Scientific Computing WS 2020/2021

Slide lecture 7

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Finite volumes for nonlinear problems: motivation

Regard stationary second order PDE with Robin boundary conditions as a system of two first order equations in a Lipschitz domain Ω :

$$
\begin{array}{rlr}
\nabla \cdot \vec{j} & =f & \text { continuity equation in } \Omega \\
\vec{j} & =-D(u) \vec{\nabla} u & \text { flux law in } \Omega \\
\vec{j} \cdot \vec{n} & =\alpha u-g & \text { on } \Gamma
\end{array}
$$

- Derivation of the continuity equation was based on the consideration of species balances of an representative elementary volume (REV)
- Subdivide the computational domain into a finite number of REV's
- Assign a value of u to each REV
- Approximate $\vec{\nabla} u$ by finite differece of u values in neigboring REVs
- ... call REVs "control volumes" or "finite volumes"

Discretization of continuity equation

- Stationary continuity equation: $\nabla \cdot \vec{j}=f$
- Integrate over control volume ω_{k} :

$$
\begin{aligned}
0 & =\int_{\omega_{k}} \nabla \cdot \vec{j} d \omega-\int_{\omega_{k}} f d \omega \\
& =\int_{\partial \omega_{k}} \vec{j} \cdot \vec{n}_{\omega} d s-\int_{\omega_{k}} f d \omega \\
& =\sum_{I \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \vec{j} \cdot \vec{\nu}_{k l} d s+\sum_{m \in \mathcal{G}_{k}} \int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s-\int_{\omega_{k}} f d \omega
\end{aligned}
$$

- This is exactly the same procedure as in the linear case

Approximation of flux between control volumes

Utilize flux law: $\vec{j}=-D(u) \vec{\nabla} u$

- Admissibility condition $\Rightarrow \vec{x}_{k} \vec{x}_{l} \| \nu_{k l}$
- Let $u_{k}=u\left(\vec{x}_{k}\right), u_{l}=u\left(\vec{x}_{l}\right)$
- $h_{k l}=\left|\vec{x}_{k}-\vec{x}_{l}\right|$: distance between neigboring collocation points
- Finite difference approximation of normal derivative:

$$
\vec{\nabla} u \cdot \vec{\nu}_{k l} \approx \frac{u_{l}-u_{k}}{h_{k l}}
$$

\Rightarrow flux between neigboring control volumes:

$$
\int_{\sigma_{k l}} \vec{j} \cdot \vec{\nu}_{k l} d s=\frac{\left|\sigma_{k l}\right|}{h_{k l}} g\left(u_{k}, u_{l}\right)
$$

where $g(\cdot, \cdot)$ is called flux function

Approximation of Robin boundary conditions

Utilize boundary condition $\vec{j} \cdot \vec{n}=\alpha u-g$

- Assume $\left.\alpha\right|_{\Gamma_{m}}=\alpha_{m}$
- Approximation of $\vec{j} \cdot \vec{n}_{m}$ at the boundary of ω_{k} :

$$
\vec{j} \cdot \vec{n}_{m} \approx \alpha_{m} u_{k}-g
$$

- Approximation of flux from ω_{k} through Γ_{m} :

$$
\int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s \approx\left|\gamma_{k m}\right|\left(\alpha_{m} u_{k}-g\right)
$$

Approximation of right hand side

- $f_{k}=\frac{1}{\left|\omega_{k}\right|} \int_{\omega_{k}} f(\vec{x}) d \omega$
- Simple quadrature: $f_{k}=f\left(\vec{x}_{k}\right)$

Discrete system of equations

- The discrete system of equations then writes for $k \in \mathcal{N}$:

$$
\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} g\left(u_{k}, u_{l}\right)+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \alpha_{m} u_{k}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| g
$$

- Flux approximation variants: $g\left(u_{k}, u_{l}\right) \approx D(u)\left(u_{k}-u_{l}\right)$
- Averaging: $g\left(u_{k}, u_{l}\right)=D\left(\frac{u_{k}+u_{l}}{2}\right)\left(u_{k}-u_{l}\right)$
- Integrating: let $\mathcal{D}(u)=\int_{u_{k}}^{u} D(\xi) d \xi$.

$$
\begin{aligned}
g\left(u_{k}, u_{l}\right) & =\mathcal{D}\left(u_{k}\right)-\mathcal{D}\left(u_{l}\right) \\
& =D(\theta)\left(u_{k}-u_{l}\right) \text { for some } \theta \in\left[u_{k}, u_{l}\right]
\end{aligned}
$$

For a 1 D problem, the idea behind this variant is the solution of a two point boundary value problem along the grid edge x_{k}, x_{l} :

$$
\begin{cases}D(u) u^{\prime} & =g \\ \left.u\right|_{x_{k}} & =u_{k} \\ \left.u\right|_{x_{l}} & =u_{l}\end{cases}
$$

This can be generalized to 2D and 3D problems.

Discrete system of equations II

- As a result, we have a nonlinear system of equations $A(u)=f$ with N unknowns and N equations.
- It's Jacobi matrix $A^{\prime}(u)$ is needed in order to allow to implement Newton's method.
- $A^{\prime}(u)$ is sparse, so we will be able to apply sparse linear solvers to solve the linear systems occuring during the solution
- M property of the Jacobi matrix is desirable and depends on the monotonicity property of $g\left(u_{k}, u_{l}\right)$: it needs to be monotonically increasing in the first argument, and monotonically decreasing in the second argument.

Nonlinear operator evaluation

- Given a vector u, calculate $A(u)$ - f based on information from the triangulation
- Necessary information:
- List of point coordinates \vec{x}_{K}
- List of triangles which for each triangle describes indices of points belonging to triangle
- List of (boundary) segments which for each segment describes indices of points belonging to segment
- Assembly in two loops:
- Loop over all triangles, calculate triangle contribution to nonlinear operator
- Loop over all boundary segments, calculate boundary contributions
- Use Julia's dual number approach to assemble Jacobi matrix data at the same time. So in fact for given u we get the $r=A(u)-f$ and $A^{\prime}(u)$ at once.

Generalization

The same approach can be generalized:

- Reaction-diffusion problems: $\nabla \cdot \vec{j}+r(u)=f$
- Time dependent (parabolic) problems: $\partial_{t} u(x, t)+\nabla \cdot \vec{j}=f$
- Convection-diffusion problems: $j=-D \nabla u+u \vec{v}$
- Systems of partial differential equations: $u(x)=\left(u_{1}(x) \ldots u_{m}(x)\right)$ describing the interaction of multiple species.
- In all these cases we have "building blocks" like $g\left(u_{k}, u_{l}\right), r(u)$, which give rise to a programming interface allowing to describe rather sophisticated systems of partial differential equations
- VoronoiFVM.jl Julia package

