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The Finite volume method



Finite volumes: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain :

V.-j=f continuity equation in
J=—6Vu flux law in Q
jizau—g onTl

@ Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)

e Why not just subdivide the computational domain into a finite
number of REV's 7

o Assign a value of u to each REV
o Approximate Vu by finite differece of u values in neigboring REVs

o ... call REVs “control volumes” or “finite volumes”



Constructing control volumes |

Assume Q C RY is a polygonal domain such that 9Q = |
I, are planar such that |r,, = fiy,.

meg . where

Subdivide Q into into a finite number of control volumes Q = | J, . \- @«
such that

@ wy are open convex domains such that wx Nw; = 0 if wy # w;

@ oy = Wk Ny are either empty, points or straight lines.
If |ok| > 0 we say that wg, w; are neighbours.

@ Uy L o4 normal of Jwy at oy

o Ny ={l €N :|ou| > 0}: set of neighbours of wy

@ Yikm = Owi N T, domain boundary part of dwy

@ Gy ={m € G :|ykm| > 0}: set of non-empty boundary parts of wy.

= 0wk = (Urienou) U (Umega vkm)



Constructing control volumes I

To each control volume wy assign a collocation point: X, € @, such that

o Admissibility condition:
if | € N then the line XX, is orthogonal to oy

e For a given function u: Q — R this will allow to associate its value
ux = u(X«) as the value of an unknown at Xi.

o For two neigboring control volumes wy,w; , this will allow to
approximate Vu - iy ~ 4%

o Placement of boundary unknowns at the boundary:
if wy is situated at the boundary, i.e. for |Ow, N 9| > 0, then
X € 092

o This will allow to apply boundary conditions in a direct manner



Constructing Control Volumes in 1D

Let Q = (a, b) be subdivided into intervals by
X1=a<Xo<x3<-<Xp_1<X,=>b. Then we set

X1+X: —
(31, 252, k=1
Xk—1+X
Wi = k12 k,Xk+2Xk+1>’ l<k<n
Xn—1+Xn _
Taxn)a k=n

w1 W2 w3 ‘e
X4 e Xn—1  Xp

X1 X2 X3



Control Volumes for a 2D tensor product mesh

o Let Q= (a,b) x (c,d) C R2

@ Assume subdivisions x; = a < x <x3 < - - < Xp,—1 < X, = b and
N=c<y<ys<:-- <y, 1<y, =d

@ = 1D control volumes wj and w{

o _ _ y
o Set Xy = (xk, y1) and wy = wf X wy.

e Gray: original grid lines and points
@ Green: boundaries of control volumes




Control volumes on boundary conforming Delaunay mesh

Obtain a boundary conforming Delaunay triangulation with vertices X
Construct restricted Voronoi cells wy with X € wy

o Corners of Voronoi cells are either cell circumcenters of midpoints of

boundary edges

o Admissibility condition XxX; L o = @k N @, fulfilled in a natural way
Triangulation edges: connected neigborhood graph of Voronoi cells
Triangulation nodes = collocation points
Boundary placement of collocation points of boundary control
volumes



Discretization of continuity equation

e Stationary continuity equation: V 'f: f

@ Integrate over control volume wy:

V-fdw—/ f dw
Wk Wk

:/ f~ﬁwds—/ f dw
Owy Wk

—Z/Juk/ds—i-Z/jﬁ 5_/ fdw
Wk

1eNK megy



Approximation of flux between control volumes

Utilize flux law: j = —6Vu
e Admissibility condition = XX || vk

o Let up = u(Xk), uy = u(%)

@ hy = |Xx — X|: distance between neigboring collocation points

o Finite difference approximation of normal derivative:

uy — ug
hi

Vu-z7k, ~

= flux between neigboring control volumes:

? - Tkl
/ J Vi ds ~ |hi‘(5(uk - U/)
oH Kl

g
= %g(uk’ U/)
kI

where g(-,-) is called flux function



Approximation of Robin boundary conditions

-

Utilize boundary condition j-i=au— g
@ Assume afr, = ap

o Approximation of - fi,, at the boundary of wy:

i & Qe — g
@ Approximation of flux from wy through I'p,:

/ .7 fim ds ~ |'7km|(amuk - g)
Vkm



Approximation of right hand side

L) fk = ‘le| fwk f()?) dw

e Simple quadrature: f, = (%)



Discrete system of equations

@ The discrete system of equations then writes for k € N:

(2
> | k/|5(uk —u)+ Y kmlamtne = |wilfic + > [umle

/EN megy megGy
Okl Okl
<z lowl mzw)—az' 1l e+ 3 renle
1EN, megy 1EN, megy

@ Rewrite this as

Ak Uk + g awuy = by
I=1...|N|,I#k

with by = [wilfk + > cq, [kmlg,

§lowr _
Z//ENk h:,l, + Zmegk [Vkm|atm, 1=k
= _ STk
aki 6gu e =y
0, else



Discretization matrix properties

e N = |N] equations (one for each control volume wy)
@ N = |N| unknowns (one for each collocation point x4 € wy)
@ Matrix is sparse: nonzero entries only for neighboring control volumes

@ Matrix graph is connected: nonzero entries correspond to edges in
Delaunay triangulation = irreducible

o A s irreducibly diagonally dominant if at least for one i, |7y x|a; > 0
@ Main diagonal entries are positive, off diagonal entries are non-positive

@ = A has the M-property.

A is symmetric = A is positive definite



Matrix assembly algorithm

@ Due to the connection between Voronoi diagram and Delaunay
triangulation, one can assemble the discrete system based on the

triangulation
@ Necessary information:

o List of point coordinates Xk

o List of triangles which for each triangle describes indices of points
belonging to triangle

o This induces a mapping of local node numbers of a triangle T to the
global ones: {1,2,3} — {k7 1, k72, k7 3}

o List of (boundary) segments which for each segment describes indices
of points belonging to segment

@ Assembly in two loops:

o Loop over all triangles, calculate triangle contribution to matrix entries

o Loop over all boundary segments, calculate contribution to matrix
entries



Matrix assembly — main part

@ Loop over all triangles T € T, add up edge contributions
for k,/=1...N do
| setay=0
end
for T €T do
fori,j=1...3,i#j do
0 = Okyjkr; N T

_ ol
hkT,j,kT,f
aky ; kr, T = 00
Akr j kr ;= = OTh
Akr sk ;= = 00

Ay i kr T = 00

end
end




Matrix assembly — boundary part

o Keep list of global node numbers per boundary element v mapping
local node element to the global node numbers: {1,2} — {k, 1, ky 2}

@ Keep list of boundary part numbers m, per boundary element

@ Loop over all boundary elements v € G of the discretization, add up
contributions

for vy € G do
fori=1,2 do
| Ak, ky, T = |y N 0w |
end
end



RHS assembly: calculate control volumes

o Denote wy = |wy|

@ Loop over triangles, add up contributions

for k... N do

| set wy =0

end

for 7€ 7 do
forn=...3do
‘ Wi+ = |wkﬁj ﬂT|
end

end



Matrix assembly: summary

o Sufficient to keep list of triangles, boundary segments — they typically
come out of the mesh generator

@ Be able to calculate triangular contributions to form factors: |wx N 7|,
|ok N 7| — we need only the numbers, and not the construction of the
geometrical objects

@ O(N) operation, one loop over triangles, one loop over boundary
elements



Interpretation of results

@ One solution value per control volume wy allocated to the collocation
point x, = piecewise constant function on collection of control
volumes

@ But: xx are at the same time nodes of the corresponding Delaunay
mesh = representation as piecewise linear function on triangles



