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Generalization of iteration schemes

@ So far we considered simple iterative schemes, perhaps with preconditioners

@ Here, we introduce Krylov subspace methods which indeed in many cases
yield faster convergence than simple iterative schemes

o Material after

e M. Gutknecht A Brief Introduction to Krylov Space Methods for Solving
Linear Systems

o J. Shewchuk: An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain“

o Extended reading: J.Liesen, Z. Strakos: Krylov Subspace Methods:
Principles and Analysis

o Extended coverage of the topic available at TU: Prof. Jorg Liesen, Prof.
Reinhard Nabben are active researchers in the field.


http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Simple iterative method |

Solve Au = b, assume exact solution .

U1 = ux — a(Au — b) (k=0,1...)

@ Choose initial value ug, tolerance €, set k =0
@ Calculate residuum r = Aux — b
@ Test convergence: if ||rc|| < & set u = u, finish

@ Update solution: ux+1 = ux — ark, set k = k + 1, repeat with step 2.



Simple iterative method I

From step 4:

Auk+1 = Auk — aArk
Auk+1 — b= Auk —b— OéAI’k

re1 = re — aArg

Therefore re = pi(A)ro € span{r, Aro, ..., Akro}
where p(€) = (1 — a€)¥ is a polynomial of degre k

o For the iterate U, we have _
k' = Uk—1 — Qrk—1 = Uk—2 — Qlk—2 — Qrk—1

=w—aln+n+- -+ rn-)
up + Qkfl(A)rO

where gx—1 is a polynomial of degree n — 1.

o From re = Auk — b = Auo — b + Agk—1(A)ro = (I + Agk—1(A))ro one
obtains p« (&) =1+ £qu(§).

o Consequently, ux € uo 4 span{r, Ar, ..., A" lr}



The Krylov subspace

Definition: Let A € RY*N be nonsingular, let 0 # y € R". The k-th Krylov
subspace generated from A by y is defined as

Ki(A,y) = span{y, Ay,..., A1y}
o K1 CKaC--- C Ky
o dimK; <dimK;,_1+1

@ For the simple iteration,

Uk = tp + qe—1(A)ro € Ki(A, no)
re = p(A)r € Kis1(A, ro)
Pi(§) = 1+ £qk()
Pe(0) =1

with particular polynomials p, g.

Are these the best ones possible 7 - Not necessarily: we can try to find
other ones which yield better convergence...



Krylov subspace methods

Definition: Let A € RV*V be nonsingular, let 0 # y € RY. An iterative method
such that

Uk = tp + qe—1(A)ro € Ki(A, ro)

where gx—1 is a polynomial of degree k is called Krylov subspace method.

@ For the residuals of the method, we have ri = pi(A)ro € Kit1(A, ro) with

pe(§) = 1+ &qu(§)

o Preconditioned form: use the same ansatz for M~*Ax = M~1b and define
Krylov subspace for M~ A



The case of symmetric positive definite matrices

Assume A is spd (symmetric, positive definite)

a(u,v) = (Au,v) = v Au = Z Z ajviuj
i=1 j=1
As A'is SPD, for all u # 0 we have (Au, u) > 0.
For a given vector b, regard the function

f(u)= Za(u,u)— b u

What is the minimizer of f ?7

flluy=Au—b=0

@ Solution of SPD system = minimization of f.



Method of steepest descent

@ Given some vector u;, look for a new iterate uj;.
@ The direction of steepest descend is given by —f'(u;).

@ So look for w1 in the direction of —f'(u;) = r; = b — Au; such that it
minimizes f in this direction, i.e. set u;+1 = u; + ar; with a choosen from

0= %f(u,- +ar) = f(ui+ar)

= (b— A(ui + ari), i)
= (b — Aui, ri) — a(Ari, ri)
= (r,r) — a(Arn, r)
_ (nynm)
«= (AI’,‘, r,-)




Method of steepest descent: iteration scheme

ri = b — Au,-
_ (rym)
= (AI’,’, r,-)

Uit1 = Uj + it

Let i1 the exact solution. Define e; = u; — @I, then r;, = —Ae;
1
Let ||u||la = (Au, u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

k—1Y\/
ledla < (57) Nl

k+1

where k = i‘\’: ((:)) is the spectral condition number.



Method of steepest descent: advantages

o Simple Richardson iteration ux+1 = ux — a(Auk — f) needs good eigenvalue

estimate to be optimal with oo = ﬁ

@ In this case, asymptotic convergence rate is p = ::—111

@ Steepest descent has the same rate without need for spectral estimate



Conjugate directions

For steepest descent, there is no guarantee that a search direction
d; = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let dy, d ... ds—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi,d;) =0, i # .

@ Look for uj11 in the direction of d; such that it minimizes f in this direction,
i.e. set ujy1 = u; + «;d; with o choosen from

d /
= —f(uit+ad) =f(u+ad)-d
0 Ja (ui + ad)) (ui + ad)) - d|

= (b— A(ui + ad)), d)

= (b — Auj, d;) — a(Ad;, d;)
= (ri, di) — a(Ad;, d)
(I’,',d,')
(Ad;, d;)

ap =

@ Uiyl € span{do - d,'}



Conjugate gradients

o Choose dp . .. d; such that span{dy...di} = Ki(A, n).
o Orthogonalize by Gram-Schmidt
@ Result: short recursions!

@ u; € up+ Ki(A, ro) minimizes the energy norm of the error e;:
lella = (Aei, ).

o ri1 L Ki(A, ro)

@ There are at most N directions, so the method yields the exact solution
after at most N iteration steps.



Conjugate gradients - the algorithm

Given initial value up, spd matrix A, right hand side b.

do:ro:b—AUo

(ri, ri)
(Ad;, d;)

uir1 = U + oid;

Qj =

riv1 = 1 — i Ad;

(fiy, riv1)
BH—l =
(risri)
dit1 = rix1 + Binad;

At the i-th step, the algorithm yields the element from ey + K; with the
minimum energy error.

Theorem The convergence rate of the method is

VE-1Y)
||e:||A<2(\f+1 l|eo]|a
Amax (A)
N (A

) is the spectral condition number of A.

where Kk =



Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
k(M™TA) << Kk(A).

Let E be such that M = EET, e.g. its Cholesky factorization. Then,
o(M™*A) = o(EPAET):

Assume M~1Au = Au. We have

(E'AE"YETw)=(ETETT)E " Au=E"M "Au=\ETu

& ETuis an eigenvector of ETYAE™T with eigenvalue .



Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system
ET'AET TR =E"
with 1= ETu
g/o =R = Eilb — EilAEiTUO
(%, %)
(E-1AE-Td;, d;)

;=
Uiy = Ui + aud;

F,'Jrl = F,' — Oé,'EilAEiTai
Bia1 = (Fit1, Fip1)

i+1 — (Fi, FI)
div1 = Fir1 + Bisrd;

Not very practical as we need E



Preconditioned CG Il

Assume F; = Eilr,», (NI,» = ETd,-, we get the equivalent algorithm

= b — AUo

do = M_lro

o — (M~ ri,ri)
(Ad;, di)

Uiy1 = uj + a;d;
riy1 = ri — a;Adi

(M~ risa, rig1)

Pinr = (’77 fi)
div1 = M rip1 + Bisad;

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

i
k—1
felle-sae v <2 (Y3 ) ol e

where 1 = 222 comes from Ymin(Mu, u) < (Au, u) < Ymax(Mu, u).



Issues and consequences

@ Usually we stop the iteration when the residual r becomes small. However
during the iteration, floating point errors occur which distort the
calculations and lead to the fact that the accumulated residuals

riq1 = i — a;iAd;

give a much more optimistic picture on the state of the iteration than the
real residual

riy1 = b — Aujpr

. . -1 . .
@ The convergence rate estimate in terms of ‘/iﬂ indeed provides a

qualitatively better complexity estimate for the solution algorithm

o Always consider CG when solving symmetric positive definite linear systems
iteratively



Unsymmetric problems

@ By definition, CG is only applicable to symmetric problems.
@ The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xg, perform

n=>b—Axy Fo#0
Po = o Bo = To
(Bi, Api)
Xit+1 = Xi + aipi Xit1 = Xi + «ipi
fiy1 = i — i Ap; fiy1 =F — Oéif)iAT
8 = (Fis1, riv1)
(i, ri)
pi+1 = riy1 + Bipi Pi+1 = Fip1 + Bibi

@ The two sequences produced by the algorithm are biorthogonal, i.e.,
(ﬁhApj) = (?h rj) =0fori#j.
o We have r; € Ki(A, r) and : € K(AT, &)



Unsymmetric problems |l

o BiCG is very unstable and additionally needs the transposed matrix vector
product, it is seldomly used in practice

@ There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.

@ Main practical approaches to fix the situation:
e “Conjugate gradients squared” (CGS, Sonneveld, 1989): Replace
multiplication by AT in BICG with multiplication by A, residual polynomial

PcGs = péICG'

e “Stabilize” BiCG — BiCGstab (H. Van der Vorst, 1992), BiCGstab(l)
(Sleijpen/Fokkema 1993)

e Error minimization in Krylov subspace — “Generalized Minimum Residual”
(GMRES, Saad/Schulz, 1986)

@ Both CGS and BiCGstab can show erratic convergence behavior = always
try to stop iteration after residual check

o For GMRES one has to keep the full Krylov subspace, which is not possible
in practice = restart strategy.

@ As in the case of CG, always combine preconditioners with Krylov subspace
methods

@ From my experience, BiCGstab is a good first guess



