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Elements of iterative methods (Saad Ch.4)

Let V =R" be equipped with the inner product (-,-). Let A be an nx n
nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:

@ Preconditioner: a matrix M = A “approximating” the matrix A but with
the property that the system Mv = f is easy to solve

o lteration scheme: algorithmic sequence using M and A which updates the
solution step by step



Simple iteration with preconditioning

Assume we know the exact solution &: A = b.

Then it must fulfill the identity

o=10— M (A —b)

=> iterative scheme: put the “old” value on the right hand side and the “new
value on the left hand side:

U1 = ux — M Y (Au —b) (k=0,1...)

Obviously, if ux = i1, the process would be stationary.

Otherwise it leads to a sequence of approximations

uo, Ui, ..., Uk, Ug41,...



Implementation of the iterative process

Aim: solve Au = b with tolerance e:
@ Choose initial value up, set k =0
@ Calculate residuum rx = Aux — b
@ Test convergence: if ||rc]| < & set u = w, finish
© Calculate update: solve Mvy = r¢

© Update solution: ukx+1 = ux — vk, set k = k 4+ 1, repeat with step 2.



The Jacobi method

o Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part
Preconditioner: M = D, where D is the main diagonal of A =

1 .
Uk41,i = Uk, — — E ajjuk,j — b (i=1...n)

aijj

j=1...n

@ Equivalent to the succesive (row by row) solution of

ajilk+1,i + E ajjlk,j = bi (f =1... n)
j=1...nj#i

Already calculated results not taken into account
Variable ordering does not matter



The Gauss-Seidel method

Solve for main diagonal element row by row
Take already calculated results into account
@ Run in ascending order: forward GS

aiiuk+1,i+zaijuk+1,j+Zaijuk,j = b; (i=1...n)
j<i j>i
(D — E)Uk+1 — Fuk =b
M=D-E

Run in descending order: backward GS

aiiuk+1,f+zaijuk+1,j+Zaijuk,j = b; (i=n...1)
J>i j<i
(D, F)Uk+1 — Euk =b
M=D-F
@ May be it is faster
Variable order probably matters



SOR and SSOR

@ SOR: Successive overrelaxation: solve wA = wB and use splitting

wA = (D —wE) — (wF + (1 —wD))

1
M= ~(D —wE)

leading to
(D — wE)uks1 = (wF + (1 — wD))uk + wb
@ SSOR: Symmetric successive overrelaxation
(D - wE)uH% = (wF 4+ (1 — wD))ux + wb
(D — wF)uks1 = (WE+ (1 — wD))uH% + wb

@ Preconditioner:

1

M=le-o

(D —wE)D™Y(D — wF)

o Gauss-Seidel and symmetric Gauss-Seidel are special cases for w = 1.



Block methods

@ Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

@ The blocks on the diagonal should be square matrices, and invertible

@ Interesting variant for systems of partial differential equations, where
multiple species interact with each other



Convergence

@ Let i1 be the solution of Au = b.
o Let ex = ux — U be the error of the k-th iteration step
Uk+1 = Uk — Mil(Auk — b)
= (=M A+ M b
U1 — O = ug — i — M~ (Aug — Al
= (1= M A)(u — )
= (=M A (u — 1)
resulting in

a1 = (I — M TA) e

o So when does (I — M~'A)* converge to zero for k — oo ?

o let B=/—M1A



Jordan canonical form of a matrix B

@ )\ (i=1...p): eigenvalues of B

@ o(B) ={A1...\p}: spectrum of B

o u;: algebraic multiplicity of A;:
multiplicity as zero of the characteristic polynomial det(B — \/)

@ ~; geometric multiplicity of A;: dimension of Ker(B — Al)

@ /;: index of the eigenvalue: the smallest integer for which
Ker(B — At = Ker(B — \I)"

o i < pi

Theorem (Saad, Th. 1.8) B can be transformed to a block diagonal matrix
consisting of p diagonal blocks D; ... D,, each associated with a distinct
eigenvalue \;.

@ Each of the diagonal blocks D; has itself a block diagonal structure
consisting of v; Jordan blocks Ji1 ... J; ;.

@ Each of the Jordan blocks is an upper bidiagonal matrix of size not
exceeding /; with A; on the diagonal and 1 on the first upper diagonal.



Jordan canonical form of a matrix Il

D,
X "BX=J=
Dy
Ji1
Jin
D =
JI'W;
A1
i1
Jik =
1
Ai

Each J; « is of size < [; and corresponds to a different eigenvector of B.



Spectral radius and convergence

Definition The spectral radius p(B) is the largest absolute value of any
eigenvalue of B: p(B) = maxcq(s) |\

Theorem (Saad, Th. 1.10) klim B*=0& p(B) < 1.
— 00
Proof, =: Let u; be a unit eigenvector associated with an eigenvalue \;. Then

BU,‘ = )\,‘U,‘
BZU; = )\,‘B,'U; = )\2Ui

Bku,- = )\kUi
therefore  ||B*uj||» = |\¥]

and lim A =0
k— o0

so we must have p(B) < 1



Spectral radius and convergence |l

Proof, <: Jordan form X 'BX = J. Then X "'B*X = JX.
Sufficient to regard Jordan block J; = Al + E where [A\| < 1 and E = 0.
Let kK > /;. Then

li—1
=Y (j) Nl

=0

li—1

k _: .

<y (J) AFIE
j=0

TR i=0 || T
where the Stirling numbers of the first kind are given by
0 . 5 e b .
Ll=1 []=01=0 [7]=il]+[4]
Thus, p;(k)|A|* — 0 (k — oc) as exponential decay beats polynomial growth
0.

But (f) =K = Zj Jl K~ pj(k) is a polynomial of degree j in k



Corollary from proof

Theorem (Saad, Th. 1.12)

lim ||B||¥ = p(B)
k— o0



Back to iterative methods

Sufficient condition for convergence: p(l — M™'A) < 1.



Convergence rate

Assume X\ with |\| = p(/ — M™'A) < 1 is the largest eigenvalue and has a single
Jordan block of size /. Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in A which due to

E'=0is
)\k—H—l <l i( 1) El—l

|U—M*m%w—mn=OOV“WQkJ>

and the “worst case” convergence factor p equals the spectral radius:

p= lim (maxll(/—MlA)k(uo—a)|)i

k— o0 ug HU() — fl”
= lim [|(/ — M~ A)¥||*

k— o0
=p(l — M7'A)

Depending on wug, the rate may be faster, though



Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues 0 < Amin < Ai < Amax.
E.g. Ais symmetric, positive definite (spd).

eleta>0, M=21/=1-M'A=1-0aA

@ Then for the eigenvalues p; of | — @A one has:

1-—- a>\ma)< S Mi S 1-— aAmin
pi <1

2

Amax

@ We also need 1 — almax > —1, so we must have 0 < a <

Theorem. The Richardson iteration converges for any a with 0 < a < ﬁ

The convergence rate is p = max (|1 — aAmax], |1 — @Aminl)-



Richardson iteration, choice of optimal parameter

p » max (|1 — admax|, |1 — aAmin|)

Oé>\max|

-

‘1 - (}>\m/'n‘

1 T T (e}
1 1
Amax X min
—_—2
Amax+Amin

@ Due to —(1 — admax) > —(1 — @Xmin) and +(1 — aXmin) > +(1 — @Amax),
p =max (|1 — aXmax|, |1 — @Amin|)
=max ((1 — armax), —(1 — @Xmin))
@ 1 — aApmax is monotonically decreasing, the —(1 — aAmin) increases, so the
minimum must be at the intersection

1 — admax = =1+ @Amin = 2= a(>\max + >\min)



Richardson iteration, choice of optimal parameter

2

Theorem. The optimal parameter is aopr = x—+—-
minTAmax

For this parameter, the convergence factor is

Amax — Amin k—1

Port = )\max + Amin N K+ 1

where k = k(A) = % is the spectral condition number of A. O



Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate
0 < 'Ymin(Muy U) S (ALI, U) S fymaX(ML“ U)
Then for the eigenvalues p; of M1A we have

Ymin S min S Mi S Mmax S Ymax
and kK(M™TA) < Imax

—  Ymin
Proof. Let the inner product (-, -)m be defined via (v, v)m = (Mu, v). In this
inner product, C = M~ A is self-adjoint:
(Cu,v)m = (MM Au, v) = (Au,v) = (M~ Mu, Av) = (Mu, M~ " Av)
= (u, M Ay = (u, CvV)um

Minimum and maximum eigenvalues can be obtained as Ritz values in the (-, )m
scalar product

(Cuu . (Auu)
min = = > min
" T#IQ (uy u)m T#IQ (Mu,u) — B
(Cu,u)m (Au, u)

= pr— <
Himax Tjg( (u, u)m rp;g( (Mu,u) — Ymax



Matrix preconditioned Richardson iteration

M, A spd.
@ Scaled Richardson iteration with preconditoner M

Ukr1 = Uk — aM_l(Auk —b)

@ Spectral equivalence estimate

0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)

@ = Ymin <A< Ymax

2

@ = optimal parameter « = —=—
P P Ymax +Ymin

Relative condition number estimate: x(M™'A) < max

— Ymin

r(M~1A)—1

o Convergence rate with optimal parameter: p < WMETA L



1D heat conduction: spectrum

@ Regard the n x n 1D heat conduction matrix with h = ni
(easier to analyze).
2 1
Moo
N
R h h
A=
_1 2 1
N
h R h
1 2
h A

@ Eigenvalues (tri-diagonal Toeplitz matrix):

)\;:%(l—l—cos(%)) (i=1...n)

Source: A. Béttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

@ Express them in h: n+1:%+2=1+—h2h =

2 ihm .
)\;—E<1+cos(1+2h>) (i=1...n)




1D heat conduction: spectral bounds estimate

@ For i =1...n, the argument of cos is in (0, )
@ cos is monotonically decreasing in (0,7), so we get Amax for i = 1 and Amin
for i =n=

h
@ Therefore:

A _z(lﬂos(ﬂ h ))Nz p_ TR
TR 1+2h/)) "~ h 2(1 + 2h)?
2
h

2 1+h 2 h
M= 2 (14 cos (n 00 )) (2(1 +2h)2)
62

Here, we used the Taylor expansion
m@yJ——+qw (6 —0)

cos(m—6) = -1+ % +0(8") (6—0)

1+h __ 1+42h h __ 1 h

and {557 = 1558 — o5 = 1~ Tion



Jacobi preconditioned Richardson for 1D heat conduction

@ The Jacobi preconditioner just multiplies by g therefore for M1 A:
2 h?
Mmax ~ 2— 501 LoR\2
2(1 + 2h)
w2 h?
Mmin ~ 51 L oR\2
2(1 + 2h)
e Optimal parameter: a = #ﬂmn ~1(h—0)

Good news: this is independent of h resp. n

No need for spectral estimate in order to work with optimal parameter.

@ Is this true beyond this special case ?



Jacobi for 1D heat conduction: convergence factor

o Condition number + spectral radius

4(1 4 2h)?
m2h2

k—1 1_ w2h?

k+1 " 2(142h)2

K(M™A) = k(A) ~ 1

p(l = M1A) =

e Bad news: p —»1 (h—0)

Typical situation with second order PDEs:

K(A)=0(h™?) (h—0)
p(I =D 'A)=1—-0(K) (h—0)

@ Mean square error of approximation ||u — up|]2 < h”, in the simplest case
v =2.



Estimating lterative solver complexity |

o Solve linear system iteratively until ||ex|| = ||(/ — MT*A)*ep|| < €

pkeoge
kinp <Ine—Ineg

Inegy — Ine-‘

kzk,,z{ s

@ = we need at least k, iteration steps to reach accuracy €
o The ideal iterative solver:

o p(I — M~1A) < po < 1 independent of h resp. N
= ky, independent of N.

o A sparse = matrix-vector multiplication Au has complexity O(N)
e Solution of Mv = r has complexity O(N).
= Number of iteration steps k, independent of N

Each iteration step has complexity O(N)
= Overall complexity O(N)



Estimating lterative solver complexity Il

@ Assume

o p=1-H =Inpx~—h — k, = O(h~9)

e d: space dimension:N =~ nd, h~ % ~ Nfé

= kp = O(N¥)
e O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
= Overall complexity O(NH'd) O(N‘Hé)

@ Jacobi: § = 2 (Gauss-Seidel scales in a similar way)
@ Hypothetical “Improved iterative solver” with 6 =1 7

@ Overview on complexity estimates (SpLU: sparse LU)

5=2 s=1
Space dim. p=1-0(h*) p=1-0(h) SpLU fact. SpLU solve
1 O(N?) O(N?) O(N) Oo(N)
2 O(N?) O(N?) O(N?)  O(NlogN)
3 O(N3) O(N5) o(V) O(N5)
Tendency 1 1 ™ 1T




Solver complexity scaling for 1D problems

dim p=1-0(h) p=1-0(h) LU fact. LU solve
1 O(N?) O(N?) O(N) O(N)

10 Complexity scaling for 1D problems 10 Complexity scaling for 1D problems
—
Lo [| — P00 107 — p=1-0(a*)
p=1-0(h) 10 — p=1-0(h)
10 p<l 101 — p=l
Lo lf* + LU fact el e o LUfact
” LUsolve | — . LU solve
§ 10 g10
E S102
3 g0 g
& &10m
10° e 10°
10° B - 10°
10° prwaiy
2 L -
1 10° S
10° 1) 3 7 e o
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@ Sparse direct solvers are asymptotically optimal

@ Non-ideal iterative solvers significantly worse than optimal



dim

Solver complexity scaling for 2D problems

p=1-0(h)

p=1-0(h)

LU solve

Operations

2

O(N?)

Complexity scaling for 2D problems

— <l

« « LUfact

— p=1-0(h*)
— p=1-0(h)

LU solve

O(N log N)

for 2D problems

L

p=1-0(h*)

p=1-0(h)
p<l

LU fact
LU solve

[

200000

400000 600000 800000
N

Sparse direct solvers better than simple nonideal iterative solvers (§ = 2
Jacobi etc.)

Sparse direct solvers on par with improved iterative solvers (6 = 1)




Solver complexity scaling for 3D problems

dim p=1-0(h) p=1-0(h) LU fact. LU solve
3 O(N3) O(N?) O(N?>)  O(N3)

Complexity scaling for 3D problems Complexity scaling for 3D problems
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@ Sparse LU factorization is expensive: going from h to h/2 increases N by a
factor of 8 and operation count by a factor of 64!

@ Sparse LU solve on par with improved iterative solvers



What could be done ?

@ Holy grail: find ideal preconditioner with p < po < 1 independent of h, N
o Find “improved preconditioner” with x(M™'A) = O(h™!) = § =1

e Find “improved iterative scheme” with p = ?H

For Jacobi, we had k = X? — 1 where X = 2(1+2h = O0(h™).

gy ¥Xi-1-1_
P VX2 _1+1
IR s S ) s W
VXT—1+1
—1 L —1- L

VX141 x( 1- %+ )
—1-0(h) (h—0)

= Similar effect as wihth § =1



