
18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 1/7

Scientific Computing TU Berlin Winter 2021/22 © J ürgen Fuhrmann
Notebook 01

J ulia: First Contact - Basic Pluto
What is Pluto ?
Pluto resources:
Pluto structure

Markdown cells
Cell content visibility
LATEX
in markdown cells
HTML cells
Embedded javascript
Julia code cells

Variables and reactivity
Only one statement per cell
Suppression of return values

Interactivity
Deactivating code
Live docs
Showing output of print statements

Loading packages
Conclusion

Julia: First Contact - Basic Pluto

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 2/7

What is Pluto ?
Pluto is a browser based notebook interface for the Julia language. It allows to present Julia
code and computational results in a tightly linked fashion.

For those familiar with spreadsheets: Pluto is like Google Sheets or Excel but with J ulia
code in its cells. Pluto cells are arranged in one broad column. Communication of data
between cells works via variables defined in the cells instead of cell references like A5 etc.
With Excel and other spreadsheets, Pluto shares the idea of reactivity: If a variable value is
changed in the cell where it is defined, the code in all dependent cells (cells using this
variable) is executed.
For those familiar with Jupyter notebooks: Pluto is like J upyter for J ulia, but without the
hidden state created by the unlimited possibility to execute cells in arbitrary sequence.
Instead, it enhances the notebook concept by reactivity.

Pluto is implemented in a combination of Julia and javascript, and can be installed like any
other Julia package.

During this course, Pluto notebooks will be used to present numerical methods implemented
in Julia.

Pluto resources:
Pluto repository at Github
How to install Pluto (straight from the main author Fons van der Plas)

How to install Julia and Pluto | How to install Julia and Pluto | ……

Sample notebooks are available via the index page after starting Pluto.

Pluto structure
Pluto notebooks consist of a sequence of cells which contain valid Julia code. The result of
execution of the code in a cell is its return value which is displayed on top of the cell.

https://github.com/fonsp/pluto.jl
https://www.youtube.com/watch?v=OOjKEgbt8AI

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 3/7

Markdown cells
Cells can consist of a string with text in Markdown format given as a Julia string prefixed by md .
This single text string is valid Julia code and thus returned, formatted and shown as text.

Cell content visibility

Cell content can be visible...

... or hidden, but their return value is visible nevertheless. Content visibility can be toggled via
the eye symbol on the top left of the cell.

 in markdown cells
Markdown cells can contain math code: . Just surround it by $ symbols as
in usual texts or by double backtics: ``\int_0^1 sin(π ξ) dξ``. The later method is safer as
it does not collide with string interpolation (explained below).

πξ ξ

HTML cells
Instead of a markdown string, cells also can return a string prefixed by html containing HTML
code.

deutsch english русский 中文

Bier beer пиво 啤酒

Tee tea чай 茶

Embedded javascript
A html string can contain javascript code. This allows to make use of the vast amount of
Javascript libraries designed for interactiv use in the browser.

md"""
Cell content can be visible...
"""

⋅
⋅
⋅

+

−

Leaflet

https://www.markdownguide.org/
https://leafletjs.com/

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 4/7

Julia code cells
Code cells are cells which just contain "normal" Julia code. Running the code in the cell is
triggered by the Shift-Enter keyboard combination or clicking on the triangle symbol on the
right below the cell.

Variables and reactivity
We can define a variable in a cell. The assignment has a return value like any other Julia
statement which is shown on top of the cell.

x 100 =

A variable defined in one cell can be used in another cell. Moreover, if the value is changed, the
other cell reacts and the code contained in that cell is executed with the new value of the
variable. This reactive behaviour typical for a spreadsheet.

101

One can return several results by stating them separated by , . The returned value then is a
tuple.

(101, 102, 103)

The dependency of one cell from another is defined via the involved variables and not by the
sequence in the notebook. In order to achieve this, Pluto makes extensive use of reflexivity, the
possibility to inspect the variables defined in a running Julia instance using Julia itself.

Only one statement per cell
Each cell can contain only exactly one Julia statement. If multiple expressions are desired, they
can made into one by surrounding them by begin and end . The return value will be the return
value of the last expression in the statement.

-0.5063656411097588

An alternative way is to have all statements on one line, separated by ; :

x=100⋅

x+1⋅

x+1,x+2,x+3⋅

begin
 z=x+v
 sin(z)
end

⋅
⋅
⋅
⋅

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 5/7

0.8623188722876839

However, in this situation the better structural decision would be to combine the statements
into a function defined in one cell and to call it in another cell.

f (generic function with 1 method)

0.8623188722876839

Suppression of return values

Interactivity
We can bind interactive HTML elements to variables. The Julia package PlutoUI.jl provides a nice
API for this.

0

v=0 (This uses string interpolation to print the value of v into the Markdown string)

Deactivating code
We occasionally will use the possibility to deactivate cells before running their code. This can be
useful for preventing long runnig code to start immediately after loading the notebook or for
pedagogical reasons.

The preferred pattern for this uses a checkbox bound to a logical variable.

Run next cell:

z1=x+v; cos(z1)⋅

function f(x,v)
 z=x+v
 cos(z)
end

⋅
⋅
⋅
⋅

f(x,v)⋅

md"""
Display of the return value can be suppressed by ending the last statement with
`;`
""";

⋅
⋅

⋅

@bind v PlutoUI.Slider(0:20,show_value=true)⋅

md"""v=$(v) (This uses _string interpolation_ to print the value of v into the
Markdown string)"""

⋅

https://github.com/fonsp/PlutoUI.jl

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 6/7

Cells can be deactivated using the corresponding button in the cell menu, however, this state
cannot be stored in the notebook file:

(-0.045231-4.02456e-15im, -0.045231)

Live docs
The live docs pane in the lower right bottom allows to quickly obtain help information about
documented Julia functions etc.

cos (generic function with 24 methods)

Showing output of print statements
Normally text output from statements in a cell is shown in the console window where Pluto
was started, and not in the notebook, as Pluto focuses on the presentation of the results.
Sometimes it is however desirable to inspect this output. Instead of looking for this output in
the console window where the browser has been started. One can use the function
with_terminal from PlutoUI.jl .

10

i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

if allow_run
 a=rand(2000,2000)
 ainv=inv(a)
 sum(eigvals(ainv)),tr(ainv)
end

⋅
⋅
⋅
⋅
⋅

begin
 b=rand(2000,2000)
 binv=inv(b)
 sum(eigvals(binv)),tr(binv)
end

⋅
⋅
⋅
⋅
⋅
⋅

cos⋅

PlutoUI.with_terminal() do
 for i=1:10
 println("i=$(i)")
 end
 10
end

⋅
⋅
⋅
⋅
⋅
⋅

18.10.21, 21:59 🎈 nb01-f irs t-contact-pluto.jl — Pluto.jl

localhos t:1234/e dit?id=ab225c92-304d-11e c-11a2-e bfb84ff8301 7/7

Loading packages
In Julia, packages provide additional functionality on top of the standard functionality of Julia.

In Pluto notebooks, adding and loading packages is performed via the using statement. This
will be discussed in more depth later.

Conclusion

Pluto notebooks provide a flexible, reproducible and lean possibility to convey
algorithmic content in the Julia language.
I will use Pluto notebooks for almost all code examples
Coding assignments will be done in Pluto
Your first homework will be the installation of Julia and Pluto on your computer

begin
 using PlutoUI
 using LinearAlgebra
end

⋅
⋅
⋅
⋅

