
27.10.21, 01:17 🎈 nb06-inte rop.jl — Pluto.jl

localhos t:1239/e dit?id=d6baa0e 2-36b2-11e c-21db-e 3aa6617ff18 1/5

Scientific Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 06

Table of Contents

Interaction with other languages
C
Python
Javascript
Other languages

Interaction with other languages

C
C language code has a well defined binary interface

int Int32
float Float32
double Float64

C arrays as pointers

Create a C source file:

cadd_source "double cadd(double x, double y) \n{ \n return x+y; \n}\n" =

Compile to a shared object (aka "dll" on windows) using the gcc compiler:

using PlutoUI ⋅

cadd_source="""
double cadd(double x, double y)
{
 return x+y;
}
"""

⋅
⋅
⋅
⋅
⋅
⋅

open("cadd.c", "w") do io
 write(io,cadd_source)
end;

⋅
⋅
⋅

27.10.21, 01:17 🎈 nb06-inte rop.jl — Pluto.jl

localhos t:1239/e dit?id=d6baa0e 2-36b2-11e c-21db-e 3aa6617ff18 2/5

Process(`gcc --shared cadd.c -o libcadd.so`, ProcessExited(0))

Define wrapper function cadd using the Julia ccall method
(:cadd, "libcadd") : call cadd from libcadd.so

First Float64 : return type
Tuple (Float64,Float64,) : parameter types
x,y : actual data passed

At its first call it will load libcadd.so into Julia
Direct call of compiled C function cadd() , no intermediate wrapper code

cadd (generic function with 1 method)

11.5

It is also possible to call Julia code from C

Python
Both Julia and Python are homoiconic languages, featuring reflection
They can parse the elements of their own data structures possibility to automatically
build proxies for python objects in Julia

The PyCall package provides the corresponding interface:

Create a python source file:

pyadd_source "def add(x,y):\n return x+y\n" =

run(`gcc --shared cadd.c -o libcadd.so`)⋅

cadd(x,y)=ccall((:cadd, "libcadd"), Float64, (Float64,Float64,),x,y)⋅

cadd(1.5,10)⋅

using PyCall ⋅

pyadd_source="""
def add(x,y):
 return x+y
"""

⋅
⋅
⋅
⋅

open("pyadd.py", "w") do io
 write(io,pyadd_source)
end;

⋅
⋅
⋅

27.10.21, 01:17 🎈 nb06-inte rop.jl — Pluto.jl

localhos t:1239/e dit?id=d6baa0e 2-36b2-11e c-21db-e 3aa6617ff18 3/5

pyadd
PyObject <module 'pyadd' from '/home/fuhrmann/Wias/teach/scicomp/pluto/pyadd.py'>

 =

4.5

Julia allows to call almost any python package
E.g. matplotlib graphics - this is the python package behind PyPlot (there are more
graphics options in Julia)
There is also a pyjulia package allowing to call Julia from python

Javascript

Javascript can be used in Pluto to display things, or to add interactive elements.

We need the ability to interpolate into html strings:

We need to be able to generate random id's for html elements:

Calculate the sum of two values in javascript and return it to Julia. This uses the magic behind
PlutoUI sliders.

jsadd (generic function with 1 method)

28

pyadd=pyimport("pyadd")⋅

pyadd.add(3.5,1.0)⋅

using HypertextLiteral ⋅

using UUIDs ⋅

function jsadd(a,b)
 id="($uuid1())"
 htl"""
 <div id=$(id)>
 <script>
 document.getElementById($id).value=$(a)+$(b)
 </script>
 </div>
 """
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

@bind y jsadd(3,25)⋅

y⋅

https://github.com/JuliaPy/pyjulia

27.10.21, 01:17 🎈 nb06-inte rop.jl — Pluto.jl

localhos t:1239/e dit?id=d6baa0e 2-36b2-11e c-21db-e 3aa6617ff18 4/5

And here an example by Connor Burns:

MouseMoveInput (generic function with 3 methods)

0×0 Matrix{Float64}

Other languages
There are ways to interact with C++, R, Rust and other langugas
Interaction with Fortran via ccall
Pluto: integration with Javascript in browser
Julia and many of its packages use this method to access a number of highly optimized
linear algebra and other libraries written in C and Fortran

function MouseMoveInput(width=300, height=300)
 id="$(uuid1())"
 @htl("""
 <div id=$id style="width: $(width)px; height: $(height)px; border: 1px
solid black; cursor:crosshair ">
 <script>
 const mouseInput = document.getElementById($id);

 mouseInput.value = [0, 0];

 mouseInput.addEventListener('mousemove', function(e) {
 const rect = mouseInput.getBoundingClientRect();
 mouseInput.value = [Math.floor(e.x-rect.left+1),
Math.floor(e.y-rect.top+1)];
 mouseInput.dispatchEvent(new Event('input'));
 });
 </script>
 </div>
 """)
end

⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅

@bind xy MouseMoveInput(100,100)⋅

rand(xy...)⋅

https://cotangent.dev/how-to-make-custom-pluto-ui-components/

27.10.21, 01:17 🎈 nb06-inte rop.jl — Pluto.jl

localhos t:1239/e dit?id=d6baa0e 2-36b2-11e c-21db-e 3aa6617ff18 5/5

