Scientific Computing WS 2020/2021

Slide lecture 2

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Elements of iterative methods (Saad Ch.4)

Let $V=\mathbb{R}^{n}$ be equipped with the inner product (\cdot, \cdot). Let A be an $n \times n$ nonsingular matrix.

Solve $A u=b$ iteratively. For this purpose, two components are needed:

- Preconditioner: a matrix $M \approx A$ "approximating" the matrix A but with the property that the system $M v=f$ is easy to solve
- Iteration scheme: algorithmic sequence using M and A which updates the solution step by step

Simple iteration with preconditioning

Assume we know the exact solution $\hat{u}: A \hat{u}=b$.
Then it must fulfill the identity

$$
\hat{u}=\hat{u}-M^{-1}(A \hat{u}-b)
$$

\Rightarrow iterative scheme: put the "old" value on the right hand side and the "new" value on the left hand side:

$$
u_{k+1}=u_{k}-M^{-1}\left(A u_{k}-b\right) \quad(k=0,1 \ldots)
$$

Obviously, if $u_{k}=\hat{u}$, the process would be stationary.
Otherwise it leads to a sequence of approximations

$$
u_{0}, u_{1}, \ldots, u_{k}, u_{k+1}, \ldots
$$

Implementation of the iterative process

Aim: solve $A u=b$ with tolerance ε :
(1) Choose initial value u_{0}, set $k=0$
(2) Calculate residuum $r_{k}=A u_{k}-b$
(3) Test convergence: if $\left\|r_{k}\right\|<\varepsilon$ set $u=u_{k}$, finish
(9) Calculate update: solve $M v_{k}=r_{k}$
(6) Update solution: $u_{k+1}=u_{k}-v_{k}$, set $k=k+1$, repeat with step 2 .

The Jacobi method

- Let $A=D-E-F$, where D : main diagonal, E : negative lower triangular part F : negative upper triangular part
- Preconditioner: $M=D$, where D is the main diagonal of $A \Rightarrow$

$$
u_{k+1, i}=u_{k, i}-\frac{1}{a_{i i}}\left(\sum_{j=1 \ldots n} a_{i j} u_{k, j}-b_{i}\right) \quad(i=1 \ldots n)
$$

- Equivalent to the succesive (row by row) solution of

$$
a_{i i} u_{k+1, i}+\sum_{j=1 \ldots n, j \neq i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n)
$$

- Already calculated results not taken into account
- Variable ordering does not matter

The Gauss-Seidel method

- Solve for main diagonal element row by row
- Take already calculated results into account
- Run in ascending order: forward GS

$$
\begin{gathered}
a_{i i} u_{k+1, i}+\sum_{j<i} a_{i j} u_{k+1, j}+\sum_{j>i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n) \\
(D-E) u_{k+1}-F u_{k}=b \\
M=D-E
\end{gathered}
$$

- Run in descending order: backward GS

$$
\begin{gathered}
a_{i i} u_{k+1, i}+\sum_{j>i} a_{i j} u_{k+1, j}+\sum_{j<i} a_{i j} u_{k, j}=b_{i} \quad(i=n \ldots 1) \\
(D-F) u_{k+1}-E u_{k}=b \\
M=D-F
\end{gathered}
$$

- May be it is faster
- Variable order probably matters

SOR and SSOR

- SOR: Successive overrelaxation: solve $\omega A=\omega B$ and use splitting

$$
\begin{aligned}
\omega A & =(D-\omega E)-(\omega F+(1-\omega D)) \\
M & =\frac{1}{\omega}(D-\omega E)
\end{aligned}
$$

leading to

$$
(D-\omega E) u_{k+1}=(\omega F+(1-\omega D)) u_{k}+\omega b
$$

- SSOR: Symmetric successive overrelaxation

$$
\begin{aligned}
& (D-\omega E) u_{k+\frac{1}{2}}=(\omega F+(1-\omega D)) u_{k}+\omega b \\
& (D-\omega F) u_{k+1}=(\omega E+(1-\omega D)) u_{k+\frac{1}{2}}+\omega b
\end{aligned}
$$

- Preconditioner:

$$
M=\frac{1}{\omega(2-\omega)}(D-\omega E) D^{-1}(D-\omega F)
$$

- Gauss-Seidel and symmetric Gauss-Seidel are special cases for $\omega=1$.

Block methods

- Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the system matrix into larger blocks,
- The blocks on the diagonal should be square matrices, and invertible
- Interesting variant for systems of partial differential equations, where multiple species interact with each other

Convergence

- Let \hat{u} be the solution of $A u=b$.
- Let $e_{k}=u_{k}-\hat{u}$ be the error of the k-th iteration step

$$
\begin{aligned}
u_{k+1} & =u_{k}-M^{-1}\left(A u_{k}-b\right) \\
& =\left(I-M^{-1} A\right) u_{k}+M^{-1} b \\
u_{k+1}-\hat{u} & =u_{k}-\hat{u}-M^{-1}\left(A u_{k}-A \hat{u}\right) \\
& =\left(I-M^{-1} A\right)\left(u_{k}-\hat{u}\right) \\
& =\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)
\end{aligned}
$$

resulting in

$$
e_{k+1}=\left(I-M^{-1} A\right)^{k} e_{0}
$$

- So when does $\left(I-M^{-1} A\right)^{k}$ converge to zero for $k \rightarrow \infty$?
- Let $B=I-M^{-1} A$

Jordan canonical form of a matrix B

- $\lambda_{i}(i=1 \ldots p)$: eigenvalues of B
- $\sigma(B)=\left\{\lambda_{1} \ldots \lambda_{p}\right\}$: spectrum of B
- μ_{i} : algebraic multiplicity of λ_{i} :
multiplicity as zero of the characteristic polynomial $\operatorname{det}(B-\lambda I)$
- γ_{i} geometric multiplicity of λ_{i} : dimension of $\operatorname{Ker}(B-\lambda I)$
- l_{i} : index of the eigenvalue: the smallest integer for which
$\operatorname{Ker}(B-\lambda I)^{l_{i}+1}=\operatorname{Ker}(B-\lambda I)^{I_{i}}$
- $l_{i} \leq \mu_{i}$

Theorem (Saad, Th. 1.8) B can be transformed to a block diagonal matrix consisting of p diagonal blocks $D_{1} \ldots D_{p}$, each associated with a distinct eigenvalue λ_{i}.

- Each of the diagonal blocks D_{i} has itself a block diagonal structure consisting of γ_{i} Jordan blocks $J_{i, 1} \ldots J_{i, \gamma_{i}}$.
- Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding l_{i} with λ_{i} on the diagonal and 1 on the first upper diagonal.

Jordan canonical form of a matrix II

$$
\begin{aligned}
X^{-1} B X=J & =\left(\begin{array}{llll}
D_{1} & & & \\
& D_{2} & & \\
& & \ddots & \\
& & & D_{p}
\end{array}\right) \\
D_{i} & =\left(\begin{array}{llll}
J_{i, 1} & & & \\
& J_{i, 2} & & \\
& & \ddots & \\
& & & J_{i, \gamma_{i}}
\end{array}\right) \\
J_{i, k} & =\left(\begin{array}{llll}
\lambda_{i} & 1 & & \\
& \lambda_{i} & 1 & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right)
\end{aligned}
$$

Each $J_{i, k}$ is of size $\leq I_{i}$ and corresponds to a different eigenvector of B.

Spectral radius and convergence

Definition The spectral radius $\rho(B)$ is the largest absolute value of any eigenvalue of $B: \rho(B)=\max _{\lambda \in \sigma(B)}|\lambda|$.

Theorem (Saad, Th. 1.10) $\lim _{k \rightarrow \infty} B^{k}=0 \Leftrightarrow \rho(B)<1$.
Proof, \Rightarrow : Let u_{i} be a unit eigenvector associated with an eigenvalue λ_{i}. Then

$$
\begin{aligned}
B u_{i} & =\lambda_{i} u_{i} \\
B^{2} u_{i} & =\lambda_{i} B_{i} u_{i}=\lambda^{2} u_{i} \\
\vdots & \\
B^{k} u_{i} & =\lambda^{k} u_{i} \\
\text { therefore }\left\|B^{k} u_{i}\right\|_{2} & =\left|\lambda^{k}\right| \\
\text { and } \lim _{k \rightarrow \infty}\left|\lambda^{k}\right| & =0
\end{aligned}
$$

so we must have $\rho(B)<1$

Spectral radius and convergence II

Proof, $\Leftarrow:$ Jordan form $X^{-1} B X=J$. Then $X^{-1} B^{k} X=J^{k}$.
Sufficient to regard Jordan block $J_{i}=\lambda I+E$ where $|\lambda|<1$ and $E^{l_{i}}=0$. Let $k \geq I_{i}$. Then

$$
\begin{aligned}
J_{i}^{k} & =\sum_{j=0}^{l_{i-1}}\binom{k}{j} \lambda^{k-j} E^{j} \\
\left\|J_{i}\right\|^{k} & \leq \sum_{j=0}^{l_{i-1}}\binom{k}{j}|\lambda|^{k-j}\|E\|^{j}
\end{aligned}
$$

But $\binom{k}{j}=\frac{k!}{j!(k-j)!}=\sum_{i=0}^{j}\left[\begin{array}{c}j \\ i\end{array}\right] \frac{k^{i}}{j!}=p_{j}(k)$ is a polynomial of degree j in k
where the Stirling numbers of the first kind are given by
$\left[\begin{array}{l}0 \\ 0\end{array}\right]=1, \quad\left[\begin{array}{l}j \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ j\end{array}\right]=0, \quad\left[\begin{array}{c}j+1 \\ i\end{array}\right]=j\left[\begin{array}{c}j \\ i\end{array}\right]+\left[\begin{array}{c}j \\ i-1\end{array}\right]$.
Thus, $p_{j}(k)|\lambda|^{k-j} \rightarrow 0(k \rightarrow \infty)$ as exponential decay beats polynomial growth

Corollary from proof

Theorem (Saad, Th. 1.12)

$$
\lim _{k \rightarrow \infty}\left\|B^{k}\right\|^{\frac{1}{k}}=\rho(B)
$$

Back to iterative methods

Sufficient condition for convergence: $\rho\left(I-M^{-1} A\right)<1$.

Convergence rate

Assume λ with $|\lambda|=\rho\left(I-M^{-1} A\right)<1$ is the largest eigenvalue and has a single Jordan block of size I. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^{\prime}=0$ is

$$
\begin{gathered}
\lambda^{k-I+1}\binom{k}{I-1} E^{\prime-1} \\
\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|=O\left(\left|\lambda^{k-I+1}\right|\binom{k}{I-1}\right)
\end{gathered}
$$

and the "worst case" convergence factor ρ equals the spectral radius:

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty}\left(\max _{u_{0}} \frac{\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|}{\left\|u_{0}-\hat{u}\right\|}\right)^{\frac{1}{k}} \\
& =\lim _{k \rightarrow \infty}\left\|\left(I-M^{-1} A\right)^{k}\right\|^{\frac{1}{k}} \\
& =\rho\left(I-M^{-1} A\right)
\end{aligned}
$$

Depending on u_{0}, the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues $0<\lambda_{\min } \leq \lambda_{i} \leq \lambda_{\max }$. E.g. A is symmetric, positive definite (spd).

- Let $\alpha>0, M=\frac{1}{\alpha} I \Rightarrow I-M^{-1} A=I-\alpha A$
- Then for the eigenvalues μ_{i} of $I-\alpha A$ one has:

$$
\begin{aligned}
1-\alpha \lambda_{\max } & \leq \mu_{i} \leq 1-\alpha \lambda_{\min } \\
\mu_{i} & <1
\end{aligned}
$$

- We also need $1-\alpha \lambda_{\max }>-1$, so we must have $0<\alpha<\frac{2}{\lambda_{\max }}$.

Theorem. The Richardson iteration converges for any α with $0<\alpha<\frac{2}{\lambda_{\max }}$.
The convergence rate is $\rho=\max \left(\left|1-\alpha \lambda_{\max }\right|,\left|1-\alpha \lambda_{\text {min }}\right|\right)$.

Richardson iteration, choice of optimal parameter

- Due to $-\left(1-\alpha \lambda_{\max }\right)>-\left(1-\alpha \lambda_{\min }\right)$ and $+\left(1-\alpha \lambda_{\min }\right)>+\left(1-\alpha \lambda_{\max }\right)$,

$$
\begin{aligned}
\rho & =\max \left(\left|1-\alpha \lambda_{\max }\right|,\left|1-\alpha \lambda_{\min }\right|\right) \\
& =\max \left(\left(1-\alpha \lambda_{\max }\right),-\left(1-\alpha \lambda_{\min }\right)\right)
\end{aligned}
$$

- $1-\alpha \lambda_{\max }$ is monotonically decreasing, the $-\left(1-\alpha \lambda_{\min }\right)$ increases, so the minimum must be at the intersection

$$
1-\alpha \lambda_{\max }=-1+\alpha \lambda_{\min } \quad \Rightarrow \quad 2=\alpha\left(\lambda_{\max }+\lambda_{\min }\right)
$$

Richardson iteration, choice of optimal parameter

Theorem. The optimal parameter is $\alpha_{o p t}=\frac{2}{\lambda_{\min }+\lambda_{\max }}$.
For this parameter, the convergence factor is

$$
\rho_{\text {opt }}=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}=\frac{\kappa-1}{\kappa+1}
$$

where $\kappa=\kappa(A)=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$ is the spectral condition number of A.

Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

Then for the eigenvalues μ_{i} of $M^{-1} A$ we have

$$
\gamma_{\min } \leq \mu_{\min } \leq \mu_{i} \leq \mu_{\max } \leq \gamma_{\max }
$$

and $\kappa\left(M^{-1} A\right) \leq \frac{\gamma_{\text {max }}}{\gamma_{\text {min }}}$
Proof. Let the inner product $(\cdot, \cdot)_{M}$ be defined via $(u, v)_{M}=(M u, v)$. In this inner product, $C=M^{-1} A$ is self-adjoint:

$$
\begin{aligned}
(C u, v)_{M} & =\left(M M^{-1} A u, v\right)=(A u, v)=\left(M^{-1} M u, A v\right)=\left(M u, M^{-1} A v\right) \\
& =\left(u, M^{-1} A\right)_{M}=(u, C v)_{M}
\end{aligned}
$$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot, \cdot)_{M}$ scalar product

$$
\begin{aligned}
\mu_{\min } & =\min _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\min _{u \neq 0} \frac{(A u, u)}{(M u, u)} \geq \gamma_{\min } \\
\mu_{\max } & =\max _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\max _{u \neq 0} \frac{(A u, u)}{(M u, u)} \leq \gamma_{\max }
\end{aligned}
$$

Matrix preconditioned Richardson iteration

M, A spd.

- Scaled Richardson iteration with preconditoner M

$$
u_{k+1}=u_{k}-\alpha M^{-1}\left(A u_{k}-b\right)
$$

- Spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

- $\Rightarrow \gamma_{\text {min }} \leq \lambda_{i} \leq \gamma_{\text {max }}$
- \Rightarrow optimal parameter $\alpha=\frac{2}{\gamma_{\text {max }}+\gamma_{\text {min }}}$
- Relative condition number estimate: $\kappa\left(M^{-1} A\right) \leq \frac{\gamma_{\text {max }}}{\gamma_{\text {min }}}$
- Convergence rate with optimal parameter: $\rho \leq \frac{\kappa\left(M^{-1} A\right)-1}{\kappa\left(M^{-1} A\right)+1}$

1D heat conduction: spectrum

- Regard the $n \times n$ 1D heat conduction matrix with $h=\frac{1}{n-1}$ and $\alpha=\frac{1}{h}$ (easier to analyze).

$$
A=\left(\begin{array}{cccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{2}{h}
\end{array}\right)
$$

- Eigenvalues (tri-diagonal Toeplitz matrix):

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i \pi}{n+1}\right)\right) \quad(i=1 \ldots n)
$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

- Express them in $h: n+1=\frac{1}{h}+2=\frac{1+2 h}{h} \Rightarrow$

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i h \pi}{1+2 h}\right)\right) \quad(i=1 \ldots n)
$$

1D heat conduction: spectral bounds estimate

- For $i=1 \ldots n$, the argument of \cos is in $(0, \pi)$
- cos is monotonically decreasing in $(0, \pi)$, so we get $\lambda_{\max }$ for $i=1$ and $\lambda_{\text {min }}$ for $i=n=\frac{1+h}{h}$
- Therefore:

$$
\begin{aligned}
& \lambda_{\max }=\frac{2}{h}\left(1+\cos \left(\pi \frac{h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right) \\
& \lambda_{\min }=\frac{2}{h}\left(1+\cos \left(\pi \frac{1+h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right)
\end{aligned}
$$

Here, we used the Taylor expansion

$$
\begin{aligned}
\cos (\delta) & =1-\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0) \\
\cos (\pi-\delta) & =-1+\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0)
\end{aligned}
$$

and $\frac{1+h}{1+2 h}=\frac{1+2 h}{1+2 h}-\frac{h}{1+2 h}=1-\frac{h}{1+2 h}$

Jacobi preconditioned Richardson for 1D heat conduction

- The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1} A$:

$$
\begin{aligned}
\mu_{\max } & \approx 2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}} \\
\mu_{\min } & \approx \frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Optimal parameter: $\alpha=\frac{2}{\lambda_{\max }+\lambda_{\text {min }}} \approx 1(h \rightarrow 0)$
- Good news: this is independent of h resp. n
- No need for spectral estimate in order to work with optimal parameter.
- Is this true beyond this special case ?

Jacobi for 1D heat conduction: convergence factor

- Condition number + spectral radius

$$
\begin{aligned}
\kappa\left(M^{-1} A\right)=\kappa(A) & \approx \frac{4(1+2 h)^{2}}{\pi^{2} h^{2}}-1 \\
\rho\left(I-M^{-1} A\right) & =\frac{\kappa-1}{\kappa+1}=1-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Bad news: $\rho \rightarrow 1 \quad(h \rightarrow 0)$
- Typical situation with second order PDEs:

$$
\begin{aligned}
\kappa(A) & =O\left(h^{-2}\right) \quad(h \rightarrow 0) \\
\rho\left(I-D^{-1} A\right) & =1-O\left(h^{2}\right) \quad(h \rightarrow 0)
\end{aligned}
$$

- Mean square error of approximation $\left\|u-u_{h}\right\|_{2}<h^{\gamma}$, in the simplest case $\gamma=2$.

Estimating Iterative solver complexity I

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- The ideal iterative solver:
- $\rho\left(I-M^{-1} A\right)<\rho_{0}<1$ independent of h resp. N $\Rightarrow k_{\rho}$ independent of N.
- A sparse \Rightarrow matrix-vector multiplication $A u$ has complexity $O(N)$
- Solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
Each iteration step has complexity $O(N)$
\Rightarrow Overall complexity $O(N)$

Estimating Iterative solver complexity II

- Assume
- $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta} \rightarrow k_{\rho}=O\left(h^{-\delta}\right)$
- d: space dimension: $N \approx n^{d}, h \approx \frac{1}{n} \approx N^{-\frac{1}{d}}$
$\Rightarrow k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)$
- $O(N)$ complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
\Rightarrow Overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$ (Gauss-Seidel scales in a similar way)
- Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates (SpLU: sparse LU)

	$\delta=2$	$\delta=1$		
Space dim.	$\rho=1-O\left(h^{2}\right)$	$\rho=1-O(h)$	SpLU fact.	SpLU solve
1	$O\left(N^{3}\right)$	$O\left(N^{2}\right)$	$O(N)$	$O(N)$
2	$O\left(N^{2}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O(N \log N)$
3	$O\left(N^{\frac{5}{3}}\right)$	$O\left(N^{\frac{4}{3}}\right)$	$O\left(N^{2}\right)$	$O\left(N^{\frac{4}{3}}\right)$
Tendency	\downarrow	\downarrow	$\uparrow \uparrow$	\uparrow

Solver complexity scaling for 1D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N)
\end{array}
$$

- Sparse direct solvers are asymptotically optimal
- Non-ideal iterative solvers significantly worse than optimal

Solver complexity scaling for 2D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N)
\end{array}
$$

- Sparse direct solvers better than simple nonideal iterative solvers ($\delta=2$ Jacobi etc.)
- Sparse direct solvers on par with improved iterative solvers $(\delta=1)$

Solver complexity scaling for 3D problems

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

- Sparse LU factorization is expensive: going from h to $h / 2$ increases N by a factor of 8 and operation count by a factor of 64 !
- Sparse LU solve on par with improved iterative solvers

What could be done?

- Holy grail: find ideal preconditioner with $\rho \leq \rho_{0}<1$ independent of h, N
- Find "improved preconditioner" with $\kappa\left(M^{-1} A\right)=O\left(h^{-1}\right) \Rightarrow \delta=1$
- Find "improved iterative scheme" with $\rho=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$:

For Jacobi, we had $\kappa=X^{2}-1$ where $X=\frac{2(1+2 h)}{\pi h}=O\left(h^{-1}\right)$.

$$
\begin{aligned}
\rho & =1+\frac{\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1}-1 \\
& =1+\frac{\sqrt{X^{2}-1}-1-\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{\sqrt{X^{2}-1}+1}=1-\frac{1}{X\left(\sqrt{1-\frac{1}{X^{2}}}+\frac{1}{X}\right)} \\
& =1-O(h) \quad(h \rightarrow 0)
\end{aligned}
$$

\Rightarrow Similar effect as wihth $\delta=1$

