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Finite volumes for nonlinear problems: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain €2:
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@ Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)

@ Subdivide the computational domain into a finite number of REV's
o Assign a value of u to each REV
o Approximate Vu by finite differece of u values in neigboring REVs

o ... call REVs “control volumes” or “finite volumes”



Discretization of continuity equation

e Stationary continuity equation: V -j = f

@ Integrate over control volume wy:
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@ This is exactly the same procedure as in the linear case



Approximation of flux between control volumes

Utilize flux law: j = —D(u)Vu
e Admissibility condition = XX || vk
o Let uy = u(X), uy = u(X)
@ hy = |Xx — X|: distance between neigboring collocation points
o Finite difference approximation of normal derivative:
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where g(-,-) is called flux function



Approximation of Robin boundary conditions

-

Utilize boundary condition j-i=au— g
@ Assume afr, = ap

o Approximation of - fi,, at the boundary of wy:

i & Qe — g
@ Approximation of flux from wy through I'p,:
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Approximation of right hand side

L) fk = ‘le| fwk f()?) dw

e Simple quadrature: f, = (%)



Discrete system of equations

@ The discrete system of equations then writes for k € N:
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@ Flux approximation variants: g(uk, u) ~ D(u)(ux — uy)
o Averaging: g(uk, u) = D(%F) (ux — uy)
o Integrating: let D(u) = fuL; D(&)dg.
g(uk, ur) = D(u) — D(wr)
= D(0)(ux — uy) for some 6 € [uk, uj]

For a 1D problem, the idea behind this variant is the solution of a two
point boundary value problem along the grid edge xk, x;:

D)y =g
Ulx, = ug
ulx, =y

This can be generalized to 2D and 3D problems.



Discrete system of equations |l

@ As a result, we have a nonlinear system of equations A(u) = f with N
unknowns and N equations.

@ It's Jacobi matrix A’(u) is needed in order to allow to implement
Newton's method.

o A'(u) is sparse, so we will be able to apply sparse linear solvers to
solve the linear systems occuring during the solution

@ M property of the Jacobi matrix is desirable and depends on the
monotonicity property of g(ux, u;): it needs to be monotonically
increasing in the first argument, and monotonically decreasing in the
second argument.



Nonlinear operator evaluation

o Given a vector u, calculate A(u) — f based on information from the
triangulation

o Necessary information:
o List of point coordinates Xk

o List of triangles which for each triangle describes indices of points
belonging to triangle

e List of (boundary) segments which for each segment describes indices
of points belonging to segment

@ Assembly in two loops:

o Loop over all triangles, calculate triangle contribution to nonlinear
operator

o Loop over all boundary segments, calculate boundary contributions

@ Use Julia's dual number approach to assemble Jacobi matrix data at
the same time. So in fact for given u we get the r = A(u) — f and
A'(u) at once.



Generalization

The same approach can be generalized:

Reaction-diffusion problems: V - j + r(u) = f
Time dependent (parabolic) problems: d;u(x,t)+V -j=f
Convection-diffusion problems: j = —DVu + uv

Systems of partial differential equations: u(x) = (u1(x). .. um(x))
describing the interaction of multiple species.

In all these cases we have “building blocks” like g(ux, uy), r(u), which
give rise to a programming interface allowing to describe rather
sophisticated systems of partial differential equations

VoronoiFVM. j1 Julia package



