
Lecture 7 Slide 1

Scientific Computing WS 2020/2021

Slide lecture 7

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 7 Slide 2

Finite volumes for nonlinear problems: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain Ω:

∇ ·~j = f continuity equation in Ω
~j = −D(u)~∇u flux law in Ω

~j · ~n = αu − g on Γ

Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)
Subdivide the computational domain into a finite number of REV’s

Assign a value of u to each REV

Approximate ~∇u by finite differece of u values in neigboring REVs

... call REVs “control volumes” or “finite volumes”

Lecture 7 Slide 3

Discretization of continuity equation

Stationary continuity equation: ∇ ·~j = f

Integrate over control volume ωk :

0 =
∫
ωk

∇ ·~j dω −
∫
ωk

f dω

=
∫
∂ωk

~j · ~nω ds −
∫
ωk

f dω

=
∑
l∈Nk

∫
σkl

~j · ~νkl ds +
∑

m∈Gk

∫
γkm

~j · ~nm ds −
∫
ωk

fdω

This is exactly the same procedure as in the linear case

Lecture 7 Slide 4

Approximation of flux between control volumes

Utilize flux law: ~j = −D(u)~∇u

Admissibility condition ⇒ ~xk~xl ‖ νkl

Let uk = u(~xk), ul = u(~xl)

hkl = |~xk − ~xl |: distance between neigboring collocation points

Finite difference approximation of normal derivative:

~∇u · ~νkl ≈
ul − uk

hkl

⇒ flux between neigboring control volumes:∫
σkl

~j · ~νkl ds = |σkl |
hkl

g(uk , ul)

where g(·, ·) is called flux function

Lecture 7 Slide 5

Approximation of Robin boundary conditions

Utilize boundary condition ~j · ~n = αu − g

Assume α|Γm = αm

Approximation of ~j · ~nm at the boundary of ωk :

~j · ~nm ≈ αmuk − g

Approximation of flux from ωk through Γm:∫
γkm

~j · ~nm ds ≈ |γkm|(αmuk − g)

Lecture 7 Slide 6

Approximation of right hand side

fk = 1
|ωk |

∫
ωk

f (~x) dω

Simple quadrature: fk = f (~xk)

Lecture 7 Slide 7

Discrete system of equations
The discrete system of equations then writes for k ∈ N :∑

l∈Nk

|σkl |
hkl

g(uk , ul) +
∑

m∈Gk

|γkm|αmuk = |ωk |fk +
∑

m∈Gk

|γkm|g

Flux approximation variants: g(uk , ul) ≈ D(u)(uk − ul)
Averaging: g(uk , ul) = D(uk +ul

2)(uk − ul)

Integrating: let D(u) =
∫ u

uk
D(ξ)dξ.

g(uk , ul) = D(uk)−D(ul)
= D(θ)(uk − ul) for some θ ∈ [uk , ul]

For a 1D problem, the idea behind this variant is the solution of a two
point boundary value problem along the grid edge xk , xl :

D(u)u′ = g
u|xk = uk

u|xl = ul

This can be generalized to 2D and 3D problems.

Lecture 7 Slide 8

Discrete system of equations II

As a result, we have a nonlinear system of equations A(u) = f with N
unknowns and N equations.

It’s Jacobi matrix A′(u) is needed in order to allow to implement
Newton’s method.

A′(u) is sparse, so we will be able to apply sparse linear solvers to
solve the linear systems occuring during the solution

M property of the Jacobi matrix is desirable and depends on the
monotonicity property of g(uk , ul): it needs to be monotonically
increasing in the first argument, and monotonically decreasing in the
second argument.

Lecture 7 Slide 9

Nonlinear operator evaluation

Given a vector u, calculate A(u)− f based on information from the
triangulation
Necessary information:

List of point coordinates ~xK

List of triangles which for each triangle describes indices of points
belonging to triangle

List of (boundary) segments which for each segment describes indices
of points belonging to segment

Assembly in two loops:
Loop over all triangles, calculate triangle contribution to nonlinear
operator

Loop over all boundary segments, calculate boundary contributions

Use Julia’s dual number approach to assemble Jacobi matrix data at
the same time. So in fact for given u we get the r = A(u)− f and
A′(u) at once.

Lecture 7 Slide 10

Generalization

The same approach can be generalized:

Reaction-diffusion problems: ∇ ·~j + r(u) = f

Time dependent (parabolic) problems: ∂tu(x , t) +∇ ·~j = f

Convection-diffusion problems: j = −D∇u + u~v

Systems of partial differential equations: u(x) = (u1(x) . . . um(x))
describing the interaction of multiple species.

In all these cases we have “building blocks” like g(uk , ul), r(u), which
give rise to a programming interface allowing to describe rather
sophisticated systems of partial differential equations

VoronoiFVM.jl Julia package

