅
⋅
⋅

@benchmark normal_array()⋅

@benchmark static_array()⋅

a=[1.0,2,3]⋅

function functional_function(a)
 return a.^2
end

⋅
⋅
⋅

function mutating_function!(result,a)
 result.=a.^2
end

⋅
⋅
⋅

@benchmark functional_function(a)⋅

result=zeros(3)⋅

02.11.21, 22:49 🎈 nb07-me mory.jl — Pluto.jl

localhos t:1234/e dit?id=82f80a2a-3c26-11e c-1b7e -af1114fa909b 4/4

BenchmarkTools.Trial: 10000 samples with 998 evaluations.
 Range (min … max): 13.873 ns … 83.076 ns ┊ GC (min … max): 0.00% … 0.00%
 Time (median): 14.237 ns ┊ GC (median): 0.00%
 Time (mean ± σ): 14.881 ns ± 3.913 ns ┊ GC (mean ± σ): 0.00% ± 0.00%

 █▇▅▁ ▂
 ████▇▇▇▅▅▆▆▅▅▆▄▆▅▅▅▄▅▄▅▅▃▆▅▅▃▄▄▄▃▄▁▃▄▆▆▅▆▇▇▅▆▅▄▅▄▄▃▃▄▅▅▃▅▆▆ █
 13.9 ns Histogram: log(frequency) by time 36 ns <

 Memory estimate: 0 bytes, allocs estimate: 0.

How to release allocated memory ?

In languages like C and C++, there are explicit statements for releasing memory allocated
at the heap (free , delete)
Julia has a Garbage Collector (GC) which keeps track of memory usage and frees memory once
it is not needed anymore. It automatically runs between statements.

@benchmark mutating_function!(result,a)⋅

