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Diagonally dominant matrices

Definition Let A = (aij ) be an n × n matrix.
A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑
j=1...n

j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or irreducibly
diagonally dominant. Then A is nonsingular.

If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the eigenvalues
of A are positive:

Reλi > 0, i = 1 . . . n
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A very practical nonsingularity criterion, proof I

Proof:

Assume A strictly diagonally dominant. Then the union of the Gershgorin
disks does not contain 0 and λ = 0 cannot be an eigenvalue ⇒ A is
nonsingular.

As for the real parts, the union of the disks is⋃
i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

and Reµ must be larger than zero if µ should be contained.
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A very practical nonsingularity criterion, proof I

Assume A irreducibly diagonally dominant. Then, if 0 is an eigenvalue, it
sits on the boundary of one of the Gershgorin disks.

By Taussky theorem, we have |aii | = Λi for all i = 1 . . . n.

This is a contradiction as by definition there is at least one i such that
|aii | > Λi

Assume aii > 0, real. All real parts of the eigenvalues must be ≥ 0.

Therefore, if a real part is 0, it lies on the boundary of at least one disk.

By Taussky theorem it must be contained at the same time in the boundary
of all the disks and in the imaginary axis.

This contradicts the fact that there is at least one disk which does not
touch the imaginary axis as by definition there is at least one i such that
|aii | > Λi �
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with positive
diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they
must be positive, so A is positive definite.

�
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Heat conduction matrix

A =



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α


A is idd ⇒ A is nonsingular

diagA is positive real ⇒ eigenvalues of A have positive real parts

A is real, symmetric ⇒ A is positive definite
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Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector ~x is

positive (~x > 0) if all entries of ~x are positive
nonnegative (~x ≥ 0) if all entries of ~x are nonnegative

Definition: A real n × n matrix A is

positive (A > 0) if all entries of A are positive
nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n × n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector ~x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.

Proof: See Varga. �
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Perron-Frobenius for general nonnegative matrices

Each n × n matrix can be brought to the normal form

PAPT =


R11 R12 . . . R1m
0 R22 . . . R2m
...

. . .
0 0 . . . Rmm


where for j = 1 . . .m, either Rjj irreducible or Rjj = (0).

Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is strictly
upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector ~x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1

σ(Rjj ), apply irreducible Perron-Frobenius to Rjj .

�
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Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij ) = I − D−1A. Then

bij =
{

0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| = Λi

|aii |
< 1

Therefore, ρ(|B|) < 1.
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Theorem on Jacobi matrix II

If A is idd, then for i = 1 . . . n,∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| = Λi

|aii |
≤ 1

∑
j=1...n

|brj | = Λr

|arr |
< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i ,

|λ| = 1 ≤ Λi

|aii |
≤ 1

it must lie on the boundary of this union. By Taussky then one has for all i

|λ| = 1 ≤ Λi

|aii |
= 1

which contradicts the idd condition. �
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Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0 and
aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method converges.

Proof In this case, |B| = B �.

Here, we made assumptions on the sign pattern and the diagonal
dominance of the matrix. No additional information on the nonzero pattern
or the symmetry has been used.

Does this generalize to other iterative methods ?
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Regular splittings

A = M − N is a regular splitting if
M is nonsingular
M−1, N are nonnegative, i.e. have nonnegative entries

Regard the iteration uk+1 = M−1Nuk + M−1b.

B = I −M−1A = M−1N is a nonnegative matrix.
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Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a regular
splitting. Then ρ(M−1N) < 1.

Proof: Let B = M−1N. Then A = M(I − B), therefore I − B is nonsingular.

In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − B)−1B

By Perron-Frobenius (for general matrices), ρ(B) is an eigenvalue with a
nonnegative eigenvector ~x . Thus,

0 ≤ A−1N~x = ρ(B)
1− ρ(B)~x

Therefore 0 ≤ ρ(B) ≤ 1.
Assume that ρ(B) = 1. Then there exists ~x 6= 0 such that B~x = ~x .
Consequently, (I −B)~x = 0, contradicting the nonsingularity of I −B. Therefore,
ρ(B) < 1. �
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Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(B)
1−ρ(B) �

Corollary: Let A−1 ≥ 0, A = M1 − N1 and A = M2 − N2 be regular splittings.

If N2 ≥ N1, then 1 > ρ(M−1
2 N2) ≥ ρ(M−1

1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1

But τ
1+τ is strictly increasing. �
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Convergence rate comparison II

Let A−1 ≥ 0, A = D − E − F , D > 0 diagonal, E ,F ≥ 0 upper resp. lower
triangular parts.

Jacobi: MJ = D, NJ = E + F . M−1
J > 0 ⇒ regular splitting

Gauss-Seidel: MGS = D − E , NGS = F ≥ 0. Show M−1
GS ≥ 0:

MGS =


d11 −e12 −e13 . . . −e1n

d22 −e23 . . . −e2n
. . . . . .

...
dn−1,n−1 −en−1,n
. . . dnn


Elimination steps for MGSv = r :

vn = rn

dnn
, vn−1 = rn + en−1,nvn

dn−1,n−1
. . .

All coefficients are nonnegative ⇒ MGS − NGS : regular splitting

NGS ≤ NJ ⇒ ρ(M−1
GS NGS) ≤ ρ(M−1

J NJ )
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M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if

(i) aij ≤ 0 for i 6= j

(ii) A is nonsingular

(iii) A−1 ≥ 0

Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.

Proof: See Varga. �
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M-Matrix main diagonal

Theorem: If A is an M-matrix, then its diagonal DA > 0 is positive.

Proof: Let C = A−1 ≥ 0. The AC = I and (AC)ii = 1.
n∑

k=1

aikcki = 1

aiicii = 1−
n∑

k=1,k 6=i

aikcki ≥ 1

The last inequality is due to cki ≥ 0 and aik < 0 for k 6= i . As aiicii ≥ 1, neither
factor can be 0. So cii > 0 and aii > 0.

Theorem: (Saad, Th. 1.31) Assume

(i) aij ≤ 0 for i 6= j

(ii) aii > 0

Then A is an M-Matrix if and only if ρ(I − D−1A) < 1.

Proof: See Saad. �
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Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j. Then
A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.

Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.

We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk )

(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk )

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0

Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �
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M-Matrix comparison criterion

Theorem(Saad, Th. 1.33): Let A, B n × n matrices such that

(i) A ≤ B

(ii) bij ≤ 0 for i 6= j.

Then, if A is an M-Matrix, so is B.

Proof: From M-property of A and A ≤ B we have 0 < DA ≤ DB . We have
DB − B ≥ 0 and

DA − A ≥ DB − B
I − D−1

A A ≥ D−1
A (DB − B)

≥ D−1
B (DB − B)

≥ I − D−1
B B =: G ≥ 0

Perron-Frobenius ⇒ ρ(G) = ρ(I − D−1
B B) ≤ ρ(I − D−1

A A) < 1
⇒ I − G is nonsingular. From the proof of the M-matrix criterion,
D−1

B B = (I − G)−1 =
∑∞

k=0 Gk ≥ 0. As DB > 0, we get B ≥ 0.

�

Corollary A ≤ MGS ⇒ MGS is an M-Matrix.
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Intermediate Summary

Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.

These critera do not depend on the symmetry of the matrix!
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Example: 1D finite difference matrix:

Au =



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α





u1
u2
u3
...

uN−2
uN−1
uN


= f =



αv1
hf2
hf3
...

hfN−2
hfN−1
αvn


idd
positive main diagonal entries, nonpositive off-diagonal entries

⇒ A is nonsingular, has the M-property, and we can e.g. apply the Jacobi and
Gauss-Seidel iterative method to solve it (ok, in 1D we already know this is a
bad idea . . . ).

⇒ for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.
≡ heating and positive environment temperatures cannot lead to negative
temperatures in the interior.


