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Generalization of iteration schemes

So far we considered simple iterative schemes, perhaps with preconditioners

Here, we introduce Krylov subspace methods which indeed in many cases
yield faster convergence than simple iterative schemes
Material after

M. Gutknecht A Brief Introduction to Krylov Space Methods for Solving
Linear Systems

J. Shewchuk: An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain“

Extended reading: J.Liesen, Z. Strakoš: Krylov Subspace Methods:
Principles and Analysis

Extended coverage of the topic available at TU: Prof. Jörg Liesen, Prof.
Reinhard Nabben are active researchers in the field.

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Simple iterative method I

Solve Au = b, assume exact solution û.

uk+1 = uk − α(Auk − b) (k = 0, 1 . . . )

1 Choose initial value u0, tolerance ε, set k = 0
2 Calculate residuum rk = Auk − b
3 Test convergence: if ||rk || < ε set u = uk , finish
4 Update solution: uk+1 = uk − αrk , set k = k + 1, repeat with step 2.
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Simple iterative method II

From step 4: Auk+1 = Auk − αArk

Auk+1 − b = Auk − b − αArk

rk+1 = rk − αArk

Therefore rk = pk (A)r0 ∈ span{r0,Ar0, . . . ,Ak r0}
where p(ξ) = (1− αξ)k is a polynomial of degre k

For the iterate uk , we haveuk = uk−1 − αrk−1 = uk−2 − αrk−2 − αrk−1

= u0 − α(r0 + r1 + · · ·+ rk−1)
= u0 + qk−1(A)r0

where qk−1 is a polynomial of degree n − 1.

From rk = Auk − b = Au0 − b + Aqk−1(A)r0 = (I + Aqk−1(A))r0 one
obtains pk (ξ) = 1 + ξqk (ξ).

Consequently, uk ∈ u0 + span{r0,Ar0, . . . ,Ak−1r0}
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The Krylov subspace

Definition: Let A ∈ RN×N be nonsingular, let 0 6= y ∈ Rn. The k-th Krylov
subspace generated from A by y is defined as
Kk (A, y) = span{y ,Ay , . . . ,Ak−1y}.

K1 ⊆ K2 ⊆ · · · ⊆ Kk

dimKi ≤ dimKi−1 + 1

For the simple iteration,

uk = u0 + qk−1(A)r0 ∈ Kk (A, r0)
rk = pk (A)r0 ∈ Kk+1(A, r0)

pk (ξ) = 1 + ξqk (ξ)
pk (0) = 1

with particular polynomials p, q.

Are these the best ones possible ? - Not necessarily: we can try to find
other ones which yield better convergence...
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Krylov subspace methods

Definition: Let A ∈ RN×N be nonsingular, let 0 6= y ∈ RN . An iterative method
such that

uk = u0 + qk−1(A)r0 ∈ Kk (A, r0)

where qk−1 is a polynomial of degree k is called Krylov subspace method.

For the residuals of the method, we have rk = pk (A)r0 ∈ Kk+1(A, r0) with
pk (ξ) = 1 + ξqk (ξ)

Preconditioned form: use the same ansatz for M−1Ax = M−1b and define
Krylov subspace for M−1A
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The case of symmetric positive definite matrices

Assume A is spd (symmetric, positive definite)

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑
j=1

aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.

For a given vector b, regard the function

f (u) = 1
2 a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

Solution of SPD system ≡ minimization of f .
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Method of steepest descent

Given some vector ui , look for a new iterate ui+1.

The direction of steepest descend is given by −f ′(ui ).

So look for ui+1 in the direction of −f ′(ui ) = ri = b − Aui such that it
minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen from

0 = d
dα f (ui + αri ) = f ′(ui + αri ) · ri

= (b − A(ui + αri ), ri )
= (b − Aui , ri )− α(Ari , ri )
= (ri , ri )− α(Ari , ri )

α = (ri , ri )
(Ari , ri )
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Method of steepest descent: iteration scheme

ri = b − Aui

αi = (ri , ri )
(Ari , ri )

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u) 1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.
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Method of steepest descent: advantages

Simple Richardson iteration uk+1 = uk − α(Auk − f ) needs good eigenvalue
estimate to be optimal with α = 2

λmax +λmin

In this case, asymptotic convergence rate is ρ = κ−1
κ+1

Steepest descent has the same rate without need for spectral estimate
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Conjugate directions

For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj ) = 0, i 6= j.

Look for ui+1 in the direction of di such that it minimizes f in this direction,
i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi ) = f ′(ui + αdi ) · di

= (b − A(ui + αdi ), di )
= (b − Aui , di )− α(Adi , di )
= (ri , di )− α(Adi , di )

αi = (ri , di )
(Adi , di )

ui+1 ∈ span{d0 . . . di}
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Conjugate gradients

Choose d0 . . . di such that span{d0 . . . di} = Ki (A, r0).

Orthogonalize by Gram-Schmidt

Result: short recursions!

ui ∈ u0 +Ki (A, r0) minimizes the energy norm of the error ei :
||ei ||A = (Aei , ei ).

ri+1 ⊥ Ki (A, r0)

There are at most N directions, so the method yields the exact solution
after at most N iteration steps.



Lecture 4 Slide 13

Conjugate gradients - the algorithm

Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri )

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.

Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i

||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number of A.
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Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).

Let E be such that M = EE T , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T ):

Assume M−1Au = λu. We have

(E−1AE−T )(E T u) = (E T E−T )E−1Au = E T M−1Au = λE T u

⇔ E T u is an eigenvector of E−1AE−T with eigenvalue λ.
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Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = E T u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i )
(E−1AE−T d̃i , d̃i )

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i )

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E
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Preconditioned CG II

Assume r̃i = E−1ri , d̃i = E T di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri )

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

||ei ||E−1AE−T ≤ 2
(√

κ− 1√
κ+ 1

)i

||e0||E−1AE−T

where κ = γmax
γmin

comes from γmin(Mu, u) ≤ (Au, u) ≤ γmax (Mu, u).
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Issues and consequences

Usually we stop the iteration when the residual r becomes small. However
during the iteration, floating point errors occur which distort the
calculations and lead to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than the
real residual

ri+1 = b − Aui+1

The convergence rate estimate in terms of
√

κ−1√
κ+1 indeed provides a

qualitatively better complexity estimate for the solution algorithm

Always consider CG when solving symmetric positive definite linear systems
iteratively
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Unsymmetric problems

By definition, CG is only applicable to symmetric problems.
The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̃0 6= 0
p0 = r0 p̃0 = r̃0

αi = (r̃i , ri )
(p̃i ,Api )

xi+1 = xi + αipi x̃i+1 = x̃i + αi p̃i

ri+1 = ri − αiApi r̃i+1 = r̃i − αi p̃iAT

βi = (r̃i+1, ri+1)
(r̃i , ri )

pi+1 = ri+1 + βipi p̃i+1 = r̃i+1 + βi p̃i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̃i ,Apj ) = (r̃i , rj ) = 0 for i 6= j.

We have ri ∈ Ki (A, r0) and r̃i ∈ K(AT , r̃0)
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Unsymmetric problems II

BiCG is very unstable and additionally needs the transposed matrix vector
product, it is seldomly used in practice
There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.
Main practical approaches to fix the situation:

“Conjugate gradients squared” (CGS, Sonneveld, 1989): Replace
multiplication by AT in BICG with multiplication by A, residual polynomial
pCGS = p2

BICG .
“Stabilize” BiCG → BiCGstab (H. Van der Vorst, 1992), BiCGstab(l)
(Sleijpen/Fokkema 1993)
Error minimization in Krylov subspace → “Generalized Minimum Residual”
(GMRES, Saad/Schulz, 1986)

Both CGS and BiCGstab can show erratic convergence behavior ⇒ always
try to stop iteration after residual check
For GMRES one has to keep the full Krylov subspace, which is not possible
in practice ⇒ restart strategy.
As in the case of CG, always combine preconditioners with Krylov subspace
methods
From my experience, BiCGstab is a good first guess


