
27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 1/8

Scientific Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 03

J ulia workflows
Pluto notebook
Jupyter notebook
"Classical" workflow

The REPL
Revise.jl
Recommendation

IDE based workflow
Packages

Structure of a package
Metadata
Environments

Global environment
Local environments

Package manager
Basic package manager commands

Package management in Pluto notebooks
FAIRness

Findability
Accessibility
Interoperability
Reproducibility
"Side effects"

Julia workflows
When working with Julia, we can choose between a number of workflows.

Pluto notebook
This ist what you see in action here. After calling pluto, you can start with an empty notebook
and add cells.

Great for teaching or trying out ideas.

using PlutoUI ⋅

https://github.com/fonsp/Pluto.jl

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 2/8

Jupyter notebook
With the help of the package IJ ulia.jl it is possible to work with Jupyter notebooks in the
browser. The Jupyter system is rather complex and Pluto hopefully will be able to replace it, in
particular because of its reactivity features.

"Classical" workflow
Use a classical code editor (emacs, vi or whatever you prefer) in a separate window and edit
files, when saved to disk run code in a console window.

With Julia, this workflow has the disadvantage that everytime Julia is started, the just-in-time
compiler (JIT) needs to recompile all the code to be run if its compiled version is not cached.

While a significant part of the compiled code of installed packages is cached, Julia needs to
assume that the code you write can have changed.

Remedy: Never leave Julia, start a permanent Julia session, include edited code after each
change.

The REPL
aka Read - Eval - Print - Loop or Julia command prompt

One enters the REPL when one starts julia in a console window without giving filename.

The REPL allows to execute Julia statements in an interactive fashion. It has convenient editing
capabilities.

Helpful commands in the REPL default mode:

commmand action
quit() or Ctrl+D exit Julia
Ctrl+C interrupt execution
Ctrl+L clear screen
Append ; suppress displaying return value
include("filename.jl") source a Julia code file and execute content

https://github.com/JuliaLang/IJulia.jl

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 3/8

The REPL has different modes which can be invoked by certain characters:

mode prompt enter/exit
Default julia backspace in other modes to enter
Help help?> ? to enter

type command name to search
Shell shell> ; to enter

type command to execute
Package manager Pkg>] to enter

Revise.jl
The Revise.jl package allows to keep track of changed files used in a Julia session if they have
been included via includet (t for "tracked"). It controls recompilation of changed code - only
those parts which indeed have changed are newly compiled by the JIT, moreover, recompilation
is triggered automatically, no need to include code again and again.

In order to make this work, one needs to add

if isinteractive()
 try
 @eval using Revise
 Revise.async_steal_repl_backend()
 catch err
 @warn "Could not load Revise."
 end
end

to the startup file ~/.julia/config/startup.jl and to run Julia via julia -i .

Revise.jl also keeps track of packages loaded and their changes. In this setting it also can be
used with Pluto.

Recommendation
When using the REPL based workflow, don't miss Revise.jl and try to find a Julia mode for your
favorite editor which provides auto-indentation, highlighteing etc. Mine (emacs) has one.

IDE based workflow
Use an IDE (integrated development environment). Currently the best one for Julia is Visual
Studio Code with the J ulia extension.

For introductory material, see the tutorial information given upon starting of a newly installed
instance of code . For the Julia extension, find videos on code J ulia for Talented Amateurs.

https://github.com/timholy/Revise.jl
https://code.visualstudio.com/
https://www.julia-vscode.org/
https://www.youtube.com/c/juliafortalentedamateurs/videos

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 4/8

Packages

Structure of a package
Packages are modules searched for in a number of standard places and as git repositories
on the internet
Locally, each package is stored in directory named e.g. MyPack for a package MyPack.jl .
Structure of a package Directory:

Subdirectory MyPack/src for sources
Main source MyPack/src/MyPack.jl defining a module named MyPack
Further Julia sources in MyPack/src/ included by MyPack/src/MyPack.jl
Code for unit testing in MyPack/test

a well designed package has a good number of tests which are run upon every
upload on github

Code for documentation generation in MyPack/docs
a well designed package has documentation generated upon every upload on
github

License
Packages in the general registry (see below) are required to have an open
source license

Metadata

Metadata
Package metadata are stored in MyPack/Project.toml

Name
Unique Universal Identifier (UUID) - a long character string hopefully unique in the world
Author
Version number
Package dependencies (names and UUIDs)
Version bounds for package dependencies

https://pkgdocs.julialang.org/v1/compatibility/

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 5/8

Environments
Environments (projects) are essentially lists of packages used in a current Julia session. An
environment is described by a directory containing at least two metadata files:

Project.toml describing the list of packages required for the project
Manifest.toml describing the actually installed versions of the required packages and all

their dependencies

Global environment
By default, a global environment stored in .julia/environments/vX.Y under the user home
directory will be used

Local environments
In oder to avoid version clashes for different projects, one can activate any directory - e.g.
mydir as a local package environment by invoking Julia with

julia --project=mydir

Package manager
Default packages (e.g. the package manager Pkg) are always found in the .julia
subdirectory of your home directory
The package manager allows to add packages to your installation by finding their git
repositories via the J ulia General Registry or another registry

Packages are found via the UUID
During package installation, compatibility is checked accordint to the [compat]
entries in the respective Project.toml files

https://pkgdocs.julialang.org/v1/environments/
https://github.com/JuliaRegistries/General

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 6/8

Basic package manager commands
The package manager can be used in two ways: via the Pkg REPL mode or via Julia function calls
after havig invoked using Pkg .

Function pkg mode Explanation

Pkg.add("MyPack") pkg> add
MyPack add MyPack.jl to current environment

Pkg.rm("MyPack") pkg> rm
MyPack

remove MyPack.jl from current
environment

Pkg.update() pkg> up update packages in current environment

Pkg.activate("mydir") pkg> activate
mydir activate directory as current environment

Pkg.instantiate() pkg>
instatiate

populate current environment according to
Manifest.toml

Pkg.test("MyPack") pkg> test
mypack run tests of MyPack.jl

Pkg.status() pkg> status list packages

For more information, see the documentation of the package manager

Package management in Pluto notebooks
Pluto (version >=0.16) contains an "automatic" package manager on top of Pkg
Every Pluto notebook contains Project.toml and Manifest.toml and activates its own
environment upon start
All package versions for a Pluto notebook are fixed Reproducibility

FAIRness
The FAIR principles are fundamental for the role of data in modern research based on good
scientific practice. The almost exactly can be applied to software as well - software can be seen
as a kind of data.

Findability
"The first step in (re)using data is to find them. Metadata and data should be easy to find for
both humans and computers. Machine-readable metadata are essential for automatic
discovery..."

Package metadata
General registry

https://pkgdocs.julialang.org/v1/managing-packages/
https://pkgdocs.julialang.org/v1/managing-packages/
https://www.go-fair.org/fair-principles/

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 7/8

Accessibility
"Once the user finds the required data, she/he/they need to know how can they be accessed,
possibly including authentication and authorisation"

Published packages available (mostly) via github

Interoperability
"The data usually need to be integrated with other data. In addition, the data need to
interoperate with applications or workflows for analysis, storage, and processing"

Julia supports composability of packages based on interface oriented design of data
structures - we will cover this later in the course

Reproducibility
"The ultimate goal of FAIR is to optimise the reuse of data. To achieve this, metadata and data
should be well-described so that they can be replicated and/or combined in different settings."

Manifest.toml metadata files are created with reproducibility in mind
Package version bounds ensure composability across compatible versions of Julia
packages - allowing to prevent updates with breaking changes

"Side effects"
fast pace of development of independent and interoperable packages
possibility to create up-to-date documentation
culture of bug fixing via issues and pull-requests to other packages

27.10.21, 01:13 🎈 nb03-julia-package s-workf lows .jl — Pluto.jl

localhos t:1239/e dit?id=17587ae c-36b2-11e c-33e 5-29673f4cb35b# 8/8

