Scientific Computing WS 2020/2021

Slide lecture 5

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Given: domain $\Omega \subset \mathbb{R}^d$ (d = 1, 2, 3...)

- Dot product: for $\vec{x}, \vec{y} \in \mathbb{R}^d$, $\vec{x} \cdot \vec{y} = \sum_{i=1}^d x_i y_i$
- $\bullet\,$ Bounded domain $\Omega\subset \mathbb{R}^d,$ with piecewise smooth boundary

• Scalar function
$$u : \Omega \to \mathbb{R}$$

• Vector function $\vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} : \Omega \to \mathbb{R}^d$

- Partial derivative $\partial_i u = \frac{\partial u}{\partial x_i}$
- For a multiindex $\alpha = (\alpha_1 \dots \alpha_d)$, let

•
$$|\alpha| = \alpha_1 + \dots + \alpha_d$$

•
$$\partial^{\alpha} u = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}$$

Basic Differential operators

• *Gradient* of scalar function $u: \Omega \to \mathbb{R}$:

$$\operatorname{grad} = \vec{\nabla} = \begin{pmatrix} \partial_1 \\ \vdots \\ \partial_d \end{pmatrix} : u \mapsto \vec{\nabla} u = \begin{pmatrix} \partial_1 u \\ \vdots \\ \partial_d u \end{pmatrix}$$

• Divergence of vector function $\vec{v} = \Omega \rightarrow \mathbb{R}^d$:

$$\operatorname{div} = \nabla \cdot : \vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \mapsto \nabla \cdot \vec{v} = \partial_1 v_1 + \dots + \partial_d v_d$$

• Laplace operator of scalar function $u: \Omega \to \mathbb{R}$

$$\begin{aligned} \operatorname{div} \cdot \operatorname{grad} &= \nabla \cdot \vec{\nabla} \\ &= \Delta : u \mapsto \Delta u = \partial_{11} u + \dots + \partial_{dd} u \end{aligned}$$

Definition: A connected open subset $\Omega \subset \mathbb{R}^d$ is called *domain*. If Ω is a bounded set, the domain is called *bounded*.

Definition:

- Let D ⊂ ℝⁿ. A function f : D → ℝ^m is called Lipschitz continuous if there exists c > 0 such that ||f(x) f(y)|| ≤ c||x y|| for any x, y ∈ D
- A hypersurface in \mathbb{R}^n is a graph if for some k it can be represented as

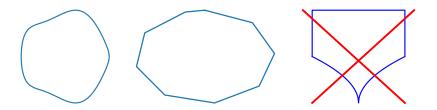
$$x_k = f(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$$

defined on some domain $D \subset \mathbb{R}^{n-1}$

A domain Ω ⊂ ℝⁿ is a Lipschitz domain if for all x ∈ ∂Ω, there exists a neigborhood of x on ∂Ω which can be represented as the graph of a Lipschitz continuous function.

Standard PDE calculus happens in Lipschitz domains

- Boundaries of Lipschitz domains are continuous
- Polygonal domains are Lipschitz
- Boundaries of Lipschitz domains have no cusps (e.g. the graph of $y = \sqrt{|x|}$ has a cusp at x = 0)



Theorem: Let Ω be a bounded Lipschitz domain and $\vec{v} : \Omega \to \mathbb{R}^d$ be a continuously differentiable vector function. Let \vec{n} be the outward normal to Ω . Then,

$$\int_{\Omega} \nabla \cdot \vec{v} \, d\vec{x} = \int_{\partial \Omega} \vec{v} \cdot \vec{n} \, ds$$

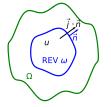
This is a generalization of the Newton-Leibniz rule of calculus: Let d = 1, $\Omega = (a, b)$. Then:

- *n*_a = (−1)
- $n_b = (1)$
- $\nabla \cdot \mathbf{v} = \mathbf{v}'$

$$\int_{\Omega} \nabla \cdot \vec{v} \, d\vec{x} = \int_a^b v'(x) \, dx = v(b) - v(a) = v(a)n_a + v(b)n_b$$

Species flux through boundary of an REV

- Ω : Domain, (0, T) evolution time interval
- $u(\vec{x}, t) : \Omega \times [0, T] \rightarrow \mathbb{R}$: time dependent local amount of species
- $f(\vec{x}, t) : \Omega \times [0, T] \rightarrow \mathbb{R}$: species sources/sinks
- $\vec{j}(\vec{x}, t)$: vector field of the species flux



ω ⊂ Ω: representative elementary volume (REV)
(t₀, t₁) ⊂ (0, T): subset of the time interval

- $J(t) = \int_{\partial \omega} \vec{j}(\vec{x}, t) \cdot \vec{n}$ ds: flux of species trough $\partial \omega$ at moment t
- $U(t) = \int_{\omega} u(\vec{x}, t) d\vec{x}$: amount of species in ω at moment t
- $F(t) = \int_{\omega} f(\vec{x}, t) d\vec{x}$: rate of creation/destruction at moment t

Species conservation \Rightarrow continuity equation

Change of amount of species in ω during (t_0, t_1) proportional to the sum of the amount transported through boundary and the amount created/destroyed

$$U(t_1) - U(t_0) + \int_{t_0}^{t_1} J(t) dt = \int_{t_0}^{t_1} F(t) dt$$

$$\int_{\omega} (u(\vec{x}, t_1) - u(\vec{x}, t_0)) \, d\vec{x} + \int_{t_0}^{t_1} \int_{\partial \omega} \vec{j}(\vec{x}, t) \cdot \vec{n} \, ds \, dt = \int_{t_0}^{t_1} \int_{\omega} f(\vec{x}, t) \, ds$$

Using Gauss' theorem, rewrite this as

$$0 = \int_{t_0}^{t_1} \int_{\omega} \partial_t u(\vec{x}, t) \, d\vec{x} \, dt + \int_{t_0}^{t_1} \int_{\omega} \nabla \cdot \vec{j}(\vec{x}, t) \, d\vec{x} \, dt - \int_{t_0}^{t_1} \int_{\omega} f(\vec{x}, t) \, ds$$

True for all $\omega \subset \Omega$, $(t_0, t_1) \subset (0, T) \Rightarrow$

Continuity equation in differential form

$$\partial_t u(\vec{x},t) + \nabla \cdot \vec{j}(\vec{x},t) = f(\vec{x},t)$$

As a rule, species flux $\vec{j}(\vec{x},t)$ is proportional to $-\vec{
abla}u(\vec{x},t)$

- Assumption: j
 ⁱ = −δ v
 ⁱ u, where δ > 0 can be constant, space dependent or even depend on u. For simplicity, we assume δ to be constant, unless stated otherwise.
- Heat conduction:

u = T: temperature $\delta = \lambda$: heat conduction coefficient f: heat source $\vec{i} = -\lambda \vec{\nabla} T$: "Fourier law"

- Diffusion of molecules in a given medium (for low concentrations)
 - u = c: concentration
 - $\delta = D$: diffusion coefficient
 - *f*: species source (e.g due to reactions)
 - $\vec{j} = -D\vec{\nabla}c$: "Fick's law"

• Flow in a saturated porous medium:

u = p: pressure $\delta = k$: permeability $\vec{j} = -k\vec{\nabla}p$: "Darcy's law"

Electrical conduction:

 $u = \varphi$: electric potential

 $\delta = \sigma$: electric conductivity

 $\vec{j} = -\sigma \vec{\nabla} \varphi \equiv$ current density: "Ohms's law"

• Electrostatics in a constant magnetic field:

 $\begin{array}{l} u=\varphi : \mbox{ electric potential} \\ \delta=\varepsilon : \mbox{ dielectric permittivity} \\ \vec{E}=\vec{\nabla}\phi : \mbox{ electric field} \\ \vec{j}=\vec{D}=\varepsilon\vec{E}=\varepsilon\vec{\nabla}\varphi : \mbox{ electric displacement field: "Gauss's Law"} \\ f=\rho : \mbox{ charge density} \end{array}$

Second order partial differential equaions (PDEs)

Combine continuity equation with flux expression:

• Transient problem:

Parabolic PDE:

$$\partial_t u(\vec{x},t) - \nabla \cdot (\delta \vec{\nabla} u(\vec{x},t)) = f(\vec{x},t)$$

• Stationary case: $\partial_t u = 0 \Rightarrow$

Elliptic PDE

$$-\nabla \cdot (\delta \vec{\nabla} u(\vec{x})) = f(\vec{x})$$

- For solvability we need additional conditions:
 - Initial condition in the time dependent case: $u(\vec{x},0) = u_0(\vec{x})$
 - \bullet Boundary conditions: behavior of solution on $\partial \Omega$

- Assume ∂Ω = ∪^{N_Γ}_{i=1}Γ_i is the union of a finite number of non-intersecting subsets Γ_i which are locally Lipschitz.
- On each Γ_i, specify one of
 - Fixed solution at boundary ⇒ Dirichlet ("first kind") BC: let g_i : Γ_i → ℝ (homogeneous for g_i = 0)

$$u(\vec{x},t) = g_i(\vec{x},t)$$
 for $\vec{x} \in \Gamma_i$

 Fixed boundary flux ⇒ Neumann ("second kind") BC: Let g_i : Γ_i → ℝ (homogeneus for g_i = 0)

$$\delta \vec{\nabla} u(\vec{x}, t) \cdot \vec{n} = g_i(\vec{x}, t) \text{ for } \vec{x} \in \Gamma_i$$

 Boundary flux proportional to solution ⇒ Robin ("third kind") BC: let α_i > 0, g_i : Γ_i → ℝ

 $\delta \vec{\nabla} u(\vec{x}, t) \cdot \vec{n} + \alpha_i(\vec{x}, t) u(\vec{x}, t) = g_i(\vec{x}, t) \quad \text{for } \vec{x} \in \Gamma_i$

PDEs: generalizations

- δ may depend on \vec{x} , u, $|\vec{\nabla}u|$... \Rightarrow equations become nonlinear
- Coefficients can depend on other processes
 - temperature can influence conductvity
 - source terms can describe chemical reactions between different species
 - chemical reactions can generate/consume heat
 - Electric current generates heat ("Joule heating")
 - ...
 - \Rightarrow coupled PDEs
- Convective terms: $\vec{j} = -\delta \vec{\nabla} u + u \vec{v}$ where \vec{v} is a convective velocity
- PDEs for vector unknowns
 - Momentum balance ⇒ Navier-Stokes equations for fluid dynamics
 - Elasticity
 - Maxwell's electromagnetic field equations