Scientific Computing WS 2020/2021

Slide lecture 6

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

The Finite volume method

Regard stationary second order PDE with Robin boundary conditions as a system of two first order equations in a Lipschitz domain Ω :

$$\begin{split} \nabla \cdot \vec{j} &= f & \text{continuity equation in } \Omega \\ \vec{j} &= -\delta \vec{\nabla} u & \text{flux law in } \Omega \\ \vec{j} \cdot \vec{n} &= \alpha u - g & \text{on } \Gamma \end{split}$$

- Derivation of the continuity equation was based on the consideration of species balances of an representative elementary volume (REV)
- Why not just subdivide the computational domain into a finite number of REV's ?
 - Assign a value of *u* to each REV
 - Approximate $\vec{\nabla} u$ by finite differece of u values in neighboring REVs
 - ... call REVs "control volumes" or "finite volumes"

Assume $\Omega \subset \mathbb{R}^d$ is a polygonal domain such that $\partial \Omega = \bigcup_{m \in \mathcal{G}} \Gamma_m$, where Γ_m are planar such that $\vec{n}|_{\Gamma_m} = \vec{n}_m$.

Subdivide Ω into into a finite number of **control volumes** $\overline{\Omega} = \bigcup_{k \in \mathcal{N}} \overline{\omega}_k$ such that

- ω_k are open convex domains such that $\omega_k \cap \omega_l = \emptyset$ if $\omega_k \neq \omega_l$
- $\sigma_{kl} = \bar{\omega}_k \cap \bar{\omega}_l$ are either empty, points or straight lines. If $|\sigma_{kl}| > 0$ we say that ω_k , ω_l are neighbours.

•
$$\vec{\nu}_{kl} \perp \sigma_{kl}$$
: normal of $\partial \omega_k$ at σ_{kl}

- $\mathcal{N}_k = \{I \in \mathcal{N} : |\sigma_{kl}| > 0\}$: set of neighbours of ω_k
- $\gamma_{km} = \partial \omega_k \cap \Gamma_m$: domain boundary part of $\partial \omega_k$
- G_k = {m ∈ G : |γ_{km}| > 0}: set of non-empty boundary parts of ω_k.

$$\Rightarrow \partial \omega_k = (\cup_{l \in \mathcal{N}_k} \sigma_{kl}) \bigcup (\cup_{m \in \mathcal{G}_k} \gamma_{km})$$

To each control volume ω_k assign a **collocation point**: $\vec{x}_k \in \bar{\omega}_k$ such that

• Admissibility condition:

if $l \in \mathcal{N}_k$ then the line $\vec{x}_k \vec{x}_l$ is orthogonal to σ_{kl}

- For a given function $u : \Omega \to \mathbb{R}$ this will allow to associate its value $u_k = u(\vec{x}_k)$ as the value of an unknown at \vec{x}_k .
- For two neigboring control volumes ω_k, ω_l , this will allow to approximate $\vec{\nabla} u \cdot \vec{\nu}_{kl} \approx \frac{u_l u_k}{h}$
- Placement of boundary unknowns at the boundary: if ω_k is situated at the boundary, i.e. for $|\partial \omega_k \cap \partial \Omega| > 0$, then $\vec{x}_k \in \partial \Omega$
 - This will allow to apply boundary conditions in a direct manner

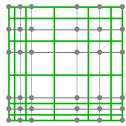
Let $\Omega = (a, b)$ be subdivided into intervals by $x_1 = a < x_2 < x_3 < \cdots < x_{n-1} < x_n = b$. Then we set

$$\omega_{k} = \begin{cases} \left(x_{1}, \frac{x_{1}+x_{2}}{2}\right), & k = 1\\ \left(\frac{x_{k-1}+x_{k}}{2}, \frac{x_{k}+x_{k+1}}{2}\right), & 1 < k < n\\ \left(\frac{x_{n-1}+x_{n}}{2}, x_{n}\right), & k = n \end{cases}$$

Control Volumes for a 2D tensor product mesh

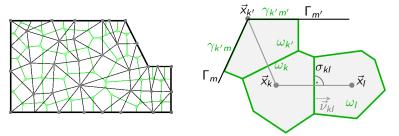
- Let $\Omega = (a, b) \times (c, d) \subset \mathbb{R}^2$.
- Assume subdivisions $x_1 = a < x_2 < x_3 < \cdots < x_{n-1} < x_n = b$ and $y_1 = c < y_2 < y_3 < \cdots < y_{n-1} < y_n = d$
- \Rightarrow 1D control volumes $\omega_k^{\scriptscriptstyle X}$ and $\omega_k^{\scriptscriptstyle Y}$

• Set
$$\vec{x}_{kl} = (x_k, y_l)$$
 and $\omega_{kl} = \omega_k^x \times \omega_l^y$.



- Gray: original grid lines and points
- Green: boundaries of control volumes

Control volumes on boundary conforming Delaunay mesh



- Obtain a boundary conforming Delaunay triangulation with vertices \vec{x}_k
- Construct restricted Voronoi cells ω_k with $\vec{x}_k \in \omega_k$
 - Corners of Voronoi cells are either cell circumcenters of midpoints of boundary edges
 - Admissibility condition $\vec{x}_k \vec{x}_l \perp \sigma_{kl} = \vec{\omega}_k \cap \vec{\omega}_l$ fulfilled in a natural way
- Triangulation edges: connected neigborhood graph of Voronoi cells
- Triangulation nodes \equiv collocation points
- Boundary placement of collocation points of boundary control volumes

Discretization of continuity equation

- Stationary continuity equation: $\nabla \cdot \vec{j} = f$
- Integrate over control volume ω_k :

$$\begin{aligned} 0 &= \int_{\omega_{k}} \nabla \cdot \vec{j} \, d\omega - \int_{\omega_{k}} f \, d\omega \\ &= \int_{\partial \omega_{k}} \vec{j} \cdot \vec{n}_{\omega} \, ds - \int_{\omega_{k}} f \, d\omega \\ &= \sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{kl}} \vec{j} \cdot \vec{\nu}_{kl} \, ds + \sum_{m \in \mathcal{G}_{k}} \int_{\gamma_{km}} \vec{j} \cdot \vec{n}_{m} \, ds - \int_{\omega_{k}} f d\omega \end{aligned}$$

Approximation of flux between control volumes

Utilize flux law: $\vec{j} = -\delta \vec{\nabla} u$

• Admissibility condition $\Rightarrow \vec{x}_k \vec{x}_l \parallel \nu_{kl}$

• Let
$$u_k = u(\vec{x}_k)$$
, $u_l = u(\vec{x}_l)$

• $h_{kl} = |\vec{x}_k - \vec{x}_l|$: distance between neigboring collocation points

• Finite difference approximation of normal derivative:

$$\vec{
abla} u \cdot \vec{
u}_{kl} pprox rac{u_l - u_k}{h_{kl}}$$

⇒ flux between neigboring control volumes:

$$\int_{\sigma_{kl}} \vec{j} \cdot \vec{\nu}_{kl} \, ds \approx \frac{|\sigma_{kl}|}{h_{kl}} \delta(u_k - u_l)$$
$$=: \frac{|\sigma_{kl}|}{h_{kl}} g(u_k, u_l)$$

where $g(\cdot, \cdot)$ is called flux function

Approximation of Robin boundary conditions

Utilize boundary condition $\vec{j} \cdot \vec{n} = \alpha u - g$

- Assume $\alpha|_{\Gamma_m} = \alpha_m$
- Approximation of $\vec{j} \cdot \vec{n}_m$ at the boundary of ω_k :

$$\vec{j} \cdot \vec{n}_m \approx \alpha_m u_k - g$$

• Approximation of flux from ω_k through Γ_m :

$$\int_{\gamma_{km}} \vec{j} \cdot \vec{n}_m \, ds \approx |\gamma_{km}| (\alpha_m u_k - g)$$

- $f_k = \frac{1}{|\omega_k|} \int_{\omega_k} f(\vec{x}) \, d\omega$
- Simple quadrature: $f_k = f(\vec{x}_k)$

Discrete system of equations

• The discrete system of equations then writes for $k \in \mathcal{N}$:

$$\sum_{l \in \mathcal{N}_k} \frac{|\sigma_{kl}|}{h_{kl}} \delta(u_k - u_l) + \sum_{m \in \mathcal{G}_k} |\gamma_{km}| \alpha_m u_k = |\omega_k| f_k + \sum_{m \in \mathcal{G}_k} |\gamma_{km}| g$$
$$u_k \left(\delta \sum_{l \in \mathcal{N}_k} \frac{|\sigma_{kl}|}{h_{kl}} + \alpha_m \sum_{m \in \mathcal{G}_k} |\gamma_{km}| \right) - \delta \sum_{l \in \mathcal{N}_k} \frac{|\sigma_{kl}|}{h_{kl}} u_l = |\omega_k| f_k + \sum_{m \in \mathcal{G}_k} |\gamma_{km}| g$$

Rewrite this as

$$a_{kk}u_k + \sum_{I=1\ldots|\mathcal{N}|, I\neq k} a_{kI}u_I = b_k$$

with $b_k = |\omega_k| f_k + \sum_{m \in \mathcal{G}_k} |\gamma_{km}| g$, $a_{kl} = \begin{cases} \sum_{l' \in \mathcal{N}_k} \delta \frac{|\sigma_{kl'}|}{h_{kl'}} + \sum_{m \in \mathcal{G}_k} |\gamma_{km}| \alpha_m, & l = k \\ -\delta \frac{\sigma_{kl}}{h_{kl}}, & l \in \mathcal{N}_k \\ 0, & else \end{cases}$

Lecture 6 Slide 13

Discretization matrix properties

- $N = |\mathcal{N}|$ equations (one for each control volume ω_k)
- $N = |\mathcal{N}|$ unknowns (one for each collocation point $x_k \in \omega_k$)
- Matrix is sparse: nonzero entries only for neighboring control volumes
- Matrix graph is connected: nonzero entries correspond to edges in Delaunay triangulation \Rightarrow irreducible
- A is irreducibly diagonally dominant if at least for one i, $|\gamma_{i,k}|\alpha_i > 0$
- Main diagonal entries are positive, off diagonal entries are non-positive
- \Rightarrow A has the M-property.
- A is symmetric \Rightarrow A is positive definite

Matrix assembly algorithm

- Due to the connection between Voronoi diagram and Delaunay triangulation, one can assemble the discrete system based on the triangulation
- Necessary information:
 - List of point coordinates \vec{x}_{K}
 - List of triangles which for each triangle describes indices of points belonging to triangle
 - This induces a mapping of local node numbers of a triangle T to the global ones: $\{1, 2, 3\} \rightarrow \{k_{T,1}, k_{T,2}, k_{T,3}\}$
 - List of (boundary) segments which for each segment describes indices of points belonging to segment
- Assembly in two loops:
 - Loop over all triangles, calculate triangle contribution to matrix entries
 - Loop over all boundary segments, calculate contribution to matrix entries

Matrix assembly – main part

• Loop over all triangles $T \in T$, add up edge contributions for k, l = 1...N do set $a_{kl} = 0$ end for $T \in \mathcal{T}$ do for $i, j = 1 \dots 3, i \neq j$ do $\sigma = \sigma_{k_{T,j},k_{T,i}} \cap T$ $s = rac{|\sigma|}{h_{k_{T,j},k_{T,i}}}$ $a_{k_{T,i},k_{T,i}} + = \delta \sigma_h$ $a_{k_{T,i},k_{T,i}} - = \delta \sigma_h$ $a_{k_{T,i},k_{T,i}} = \delta \sigma_h$ $a_{k_{T,i},k_{T,n}} + = \delta \sigma_h$ end end

- Keep list of global node numbers per boundary element γ mapping local node element to the global node numbers: $\{1,2\} \rightarrow \{k_{\gamma,1}, k_{\gamma,2}\}$
- Keep list of boundary part numbers m_γ per boundary element
- \bullet Loop over all boundary elements $\gamma \in \mathcal{G}$ of the discretization, add up contributions

$$\begin{array}{l} \text{for } \gamma \in \mathcal{G} \text{ do} \\ | \quad \text{for } i = 1,2 \text{ do} \\ | \quad a_{k_{\gamma_i},k_{\gamma_i}} + = \alpha_{m_{\gamma}} | \gamma \cap \partial \omega_{k_{\gamma_i}} | \\ | \quad \text{end} \\ \text{end} \end{array}$$

RHS assembly: calculate control volumes

• Denote $w_k = |\omega_k|$

Loop over triangles, add up contributions

```
for k \dots N do

\mid set w_k = 0

end

for \tau \in \mathcal{T} do

\mid for n = \dots 3 do

\mid w_k + = |\omega_{k_{\tau,j}} \cap \tau|

end

end
```

- Sufficient to keep list of triangles, boundary segments they typically come out of the mesh generator
- Be able to calculate triangular contributions to form factors: $|\omega_k \cap \tau|$, $|\sigma_{kl} \cap \tau|$ we need only the numbers, and not the construction of the geometrical objects
- O(N) operation, one loop over triangles, one loop over boundary elements

- One solution value per control volume ω_k allocated to the collocation point x_k ⇒ piecewise constant function on collection of control volumes
- But: x_k are at the same time nodes of the corresponding Delaunay mesh ⇒ representation as piecewise linear function on triangles