Scientific Computing WS 2020/2021

Slide lecture 7

Jiirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Finite volumes for nonlinear problems: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain €2:

V.-j=f continuity equation in Q
f: —D(u)ﬁu flux law in
f’ i=au-—g onl

@ Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)

@ Subdivide the computational domain into a finite number of REV's
o Assign a value of u to each REV
o Approximate Vu by finite differece of u values in neigboring REVs

o ... call REVs “control volumes” or “finite volumes”

Discretization of continuity equation

e Stationary continuity equation: V -j = f

@ Integrate over control volume wy:

dew—/ f dw
Wk

:/ j~ﬁwdsf/fdw
Owy Wk

Z/Juk,ds+2/fﬁ —/fdw

1ENK meGy “k

@ This is exactly the same procedure as in the linear case

Approximation of flux between control volumes

Utilize flux law: j = —D(u)Vu
e Admissibility condition = XX || vk
o Let uy = u(X), uy = u(X)
@ hy = |Xx — X|: distance between neigboring collocation points
o Finite difference approximation of normal derivative:

up — Uk
hi

Vu-ﬁk/ ~

= flux between neigboring control volumes:
2 |Ukl|
/ J Uk ds = ——g(uk,)
ou hu

where g(-,-) is called flux function

Approximation of Robin boundary conditions

-

Utilize boundary condition j-i=au— g
@ Assume afr, = ap

o Approximation of - fi,, at the boundary of wy:

i & Qe — g
@ Approximation of flux from wy through I'p,:

/ .7 fim ds ~ |'7km|(amuk - g)
Vkm

Approximation of right hand side

L) fk = ‘le| fwk f()?) dw

e Simple quadrature: f, = (%)

Discrete system of equations

@ The discrete system of equations then writes for k € N:

Okl
Z |h7‘g(uk,ul) + Z | Vim|Ctmuk = |wic|fi + Z [Vkml &
e, K meGy megGi
@ Flux approximation variants: g(uk, u) ~ D(u)(ux — uy)
o Averaging: g(uk, u) = D(%F) (ux — uy)
o Integrating: let D(u) = fuL; D(&)dg.
g(uk, ur) = D(u) — D(wr)
= D(0)(ux — uy) for some 6 € [uk, uj]

For a 1D problem, the idea behind this variant is the solution of a two
point boundary value problem along the grid edge xk, x;:

D)y =g
Ulx, = ug
ulx, =y

This can be generalized to 2D and 3D problems.

Discrete system of equations |l

@ As a result, we have a nonlinear system of equations A(u) = f with N
unknowns and N equations.

@ It's Jacobi matrix A’(u) is needed in order to allow to implement
Newton's method.

o A'(u) is sparse, so we will be able to apply sparse linear solvers to
solve the linear systems occuring during the solution

@ M property of the Jacobi matrix is desirable and depends on the
monotonicity property of g(ux, u;): it needs to be monotonically
increasing in the first argument, and monotonically decreasing in the
second argument.

Nonlinear operator evaluation

o Given a vector u, calculate A(u) — f based on information from the
triangulation

o Necessary information:
o List of point coordinates Xk

o List of triangles which for each triangle describes indices of points
belonging to triangle

e List of (boundary) segments which for each segment describes indices
of points belonging to segment

@ Assembly in two loops:

o Loop over all triangles, calculate triangle contribution to nonlinear
operator

o Loop over all boundary segments, calculate boundary contributions

@ Use Julia's dual number approach to assemble Jacobi matrix data at
the same time. So in fact for given u we get the r = A(u) — f and
A'(u) at once.

Generalization

The same approach can be generalized:

Reaction-diffusion problems: V - j + r(u) = f
Time dependent (parabolic) problems: d;u(x,t)+V -j=f
Convection-diffusion problems: j = —DVu + uv

Systems of partial differential equations: u(x) = (u1(x). .. um(x))
describing the interaction of multiple species.

In all these cases we have “building blocks” like g(ux, uy), r(u), which
give rise to a programming interface allowing to describe rather
sophisticated systems of partial differential equations

VoronoiFVM. j1 Julia package

