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Differential operators: notations

Given: domain Q C R (d =1,2,3...)

@ Dot product: for X,y € RY, -y = 27:1 Xi Vi

e Bounded domain Q C RY, with piecewise smooth boundary
@ Scalar function u: Q - R
Vi
o Vector function v=| : | :Q— R4
Vd
o Partial derivative Jju = gx”i

For a multiindex o = (a1 ... ag), let
o laf=ar+-+ayg
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Basic Differential operators

@ Gradient of scalar function u: Q — R:
01 Oiu
grad:?: |y Vu= :
8d 8du

o Divergence of vector function vV = Q — R%:
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o Laplace operator of scalar function v: Q — R

div'grad:V‘ﬁ
=A:u~— Au=0uu-+---+ O4qu



Lipschitz domains

Definition: A connected open subset Q C R? is called domain. If Qis a
bounded set, the domain is called bounded.

Definition:

o Let D C R". A function f : D — R™ is called Lipschitz continuous if there
exists ¢ > 0 such that ||f(x) — f(y)|| < c||x — y|| for any x,y € D

@ A hypersurface in R" is a graph if for some k it can be represented as
Xk = (X5 v oy Xkm1y Xkt1y « « - 5 Xn)
defined on some domain D C R"!

o A domain Q C R" is a Lipschitz domain if for all x € 912, there exists a
neigborhood of x on 02 which can be represented as the graph of a
Lipschitz continuous function.



Lipschitz domains |l

Standard PDE calculus happens in Lipschitz domains
@ Boundaries of Lipschitz domains are continuous
@ Polygonal domains are Lipschitz

@ Boundaries of Lipschitz domains have no cusps
(e.g. the graph of y = /|x| has a cusp at x = 0)
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Divergence theorem (Gauss' theorem)

Theorem: Let Q be a bounded Lipschitz domain and v : Q — R? be a
continuously differentiable vector function. Let 7i be the outward normal to €.

Then,
/V-\?d)?:/ V-hids
Q o9

This is a generalization of the Newton-Leibniz rule of calculus:
Let d =1, Q = (a,b). Then:

e n,=(-1)
@ np = (1)

o V.v=Vv

b
V. -vdX = v (x)dx = v(b) — v = v(a)n, + v(b)ny
/Q / ) x = v(B) — (a) = v(a)ns + v(b)



Species flux through boundary of an REV

e Q: Domain, (0, T) evolution time interval

u(X,t) : Q x [0, T] — R: time dependent local amount of species

f(X,t) : 2 x [0, T] — R: species sources/sinks

J(X, t): vector field of the species flux

@ w C Q: representative elementary volume (REV)
@ (to,t1) C (0, T): subset of the time interval

e J(t)
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(]
]
Nt

|
£
P}
i
N
Q.

X

X: rate of creation/destruction at moment ¢t



Species conservation = continuity equation

Change of amount of species in w during (to, t1) proportional to the sum of the
amount transported through boundary and the amount created/destroyed

U(t1) — U(to) + /t1 J(t) dt = /t1 F(t) dt

to to

t1 t1
/(u()?, t) — u(X, to))d>?—|—/ / J(z, t)~ﬁdsdt:/ /f()?, t) ds
w to Ow to w

Using Gauss' theorem, rewrite this as

ty t1 ty
0:/ /8tu(>?,t)d>?dt+/ /V~f(>?,t)d>?dt—/ /f()?,t)ds
to w to w to w

True for all w C Q, (to,t1) C (0, T) =

Continuity equation in differential form
Oru(X, 1)+ V - j(%,t) = f(X, t) J




Flux expressions

As a rule, species flux ]()'(’, t) is proportional to —§u(>_(', t)

@ Assumption: f: —8Vu, where § > 0 can be constant, space dependent or
even depend on u. For simplicity, we assume § to be constant, unless stated
otherwise.

@ Heat conduction:
u = T: temperature
6 = X: heat conduction coefficient
f: heat source
f: —AVT: “Fourier law”

o Diffusion of molecules in a given medium (for low concentrations)
u = c: concentration
6 = D: diffusion coefficient
f: species source (e.g due to reactions)
j: —DVe¢: “Fick’s law”



More flux expressions

@ Flow in a saturated porous medium:
u = p: pressure
6 = k: permeability
J_": —kﬁp: “Darcy’s law”

o Electrical conduction:
u = (: electric potential
§ = o electric conductivity
f: —aﬁcp = current density: “Ohms’s law”

o Electrostatics in a constant magnetic field:
u = ¢: electric potential
§ = e: dielectric permittivity

— -

E V¢: electric_ field

—

=D=cE = 5V<p electric displacement field:
= p: charge density

‘hkl

“Gauss's Law”



Second order partial differential equaions (PDEs)

Combine continuity equation with flux expression:

@ Transient problem:

Parabolic PDE:

dru(R,t) — V- (6Vu(R, 1)) = £(%, 1)

o Stationary case: 0:u =0 =

Elliptic PDE

—V - (6Vu(R)) = f(X)

@ For solvability we need additional conditions:
o Initial condition in the time dependent case: u(X,0) = up(X)

e Boundary conditions: behavior of solution on 92



Second order PDEs: boundary conditions

@ Assume 002 = u,.”:rlr,- is the union of a finite number of non-intersecting
subsets I'; which are locally Lipschitz.

@ On each I';, specify one of

o Fixed solution at boundary = Dirichlet (“first kind"”) BC:
let gi : [; — R (homogeneous for g; = 0)

u(X,t) =gi(%,t) forXer;
o Fixed boundary flux = Neumann (“second kind") BC:
Let g : [} — R (homogeneus for gi = 0)
OVu(R, t)-i=g(X,t) forgerl;
e Boundary flux proportional to solution = Robin (“third kind") BC:
let aj >0,g : T = R
SVu(R, t) - i+ ai(%, t)u(X, t) = gi(R,t) forXeT;



PDEs: generalizations

@ ¢ may depend on X, u, |ﬁu| ... = equations become nonlinear
o Coefficients can depend on other processes
o temperature can influence conductvity
e source terms can describe chemical reactions between different species
o chemical reactions can generate/consume heat
o Electric current generates heat (“Joule heating”)
o ...
= coupled PDEs
o Convective terms: j = —6Vu + uv where V is a convective velocity
o PDEs for vector unknowns
o Momentum balance = Navier-Stokes equations for fluid dynamics
o Elasticity

o Maxwell's electromagnetic field equations



