# Scientific Computing WS 2020/2021 

Slide lecture 6

Jürgen Fuhrmann<br>juergen.fuhrmann@wias-berlin.de

The Finite volume method

## Finite volumes: motivation

Regard stationary second order PDE with Robin boundary conditions as a system of two first order equations in a Lipschitz domain $\Omega$ :

$$
\begin{aligned}
\nabla \cdot \vec{j} & =f & \text { continuity equation in } \Omega \\
\vec{j} & =-\delta \vec{\nabla} u & \text { flux law in } \Omega \\
\vec{j} \cdot \vec{n} & =\alpha u-g & \text { on } \Gamma
\end{aligned}
$$

- Derivation of the continuity equation was based on the consideration of species balances of an representative elementary volume (REV)
- Why not just subdivide the computational domain into a finite number of REV's?
- Assign a value of $u$ to each REV
- Approximate $\vec{\nabla} u$ by finite differece of $u$ values in neigboring REVs
- ... call REVs "control volumes" or "finite volumes"


## Constructing control volumes I

Assume $\Omega \subset \mathbb{R}^{d}$ is a polygonal domain such that $\partial \Omega=\bigcup_{m \in \mathcal{G}} \Gamma_{m}$, where $\Gamma_{m}$ are planar such that $\left.\vec{n}\right|_{r_{m}}=\vec{n}_{m}$.
Subdivide $\Omega$ into into a finite number of control volumes $\bar{\Omega}=\bigcup_{k \in \mathcal{N}} \bar{\omega}_{k}$ such that

- $\omega_{k}$ are open convex domains such that $\omega_{k} \cap \omega_{l}=\emptyset$ if $\omega_{k} \neq \omega_{l}$
- $\sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ are either empty, points or straight lines. If $\left|\sigma_{k l}\right|>0$ we say that $\omega_{k}, \omega_{l}$ are neighbours.
- $\vec{\nu}_{k l} \perp \sigma_{k l}$ : normal of $\partial \omega_{k}$ at $\sigma_{k l}$
- $\mathcal{N}_{k}=\left\{I \in \mathcal{N}:\left|\sigma_{k l}\right|>0\right\}$ : set of neighbours of $\omega_{k}$
- $\gamma_{k m}=\partial \omega_{k} \cap \boldsymbol{\Gamma}_{m}$ : domain boundary part of $\partial \omega_{k}$
- $\mathcal{G}_{k}=\left\{m \in \mathcal{G}:\left|\gamma_{k m}\right|>0\right\}$ : set of non-empty boundary parts of $\omega_{k}$.
$\Rightarrow \partial \omega_{k}=\left(\cup_{I \in \mathcal{N}_{k}} \sigma_{k l}\right) \cup\left(\cup_{m \in \mathcal{G}_{k}} \gamma_{k m}\right)$


## Constructing control volumes II

To each control volume $\omega_{k}$ assign a collocation point: $\vec{x}_{k} \in \bar{\omega}_{k}$ such that

- Admissibility condition:
if $I \in \mathcal{N}_{k}$ then the line $\vec{x}_{k} \vec{x}_{l}$ is orthogonal to $\sigma_{k l}$
- For a given function $u: \Omega \rightarrow \mathbb{R}$ this will allow to associate its value $u_{k}=u\left(\vec{x}_{k}\right)$ as the value of an unknown at $\vec{x}_{k}$.
- For two neigboring control volumes $\omega_{k}, \omega_{l}$, this will allow to approximate $\vec{\nabla} u \cdot \vec{\nu}_{k l} \approx \frac{u_{l}-u_{k}}{h}$
- Placement of boundary unknowns at the boundary: if $\omega_{k}$ is situated at the boundary, i.e. for $\left|\partial \omega_{k} \cap \partial \Omega\right|>0$, then $\vec{x}_{k} \in \partial \Omega$
- This will allow to apply boundary conditions in a direct manner


## Constructing Control Volumes in 1D

Let $\Omega=(a, b)$ be subdivided into intervals by $x_{1}=a<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b$. Then we set

$$
\omega_{k}= \begin{cases}\left(\frac{x_{1}, \frac{x_{1}+x_{2}}{2}}{2},\right. & k=1 \\ \left(\frac{x_{k-1}+x_{k}}{2}, \frac{x_{k}+x_{k+1}}{2}\right), & 1<k<n \\ \left(\frac{x_{n-1}+x_{n}}{2}, x_{n}\right), & k=n\end{cases}
$$



## Control Volumes for a 2D tensor product mesh

- Let $\Omega=(a, b) \times(c, d) \subset \mathbb{R}^{2}$.
- Assume subdivisions $x_{1}=a<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b$ and

$$
y_{1}=c<y_{2}<y_{3}<\cdots<y_{n-1}<y_{n}=d
$$

- $\Rightarrow 1 \mathrm{D}$ control volumes $\omega_{k}^{x}$ and $\omega_{k}^{y}$
- Set $\vec{x}_{k l}=\left(x_{k}, y_{l}\right)$ and $\omega_{k l}=\omega_{k}^{x} \times \omega_{l}^{y}$.

- Gray: original grid lines and points
- Green: boundaries of control volumes


## Control volumes on boundary conforming Delaunay mesh



- Obtain a boundary conforming Delaunay triangulation with vertices $\vec{x}_{k}$
- Construct restricted Voronoi cells $\omega_{k}$ with $\vec{x}_{k} \in \omega_{k}$
- Corners of Voronoi cells are either cell circumcenters of midpoints of boundary edges
- Admissibility condition $\vec{x}_{k} \vec{x}_{l} \perp \sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ fulfilled in a natural way
- Triangulation edges: connected neigborhood graph of Voronoi cells
- Triangulation nodes $\equiv$ collocation points
- Boundary placement of collocation points of boundary control volumes


## Discretization of continuity equation

- Stationary continuity equation: $\nabla \cdot \vec{j}=f$
- Integrate over control volume $\omega_{k}$ :

$$
\begin{aligned}
0 & =\int_{\omega_{k}} \nabla \cdot \vec{j} d \omega-\int_{\omega_{k}} f d \omega \\
& =\int_{\partial \omega_{k}} \vec{j} \cdot \vec{n}_{\omega} d s-\int_{\omega_{k}} f d \omega \\
& =\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \vec{j} \cdot \vec{\nu}_{k l} d s+\sum_{m \in \mathcal{G}_{k}} \int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s-\int_{\omega_{k}} f d \omega
\end{aligned}
$$

## Approximation of flux between control volumes

Utilize flux law: $\vec{j}=-\delta \vec{\nabla} u$

- Admissibility condition $\Rightarrow \vec{x}_{k} \vec{x}_{l} \| \nu_{k l}$
- Let $u_{k}=u\left(\vec{x}_{k}\right), u_{I}=u\left(\vec{x}_{l}\right)$
- $h_{k l}=\left|\vec{x}_{k}-\vec{x}_{l}\right|$ : distance between neigboring collocation points
- Finite difference approximation of normal derivative:

$$
\vec{\nabla} u \cdot \vec{\nu}_{k l} \approx \frac{u_{l}-u_{k}}{h_{k l}}
$$

$\Rightarrow$ flux between neigboring control volumes:

$$
\begin{aligned}
\int_{\sigma_{k l}} \vec{j} \cdot \vec{\nu}_{k l} d s & \approx \frac{\left|\sigma_{k l}\right|}{h_{k l}} \delta\left(u_{k}-u_{l}\right) \\
& =: \frac{\left|\sigma_{k l}\right|}{h_{k l}} g\left(u_{k}, u_{l}\right)
\end{aligned}
$$

where $g(\cdot, \cdot)$ is called flux function

## Approximation of Robin boundary conditions

Utilize boundary condition $\vec{j} \cdot \vec{n}=\alpha u-g$

- Assume $\left.\alpha\right|_{\Gamma_{m}}=\alpha_{m}$
- Approximation of $\vec{j} \cdot \vec{n}_{m}$ at the boundary of $\omega_{k}$ :

$$
\vec{j} \cdot \vec{n}_{m} \approx \alpha_{m} u_{k}-g
$$

- Approximation of flux from $\omega_{k}$ through $\Gamma_{m}$ :

$$
\int_{\gamma_{k m}} \vec{j} \cdot \vec{n}_{m} d s \approx\left|\gamma_{k m}\right|\left(\alpha_{m} u_{k}-g\right)
$$

## Approximation of right hand side

- $f_{k}=\frac{1}{\left|\omega_{k}\right|} \int_{\omega_{k}} f(\vec{x}) d \omega$
- Simple quadrature: $f_{k}=f\left(\vec{x}_{k}\right)$


## Discrete system of equations

- The discrete system of equations then writes for $k \in \mathcal{N}$ :

$$
\begin{array}{r}
\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} \delta\left(u_{k}-u_{l}\right)+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \alpha_{m} u_{k}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| g \\
u_{k}\left(\delta \sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}}+\alpha_{m} \sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right|\right)-\delta \sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} u_{l}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| g
\end{array}
$$

- Rewrite this as

$$
a_{k k} u_{k}+\sum_{l=1 \ldots|\mathcal{N}|, l \neq k} a_{k l} u_{l}=b_{k}
$$

with $b_{k}=\left|\omega_{k}\right| f_{k}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| g$,

$$
a_{k l}= \begin{cases}\sum_{l^{\prime} \in \mathcal{N}_{k}} \delta \frac{\left|\sigma_{k l^{\prime}}\right|}{h_{k l \prime}}+\sum_{m \in \mathcal{G}_{k}}\left|\gamma_{k m}\right| \alpha_{m}, & I=k \\ -\delta \frac{\sigma_{k l}}{h_{k l}}, & I \in \mathcal{N}_{k} \\ 0, & \text { else }\end{cases}
$$

## Discretization matrix properties

- $N=|\mathcal{N}|$ equations (one for each control volume $\omega_{k}$ )
- $N=|\mathcal{N}|$ unknowns (one for each collocation point $x_{k} \in \omega_{k}$ )
- Matrix is sparse: nonzero entries only for neighboring control volumes
- Matrix graph is connected: nonzero entries correspond to edges in Delaunay triangulation $\Rightarrow$ irreducible
- $A$ is irreducibly diagonally dominant if at least for one $i,\left|\gamma_{i, k}\right| \alpha_{i}>0$
- Main diagonal entries are positive, off diagonal entries are non-positive
- $\Rightarrow A$ has the M-property.
- $A$ is symmetric $\Rightarrow A$ is positive definite


## Matrix assembly algorithm

- Due to the connection between Voronoi diagram and Delaunay triangulation, one can assemble the discrete system based on the triangulation
- Necessary information:
- List of point coordinates $\vec{x}_{K}$
- List of triangles which for each triangle describes indices of points belonging to triangle
- This induces a mapping of local node numbers of a triangle $T$ to the global ones: $\{1,2,3\} \rightarrow\left\{k_{T, 1}, k_{T, 2}, k_{T, 3}\right\}$
- List of (boundary) segments which for each segment describes indices of points belonging to segment
- Assembly in two loops:
- Loop over all triangles, calculate triangle contribution to matrix entries
- Loop over all boundary segments, calculate contribution to matrix entries


## Matrix assembly - main part

- Loop over all triangles $T \in \mathcal{T}$, add up edge contributions

$$
\begin{aligned}
& \text { for } k, I=1 \ldots N \text { do } \\
& \text { set } a_{k l}=0 \\
& \text { end } \\
& \text { for } T \in \mathcal{T} \text { do } \\
& \text { for } i, j=1 \ldots 3, i \neq j \text { do } \\
& \sigma=\sigma_{k_{T, j}, k_{T, i}} \cap T \\
& s=\frac{|\sigma|}{h_{k_{T, j}, k_{T, i}}} \\
& a_{k_{T, j}, k_{T, j}}+=\delta \sigma_{h} \\
& a_{k_{T, j}, k_{T, i}}-=\delta \sigma_{h} \\
& a_{k_{T, i}, k_{T, j}}-=\delta \sigma_{h} \\
& a_{k_{T, i}, k_{T, n}}+=\delta \sigma_{h} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

## Matrix assembly - boundary part

- Keep list of global node numbers per boundary element $\gamma$ mapping local node element to the global node numbers: $\{1,2\} \rightarrow\left\{k_{\gamma, 1}, k_{\gamma, 2}\right\}$
- Keep list of boundary part numbers $m_{\gamma}$ per boundary element
- Loop over all boundary elements $\gamma \in \mathcal{G}$ of the discretization, add up contributions

```
for }\gamma\in\mathcal{G}\mathrm{ do
        for i=1,2 do
        ak\mp@subsup{r}{\gamma}{},\mp@subsup{k}{\mp@subsup{\gamma}{i}{}}{}
    end
end
```


## RHS assembly: calculate control volumes

- Denote $w_{k}=\left|\omega_{k}\right|$
- Loop over triangles, add up contributions

```
for \(k \ldots N\) do
        set \(w_{k}=0\)
end
for \(\tau \in \mathcal{T}\) do
        for \(n=\ldots 3\) do
            \(\left|\quad w_{k}+=\left|\omega_{k_{\tau, j}} \cap \tau\right|\right.\)
            end
end
```


## Matrix assembly: summary

- Sufficient to keep list of triangles, boundary segments - they typically come out of the mesh generator
- Be able to calculate triangular contributions to form factors: $\left|\omega_{k} \cap \tau\right|$, $\left|\sigma_{k l} \cap \tau\right|$ - we need only the numbers, and not the construction of the geometrical objects
- $O(N)$ operation, one loop over triangles, one loop over boundary elements


## Interpretation of results

- One solution value per control volume $\omega_{k}$ allocated to the collocation point $x_{k} \Rightarrow$ piecewise constant function on collection of control volumes
- But: $x_{k}$ are at the same time nodes of the corresponding Delaunay mesh $\Rightarrow$ representation as piecewise linear function on triangles

