
23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 1/7

Table of Contents

Extracting integral data from Finite Volume solutions
Sample problem
Stationary case

Reaction == creation ?
Out�low == reaction ?

The test function trick
Transient problem

Extracting integral data from Finite
Volume solutions
A�ter calculating solutions based on the �nite volume method, it may be interesting to obtain
information about the solution besides of the graphical representation.

Here, we focus on the following data:

integrals of the solution
�lux through parts of the boundary

Sample problem
Here, we de�ne a sample problem for discussing these issues, which could be formulated in a more
general way as well.

make_grid (generic function with 1 method)

grid ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 631 cells: 1159 bfaces: 101

 =

function make_grid(;maxvolume=0.001)
 builder=SimplexGridBuilder(Generator=Triangulate)
 p00=point!(builder, 0,0)
 p10=point!(builder, 1,0.25)
 p11=point!(builder, 1,0.75)
 p01=point!(builder, 0,1)

 facetregion!(builder,1)
 facet!(builder, p00,p10)
 facetregion!(builder,2)
 facet!(builder, p10,p11)
 facetregion!(builder,3)
 facet!(builder, p11,p01)
 facetregion!(builder,4)
 facet!(builder,p00,p01)

 simplexgrid(builder,maxvolume=maxvolume)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

grid=make_grid()⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 2/7

Let us de�ne the following reaction - di�fusion system in :

with boundary conditions on and .

The source creates species which reacts to , then leaves the domain at boundary .

... be careful with the sign: reaction is on the le�t hand side, source on the right hand side.

Create the system, enable species, set boundary condition, solve, create initial value:

physics
VoronoiFVM.Physics(num_species=2, flux=flux, storage=storage, reaction=reaction, source=sou

 =

inival
2×631 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 =

function storage(f,u,node)
 f.=u
end;

⋅
⋅
⋅

function flux(f,_u,edge)
 u=unknowns(edge,_u)
 f[1]=u[1,1]-u[1,2]
 f[2]=u[2,1]-u[2,2]
end;

⋅
⋅
⋅
⋅
⋅

r(u1,u2)= u1-0.1*u2;⋅

function reaction(f,u,node)
 f[1]= r(u[1],u[2])
 f[2]=-r(u[1],u[2])
end;

⋅
⋅
⋅
⋅

function source(f,node)
 f[1]=1.0
end;

⋅
⋅
⋅

physics=VoronoiFVM.Physics(num_species=2,
 flux=flux,
 storage=storage,
 reaction=reaction,
 source=source)

⋅
⋅
⋅
⋅
⋅

begin
 system=VoronoiFVM.System(grid,physics)
 enable_species!(system,1,[1])
 enable_species!(system,2,[1])
end

⋅
⋅
⋅
⋅
⋅

boundary_dirichlet!(system,2,2,0.0);⋅

inival=unknowns(system,inival=0.0)⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 3/7

Stationary case

For this problem, we have the following �lux balances derived from the equations and from Gauss'
theorem:

The volume integrals can be approximated based on the �nite volume subdivision :

u 2×631 Matrix{Float64}:
 1.04961 1.04503 1.04503 … 1.0496 1.04956 1.04573 1.04954
 0.647343 3.67642e-32 6.23316e-32 0.646598 0.644086 0.26481 0.642655

 =

The integrate method of VoronoiFVM provides a possibility to calculate the volume integral of a
function of a solution as described above. It returns a num_species num_regions matrix of the
integrals of the function of the unknowns over the di�ferent subdomains (here, we have only one):

Amount of and in the domain aka integral over identity storage function:

U 2×1 Matrix{Float64}:
 0.7858573677959029
 0.35857367795902967

 =

Amount of species created by source term per unit time:

F 2×1 Matrix{Float64}:
 0.7499999999999993
 0.0

 =

Amount of reaction per unit time:

R 2×1 Matrix{Float64}:
 0.7499999999999992
 -0.7499999999999992

 =

u=solve(inival,system)⋅

U=integrate(system,storage,u)⋅

F=integrate(system,(f,u,node)->source(f,node),u)⋅

R=integrate(system,reaction,u)⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 4/7

Reaction == creation ?
Let us check our �rst identity: creation rate = reaction rate:

true

Out�ow == reaction ?

The test function trick
This trick goes back to work of H. Gajewski in the �eld of semiconductor device simulation.

But what about the boundary integral ? Here, we use a trick to cast the surface integral to a volume
integral with the help of a test function:

Let be the solution of the Laplace problem in and the boundary conditions

VoronoiFVM.jl provides a special API for obtaining such a test function:

Float64[1.30582e-32, 1.0, 1.0, 5.43952e-33, 0.400827, 1.24937e-32, 0.372123, 0.61377

Write . and assume

and we approximate

ω

F[1] ≈ R[1]⋅

begin
 tf=VoronoiFVM.TestFunctionFactory(system)
 Γ_where_T_equal_1=[2]
 Γ_where_T_equal_0=[4]
 T=testfunction(tf,Γ_where_T_equal_0,Γ_where_T_equal_1)
end

⋅
⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 5/7

where the sum runs over pairs of neigboring control volumes.

The integrate method with a test function parameter returns a value for each species, the sign
convention assumes that species leaving the domain lead to negative values.

I Float64[-2.7333e-17, -0.75] =

Check that none of leaves the domain through the boundary:

true

Check that creation of in the reaction is balanced by leaving the domain through :

true

So we indeed can con�rm the requirement for the right balance of source, reaction and out�low.

Transient problem
For the transient case, in addition, we need to consider the time derivative part along with reaction
and source. In the derivation of the test function procedure, under the assumption of the implicit Euler
time discretization method, this can be achieved by handling the �nite di�ference in time along with
source and reaction.

tsol
t: 52-element Vector{Float64}:
 0.0
 0.05
 0.07624404074558075
 0.10317181117166707
 0.1308175835099931
 0.15921827342132694
 0.18841372976572393
 ⋮
 5.559040374037019
 6.3928478027881015
 7.3928478027881015
 8.3928478027881
 9.3928478027881
10.0

u: 52-element Vector{Matrix{Float64}}:
[0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0]
[0.04762986051262805 0.04762515338868721 … 0.047626533643388674 0.04762983009855026; 0
[0.07199507932790919 0.07198603534863536 … 0.07198859299349966 0.071995017790104; 0.004
[0.09634579206667453 0.09632984681193643 … 0.09633412101648231 0.09634567399379049; 0.0
[0.1206812680926302 0.12065526905151462 … 0.1206618529370015 0.12068105702750248; 0.009
[0.1450007114816121 0.14496097925801335 … 0.14497051166089883 0.14500035994329577; 0.01
[0.1693032610197695 0.16924565599166444 … 0.16925881538494889 0.16930271135296024; 0.01
⋮

 =

I=integrate(system,T,u)⋅

isapprox(I[1],0.0,atol=1.0e-16)⋅

R[2] ≈ I[2]⋅

t0=0.0; tend=10;⋅

control=VoronoiFVM.NewtonControl();⋅

control.Δu_opt=0.025;⋅

control.Δt_min=1.0e-4;⋅

control.Δt=0.1;⋅

control.Δt_max=1.0;⋅

tsol=solve(inival,system,[t0,tend],control=control)⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 6/7

The call to solve corresponds to a new API for transient solutions. It returns a solution object which is
compatible to that from DifferentialEquations.jl .

In particular, a TransientSolution tsol can be accessed as follows:

tsol[it] contains the solution for timestep i
tsol[ispec,:,it] contains the solution for component ispec at timestep i
tsol(t) returns a (linearly) interpolated solution value for t .
tsol.t[it] is the corresponding time
tsol[ispec,ix,it] refers to solution of component ispec at node ix at moment it

Time: 6.7

From the solution we now can calculate the normal �lux via our test function "trick", once again
through the API provided by VoronoiFVM:

Float64[-0.00586532, -0.00987319, -0.0147437, -0.0204071, -0.0268231, -0.0339665, -0.

For increasing time, the out�low rate should approach the value we calculated from the stationary
solution:

The overall amount of species which le�t the domain is can be calculated integrating the discrete
out�low rate over time

6.35637165496992

begin
 outflow_rate=Float64[]
 for i=2:length(tsol)
 ofr=integrate(system,T,tsol[i],tsol[i-1],tsol.t[i]-tsol.t[i-1])
 push!(outflow_rate,ofr[2])
 end
outflow_rate
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin
 I_all=0.0
 for i=1:length(tsol)-1
 I_all-=outflow_rate[i]*(tsol.t[i+1]-tsol.t[i])
 end
 I_all
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb21-integrals.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=c019e514-8bbd-11eb-2d61-a347d249ef35# 7/7

The amount of species created via the source term (measured in F) integrated over time should be
equal to the sum of the amount of species le�t in the domain at the very end of the evolution and the
amount of species which le�t the domain:

ω

Uend 2×1 Matrix{Float64}:
 0.7854274358734347
 0.35820090915664426

 =

true

 Status `/tmp/jl_9t6uW1/Project.toml`
 [cfc395e8] ExtendableGrids v0.7.4
 [7f904dfe] PlutoUI v0.7.4
 [d330b81b] PyPlot v2.9.0
 [57bfcd06] SimplexGridFactory v0.5.1
 [f7e6ffb2] Triangulate v1.0.1
 [82b139dc] VoronoiFVM v0.10.8

Uend=integrate(system,storage,tsol[end])⋅

F[1]*(tend-t0) ≈ (Uend[1] + Uend[2] + I_all)⋅

