
17.12.21, 14:59 🎈 countrymeshing2.jl — Pluto.jl

localhost:1234/edit?id=5ad13326-5f41-11ec-129f-e55d45667f71 1/4

Country meshing with Julia and
Triangle
(c) J. Fuhrmann

CC-BY-NC-SA 4.0
This notebook downloads a shape file dataset, and meshes a selected country.

Activate temporary Julia environment and add packages. This will take a while if called the first time,
as they are downloaded.

Table of Contents

Country meshing with Julia and Triangle
Dataset loading
Extract information
Plot

Dataset loading

This is the name of the dataset to be downloaded:

"TM_WORLD_BORDERS-0.3.shp"

"TM_WORLD_BORDERS-0.3.dbf"

Extract meta data table:

Create a data frame from the table:

using Shapefile ,DataFrames ,GeoInterface ,Triangulate ,PlutoVista ,CSV
,Printf ,PlutoUI

⋅

dataset="TM_WORLD_BORDERS-0.3";⋅

function download_if_needed(fname)
data_url="https://github.com/petewarden/openheatmap/raw/master/mapfileprocess/test_dat
a/TM_WORLD_BORDERS-0.3/"
	 if !isfile(fname)
	 	 Base.download(data_url*fname,fname)
	 end
	 if isfile(fname)
	 	 fname
	 else
	 	 "error"
	 end
end;

⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

download_if_needed(dataset*".shp")⋅

download_if_needed(dataset*".dbf")⋅

table = Shapefile.Table(dataset*".shp");⋅

17.12.21, 14:59 🎈 countrymeshing2.jl — Pluto.jl

localhost:1234/edit?id=5ad13326-5f41-11ec-129f-e55d45667f71 2/4

df

Polygon(48 Points) "AC" "AG" "ATG" 28 "Antigua and Barbuda" 44

Polygon(1241 Points) "AG" "DZ" "DZA" 12 "Algeria" 23817

Polygon(871 Points) "AJ" "AZ" "AZE" 31 "Azerbaijan" 8260

Polygon(337 Points) "AL" "AL" "ALB" 8 "Albania" 2740

Polygon(418 Points) "AM" "AM" "ARM" 51 "Armenia" 2820

Polygon(1113 Points) "AO" "AO" "AGO" 24 "Angola" 12467

Polygon(72 Points) "AQ" "AS" "ASM" 16 "American Samoa" 20

Polygon(3781 Points) "AR" "AR" "ARG" 32 "Argentina" 27366

Polygon(8340 Points) "AS" "AU" "AUS" 36 "Australia" 76823

Polygon(111 Points) "BA" "BH" "BHR" 48 "Bahrain" 71

Polygon(363 Points) "TW" "TW" "TWN" 158 "Taiwan" 0

 =

1
2
3
4
5
6
7
8
9

10

more

246

Extract information

Extract shape information from table:

This is the way we figure out which is the index of the country in the data. We use the two character
ISO2 label:

Contry data seem to consist of several paths for the different connected components like islands etc.
We extract the largest one assuming that this usually defines the country main shape. This is not
perfect, for the US, we get e.g. only Alaska...

We must clean the data a bit as there are some badly positioned close points which make Triangulate
crash:

geometry FIPS ISO2 ISO3 UN NAME AREA

df=DataFrame(table)⋅

geoms = Shapefile.shapes(table);⋅

find_country_row(ISO2::String)=findall(df.ISO2 .== ISO2)[1];⋅

find_country_paths(ISO2::String)=geoms[find_country_row(ISO2)];⋅

find_largest_path(ISO2::String)=find_largest_path(find_country_paths(ISO2));⋅

function find_largest_path(paths::Shapefile.Polygon)
	 coord=GeoInterface.coordinates(paths)
	 npaths=length(coord)
	 pathsize=[]
	 for i=1:npaths
	 	 push!(pathsize,length(coord[i][1]))
	 end
	 largest_path=findmax(pathsize)[2]
 	x,y=clean_path_coordinates(coord[largest_path])	
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.21, 14:59 🎈 countrymeshing2.jl — Pluto.jl

localhost:1234/edit?id=5ad13326-5f41-11ec-129f-e55d45667f71 3/4

Create a triangulation for a country given by ISO2 code using Triangle by J.R.Shewchuk. Assume that
the point list describes a closed path.

triout
TriangulateIO(

pointlist=[10.979443000000003 10.95555500000006 … 11.369015312173962 11.501533806151953; 54
pointmarkerlist=Int32[1, 1, 1, 1, 1, 1, 1, 1, 1, 1 … 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

trianglelist=Int32[924 2450 … 4410 4395; 1622 1478 … 4370 4410; 925 2782 … 4406 4409],

segmentlist=Int32[1 2 … 2956 3251; 1602 3 … 1572 677],

segmentmarkerlist=Int32[1, 1, 1, 1, 1, 1, 1, 1, 1, 1 … 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

edgelist=Int32[924 1622 … 4410 4409; 1622 925 … 4395 4410],

edgemarkerlist=Int32[0, 0, 1, 0, 0, 0, 0, 1, 0, 0 … 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

)

 =

Number of triangles: 6951

Plot

function clean_path_coordinates(path;tol=1.0e-3)
 x=Float64[]
 y=Float64[]
 for coord in path[1]
 dx=0
 dy=0
 discard=false
 l= length(x)
 if l>0
 for i=1:l
 dx=x[i]-coord[1]
 dy=y[i]-coord[2]
 dist=sqrt(dx^2+dy^2)
 if dist <tol
 discard=true
 continue
 end
 end
 end
 if !discard || l==0
	 push!(x,coord[1])
	 push!(y,coord[2])
 end
 end
 x,y
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function countrymesh(country;maxarea=0.1)
 x,y=find_largest_path(country)

	 npoints=length(x)	
	 border_segments=Array{Cint,2}(undef,2,npoints)
 for i=1:npoints-1
	 border_segments[:,i].=[i,i+1]
 end
 border_segments[:,npoints].=[npoints,1]

	 tin=TriangulateIO(pointlist=hcat(x,y)',segmentlist=border_segments)

 flags=@sprintf("pVqea%f",maxarea)

	 out,vout=triangulate(flags,tin)
	 out
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

triout=countrymesh(country,maxarea=maxarea)⋅

17.12.21, 14:59 🎈 countrymeshing2.jl — Pluto.jl

localhost:1234/edit?id=5ad13326-5f41-11ec-129f-e55d45667f71 4/4

Adjust country and maximum triangle area:

country "DE" =

maxarea 0.025 =

These plots appear to be distorted, as the input data are given in longitudes and latitudes instead of
distances.

trimesh(triout.pointlist,triout.trianglelist,resolution=(500,500))⋅

country="DE"⋅

maxarea=0.025⋅

