Scientific Computing WS 2020/2021

Slide lecture 2

Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de

Elements of iterative methods (Saad Ch.4)

Let $V = \mathbb{R}^n$ be equipped with the inner product (\cdot, \cdot) . Let A be an $n \times n$ nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:

- **Preconditioner**: a matrix $M \approx A$ "approximating" the matrix A but with the property that the system Mv = f is easy to solve
- ullet Iteration scheme: algorithmic sequence using M and A which updates the solution step by step

Simple iteration with preconditioning

Assume we know the exact solution \hat{u} : $A\hat{u} = b$.

Then it must fulfill the identity

$$\hat{u} = \hat{u} - M^{-1}(A\hat{u} - b)$$

⇒ iterative scheme: put the "old" value on the right hand side and the "new" value on the left hand side:

$$u_{k+1} = u_k - M^{-1}(Au_k - b) \quad (k = 0, 1...)$$

Obviously, if $u_k = \hat{u}$, the process would be stationary.

Otherwise it leads to a sequence of approximations

$$u_0, u_1, \ldots, u_k, u_{k+1}, \ldots$$

Implementation of the iterative process

Aim: solve Au = b with tolerance ε :

- Choose initial value u_0 , set k=0
- 2 Calculate residuum $r_k = Au_k b$
- **3** Test convergence: if $||r_k|| < \varepsilon$ set $u = u_k$, finish
- **4** Calculate *update*: solve $Mv_k = r_k$
- **1** Update solution: $u_{k+1} = u_k v_k$, set k = k+1, repeat with step 2.

The Jacobi method

- Let A = D E F, where D: main diagonal, E: negative lower triangular part F: negative upper triangular part
- Preconditioner: M = D, where D is the main diagonal of $A \Rightarrow$

$$u_{k+1,i} = u_{k,i} - \frac{1}{a_{ii}} \left(\sum_{j=1...n} a_{ij} u_{k,j} - b_i \right) \quad (i = 1...n)$$

• Equivalent to the succesive (row by row) solution of

$$a_{ii}u_{k+1,i} + \sum_{j=1...n,j\neq i} a_{ij}u_{k,j} = b_i \quad (i = 1...n)$$

- Already calculated results not taken into account
- Variable ordering does not matter

The Gauss-Seidel method

- Solve for main diagonal element row by row
- Take already calculated results into account
- Run in ascending order: forward GS

$$a_{ii}u_{k+1,i} + \sum_{j < i} a_{ij}u_{k+1,j} + \sum_{j > i} a_{ij}u_{k,j} = b_i$$
 $(i = 1 \dots n)$
 $(D - E)u_{k+1} - Fu_k = b$
 $M = D - E$

• Run in descending order: backward GS

$$a_{ii}u_{k+1,i} + \sum_{j>i} a_{ij}u_{k+1,j} + \sum_{j $(i = n \dots 1)$
 $(D-F)u_{k+1} - Eu_k = b$
 $M = D-F$$$

- May be it is faster
- Variable order probably matters

SOR and SSOR

ullet SOR: Successive overrelaxation: solve $\omega A = \omega B$ and use splitting

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega D))$$
$$M = \frac{1}{\omega} (D - \omega E)$$

leading to

$$(D - \omega E)u_{k+1} = (\omega F + (1 - \omega D))u_k + \omega b$$

SSOR: Symmetric successive overrelaxation

$$(D - \omega E)u_{k+\frac{1}{2}} = (\omega F + (1 - \omega D))u_k + \omega b$$

 $(D - \omega F)u_{k+1} = (\omega E + (1 - \omega D))u_{k+\frac{1}{2}} + \omega b$

Preconditioner:

$$M = \frac{1}{\omega(2-\omega)}(D-\omega E)D^{-1}(D-\omega F)$$

ullet Gauss-Seidel and symmetric Gauss-Seidel are special cases for $\omega=1$.

Block methods

- Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the system matrix into larger blocks,
- The blocks on the diagonal should be square matrices, and invertible
- Interesting variant for systems of partial differential equations, where multiple species interact with each other

Convergence

- Let \hat{u} be the solution of Au = b.
- Let $e_k = u_k \hat{u}$ be the error of the k-th iteration step

$$u_{k+1} = u_k - M^{-1}(Au_k - b)$$

$$= (I - M^{-1}A)u_k + M^{-1}b$$

$$u_{k+1} - \hat{u} = u_k - \hat{u} - M^{-1}(Au_k - A\hat{u})$$

$$= (I - M^{-1}A)(u_k - \hat{u})$$

$$= (I - M^{-1}A)^k(u_0 - \hat{u})$$

resulting in

$$e_{k+1} = (I - M^{-1}A)^k e_0$$

- So when does $(I M^{-1}A)^k$ converge to zero for $k \to \infty$?
- Let $B = I M^{-1}A$

Jordan canonical form of a matrix B

- λ_i ($i = 1 \dots p$): eigenvalues of B
- $\sigma(B) = \{\lambda_1 \dots \lambda_p\}$: spectrum of B
- μ_i : algebraic multiplicity of λ_i : multiplicity as zero of the characteristic polynomial $\det(B \lambda I)$
- γ_i geometric multiplicity of λ_i : dimension of $Ker(B \lambda I)$
- l_i : index of the eigenvalue: the smallest integer for which $\operatorname{Ker}(B-\lambda I)^{l_i+1}=\operatorname{Ker}(B-\lambda I)^{l_i}$
- $I_i \leq \mu_i$

Theorem (Saad, Th. 1.8) B can be transformed to a block diagonal matrix consisting of p diagonal blocks $D_1 \dots D_p$, each associated with a distinct eigenvalue λ_i .

- Each of the diagonal blocks D_i has itself a block diagonal structure consisting of γ_i Jordan blocks $J_{i,1} \dots J_{i,\gamma_i}$.
- Each of the Jordan blocks is an upper bidiagonal matrix of size not exceeding l_i with λ_i on the diagonal and 1 on the first upper diagonal.

Jordan canonical form of a matrix II

$$X^{-1}BX = J = egin{pmatrix} D_1 & & & & & \\ & D_2 & & & & \\ & & & \ddots & & \\ & & & D_p \end{pmatrix}$$
 $D_i = egin{pmatrix} J_{i,1} & & & & \\ & & J_{i,2} & & & \\ & & & \ddots & & \\ & & & \lambda_i & 1 & & \\ & & & \lambda_i & 1 & & \\ & & & \ddots & 1 & \\ & & & & \lambda_i \end{pmatrix}$

Each $J_{i,k}$ is of size $\leq I_i$ and corresponds to a different eigenvector of B.

Spectral radius and convergence

Definition The spectral radius $\rho(B)$ is the largest absolute value of any eigenvalue of B: $\rho(B) = \max_{\lambda \in \sigma(B)} |\lambda|$.

Theorem (Saad, Th. 1.10) $\lim_{k\to\infty} B^k = 0 \Leftrightarrow \rho(B) < 1$.

Proof, \Rightarrow : Let u_i be a unit eigenvector associated with an eigenvalue λ_i . Then

$$Bu_i = \lambda_i u_i$$
 $B^2 u_i = \lambda_i B_i u_i = \lambda^2 u_i$ \vdots $B^k u_i = \lambda^k u_i$ therefore $||B^k u_i||_2 = |\lambda^k|$ and $\lim_{k \to \infty} |\lambda^k| = 0$

so we must have $\rho(B) < 1$

Spectral radius and convergence II

Proof, \Leftarrow : Jordan form $X^{-1}BX = J$. Then $X^{-1}B^kX = J^k$. Sufficient to regard Jordan block $J_i = \lambda I + E$ where $|\lambda| < 1$ and $E^{l_i} = 0$. Let $k \ge l_i$. Then

$$J_i^k = \sum_{j=0}^{l_{i-1}} {k \choose j} \lambda^{k-j} E^j$$
$$||J_i||^k \le \sum_{j=0}^{l_{i-1}} {k \choose j} |\lambda|^{k-j} ||E||^j$$

But
$$\binom{k}{j} = \frac{k!}{j!(k-j)!} = \sum_{i=0}^j \begin{bmatrix} j\\i \end{bmatrix} \frac{k^j}{j!} = p_j(k)$$
 is a polynomial of degree j in k where the Stirling numbers of the first kind are given by $\binom{0}{0} = 1$, $\binom{j}{0} = \binom{0}{j} = 0$, $\binom{j+1}{i} = j \binom{j}{i} + \binom{j}{i-1}$. Thus, $p_j(k)|\lambda|^{k-j} \to 0 \ (k \to \infty)$ as exponential decay beats polynomial growth \square .

Corollary from proof

Theorem (Saad, Th. 1.12)

$$\lim_{k\to\infty}||B^k||^{\frac{1}{k}}=\rho(B)$$

Back to iterative methods

Sufficient condition for convergence: $\rho(I-M^{-1}A) < 1$.

Convergence rate

Assume λ with $|\lambda|=\rho(I-M^{-1}A)<1$ is the largest eigenvalue and has a single Jordan block of size I. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^I=0$ is

$$\lambda^{k-l+1} \begin{pmatrix} k \\ l-1 \end{pmatrix} E^{l-1}$$

$$||(I - M^{-1}A)^k(u_0 - \hat{u})|| = O\left(|\lambda^{k-l+1}|\binom{k}{l-1}\right)$$

and the "worst case" convergence factor ρ equals the spectral radius:

$$\rho = \lim_{k \to \infty} \left(\max_{u_0} \frac{||(I - M^{-1}A)^k (u_0 - \hat{u})||}{||u_0 - \hat{u}||} \right)^{\frac{1}{k}}$$

$$= \lim_{k \to \infty} ||(I - M^{-1}A)^k||^{\frac{1}{k}}$$

$$= \rho(I - M^{-1}A)$$

Depending on u_0 , the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues $0 < \lambda_{min} \le \lambda_i \le \lambda_{max}$. E.g. A is symmetric, positive definite (spd).

- Let $\alpha > 0$, $M = \frac{1}{\alpha}I \Rightarrow I M^{-1}A = I \alpha A$
- Then for the eigenvalues μ_i of $I \alpha A$ one has:

$$1 - \alpha \lambda_{ extit{max}} \leq \mu_i \leq 1 - \alpha \lambda_{ extit{min}}$$
 $\mu_i < 1$

• We also need $1-\alpha\lambda_{\max}>-1$, so we must have $0<\alpha<\frac{2}{\lambda_{\max}}$.

Theorem. The Richardson iteration converges for any α with 0 < $\alpha < \frac{2}{\lambda_{\max}}$.

The convergence rate is $\rho = \max(|1 - \alpha \lambda_{\textit{max}}|, |1 - \alpha \lambda_{\textit{min}}|)$.

Ш

Richardson iteration, choice of optimal parameter

• Due to
$$-(1 - \alpha \lambda_{\max}) > -(1 - \alpha \lambda_{\min})$$
 and $+(1 - \alpha \lambda_{\min}) > +(1 - \alpha \lambda_{\max})$,
$$\rho = \max \left(|1 - \alpha \lambda_{\max}|, |1 - \alpha \lambda_{\min}| \right)$$
$$= \max \left((1 - \alpha \lambda_{\max}), -(1 - \alpha \lambda_{\min}) \right)$$

• $1-\alpha\lambda_{\max}$ is monotonically decreasing, the $-(1-\alpha\lambda_{\min})$ increases, so the minimum must be at the intersection

$$1 - \alpha \lambda_{max} = -1 + \alpha \lambda_{min} \quad \Rightarrow \quad 2 = \alpha (\lambda_{max} + \lambda_{min})$$

Richardson iteration, choice of optimal parameter

Theorem. The optimal parameter is $\alpha_{opt} = \frac{2}{\lambda_{min} + \lambda_{max}}$. For this parameter, the convergence factor is

$$ho_{opt} = rac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}} = rac{\kappa - 1}{\kappa + 1}$$

where $\kappa = \kappa(A) = \frac{\lambda_{max}}{\lambda_{min}}$ is the spectral condition number of A.

Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate

$$0 < \gamma_{min}(Mu, u) \le (Au, u) \le \gamma_{max}(Mu, u)$$

Then for the eigenvalues μ_i of $M^{-1}A$ we have

$$\gamma_{\min} \le \mu_{\min} \le \mu_i \le \mu_{\max} \le \gamma_{\max}$$

and
$$\kappa(M^{-1}A) \leq \frac{\gamma_{max}}{\gamma_{min}}$$

Proof. Let the inner product $(\cdot, \cdot)_M$ be defined via $(u, v)_M = (Mu, v)$. In this inner product, $C = M^{-1}A$ is self-adjoint:

$$(Cu, v)_M = (MM^{-1}Au, v) = (Au, v) = (M^{-1}Mu, Av) = (Mu, M^{-1}Av)$$

= $(u, M^{-1}A)_M = (u, Cv)_M$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot,\cdot)_M$ scalar product

$$\begin{split} \mu_{\min} &= \min_{u \neq 0} \frac{(Cu, u)_M}{(u, u)_M} = \min_{u \neq 0} \frac{(Au, u)}{(Mu, u)} \geq \gamma_{\min} \\ \mu_{\max} &= \max_{u \neq 0} \frac{(Cu, u)_M}{(u, u)_M} = \max_{u \neq 0} \frac{(Au, u)}{(Mu, u)} \leq \gamma_{\max} \end{split}$$

Matrix preconditioned Richardson iteration

M, A spd.

• Scaled Richardson iteration with preconditoner M

$$u_{k+1} = u_k - \alpha M^{-1} (Au_k - b)$$

Spectral equivalence estimate

$$0 < \gamma_{min}(Mu, u) \le (Au, u) \le \gamma_{max}(Mu, u)$$

- $\Rightarrow \gamma_{min} \leq \lambda_i \leq \gamma_{max}$
- \Rightarrow optimal parameter $\alpha = \frac{2}{\gamma_{\max} + \gamma_{\min}}$
- Relative condition number estimate: $\kappa(M^{-1}A) \leq \frac{\gamma_{max}}{\gamma_{min}}$
- Convergence rate with optimal parameter: $\rho \leq \frac{\kappa(M^{-1}A)-1}{\kappa(M^{-1}A)+1}$

1D heat conduction: spectrum

• Regard the $n \times n$ 1D heat conduction matrix with $h = \frac{1}{n-1}$ and $\alpha = \frac{1}{h}$ (easier to analyze).

$$A = \begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & & & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & & \\ & \ddots & \ddots & \ddots & \ddots & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} \end{pmatrix}$$

• Eigenvalues (tri-diagonal Toeplitz matrix):

$$\lambda_i = \frac{2}{h} \left(1 + \cos \left(\frac{i\pi}{n+1} \right) \right) \quad (i = 1 \dots n)$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

• Express them in
$$h$$
: $n+1=\frac{1}{h}+2=\frac{1+2h}{h} \Rightarrow$

$$\lambda_i = rac{2}{h} \left(1 + \cos \left(rac{ih\pi}{1+2h}
ight)
ight) \quad (i = 1 \dots n)$$

1D heat conduction: spectral bounds estimate

- For $i = 1 \dots n$, the argument of cos is in $(0, \pi)$
- cos is monotonically decreasing in $(0,\pi)$, so we get λ_{max} for i=1 and λ_{min} for $i=n=\frac{1+h}{h}$
- Therefore:

$$\lambda_{max} = \frac{2}{h} \left(1 + \cos \left(\pi \frac{h}{1+2h} \right) \right) \approx \frac{2}{h} \left(2 - \frac{\pi^2 h^2}{2(1+2h)^2} \right)$$
$$\lambda_{min} = \frac{2}{h} \left(1 + \cos \left(\pi \frac{1+h}{1+2h} \right) \right) \approx \frac{2}{h} \left(\frac{\pi^2 h^2}{2(1+2h)^2} \right)$$

Here, we used the Taylor expansion

$$cos(\delta) = 1 - rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0)$$
 $cos(\pi - \delta) = -1 + rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0)$

and
$$\frac{1+h}{1+2h} = \frac{1+2h}{1+2h} - \frac{h}{1+2h} = 1 - \frac{h}{1+2h}$$

Jacobi preconditioned Richardson for 1D heat conduction

• The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1}A$:

$$\mu_{ extit{max}} pprox 2 - rac{\pi^2 h^2}{2(1+2h)^2} \ \mu_{ extit{min}} pprox rac{\pi^2 h^2}{2(1+2h)^2}$$

- Optimal parameter: $lpha=rac{2}{\lambda_{max}+\lambda_{min}}pprox 1~(h o 0)$
- Good news: this is independent of h resp. n
- No need for spectral estimate in order to work with optimal parameter.
- Is this true beyond this special case ?

Jacobi for 1D heat conduction: convergence factor

Condition number + spectral radius

$$\kappa(M^{-1}A) = \kappa(A) \approx \frac{4(1+2h)^2}{\pi^2 h^2} - 1$$
$$\rho(I - M^{-1}A) = \frac{\kappa - 1}{\kappa + 1} = 1 - \frac{\pi^2 h^2}{2(1+2h)^2}$$

- ullet Bad news: $ho
 ightarrow 1 \quad (h
 ightarrow 0)$
- Typical situation with second order PDEs:

$$\kappa(A) = O(h^{-2}) \quad (h \to 0)$$
 $\rho(I - D^{-1}A) = 1 - O(h^2) \quad (h \to 0)$

• Mean square error of approximation $||u-u_h||_2 < h^{\gamma}$, in the simplest case $\gamma=2$.

Estimating Iterative solver complexity I

ullet Solve linear system iteratively until $||e_k|| = ||(I-M^{-1}A)^k e_0|| \leq \epsilon$

$$\rho^{k} e_{0} \leq \epsilon$$

$$k \ln \rho < \ln \epsilon - \ln e_{0}$$

$$k \geq k_{\rho} = \left\lceil \frac{\ln e_{0} - \ln \epsilon}{\ln \rho} \right\rceil$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- The ideal iterative solver:
 - $\rho(I M^{-1}A) < \rho_0 < 1$ independent of h resp. $N \Rightarrow k_\rho$ independent of N.
 - A sparse \Rightarrow matrix-vector multiplication Au has complexity O(N)
 - Solution of Mv = r has complexity O(N).
 - \Rightarrow Number of iteration steps k_{ρ} independent of NEach iteration step has complexity O(N)
 - \Rightarrow Overall complexity O(N)

Estimating Iterative solver complexity II

Assume

$$ullet
ho = 1 - h^\delta \Rightarrow \ln
ho pprox - h^\delta o k_
ho = O(h^{-\delta})$$

- d: space dimension: $N \approx n^d$, $h \approx \frac{1}{n} \approx N^{-\frac{1}{d}}$ $\Rightarrow k_0 = O(N^{\frac{\delta}{d}})$
- \bullet O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
- \Rightarrow Overall complexity $O(N^{1+\frac{\delta}{d}}) = O(N^{\frac{d+\delta}{d}})$
- Jacobi: $\delta = 2$ (Gauss-Seidel scales in a similar way)
- ullet Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates (SpLU: sparse LU)

	$\delta = 2$	$\delta=1$		
Space dim.	$\rho = 1 - O(h^2)$	$\rho=1-\mathit{O}(\mathit{h})$	SpLU fact.	SpLU solve
1	$O(N^3)$	$O(N^2)$	O(N)	O(N)
2	$O(N^2)$	$O(N^{\frac{3}{2}})$	$O(N^{\frac{3}{2}})$	$O(N \log N)$
3	$O(N^{\frac{5}{3}})$	$O(N^{\frac{4}{3}})$	$O(N^2)$	$O(N^{\frac{4}{3}})$
Tendency	↓	↓	$\uparrow \uparrow$	↑

Solver complexity scaling for 1D problems

$$rac{ ext{dim} \quad
ho = 1 - O(h^2) \quad
ho = 1 - O(h) \quad ext{LU fact.} \quad ext{LU solve}}{1 \quad O(N^3) \quad O(N^2) \quad O(N) \quad O(N)}$$

- Sparse direct solvers are asymptotically optimal
- Non-ideal iterative solvers significantly worse than optimal

Solver complexity scaling for 2D problems

Complexity scaling for 2D problems

- Sparse direct solvers better than simple nonideal iterative solvers ($\delta=2$ Jacobi etc.)
- ullet Sparse direct solvers on par with improved iterative solvers ($\delta=1$)

Solver complexity scaling for 3D problems

$$\frac{\dim \ \rho = 1 - O(h^2)}{3} \frac{\rho = 1 - O(h)}{O(N^{\frac{5}{3}})} \frac{\rho = 1 - O(h)}{O(N^{\frac{5}{3}})} \frac{\text{LU fact. LU solve}}{O(N^{\frac{5}{3}})}$$

- Sparse LU factorization is expensive: going from h to h/2 increases N by a factor of 8 and operation count by a factor of 64!
- Sparse LU solve on par with improved iterative solvers

What could be done?

- Holy grail: find ideal preconditioner with $\rho \leq \rho_0 < 1$ independent of h, N
- Find "improved preconditioner" with $\kappa(M^{-1}A) = O(h^{-1}) \Rightarrow \delta = 1$
- Find "improved iterative scheme" with $\rho = \frac{\sqrt{\kappa} 1}{\sqrt{\kappa} + 1}$:

For Jacobi, we had $\kappa = X^2 - 1$ where $X = \frac{2(1+2h)}{\pi h} = O(h^{-1})$.

$$\begin{split} \rho &= 1 + \frac{\sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} - 1 \\ &= 1 + \frac{\sqrt{X^2 - 1} - 1 - \sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} \\ &= 1 - \frac{1}{\sqrt{X^2 - 1} + 1} = 1 - \frac{1}{X\left(\sqrt{1 - \frac{1}{X^2}} + \frac{1}{X}\right)} \\ &= 1 - O(h) \quad (h \to 0) \end{split}$$

 \Rightarrow Similar effect as withh $\delta=1$