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Time dependent Robin boundary value problem

Choose final time T > 0. Regard functions (x , t)→ R.

∂tu −∇ · D~∇u = f in Ω× [0,T ]
D~∇u · ~n + αu = g on ∂Ω× [0,T ]

u(x , 0) = u0(x) inΩ

This is an initial boundary value problem
We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform discretization in space.

Rothe method: first discretize in time, then in space

Method of lines: first discretize in space, get a huge ODE system,
then apply perfom discretization
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Time discretization

Choose time discretization points 0 = t0 < t1 · · · < tN = T

let τn = tn − tn−1

For i = 1 . . .N, solve

un − un−1

τn −∇ · D~∇uθ = f in Ω× [0,T ]

D~∇uθ · ~n + αuθ = g on ∂Ω× [0,T ]

where uθ = θun + (1− θ)un−1

θ = 1: backward (implicit) Euler method
Solve PDE problem in each timestep. First order accuracy in time.

θ = 1
2 : Crank-Nicolson scheme

Solve PDE problem in each timestep. Second order accuracy in time.

θ = 0: forward (explicit) Euler method
First order accurate in time. This does not involve the solution of a
PDE problem ⇒ Cheap? What do we have to pay for this ?
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Finite volumes for time dependent hom. Neumann problem
Search function u : Ω× [0,T ]→ R such that u(x , 0) = u0(x) and

∂tu −∇ · D~∇u = 0 inΩ× [0,T ]
D~∇u · ~n = 0 onΓ× [0,T ]

Given control volume ωk , integrate equation over space-time control
volume ωk × (tn−1, tn), divide by τn:

0 =
∫
ωk

(
1
τn (un − un−1)−∇ · D~∇uθ

)
dω

= 1
τ

n ∫
ωk

(un − un−1)dω −
∫
∂ωk

D~∇uθ · ~nkdγ

= −
∑
l∈Nk

∫
σkl

D~∇uθ · ~nkldγ −
∫
γk

D~∇uθ · ~ndγ − 1
τ

n ∫
ωk

(un − un−1)dω

≈ |ωk |
τn (un

k − un−1
k )︸ ︷︷ ︸

→M

+
∑
l∈Nk

|σkl |
hkl

(uθk − uθl )︸ ︷︷ ︸
→A
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Matrix equation
Resulting matrix equation:

1
τn
(
Mun −Mun−1)+ Auθ = 0

1
τn Mun + θAun = 1

τn Mun−1 + (θ − 1)Aun−1

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1

M = (mkl ), A = (akl ) with

akl =


∑

l′∈Nk
D |σkl′ |

hkl′
l = k

−D σkl
hkl
, l ∈ Nk

0, else

mkl =
{
|ωk | l = k
0, else

⇒ θA + M is strictly diagonally dominant!
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A matrix norm estimate
Lemma: Assume A has positive main diagonal entries, nonpositive
off-diagonal entries and row sum zero. Then, ||(I + A)−1||∞ ≤ 1

Proof: Assume that ||(I + A)−1||∞ > 1. I + A is a irreducible M-matrix,
thus (I + A)−1 has positive entries. Then for αij being the entries of
(I + A)−1,

nmax
i=1

n∑
j=1

αij > 1.

Let k be a row where the maximum is reached. Let e = (1 . . . 1)T . Then
for v = (I + A)−1e we have that v > 0, vk > 1 and vk ≥ vj for all j 6= k.
The kth equation of e = (I + A)v then looks like

1 = vk + vk
∑
j 6=k
|akj | −

∑
j 6=k
|akj |vj

≥ vk + vk
∑
j 6=k
|akj | −

∑
j 6=k
|akj |vk

= vk

> 1

This contradiction enforces ||(I + A)−1||∞ ≤ 1. �
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Stability estimate
Matrix equation again:

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1 =: Bnun−1

un = (I + τnM−1θA)−1Bnun−1

From the lemma we have ||(I + τnM−1θA)n||∞ ≤ 1
⇒ ||un||∞ ≤ ||Bnun−1||∞.

For the entries bn
kl of Bn, we have

bn
kl =

{
1 + τn

mkk
(θ − 1)akk , k = l

τn

mkk
(θ − 1)akl , else

In any case, bkl ≥ 0 for k 6= l .
If bkk ≥ 0, one estimates ||B||∞ = maxN

k=1
∑N

l=1 bkl .

But
N∑

l=1
bkl = 1 + (θ − 1) τ

n

mkk

(
akk +

∑
l∈Nk

akl

)
= 1 ⇒ ||B||∞ = 1.



Lecture 9 Slide 8

Stability conditions
For a shape regular triangulation in Rd , we can assume that
mkk = |ωk | ∼ hd , and akl = |σkl |

hkl
∼ hd−1

h = hd−2, thus akk
mkk
≤ 1

Ch2

bkk ≥ 0 gives

(1− θ) τ
n

mkk
akk ≤ 1

A sufficient condition is that for some C > 0,

(1− θ) τ
n

Ch2 ≤ 1

(1− θ)τn ≤ Ch2

Method stability:
Implicit Euler: θ = 1 ⇒ unconditional stability !

Explicit Euler: θ = 0 ⇒ CFL condition τ ≤ Ch2

Crank-Nicolson: θ = 1
2 ⇒ CFL condition τ ≤ 2Ch2

Tradeoff stability vs. accuracy.
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Stability discussion

τ ≤ Ch2 CFL == “Courant-Friedrichs-Levy”

Explicit (forward) Euler method can be applied on very fast systems
(GPU), with small time step comes a high accuracy in time.

Implicit Euler: unconditional stability – helpful when stability is of
utmost importance, and accuracy in time is less important

For hyperbolic systems (pure convection without diffusion), the CFL
conditions is τ ≤ Ch, thus in this case explicit computations are
ubiquitous

Comparison for a fixed size of the time interval. Assume for implicit
Euler, time accuracy is less important, and the number of time steps
is independent of the size of the space discretization.

1D 2D 3D
# unknowns N = O(h−1) N = O(h−2) N = O(h−3)

# steps M = O(N2) M = O(N) M = O(N2/3)
complexity M = O(N3) M = O(N2) M = O(N5/3)
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Backward Euler: discrete maximum principle
1
τn Mun + Aun = 1

τ
Mun−1

1
τn mkkun

k + akkun
k = 1

τn mkkun−1
k +

∑
k 6=l

(−akl )un
l

un
k = 1

1
τn mkk +

∑
l 6=k(−akl )

( 1
τn mkkun−1

k +
∑
l 6=k

(−akl )un
l )

≤
1
τn mkk +

∑
l 6=k(−akl )

1
τn mkk +

∑
l 6=k(−akl )

max({un−1
k } ∪ {un

l }l∈Nk )

≤ max({un−1
k } ∪ {un

l }l∈Nk )

Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in
the neigboring points.
No new local maxima can appear during time evolution
There is a continuous counterpart which can be derived from weak
solution
Sign pattern is crucial for the proof.
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Backward Euler: Nonnegativity

un + τnM−1Aun = un−1

un = (I + τnM−1A)−1un−1

(I + τnM−1A) is an M-Matrix

If u0 > 0, then un > 0 ∀n > 0
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Mass conservation

Equivalent of
∫

Ω∇ · D~∇ud~x =
∫
∂Ω D~∇u · ~ndγ = 0:

N∑
k=1

(
akkuk +

∑
l∈Nk

aklul

)
=

N∑
k=1

N∑
l=1,l 6=k

akl (ul − uk)

=
N∑

k=1

N∑
l=1,l<k

(akl (ul − uk) + alk(uk − ul ))

= 0

⇒ Equivalent of
∫

Ω und~x =
∫

Ω un−1d~x :∑N
k=1 mkkun

k =
∑N

k=1 mkkun−1
k
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Weak formulation of time step problem

Weak formulation: search u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

1
τn

∫
Ω

unv dx + θ

∫
Ω

D~∇un~∇v dx =

1
τn

∫
Ω

un−1v dx + (1− θ)
∫

Ω
D~∇un−1~∇v dx

Matrix formulation

1
τn Mun + θAun = 1

τn Mun−1 + (1− θ)Aun−1

M: mass matrix, A: stiffness matrix.


